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We theoretically investigate frequency comb generation in
a bottle microresonator accounting for the azimuthal and
axial degrees of freedom. We first identify a discrete set of
the axial nonlinear modes of a bottle microresonator that
appear as tilted resonances bifurcating from the spectrum
of linear axial modes. We then study azimuthal modula-
tional instability of these modes and show that families
of two-dimensional (2D) soliton states localized both azi-
muthally and axially bifurcate from them at critical pump
frequencies. Depending on detuning, 2D solitons can be
stable, form persistent breathers or chaotic spatio-temporal
patterns, or exhibit collapse-like evolution. © 2018 Optical
Society of America

OCIS codes: (140.3945) Microcavities; (190.5940) Self-action

effects.
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Whispering gallery mode microresonators are known to gener-
ate Kerr frequency combs when a sufficiently strong external
pump is tuned into a resonance with one of the azimuthal
modes of the resonator. Such frequency combs can be used
in a number of applications, including precision spectroscopy
and optical signal processing; see, e.g., Refs. [1–3]. A particu-
larly important frequency comb state is the one where either
one or several solitons are generated as a result of the phase
locking of a large number of different azimuthal modes.
The demonstration of soliton combs in microresonators in
both anomalous [4,5] and normal [6] dispersion regimes has
been a crucial step towards realization of compact solid-state
sources of tunable broadband combs. Frequency combs in rel-
atively long and thin microrings are accurately described by the
one-dimensional (1D) Lugiato–Lefever (LL) model [7–10],
where a single spatial dimension corresponds to the azimuthal
coordinate along the resonator circumference. This model is
derived and valid under an assumption that the transverse
modal structure related to two remaining spatial degrees of

freedom is frozen. Experimental situations, where coupling
between several azimuthal families of modes corresponding
to different transverse field profiles impacts comb generation
and soliton formation processes in microrings, are also known;
see, e.g., Ref. [11]. An interplay between several spatial degrees
of freedom can also be considered in other types of microreso-
nators such as bottle [12–15], spherical/spheroidal [16–18],
and microbubble [19,20]. An important feature of those is that
ratios between free-spectral ranges (FSRs) associated with dif-
ferent modal families can be more readily controlled here
[15,18]. This opens new opportunities for generation of tun-
able frequency combs and observation of a wide spectrum of
other nonlinear phenomena [15,17,18]. Considering bottle
resonators, two groups have recently developed a theory of
frequency comb generation in them that has used a 1D LL
model with parabolic potential, and demonstrated multistabil-
ity [19] and frequency comb generation [21,22] effects relying
on the axial mode family.

In this Letter, we consider the generation of two-
dimensional (2D) frequency combs in bottle microresonators,
taking into account dynamics in the axial and azimuthal direc-
tions. In particular, we address a practically relevant geometry
[15] where the azimuthal FSR exceeds the axial one by a couple
of orders of magnitude, so that the corresponding resonator
spectrum consists of clusters of the axial modes attached to
the well-separated azimuthal modes. We found 2D soliton
solutions that bifurcate from the nonlinear axial modes.
When these solitons destabilize through the change of the
pump frequency, they transform into breathers, decay, or
exhibit quasi-collapses.

We describe the dimensionless field envelope function Ψ in
a bottle microresonator proposing a 2D generalization of the
1D Lugiato–Lefever equation used in Refs. [21,22] to describe
combs in bottle resonators. Our model takes into account an
axial (Z direction) trapping potential and pump localization, as
well as the dependence on the azimuthal coordinate θ corre-
sponding to the whispering gallery modes rotating around
the bottle axis:
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i∂TΨ � −
1

2
d∂2ZΨ� ω0Ψ − iD1∂θΨ −

1

2
D2∂2θΨ� f 2

2d
U�Z �Ψ

− iκΨ − f ΨjΨj2 − f H�Z �e−iωpT , (1)

where T is the physical time, κ is the loss rate, and ωp is the
pump frequency. An integrated dispersion in the azimuthal di-
rection is approximated by D1μ�D2μ

2∕2, where μ is the azi-
muthal mode index,D1∕2π is the azimuthal FSR, andD2 is the
second-order azimuthal dispersion. Scaling for Ψ, potential U
and pump H are chosen in a way that the parameter f ∕2π
yields the axial FSR. Indeed, the linear and pump-free spectrum
of Eq. (1) obtained by substituting Ψ ∼ ψνμ exp�−iωνμT −
iμθ� and assuming a parabolic trapping potential, U � Z 2,
reads as ωνμ − ω0 � f �ν� 1∕2� � μD1 � μ2D2∕2, where ν
is the axial index and ψνμ are the eigenmodes of the harmonic
oscillator. Thus, the spectrum is equidistant in ν, and f is the
distance between the resonances. If a bottle microresonator has
an axial length L, a core radius r, and an axial curvature R
[21,23], then the azimuthal and axial FSRs D1 ≈ c∕n0r and
f ≈ c∕n0�rR�1∕2. We set Ψ � ψ exp�−iωpT � and introduce
dimensionless time t � f T and coordinate z � f 1∕2Z∕d 1∕2

to get a dimensionless equation:

i∂tψ � −
1

2
∂2zψ � �δ − iβ1∂θ − β2∂2θ�ψ � U�z�

2
ψ − iγψ

− ψ jψ j2 −H�z�, (2)

with detuning δ � �ω0 − ωp�∕f , losses γ � κ∕f , and
dispersion coefficients β1 � D1∕f and β2 � D2∕2f . We as-
sume that the resonator is pumped through an optical fiber
running transverse to the bottle axis, which corresponds to
the well-localized H � h exp�−�z − zp�2∕w2�, where w is the
pump width (w � 0.2 in what follows), and zp is the pump
position relative to the resonator center. Accounting for spatial
localization of the pump is important for spectrally dense modal
families, where FSR is comparable to the nonlinear shifts of
the resonances and can be disregarded for the ones with the
relatively large FSRs [24]. For a microresonator with a
radius r � 1 mm, a curvature R � 100 m, and a length
L � 2.2 mm, one obtains D1 � 200 GHz, f � 0.6 GHz.
Such resonator supports about N � 50 axial modes. To
account for the finite bottle, we set U � 2N for
jzj > �2N �1∕2. In what follows, we use γ � 0.004, giving
the linewidth κ � 2.4 MHz and β2 � 0.1 corresponding to
D2 ≈ 120 MHz. Equation (2) was solved with the boundary
conditions ψ�z, θ� � ψ�z, θ� 2π� and ψ�z → ∞, θ� � 0.

We first consider solutions of Eq. (2) that are uniform in θ,
physically corresponding to the azimuthal structure of a whis-
pering gallery mode with the frequency nearest to the pump
frequency. Varying the detuning parameter, we build a family
of the axial modes peaking at δ � −�ν� 1∕2� and shaping a set
of tilted nonlinear resonances [see Figs. 1(a) and 1(b) showing
the peak amplitude jψ jmax of the nonlinear modes as a function
of δ ]. When the resonator is pumped exactly at the center
�zp � 0�, then only even modes with the axial indices ν �
0, 2,… are excited [Fig. 1(a)]. Examples of 1D profiles of such
modes can be found in Ref. [21]. Resonances are tilted and may
overlap, creating a multistability situation. The overlap of the
central pump with the higher-order harmonic oscillator modes
reduces with the increase of ν and, hence, resonance peaks
gradually decrease with δ; see Fig. 1(a). If pump is shifted
to the intensity maximum of one of the higher-order modes,

for example to zp � 2.417 (maximum of the ν � 4 mode),
then the tilted resonances are found for odd and even modes
and the modes around ν � 4 are excited most efficiently;
see Fig. 1(b).

Families of solutions shown in Fig. 1 can be subject to the
instability development stimulated by small θ-dependent
perturbations. To analyze this effect, we use an anzats
ψ�z� � u�z�eλt�imθ � v��z�eλ�t−imθ, where m is the azimuthal
index, and λ is the perturbation growth rate. Linearizing
Eq. (2), we find the following eigenvalue problem:

iλu � �δ� β1m� β2m2 � U∕2 − iγ − 2jψ j2 − ∂2z∕2�u − ψ2v,

iλv � ψ�2u − �δ − β1m� β2m2 � U∕2� iγ − 2jψ j2 − ∂2z∕2�v:
(3)

Solving it numerically, we find a typical modulational insta-
bility band structure (see Fig. 2) that exists for all the upper
branches of all the tilted resonances. The instability bandwidth
decreases monotonically with the increase of the axial mode
index ν for zp � 0, and it varies nonmonotonically with ν
for the off-center pump acquiring maximal values for the
strongest resonances. Unstable axial modes are indicated with
the red full lines in Figs. 1 and 3. The instability of the upper
branches around resonances was encountered for a broad range
of h, γ values. The instability typically breaks these modes into

Fig. 1. Set of resonance curves corresponding to the family of non-
linear axial modes with the azimuthal index m � 0. (a) zp � 0 and
(b) zp � 2.417. Here and in all figures, h � 0.08 and γ � 0.004.

Fig. 2. Modulational instability growth rate calculated for (a) the
axial mode with ν � 0 and zp � 0, and (b) ν � 5 and zp � 2.417.

Letter Vol. 43, No. 11 / 1 June 2018 / Optics Letters 2681



a complex pattern consisting of multiple solitons, sometimes
with different axial structures, rotating around the bottle axis.

To isolate and study the rotating 2D solitons, we search for
2D nonlinear modes of Eq. (2) in a moving coordinate frame,
where the term ∼β1∂θψ is eliminated: ψ�t, θ, z� → ψ�t, θ 0, z�
and θ 0 � θ − β1t. We found that families of these solitons bi-
furcate from the upper branches of the axial modes exactly at
the detuning values, where the latter become modulationally
unstable; see Figs. 3(a) and 3(b). The azimuthal solitons that
we found inherit an axial structure corresponding to the respec-
tive axial modes. Close to the bifurcation point, they are delo-
calized in θ, while they rapidly narrow down when detuning
increases; see Figs. 3(c) and 3(d). This is accompanied by sub-
stantial expansion of the spectrum in both axial �Ω� and azi-
muthal �m� directions. This is particularly notable in the
azimuthal direction, since the azimuthal spectrum is effectively
a single mode at a bifurcation point. Examples of azimuthal
spectra calculated using field distributions ψ�θ, z � 0� in
the center of resonator �z � 0� are shown in Fig. 4. While sol-
itons bifurcating from the modes with relatively small values of
the axial index ν are localized very well, the ones with many
axial intensity oscillations �ν > 2� typically acquire complex
background in the azimuthal direction with an increase of δ.
It was unfeasible to trace all possible soliton families due to
multiple bifurcations corresponding to solutions with a more
complex azimuthal structure.

However, the simplest families are shown in Fig. 3. The re-
sults presented in Fig. 3 constitute the first example of 2D
comb solitons. We analyzed the stability of 2D comb solitons
by solving Eq. (2) directly with slightly perturbed soliton inputs

up to evolution times exceeding t � 104. Stable 2D soliton
branches are marked black, while unstable branches are shown
in red. In the case of the central pump, we found a sufficiently
broad interval of frequency detuning where 2D solitons con-
necting to the ground state of the harmonic oscillator, ν � 0,
are stable. The off-centered pump provides only very narrow
intervals of stability for 2D solitons connected to the ν � 1
and ν � 2 states of the harmonic oscillator that are stable in
narrow detuning intervals.

Unstable solitons have been found to demonstrate diverse
spatio-temporal dynamics. For example, we have observed that
the ν � 2 solitons for zp � 0 transform into persistent breath-
ers; see Fig. 5. Note that this transformation is accompanied
by minimal modifications of the soliton spectrum and by the

Fig. 3. (a), (b) Full lines show nonlinear resonances as in Figs. 1(a) and 1(b). The dots show peak amplitudes jψ jmax of the 2D solitons. Stable/
unstable solutions are shown in black/red. (c)–(e) Examples of the real and frequency space profiles of the 2D solitons corresponding to points c, d,
and e in (a) and (b).

Fig. 4. Azimuthal spectra at (a) δ � −0.5 and (b) δ � 0.7 calculated
in the point z � 0 and corresponding to points c and d in Fig. 3(a).

Fig. 5. 2D breather soliton around the ν � 2 axial mode for δ �
−2.1 and zp � 0. Top row, field amplitude at θ � 0, z � zp; middle
and bottom rows, real and frequency space distributions for different
moments of time.
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accumulation of the velocity offset in the azimuthal direction.
To make this offset visible, in Fig. 5 we eliminated the β1∂θψ
terms corresponding to the fast soliton rotation. The small
variation of FSR arising due to this offset can be estimated
as 2π∕T b, where T b is the time interval between the sub-
sequent peaks in Fig. 5, corresponding to the arrival of the mov-
ing breather to the θ, zp � 0 point. Notice that, in addition to
velocity offset, the breather also exhibits small periodic oscilla-
tions of peak amplitude. The most common instability scenario
for modes with large axial indices ν is the initial contraction
followed by fragmentation of the profile into a pattern of ran-
dom filaments. These chaotic patterns either persist for a very

long time (see Fig. 6) or evolve into a stable nonlinear mode
corresponding to the low amplitude branch of the tilted reso-
nances. Another instability scenario of 2D solitons, which oc-
curs when their amplitude becomes sufficiently large, is the
soliton collapse which is accompanied not only by a dramatic
narrowing of the field profile in both coordinates, but also by
a pronounced spectral broadening in both axial and azimuthal
frequencies (Fig. 7). Collapse is of course an unphysical effect
and is expected to be arrested through the inclusion of the
higher-order dispersive terms into the model equation, which
should be a subject of future research.
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Fig. 6. Chaotic spatio-temporal dynamics emerging from the insta-
bility of the 2D soliton around the ν � 3 axial mode for δ � −3.3 and
zp � 2.417. The arrangement of the panels is the same as in Fig. 5.

Fig. 7. Collapse of the unstable ν � 0 soliton at δ � 0.9 and
zp � 0.
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