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We theoretically study the optical properties of a gas of ultracold, coherently dressed three-level atoms in a
Mott insulator phase of an optical lattice. The vacuum state, the band dispersion and the absorption spectrum
of the polariton field can be controlled in real time by varying the amplitude and the frequency of the dressing
beam. In the weak dressing regime, the system shows unique ultraslow-light propagation properties without
absorption. In the presence of a fast time modulation of the dressing amplitude, we predict a significant
emission of photon pairs by parametric amplification of the polaritonic zero-point fluctuations. Quantitative
considerations on the experimental observability of such a dynamical Casimir effect are presented for the most
promising atomic species and level schemes.
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I. INTRODUCTION

Most of the recent advances in the field of nonlinear and
quantum optics were made possible by the development of
optical media with unprecedented properties. On the one
hand, the optical response of carriers in solid-state materials
can be controlled and enhanced by confining the carrier mo-
tion and/or the photon mode in suitably grown nanostruc-
tures �1–5�. On the other hand, systems of ultracold atoms
appear as very promising in view of all those applications
which require long coherence times, e.g., quantum-
information processing.

Even though the low density of an atomic gas limits the
absolute strength of the light-matter coupling, still these sys-
tems have the advantage of being almost immune from dis-
order and decoupled from the environment. Furthermore,
they offer the possibility of a precise control and wide tun-
ability of the system parameters in real time by optical
and/or magnetic means. In particular, Mott �6,7� �as well as
band �8�� insulator states have been realized: Already for a
moderately strong lattice potential a few times higher than
the atomic recoil energy, a constant and integer number of
atoms are trapped in the extremely regular potential of an
optical lattice with negligible quantum fluctuations in the
atom number. Such systems then constitute an almost perfect
realization of the Fano-Hopfield model of resonant dielec-
trics �9�.

In the present paper we present a theoretical study of the
classical and quantum optical properties of an atomic Mott
insulator. Recently, the case of two-level atoms was investi-
gated in �10,11�. Here we extend the Fano-Hopfield model to
the case of a three-level system in the presence of a coherent
dressing field. The rich potential of three-level configurations
has already been demonstrated with the observation of a va-
riety of remarkable effects, such as the quenching of resonant
absorption by the so-called electromagnetically induced
transparency �EIT� effect �12,13�, the light propagation at

ultraslow group velocities in the m/s range �14,15�, and the
coherent stopping and storing of light pulses �16�. Here we
show how the peculiarities of atomic Mott insulator states
can lead to further improvements of these experiments and,
even more remarkably, open the way to studies of more
subtle quantum optical effects.

Even in its ground state, the electromagnetic �e.m.� field
possesses in fact zero-point fluctuations, whose properties
are nontrivially affected by the presence of dielectric and/or
metallic bodies. One of the most celebrated consequence is
the �static� Casimir effect, i.e., the appearance of a force
between macroscopic objects due to the zero-point energy of
the electromagnetic field �17,18�. In the last decades, this
force has been the object of intense experimental and theo-
retical studies in a number of different systems and its main
properties can nowadays be considered as reasonably well
understood.

The situation is completely different for what concerns
the so-called dynamical Casimir effect �DCE� �19,20�, i.e.,
the observable radiation that is emitted by the parametric
excitation of the quantum vacuum when the boundary con-
ditions and/or the propagation constants of the electromag-
netic field are modulated in time on a very fast time scale. In
spite of a wide theoretical literature having addressed this
effect for a variety of systems and excitation schemes
�21–26�, no experimental observation has been reported yet,
mainly because of the difficulty of modulating the system
parameters at a high enough speed and the presence of com-
peting spurious effects.

In the second part of this paper we show how Mott insu-
lators of coherently dressed three-level atoms are very prom-
ising candidates for an experimental observation of the dy-
namical Casimir effect. As the atomic response to e.m. fields
strongly depends on the amplitude and the frequency of the
dressing field, a significant time modulation of the optical
properties of the atomic Mott insulator can be induced on a
very fast time scale by modulating the dressing parameters
via standard pulse manipulation techniques �27�. On the
other hand, the cleanness of atomic Mott insulator systems
allows one to squeeze linewidths down to the spontaneous
radiative level and hence to avoid those inhomogeneous*carusott@science.unitn.it
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broadening mechanisms that have so far limited the perfor-
mances of slow- and stopped-light experiments. Moreover,
as the dynamical Casimir radiation is collected in the optical
domain and no relaxation processes are involved in the
modulation process, no difficulties are expected to appear as
a consequence of thermal blackbody radiation or incoherent
luminescence from photoexcited carriers �24�.

An ab initio model is developed to confirm these expec-
tations in a quantitative way: Taking inspiration from recent
works �28–30�, we build a microscopic theory of the dy-
namical Casimir effect in atomic Mott insulators which ex-
plicitly includes the matter degrees of freedom. Thanks to the
simple form of the resulting parametric Hamiltonian and to
the relative weakness of the light-matter coupling constant,
expressions for the emission intensity are obtained in closed
analytical form. As expected, the most favorable frequency
region appears to be the middle polariton branch �the so-
called dark-state polariton of �31��, which shows a strong
resonant coupling of light with the matter degrees of free-
dom, as well as a still acceptable amount of absorption
losses. Advantages and disadvantages of the atomic Mott in-
sulator system over previously studied solid state systems
�29,30� will then be pointed out, as well as the criteria for the
choice of the atomic levels to be used. Quantitative estima-
tions of the dynamical Casimir intensity in realistic systems
appear as very promising in view of the experimental obser-
vation of this still elusive effect. Generalization of the results
to experimentally less demanding atomic states, e.g., Bose-
condensed clouds or thermal gases is finally discussed.

The structure of the paper is the following. In Sec. II we
introduce the physical system and the model used for its
theoretical description. In Sec. III we discuss in a systematic
way the static properties of the system, such as the dispersion
and lifetime of the elementary excitations of the system, the
so-called polaritons. A calculation of the dynamical Casimir
emission in a spatially infinite, bulk system is presented in
Sec. IV, and then extended to experimentally more relevant
finite-size geometries in Sec. V. A quantitative discussion of
the emission is presented in Sec. VI using realistic param-
eters of state-of-the-art samples. Conclusions are finally
drawn in Sec. VII.

II. PHYSICAL SYSTEM AND THE
THEORETICAL MODEL

A. The physical system

We consider a gas of bosonic atoms trapped in the peri-
odic potential of a three-dimensional optical lattice with
simple cubic geometry of lattice spacing aL. Unless other-
wise specified, the system is assumed to be spatially homo-
geneous with periodic boundary conditions in all three di-
mensions. The box sizes are equal to Lx,y,z, and the total
volume of the system is V=LxLyLz. For a strong enough lat-
tice potential V0 and commensurate filling, the ground state
of the system corresponds to a Mott insulator state, with an
integer number n of atoms at each lattice site �6,7� and al-
most negligible fluctuations: The probability of having mul-
tiple or zero occupancy of a site decreases in fact proportion-
ally to �aL /asc�2 exp�−4�s�, where the dimensionless

parameter s is defined as the ratio s=V0 /ER of the lattice
potential height V0 and the atomic recoil energy ER
=�2�2 /2maL

2 �32�, and asc is the atom-atom scattering
length. In what follows we focus our attention on the n=1
case in which the atoms are spatially separated and do not
interact but via the electromagnetic field. The total number of
atoms in the system is thus N=LxLyLz /aL

3 and the average
density nat=1 /aL

3. The temperature of the system is assumed
to be low enough for the zero temperature approximation to
hold. Generalization to the strongly correlated �32� and finite
temperature cases is postponed to future work.

The internal atomic dynamics takes place among three
internal levels organized in either a � or a ladder structure
�12� as sketched in Figs. 1�a� and 1�b� �the case of a strongly
asymmetric � scheme of Fig. 1�c� will be discussed in Sec.
VI�. The atoms are initially prepared in their internal ground
state g, which is connected to an excited state e by an al-
lowed optical transition of dipole matrix element deg at a
frequency �e. For notational simplicity, the energy zero is set
in a way to have �g=0. A coupling laser of frequency �C
dresses the atoms by driving the transition between the ex-
cited e level and a third, initially empty, state m of energy
�m. In the � case, the lifetime of the m state can be very
long, much longer than the free-space radiative lifetime of
the e state.

In terms of the local amplitude EC�R� of the dressing
electric field at the atomic position R, the �complex� Rabi
frequency of the coupling is ��C�R�=demEC�R�. In the fol-
lowing we consider the case where �C is spatially uniform
�33�; the discussion of more complex cases is postponed to
future works. The direct transition g→m is assumed to be
optically inactive dgm=0.

Provided the lattice potential is strong enough to fulfill the
Lamb-Dicke condition and has the same effect on the atoms
irrespectively of their internal state, the external degrees of
freedom can be decoupled from the internal dynamics and
remain frozen in the motional ground state of each lattice site
�34,35�.

B. The Three-level Fano-Hopfield model

A quantitative description of the many-atom system inter-
acting with the electromagnetic field can be developed by
generalizing the Fano-Hopfield model of a resonant dielec-
tric �9� to the present case of three-level atoms. In this ap-
proach, both the atomic electric dipole polarization and the
radiation field are described as a collection of coupled har-
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FIG. 1. �Color online� Sketch of the level schemes under
consideration.
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monic oscillators. Neglecting for simplicity all higher-lying
photonic bands and assuming the different light polarization
to be decoupled, the vector potential operator has a simple
“scalar” expression in terms of the photon �ph� creation and
annihilation operators âph,k

† and âph,k,

Â�R� = �
k�FBZ

�2�c�

kV
�âph,keik·R + âph,k

† e−ik·R� , �1�

where the sum over k vectors is limited to the first Brillouin
zone �FBZ� of the lattice. This approximation holds under
the assumption of an isotropic atomic response and in the
limit of a small lattice spacing �eaL /c�1 �51�.

In our specific case of three-level atoms, two material
degrees of freedom are associated to each atom, which cor-
respond to its excitation from the g state to, respectively, the
e and m states. As usual, raising and lowering operators for
the excited e state of the j atom are defined as âe,j

† �g� j = �e� j
and âe,j�e� j = �g� j, and analogously the âm,j

† and âm,j for the m
state. In the spirit of the harmonic oscillator model of �9�,
these operators can be extended as creation and annihilation
operators satisfying the usual Bose commutation rules. This
bosonic description is accurate under the assumption that the
probability for a given atom to be in an excited state is small:
In this limit the higher-lying atomic states are not involved in
the physics under consideration and the dynamics is re-
stricted to the subspace spanned by the three ��g ,e ,m�� states
for which the harmonic oscillator description is exact. Gen-
erally speaking, this assumption is expected to be accurate as
long as the number of excitations present in the system is
much smaller than the number of atoms �52�.

Reabsorbing the phase of the dressing field �C and its
time dependence at �C into the definition of the âm,j and âm,j

†

operators, the internal dynamics of the j atom is described by
the following time-independent Hamiltonian:

Hat
j = ��eâe,j

† âe,j + ��̃mâm,j
† âm,j + ��C�âe,j

† âm,j + âm,j
† âe,j�

�2�

with a real �C and a renormalized �̃m=�m��C, the � signs
referring to, respectively, the � and the ladder configuration
�see Fig. 1�.

The bosonic Hamiltonian �2� can be rewritten in terms of
the position and momentum operators of two fictitious e ,m
particles of mass M harmonically bound at frequencies, re-
spectively, �e and �̃m, and mechanically coupled by the �C
dressing field

Hat
j =

M�e
2

2
X̂e,j

2 +
1

2M
P̂e,j

2 +
M�̃m

2

2
X̂m,j

2 +
1

2M
P̂m,j

2

+ M�C
��e�̃mX̂e,jX̂m,j +

�C

M��e�̃m

P̂e,jP̂m,j; �3�

the position and momentum operators are defined as usual as

X̂e,j =� �

2M�e
�âe,j + âe,j

† � �4�

P̂e,j = i��M�e

2
�âe,j

† − âe,j� , �5�

X̂m,j =� �

2M�̃m

�âm,j + âm,j
† � , �6�

P̂m,j = i��M�̃m

2
�âm,j

† − âm,j� . �7�

The electric-dipole coupling of the g→e transition to the
transverse electromagnetic field �53� is included by giving
a charge q to the fictitious particle e and then performing

the standard minimal coupling replacement P̂e,j→ P̂e,j

−qÂ�R j� /c in the Hamiltonian �3�; the vector potential Â is
evaluated by Eq. �1� at the position R j of the atom. As the
g→m transition is not optically active, the m particle must
be left neutral, and no minimal coupling replacement must

be made on the P̂m,j operator.
The charge q and the mass M of the harmonic oscillator

model are to be chosen in such a way that the model cor-
rectly reproduces the actual optical properties of the atomic
system under examination: to this purpose, it is enough that
the electric dipole matrix element between the ground and
the first excited state of the harmonic oscillator model be
equal to the dipole moment of the actual atomic transition.
This imposes the condition deg=��q2 /2M�e: In what fol-
lows, we shall see that all observable physical quantities are
a function of deg only, and do not separately involve the q
and M parameters of the model.

To take full advantage of the translational symmetry of
the system, it is useful to introduce the collective atomic
operators

â�e,m�,k
† =

1
�N

�
j

â�e,m�,j
† eik·Rj �8�

which create a delocalized atomic excitation with a wave
vector k belonging to the first Brillouin zone of the lattice.
Analogously to their localized counterparts â�e,m�,j and
â�e,m�,j

† , the â�e,m�,k and â�e,m�,k
† satisfy Bose commutation

rules.
Straightforward manipulations lead to the final form of

the total light-matter Hamiltonian,

H = �
k

�Hph,k + Hat,k + Hint,k� , �9�

where

Hph,k = �ck	âph,k
† âph,k +

1

2

 , �10�

Hat,k = ��eâe,k
† âe,k + ��̃mâm,k

† âm,k + ��C�âe,k
† âm,k + âm,k

† âe,k� ,

�11�

Hint,k = − i�Ck�âe,−k
† − âe,k��âph,−k + âph,k

† �

+ �Dk�âph,k + âph,−k
† ��âph,−k + âph,k

† �

+
i�Ck�C

�e
�âm,k − âm,−k

† ��âph,−k + âph,k
† � . �12�

All terms consist of quadratic forms in the creation and an-
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nihilation operators of the electromagnetic or the matter po-
larization fields. The first term Hph,k is the free e.m. field
Hamiltonian. The second term Hat,k describes the internal
dynamics of the dressed atoms. The three lines of the third
term Hint,k, respectively, account for �i� the dipole coupling
of the g→e transition to the e.m. field, �ii� the photon renor-
malization due to the squared vector potential term, and �iii�
a coupling between the photon quantum field and the m ex-
citation as a result of the dressing field �54�.

The coupling constant Ck is equal to

Ck =�2��e
2nat

�ck
deg, �13�

and Dk=Ck
2 /�e. As expected, these expressions involve the

model parameters q and M only via their physical combina-
tion deg.

Introducing the vector 	̂k of bosonic operators

	̂k = �âph,k, âe,k, âm,k, âph,−k
† , âe,−k

† , âm,−k
† �T, �14�

and the Bogoliubov metric 
=diag�1,1 ,1 ,−1 ,−1,−1�, the
Hamiltonian �9� can be recast in a simple matricial form,

H =
�

2 �
k

	̂k
†
Hk	̂k + E0 �15�

in terms of a 6�6 
—Hermitian �H†
=
H� Hamiltonian
matrix Hk of the form

Hk = 	 Kk Qk

− Qk
† − Kk

T
 . �16�

where Kk and Qk are 3�3 matrices. The constant E0 fixes
the energy zero: As it has no consequences in what follows,
it will be neglected from now on.

The Hermitian matrix

Kk = � ck + 2Dk iCk i�CCk/�e

− iCk �e �C

− i�CCk/�e �C �̃m
� �17�

takes into account the free field, the internal atomic dynam-
ics including the dressing beam, as well as the light-matter
interaction terms at the level of the so-called rotating wave
approximation �RWA�: Whenever a radiative photon is ab-
sorbed �emitted�, an atomic excitation is created �destroyed�
at its place �35�.

The symmetric matrix

Qk = � 2Dk − iCk − i�CCk/�e

− iCk 0 0

− i�CCk/�e 0 0
� �18�

corresponds instead to those additional terms which describe
anti-RWA, off-shell processes where a photon and an atomic
excitation are simultaneously destroyed or created.

The relative importance of the RWA Kk and the anti-RWA

Qk terms is quantified by the ratio C̄ /�e of the radiation-

matter coupling strength C̄=Ck=�e/c and the excitation fre-
quency �e. For most atomic systems of actual experimental

interest, this parameter is generally quite small: As a simple
example, consider the D2 line of 87Rb atoms at �e
=2�c /�e780 nm. The electric dipole moment of the tran-
sition is deg4.2eaBohr �40� and a typical value of lattice
spacing is aL=300 nm. For a unit filling factor n=1, the

light-matter coupling parameter is then C̄ /�e1.7�10−4.

Although the condition C̄ /�e�1 rules out the possibility of
observing the so-called ultrastrong coupling regime �29,30�
in such dilute atomic systems, the anti-RWA terms in the
Hamiltonian can still have interesting observable conse-
quences as we shall see in what follows.

III. STATIONARY STATE: GROUND STATE
AND POLARITON EXCITATIONS

We begin the study of the optical properties of the system
from the simplest case where the dressing parameters �C and
�C are kept fixed in time. For each value of them, the qua-
dratic structure of the Fano-Hopfield Hamiltonian �15� guar-
antees that this can be set into the canonical form

H = �
k,r

��r,kp̂r,k
† p̂r,k + E0� �19�

by means of a Hopfield-Bogoliubov transformation �9�. As in
Eq. �15�, the constant E0� is the zero-point energy and will be
neglected from now on. For each wave vector k, the frequen-
cies �r,k of the elementary excitations are given by the ei-
genvalues corresponding to the positive-norm �in the 
 met-
ric� eigenvectors of the Hopfield-Bogoliubov matrix

Mk = �Hk�T. �20�

In the system under consideration here, the elementary exci-
tations are the lower �r=LP�, middle �r=MP, often also
called dark-state polariton, e.g., in �31��, and upper �r=UP�
polariton modes. All of these modes are linear superposition
of light and matter excitations. The polaritonic annihilation
operators p̂r,k can be written in terms of the eigenvectors w� r,k
as

p̂r,k = �
�=1

6

wr,k
� 	̂k

�. �21�

The index � runs over the six components of the eigenvector
w� r,k of the Hopfield-Bogoliubov matrix �20� and of the op-
erator vector 	̂k defined in Eq. �14�. An analogous expres-
sion holds for the creation operators p̂r,k

† .
Grouping the p̂r,k’s in the operator vector

�̂k = �p̂LP,k, p̂MP,k, p̂UP,k, p̂LP,−k
† , p̂MP,−k

† p̂UP,−k
† �T, �22�

the transformation �21� to the polaritonic basis can be cast in
the simple matricial form �̂k=Wk	̂k. The first three lines of
Wk correspond to the w� r,k eigenvectors �21�.

The orthonormality condition of the eigenvectors in the
Bogoliubov metric 
 corresponds to the 
-unitary condition

Wk
−1 = 
Wk

†
 , �23�

and guarantees that the operators p̂q,k satisfy the standard
Bose commutation rules. In the �̂ basis, the Hamiltonian
matrix has the simple diagonal form
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Hk� = WkHkWk
−1

= diag��LP,k,�MP,k,�UP,k,− �LP,k,− �MP,k,− �UP,k� .

�24�

In view of the following developments, it is useful to give
the explicit form of the r= �LP,MP,UP� polariton operators
in terms of the photonic �ph� and matter �e ,m� excitation
ones,

p̂r,k = ur,k
ph 	̂ph,k + ur,k

e âe,k + ur,k
m âm,k + vr,k

ph âph,−k
† + vr,k

e âe,−k
†

+ vr,k
m âm,−k

† �25�

as well as the inverse transformation �j= �ph ,e ,m��,

âj,k = uLP,k
j� p̂LP,k + uMP,k

j� p̂MP,k + uUP,k
j� p̂UP,k − vLP,k

j p̂LP,−k
†

− vMP,k
j p̂MP,−k

† − vUP,k
j p̂UP,−k

† . �26�

The u and v Hopfield coefficients characterize, respectively,
the normal and anomalous weights of the different ph ,e ,m
components of the LP, MP, UP polaritons.

A. Polariton vacuum

The vacuum state of the system corresponds to the ground
state �G� of the Hamiltonian �19�, and is defined by the
vacuum condition

p̂r,k�G� = 0 �27�

for all polariton modes r= �LP,MP,UP�.
As both annihilation and creation operators are involved

in the Bogoliubov transformation �26�, the ground state �G�
corresponds, in the original â�ph,e,m� basis, to a squeezed
vacuum state with a nonvanishing expectation value of the
photon and atomic excitation numbers:

N�ph,e,m�
G = �G�â�ph,e,m�,k

† â�ph,e,m�,k�G� = �
r=�LP,MP,UP�

�vr,k
�ph,e,m��2.

�28�

As the atomic systems under consideration here are far from
the ultrastrong coupling regime �4,29,30�, an accurate esti-
mation of N�ph,e,m�

G can be obtained by means of a suitable
perturbation theory in the light-matter coupling strength

C̄ /�e�1. The dressing amplitude �C is assumed to be at

most of the order of C̄.
A zeroth-order approximation w� q,k

0 of the eigenvector can
be obtained by diagonalizing the block diagonal matrix

Mk
0 = 	Kk

T 0

0 − Kk

 . �29�

This provides expressions for the eigenvalues ��,k
0 and the

eigenvectors w� �,k
0 that are correct upto the zeroth-order in

C̄ /�e. The eigenvectors have the form

w� �,k
0 = �u�,k

ph,0,u�,k
e,0 ,u�,k

m,0,0,0,0�T �� = 1,2,3� , �30�

w� �,k
0 = �0,0,0,u�−3,k

ph,0� ,u�−3,k
e,0� ,u�−3,k

m,0� �T �� = 4,5,6� . �31�

Up to this level of approximation the virtual occupation �28�
is then rigorously vanishing.

When evaluating the first-order correction, attention must
be paid to the nonpositive nature of the 
 metric,

w� �,k
1 = �

��=�1,. . .,6�

����

��

w� ��,k
0† 
 �Mkw� �,k

0

��,k
0 − ���,k

0 w� ��,k
0 , �32�

where the sign � is +1 for �=1, 2, 3, and −1 for �
=4,5 ,6. The perturbation matrix �Mk=Mk−Mk

0 is of order

C̄ /�e and has nonzero entries only in the off-diagonal
3�3 blocks. Keeping in Eq. �32� only the lowest-order

terms in C̄ /�e, one gets to the first-order corrections,

vr,k
j,1 = �

r�

− iCk

�r,k
0 + �r�,k

0 �ur�,k
ph,0ur,k

e,0 + ur�,k
e,0 ur,k

ph,0�ur�,k
j,0� , �33�

where the sum runs over the three polariton branches r�
= �LP,MP,UP�. Note that the off-diagonal terms due to the
squared vector potential give a contribution to Eq. �33�
whose amplitude is of the order of Dk /�e= �Ck /�e�2 and
have been therefore neglected. The same for the off-diagonal
terms due to the dressing field, whose contribution is of the
order of Ck�C /�e

2.
The virtual population in the ground state is then of the

order of �Ck /�e�2: Apart from a small region around k=0
where Ck diverges, this population is therefore very small for
all polariton branches. This fact provides an a posteriori jus-
tification of the use of perturbation theory.

In the most significant resonance region kke=�e /c, the
frequency denominator of Eq. �33� can be approximated by
2�e in a sort of degenerate polariton approximation, which
gives

vr,k
ph,1  −

iC̄

2�e
ur,k

e,0, �34�

vr,k
e,1  −

iC̄

2�e
ur,k

ph,0, �35�

vr,k
m,1  0. �36�

Compact formulas for the fully resonant point �e= �̃m, k
=ke of the MP are immediately obtained by inserting in Eq.
�34�–�36� the explicit form of the RWA eigenvectors of the
zeroth-order Hopfield-Bogoliubov matrix �29�,

uMP,ke

ph,0 =
�C

�C̄2 + �C
2 �1/2

, �37�

uMP,ke

e,0 = 0, �38�

uMP,ke

m,0 = −
iC̄

�C̄2 + �C
2 �1/2

, �39�

which leads to anomalous amplitudes

vMP,ke

ph,1  vMP,ke

m,1  0, �40�
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vMP,ke

e,1  −
iC̄�C

2�e�C̄2 + �C
2 �1/2

. �41�

The accurateness of these analytical approximations is vis-
ible in Figs. 2�a� and 2�b� where the Hopfield u and v coef-
ficients are plotted for the fully resonant k=ke point of the
MP as a function of the dressing amplitude: On the scale of
the figure the analytical approximations are undistinguish-
able from the exact calculations.

As long as the system parameters are kept constant in
time, the virtual populations �28� are intrinsically bound to
the system ground state and cannot be revealed by a standard
photodetector based on absorption processes �29,30�. On the
other hand, the dependence of the anomalous amplitude �41�
on �C �see Fig. 2�b�� suggests that the zero-point fluctua-
tions in the ground state can be externally controlled by
varying �C in time. In particular, if the time modulation of
�C is sufficiently fast, the system is not able to adiabatically
follow the time-dependent vacuum state. As a consequence,
real polaritons are created in the system and then emitted as
radiative photons into the surrounding free space where they
can be detected by a photodetector. This will be the subject
of Secs. IV–VI.

B. Polariton dispersion

Examples of polariton dispersion are shown in Fig. 3 for
the most significant cases. The shape of the three polariton

branches changes in a substantial way depending on the
dressing parameters �C and �C, which provides a simple
way to externally vary the optical properties of the system in
real time. An application of atomic Mott insulators as dy-
namic photonic structures was indeed proposed in �36�.

As long as linear optical properties are considered, it is
important to note that the predictions of the quantum model
are indistinguishable from the solution of the Maxwell equa-
tions including the semiclassical expression for the local di-
electric polarizability of three-level atoms �12�. In particular,
this is the case of the band dispersions shown in Fig. 3.

As �e and �̃m have no spatial dispersion, the three bands
have no spectral overlap and are separated by energy gaps in
which the radiation cannot propagate. For the systems under
consideration here, the gaps between the bands are however

very narrow, on the order of C̄2 /�e, and therefore almost
invisible on the scale of the figure.

When the dressing is on resonance with the m→e transi-
tion ��e= �̃m�, the atomic resonance is split into a symmetric
Autler-Townes doublet at �e��C and the photonic mode
anticrosses each of the two components. Two subcases are to

be distinguished: For a strong dressing �C� C̄ �panel �c��,
the two anticrossings are almost completely separated and

have a half-width equal to C̄ /�2; in between the two anti-
crossings �i.e., in the neighborhood of �e�, the middle polar-
iton �MP� almost coincides with the photon branch and has a
group velocity vMP,k

gr =d�MP,k /dk close to c. On the other

hand, for a weak dressing �C� C̄, the two anticrossings

FIG. 2. �Color online� Hopfield u and v coefficients �a,b�, group velocity �c�, and absorption coefficient �d� of the middle polariton �MP�
as a function of dressing amplitude �C in the resonant ��e= �̃m� case. On the scale of the figure, the analytical approximations �42�,
�37�–�39�, and �41� are undistinguishable from the exact calculations. Vertical lines indicate the dressing amplitude values used in the next
figures. The system parameters correspond to the D2 line of a Mott insulator system of 87Rb atoms with filling factor n=1 in a aL

=300 nm lattice, C̄ /�e=1.7�10−4, �e=2� /ke=2�c /�e=780 nm.
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overlap, which results in a strong mutual distortion �panel
�a��: The MP dispersion is strongly flattened, and its group
velocity becomes orders of magnitude slower than c �inset of
panel �a��.

An approximate, yet quantitatively very accurate expres-
sion for the group velocity vMP,ke

gr of the MP around reso-
nance k=ke=�e /c is easily obtained from the expression
�37� of the MP eigenvector of the RWA Hopfield-Bogoliubov
matrix �29�,

vMP,ke

gr = c�uMP,ke

ph,0 �2 = c
�C

2

�C
2 + C̄2

. �42�

As one can see in Fig. 2�c�, arbitrarily slow values of vMP,ke

gr

can be obtained by simply reducing the amplitude �C of the
dressing field: Thanks to the trapping of atoms at lattice sites,
no lower bound to the group velocity appears as a conse-
quence of the atomic recoil in absorbing and emitting pho-
tons �41�. For the specific case of Rb atoms considered in the

figures, a quite conservative value �C /2�=12 MHz �i.e., 2
times the radiative lifetime of the e state� already leads to
vM,ke

gr =11 m /s.
In the case of a nonresonant dressing �panel �e��, the os-

cillator strength of the optical transition is shared in an asym-
metric way by the two components of the Autler-Townes
doublet. This fact is responsible for the anticrossing to be
wider for the component having a larger e state weight �the
lower one in the figure�. Because of the optical Stark effect,
the position of this main anticrossing is slightly shifted by
��OSE=�C

2 / ��e− �̃m� from its bare position at �e.

C. Effect of losses

Losses from both the e and the m states are responsible
for the finite lifetime of polaritonic excitations. For typical
systems, both decay rates ��e,m� are much smaller than the

radiation-matter coupling C̄ and the energy splitting �q,k
−�q�,k between different polariton bands q�q� at a given
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FIG. 3. �Color online� Panels �a,c,e�: Dispersion relation ��k� of the three polariton modes. Panels �b,d,f�: Corresponding absorption
spectrum �abs as a function of the polariton frequency �. Same system parameters as in Fig. 2. Black, red, and green lines refer to the lower
polariton �LP�, the middle polariton �MP�, the upper polariton �UP�, respectively. The blue dashed line in �a,c,e� is the free photon dispersion

�=ck. Panels �a,b�: Resonant �e= �̃m, weak dressing �C / C̄=1.86�10−4�1 case. Insets in �a,b�: Magnified views of the most significant

parts of the MP branch. Panels �c,d�: Resonant �e= �̃m, strong dressing �C / C̄=2 case. Panels �e,f�: Nonresonant �̃m−�e=5C̄, strong

dressing �C / C̄=2 case. In the absorption �b,d,f� panels: � level scheme with �e /2�=6 MHz and �m /2�=10 Hz �solid lines�; ladder level
scheme with exchanged �e /2�=10 Hz and �m /2�=6 MHz values �dotted lines�.
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wave vector k. In optics, this regime goes often under the
name of strong coupling regime �2,3� and is characterized by
losses not being able to effectively mix the different polar-
iton branches, which retain their individuality.

The Fermi golden rule then provides an accurate predic-
tion for the decay rate �r,k of the plane-wave polariton state
of wave vector k on the r branch,

�r,k = �e�ur,k
e �2 + �m�ur,k

m �2; �43�

physically, this decay rate is the relevant one in a light stop-
ping experiment where light is stored in the system during a
macroscopically long time �16,31�. In a propagation geom-
etry, a more relevant quantity is instead the absorption length
�42�,

�r,k = ��r,k
abs�−1 = vr,k

gr /�r,k. �44�

The relative value of the ��e,m� loss rates depends on the
specific level scheme under consideration.

In a � configuration, �m is mostly given by nonradiative
effects, and generally has a very small value. As no intrinsic
effect is expected to significantly contribute to �m in Mott
insulator states, it can in principle be suppressed to arbi-
trarily small values by means of a careful experimental setup.

As a consequence of translational symmetry, energy ex-
change can only take place between discrete states at the
same k, so irreversible radiative decay from the e state to the
g state is forbidden. This remarkable fact was discussed at
length in the pioneering paper �9�, where it was pointed out
that polaritons in a rigid lattice of two-level atoms are not
subject to dissipation and can propagate with a slow group
velocity along macroscopic distances. It is important to note
that this fact is strictly related to the Lamb-Dicke freezing of
the atomic motion in the ground state of each site, which
guarantees, e.g., that atoms cannot decay from the e state
into motionally excited states of the g level as instead hap-
pens for free atoms in the absence of a lattice �55�.

On the other hand, radiative decay from the e state into
the m state can occur by spontaneous emission of a photon
into a spatial mode different from the one of the coherent
dressing field. The contribution of such process to �e is equal
to the e→m radiative decay rate of an isolated atom in free
space �56�. This can only be reduced by choosing a suitably
weak e↔m optical transition to dress the system.

In a ladder configuration, the roles of �e and �m are ex-
changed. Spontaneous emission processes into spatial modes
different from the dressing one can now occur for the m
→e transition, which provides a significant contribution to
�m. On the other hand, no irreversible radiative decay pro-
cess on the e→g transition can contribute to �e: Provided no
other decay channel is available for the e state, a careful
design of the experimental setup may then lead to a reduc-
tion of �e to arbitrarily small values.

Plots of the prediction �44� for the absorption coefficient
for the three polariton branches are shown in Figs. 3�b�, 3�d�,
and 3�f� for, respectively, the � �solid lines� and the ladder
�dashed lines� three-level schemes �57�. Again, these curves
are in perfect agreement with the solution of the Maxwell
equations using the semiclassical expression for the dielec-
tric polarizability of three-level atoms �12�. In both cases of

� and ladder configuration, absorption is strongly peaked in
the anticrossing regions where polaritonic bands have the
largest weight of matter excitations and the slowest group
velocity. The only exception is the dip that is visible exactly
on resonance with the two-photon Raman transition �= �̃m
in the case of a � configuration. In optics, this effect goes
under the name of electromagnetic induced transparency
�EIT� effect �12,13�: In the vicinity of the resonance, quan-
tum interference suppresses the weight of e excitation in the
MP mode. Consequently, the absorption rate is quenched to
the nonradiative one, �MP,ke

�m��e. This effect is most

dramatic in the case of a weak dressing �C� C̄ �see in par-
ticular the left-hand inset of Fig. 3�b��, where the minimum
of the spatial absorption coefficient �MP,ke

abs around resonance
remains remarkably deep in spite of the very slow group
velocity vMP,ke

gr �c. This allows for MP polaritons to propa-
gate at ultraslow velocities for macroscopic distances with-
out being appreciably absorbed �58�: As one can see in Figs.
2�c� and 2�d�, a group velocity as slow as vMP,ke

gr =15 m /s
still corresponds to an absorption length as large as �MP,ke
16 cm.

To conclude this section, it is useful to summarize the
main advantages of using a Mott insulator state for slow-
light experiments:

�1� Atomic Mott insulators constitute an almost ideal re-
alization of the two-level Fano-Hopfield model �9–11�: Pro-
vided one is in the Lamb-Dicke trapping regime, resonant
light can propagate at slow group velocities without being
absorbed nor scattered as instead happens in homogeneous
gases in the absence of the lattice.

�2� The typical features of light propagating in systems of
dressed three-level atoms such as EIT and ultraslow group
velocities without absorption are further improved. As the
atoms interact with each other only via the electromagnetic
field, no intrinsic decoherence effect can contribute to the �m
rate in a � configuration nor to the �e one in a ladder con-
figuration.

�3� The presence of a single atom at each lattice site elimi-
nates the inhomogeneous broadening of the transitions that
originates e.g., from the spatially varying density profile of a
Bose-Einstein condensate.

�4� The trapping of atoms at the lattice sites eliminates the
lower bound to the group velocity that atomic recoil would
impose in the case of a homogeneous, untrapped gas �41�.

IV. DYNAMICAL CASIMIR EMISSION IN THE
PRESENCE OF A TIME MODULATION

When the dressing parameters �C and �C are modulated
in time, the quadratic form of the Hamiltonian is preserved,
yet with a time-dependent Hamiltonian matrix Hk�t�=Hk
+�Hk�t�. At each time t, a Bogoliubov transformation diago-
nalizing the instantaneous Hamiltonian can still be found, but
the transformation matrix Wk�t�, as well as the polariton
bands �r,k and the expression of the polariton operators p̂r,k
in terms of the original âj,k ones are now varying in time, as
well as the vacuum state �G�t�� of the system. While for slow
modulations the system is able to adiabatically follow the
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instantaneous ground state �G�t��, excitations are created in
the case of a faster modulation. The study of the properties
and the intensity of this dynamical Casimir emission is the
subject of the present and the next sections.

Our strategy is to reduce the problem to a simple and
tractable parametric Hamiltonian to which the standard tools
of quantum optics can be applied. In particular, we shall
concentrate our attention on the simplest case of a weak time
modulation ��Hk�� �Hk� for which perturbation theory can
be used to obtain analytical predictions: Most among the
perturbations that one can envisage to apply to the atomic
system largely fulfill in fact this condition. A discussion of
the physics beyond perturbation theory can be found in
�21,25,29,30�.

Let Wk be the Bogoliubov transformation diagonalizing
the unperturbed Hamiltonian matrix Hk. In general, the per-
turbation Hamiltonian

�Hk��t� = Wk�Hk�t�Wk
−1 �45�

is not diagonal in this basis. In terms of polariton creation
and annihilation operators, �Hk� introduces terms of two
kinds �44�. The diagonal 3�3 blocks correspond to terms of
the form p̂r,k

† p̂s,k, which are responsible for a renormalization
of the polariton energies �for r=s� and for the occurrence of
interbranch transitions �for r�s� which transfer already ex-
isting polaritons from one branch to another. At the lowest
order, these terms have no effect on the polaritonic vacuum
state and will therefore not be considered in what follows.

The off-diagonal 3�3 blocks of �Hk� are more interesting
in the present context, as they correspond to terms of the
forms p̂r,k

† p̂s,−k
† and p̂r,kp̂s,−k, which, respectively, create or

destroy pairs of polaritons in the opposite �k momentum
states of the r and s branches �r ,s= �LP,MP,UP��. In par-
ticular, they account for the creation of correlated pairs of
polaritons out of the vacuum state of the system via paramet-
ric amplification of the zero-point quantum fluctuations. This
emission of radiation is an example of the still unobserved
dynamical Casimir effect �DCE� �19�. The most celebrated
example of DCE is predicted for a metallic cavity whose
length is varied in time by means of a mechanical motion of
its mirrors �21�. Another possibility consists of varying the
effective length of the cavity by modulating the mirror con-
ductivity �23,24�, by mimicking moving mirrors via a suit-
ably chosen ��2� nonlinear optical element �25�, or by vary-
ing the bulk refractive index of the cavity material �22,44�.

A generalization of this latter scheme is the subject of the
present paper: The modulation of the dielectric properties of
the atomic medium is created by varying in time the dressing
field amplitude. Using the polaritonic formalism developed
in the previous sections, we will be able to go beyond the
nondispersive dielectric approximation made by most of the
existing works, so to fully include the resonant dynamics of
matter excitations. Using this microscopic model, accurate
predictions will be obtained also for the frequency window
in the neighborhood of the atomic resonance where the in-
tensity of the dynamical Casimir emission is expected to be
the strongest.

A. Polariton emission rate in a bulk geometry

Depending on the frequency spectrum of the time modu-
lation �Hk�t�, polaritons can be emitted in any momentum
state: A monochromatic oscillation at a frequency � of the
form �Hk�t�=�Hk�ei�t+e−i�t� is in fact able to resonantly
create pairs of polaritons in the r ,s branches at wave vectors
�k fulfilling the parametric resonance condition

�r,k + �s,−k = � . �46�

Note that an analogous condition was recently obtained for
the parametric emission of phonons in trapped atomic Bose-
Einstein condensate in an optical lattice when the lattice po-
tential is modulated in time �45,46�.

Starting from the polaritonic vacuum as initial state, and
limiting ourselves to lowest-order effects in the modulation
amplitude, we can safely neglect the p̂r,k

† p̂s,k terms that arise
from the modulation and rewrite the time-dependent system
Hamiltonian �15� in the standard parametric form �47�,

H = H̄ + �H = H̄ +
�

2 �
rs,k

�Vrs,ke−i�tp̂r,k
† p̂s,−k

† + H.c.� .

�47�

From this Hamiltonian the polariton creation rate is deter-
mined by means of the Fermi golden rule. As final states, one
must consider pairs of polaritons created in the r ,s
= �LP,MP,UP� branches at wave vectors �k,

dNrs

dt
=

2�

�2 �
k

��r,k;s,− k��H�G��2���r,k + �s,−k − �� .

�48�

In the weak modulation regime �i.e., far below any paramet-
ric oscillation threshold�, this approach is equivalent to other
ones based, e.g., on the input-output formalism; including all
neglected terms is instead crucial if one is interested in the
peculiar pulse shaping and frequency up-conversion effects
discussed at length in �21,30�.

Replacing as usual the sum over k vectors with an inte-
gral, the total creation rate per unit volume into the r ,s
branches reads as

dNrs

dtdV
=

k̄2

2��v
r,k̄

gr
+ v

s,k̄

gr �
�Vrs,k̄�2, �49�

where the r�s� polariton is assumed to be emitted in the

kz�0 �kz�0� half-space. k̄ is the wave-vector value at which
the resonant condition �46� is satisfied for the r ,s branches
under examination. v�r,s�,k̄

gr
are the group velocities, and the

matrix element Vrs,k of the process is given by

Vrs,k = �Wk�HkWk
−1�r,s+3; �50�

here, the �LP,MP,UP� branches correspond to, respectively,
r ,s= �1,2,3�. Perturbative expressions for the matrix element

�50� to the leading order in C̄ /�e will be given in Sec. IV B.
It is worth noticing that a finite emission intensity

�p̂r,k
† p̂r,k��0 is obtained even though the classical ampli-

tudes remain strictly zero pr,k= �p̂r,k�=0 during the whole
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modulation process. The dynamical Casimir emission is in
fact a purely quantum effect due to the parametric amplifi-
cation of the zero-point fluctuations of the polariton field.

Equations �49� and �50� are the central result of the
present section: They quantify the polariton emission in an
idealized, spatially infinite system and will represent the cen-
tral building block in the study of experimentally relevant
finite-size geometries that we shall perform in Sec. V. A
quantitative discussion of the actual value of the emission
rate for realistic values of the system parameters will be
given in Sec. VI.

B. Approximate analytical expression of the matrix element

A simple, yet accurate estimation of the matrix element
�50� can be obtained by means of the perturbative approxi-
mation of the eigenvectors w� r,k discussed in Sec. III A. As a
most significant example, we consider a periodic modulation
of the coupling amplitude �C of the form

�C�t� = �C + ��C�e−i�t + ei�t� , �51�

while its frequency �C is kept constant �59�. Although our
theory is completely general, it is interesting to note that in
this specific case the dynamical Casimir effect can be inter-
preted as a peculiar kind of parametric down-conversion. In
frequency space, the time-dependent dressing field amplitude
�51� consists in fact of a triplet of lines spaced by �: The
energy �� that is available upon absorption from one line
and subsequent stimulated reemission into the lower one is
parametrically converted into a pair of dynamical Casimir
polaritons. Modulations of �C were also at the heart of re-
cent light-stopping experiments �16�, albeit with much
slower characteristic ramp times: In that case, the modulation
had in fact to be adiabatic enough not to induce interbranch
transitions.

Inserting the perturbative result �34�–�36� into the Wk
transformation matrix, the following expression for the ma-
trix element is found, which is valid throughout the whole
resonance region:

Vrs,k  −
iC̄

2�e
�ur,k

phus,k
m + us,k

phur,k
m ���C. �52�

As expected, Vrs,k is proportional to the amplitude of the

dressing modulation and to C̄ /2�e, i.e., the ratio between the
amplitude of the antiresonant light-matter coupling and the
energy associated to the creation of a pair of excitations. The
presence in Eq. �52� of the Hopfield coefficients of both the
photonic and the m excitations means that a mixing between
light and matter modes is necessary to obtain a sizeable
emission. A most favorable region is therefore the fully reso-
nant point where �e= �̃m and the modulation is driven at a
frequency �=2�e.

An analytical estimation of Vrs,ke
with r=s=MP is readily

obtained for this case by inserting in Eq. �52� the analytical
eigenvector �37�–�39� of the zeroth-order Hopfield-
Bogoliubov matrix �29�,

VMP,ke
=

�C

�e

C̄2

C̄2 + �C
2

��C. �53�

In the slow-light regime �C� C̄, the matrix element VMP,ke

grows as �C��C /�e, while it goes as C̄2��C / ��C�e� for

�C� C̄.
Using the expression �42� for the group velocity, it is im-

mediate to see that for a given value of the relative modula-
tion amplitude ��C /�C, the emission intensity �49� starts

proportionally to �C
2 for small values �C� C̄ and then satu-

rates to a finite value for �C� C̄. We will come back to these
issues in the quantitative discussion of Sec. VI.

The main result �52� of the present section fully includes
the dispersion of polaritons, which is crucial to correctly de-
scribe the region around resonance. This contrasts to previ-
ous works �44� where the Casimir emission was studied for a
dispersionless dielectric medium with a periodically oscillat-
ing dielectric constant

��t� = �̄ + ���ei�t + e−i�t� . �54�

Even in this case, the Hamiltonian of the system can be
reduced to the parametric form �47�, with the matrix element

Vk =
�

4�̄
�� . �55�

As a single photonic branch is considered, no r ,s indices are
needed. A quantitative comparison of the two approaches
will be made in Sec. VI: Agreement is expected to hold in
the low-frequency limit where the dispersion of the dielectric
constant can be indeed neglected.

V. EMISSION RATE FROM FINITE-SIZE SYSTEMS

In order to obtain a quantitative prediction for an actual
experimental setup, one must go beyond the idealized infinite
geometry system considered so far, and study the more real-
istic case where dynamical Casimir light is generated in a
spatially finite system and then revealed by a detector located
in the external vacuum.

The first step is to rewrite the parametric Hamiltonian
�47� for a bulk system in a local form. Expressing the polar-
iton operators p̂r,k in terms of the real-space ones

p̂r,k =
1

�V� d3xe−ik·x�̂r�x� , �56�

the parametric Hamiltonian �see Eq. �47�� can be rewritten as

�H =
�

2 �
rs
� d3xd3x��̂r

†�x��̂s
†�x��Ṽrs�x − x��e−i�t + H.c.

�57�

Here the kernel

CARUSOTTO et al. PHYSICAL REVIEW A 77, 063621 �2008�

063621-10



Ṽrs�x� =
1

�2��3� d3keik·xVrs,k �58�

does not depend on the integration volume V and, under
reasonable smoothness assumptions for Vrs,k, is a quite local-
ized function around x=0.

A. Slab geometry

The advantage of the real-space Hamiltonian �57� is that it
is not limited to bulk systems, but can be also applied to
finite geometries. For the sake of simplicity, we shall limit
ourselves to the plane-parallel slab geometry of Fig. 4. The
size Lz of the integration box in the z direction orthogonal to
the slab plane is assumed to be much longer than the slab
thickness Lslab. In the transverse x ,y directions, the slab is
assumed to fill the whole integration box of size Lx,y.

In order to apply the Fermi golden rule, one must identify
the final states of the process. In the present case, they con-
sist of pairs of radiative photons emitted in the empty space
surrounding the atomic system. These are created inside the
system as polaritons, and are converted into free-space pho-
tons when traversing the interface to the external vacuum.
For the sake of simplicity, we shall assume that interface
reflections are negligible at the frequencies of interest, so that
the internal polariton is adiabatically transformed into the
photon state at exactly the same energy. As light is collected
far outside the slab, we do not have to consider here the case
of light being guided inside the slab by total internal reflec-
tion.

As usual in scattering problems, the final eigenstates are
labeled by the wave vector k outside the atomic system and
their frequency is fixed by the free-space dispersion �=ck.
Outside the Mott insulator, polaritons reduce in fact to pho-
tons. Their wave function is the plane wave,

�k
out�x� =

1

�V
eik·x. �59�

Inside the system, the same eigenstate corresponds to a po-
lariton plane wave of the form �60�

�k
in�x,r� =

A

�V
�r,r̄ eikint·x. �60�

The wave vector kint and the branch index r̄ are fixed by
energy conservation in the refraction process at the interface
separating the atomic system and the surrounding vacuum:
The translational symmetry of the system along the x ,y in-
plane directions guarantees that the x ,y components of the
wave vector are conserved kx,y =kx,y

int , while the band index r̄
and the z component kz

int are fixed by the energy conservation
�r̄,kint=ck �61�.

The amplitude A depends on the external wave vector k
and is fixed by the particle flux conservation condition. As
interface reflections are assumed to be negligible, this reads
as

c cos��� = �A�2vr̄,kint
gr cos��int� , �61�

where � ��int� are the angles between the z axis and the
propagation direction outside �inside� the slab: Note the dra-
matic increase of the polariton amplitude inside the slab for
vgr�c, a well-known effect in the theory of slow-light
propagation �31�. Provided the slab is much thinner than the
integration box Lz�Lslab, it is important to remind that the
normalization and the density of states do not depend on the
slab size, and only involve the total volume V=LxLyLz.

Inserting the explicit form of the polariton wave function
�k�x ,r� into the parametric Hamiltonian �57� and using the
Fermi golden rule, one immediately gets to an expression for
the number of photons emitted into the external vacuum per
unit time dt, unit surface d�=dxdy, and unit phase-space
volume of transverse momentum d2k�=dkxdky,

dN

dtd�d2k�

=
1

�2��2 �Vr̄s̄,k̄int�2
Lslab

cos �int�v
r̄,k̄int
gr

+ v
s̄,k̄int
gr �

. �62�

For each value of the modulation frequency �, the internal

wave vector k̄int and the branch indices r̄ , s̄ are selected by
the resonance condition �46� with k replaced by kint. Inside
the system the wave vectors of the emitted polariton pair
differ in fact from perfect antiparallelism by a negligible
amount �kz�1 /Lslab, still their frequencies ��r̄,s̄�,k̄int and their
group velocities v�r̄,s̄�,k̄int

gr
can be significantly different as soon

as distinct branches are considered r̄� s̄.
It is interesting to note that the result �62� is in perfect

agreement with the emission rate predicted in Eq. �49� for a
bulk system of volume Vslab=LxLyLslab: In the absence of
losses, all the polaritons created in the finite slab are in fact
emitted from the system as radiation.

By means of a change of variables, the emission rate �62�
can be rewritten in its final form as an emission rate per unit
surface and unit solid angle d�,

dN�

dtd�d�
=

1

�2��2 �Vr̄s̄,k̄int�2	��

c

2 cos ��

cos �int

Lslab

v
r̄,k̄int
gr

+ v
s̄,k̄int
gr ,

�63�

where the � index, respectively, refer to the photon which is
emitted from the slab in the positive �+� or negative �−� ẑ
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FIG. 4. �Color online� Sketch of the slab geometry under
consideration.
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direction at angles, respectively, �� with the normal. This
means, e.g., that �+=�r̄,k̄int and �−=�s̄,k̄int. The difference in
the angular emission density in the � directions is due to
refraction effects of the r̄ , s̄ polaritons at the system-vacuum
interfaces.

B. Resonant enhancement in a cavity

A possible way to further enhance the emission intensity
is to surround the slab with a pair of mirrors of good reflec-
tivity R�1: If the modulation frequency � is on resonance
with a pair of cavity modes, the dynamical Casimir emission
results increased by a factor proportional to the finesse of the
cavity �21�.

For simplicity, let us consider a plane-parallel mirror ge-
ometry, so that the cavity modes are labeled by the in-plane
component k� of the wave vector, the branch index r̄, as
well as by a positive integer number M defining the mode
order along z. Assuming for simplicity that the mirrors are
metallic and that no vacuum space is left between the slab
and the mirrors, the polaritonic cavity modes are defined by
the round-trip quantization condition

kz
intLslab = �M , �64�

and their frequency is equal to the bulk polariton dispersion
�r̄,kint at the relevant wave vector kint. Because of the non-
trivial shape of the dispersion law �r̄,kint as a function of kint,
the cavity modes are not equally spaced in frequency. Their
polaritonic wave function has a simple sinusoidal form �the
mirrors are at z=0, Lslab�,

�r̄,M,k�
�x,r� =� 2

LslabLxLy
sin	�Mz

Lslab

�r,r̄ eik�·x, �65�

and their radiative decay rate into externally propagating
photons is equal to

� =
1 − R

Lslab
cos��int�vr̄,kint

gr . �66�

As expected, the slower the group velocity vgr, the smaller
the decay rate �.

Fermi golden rule can again be used to estimate the emis-
sion rate in the cavity geometry. As final states, pairs of
cavity photons must be considered, with a finite linewidth
equal to � �35�. For a thick enough cavity, the mode order at
the frequency of interest is M �1 and overlap factor strongly
privileges polariton emission into pairs of cavity modes of
the same order M; the efficiency of all other processes is
suppressed by their spatial phase mismatch. The emission
rate into a pair of such modes is then easily obtained,

dN

dtd�d2k�

=
1

�2 �Vr̄s̄,k̄int�2
�T

�� − �T�2 +
�T

2

4

→
�=�T 1

�2�T
�Vr̄s̄,k̄int�2,

�67�

where �T and �T are here the sum of, respectively, the fre-
quencies and the linewidths of the pair of modes under ex-
amination.

By comparing Eq. �67� with the result �62� in the absence
of the enclosing cavity, and using Eq. �66�, it is immediate to
see that the emission rate for an excitation exactly on reso-
nance with a pair of modes ��=�T� is enhanced by a factor
4 / �1−R�. This enhancement effect is quite general and holds
for a variety of optical processes �5�; for well reflecting mir-
rors R�1, it can be quite dramatic.

VI. QUANTITATIVE DISCUSSION AND EXPERIMENTAL
CONSIDERATIONS

In the previous sections, we have obtained simple analyti-
cal expressions relating the emission intensity in the different
geometries to the Vrs,k parameter �50� which carries informa-
tion on the microscopic optical properties of the atomic me-
dium. In the present section, we shall conclude the study by
providing quantitative estimation of the emission intensity
for realistic systems, and discussing the most relevant issues
that are likely to arise in the design of an actual experiment.

An example of emission intensity spectrum is shown in
Fig. 5 for a Lslab=10 �m slab of Rb atomic Mott insulator in
the absence of cavity as described by Eq. �63�. The coupling
amplitude �C is assumed to have the periodic time depen-
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FIG. 5. �Color online� Spectrum of the dynamical Casimir emis-
sion rate per unit surface and unit solid angle around the normal
direction ���=0� as a function of the modulation frequency � for
the resonant case �e= �̃m, a slab thickness Lslab=10 �m in the
absence of enclosing cavity, and a relative modulation amplitude
��C /�C=0.05. Same system parameters as in Fig. 3. �a� Weak

dressing �C / C̄=1.86·10−4�1; �b,c� strong dressing �C / C̄=2. The
circles in �a,b,c� are the result of the exact calculation �63�. The
solid lines in �a,b� are the analytical approximation �52�. The red
dashed line in �c� is the prediction of the dispersionless, time-
varying dielectric model based on Eq. �55�. Panels �a,b� correspond
to the band dispersion and absorption spectra shown in Figs.
3�a�–3�d�. Black, red, and green colors in �a,b� refer to the lower
�LP�, the middle �MP� and the upper �UP� polaritons, respectively.
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dence �51� at a frequency �, while its frequency �C is kept
fixed: the modulation of �C then consists of a pair of
coherent sidebands at �� around the carrier frequency �C
= ��e−�m�. As expected, the central MP polariton branch ap-
pears as the most favorable region thanks to the combination
of reduced group velocity and significant resonant mixing of
light and matter excitations. In panels �a� and �b� the result of
the complete calculation �circles� is compared with the ana-
lytical approximation �52� �solid line�: The agreement is ex-
cellent throughout the whole resonance region. In panel �c�,
the same calculation is performed in the low-frequency re-
gion and is compared to Law’s result �55� for a dispersion-
less medium �44�: Inserting in Eq. �55� the refractive index
variation that follows from time dependence of �C and using
the general formula �63� for the emission rate, one obtains
the dashed curve in Fig. 6�c�. As expected, at very low fre-
quencies the agreement is excellent, but dispersion effects
start playing a significant role already for ��0.2�e.

All of the panels in Fig. 5 have been calculated for the
same value of the modulation amplitude ��C /�C: in spite of
the higher value of vgr, a larger value of �C is favorable in
view of maximizing the emission intensity as it allows for a
stronger modulation of the optical properties. A specific plot
of the resonance emission rate as a function of the coupling
amplitude �C is shown in Fig. 6: As predicted in Sec. IV B,

the Casimir emission first grows as �C
2 for �C� C̄, then

saturates to a finite value for �C� C̄.
Remarkably, the emission intensity at resonance can reach

quite substantial values already in the absence of a cavity. In
the weak dressing case ��C /2�=12 MHz�, the rate of emit-
ted photons from a 1 cm2 system in the unit solid angle
around the normal is of the order of 1 photon per second �see
Fig. 5�a��. Then it quadratically �see Fig. 6� increases for
growing �C, to eventually saturate around a value larger than

107 photons per second for a huge dressing �C /2�
100 GHz �see Fig. 5�b��. For alkali-metal atoms such as
Rb, a dressing amplitude �C /2� in the 10 MHz range cor-
responds to intensities of the dressing beam in the mW /cm2

range �40�.
A crucial difficulty of most dynamical Casimir experi-

ments consists of varying the optical properties of the system
at a high enough speed. In our specific setup, this amounts to
modulating the dressing beam at a frequency which is reso-
nant with the creation of a pair of MP.

Although this is hardly done with the almost symmetric �
schemes currently used in slow-light experiments with
alkali-metal atom samples �12,15,16�, still strongly asym-
metric � schemes as shown in Fig. 1�c� can be used. The
ground state of the atom is now the m state, while the g state
is a long-lived, high-energy metastable state. The dressing
beam then acts on the m→e transition at a frequency
��e−�m� higher than 2 times the frequency ��e−�g� of the
g→e transition on which the dynamical Casimir radiation is
to be emitted: No principle difficulties then appear to prevent
one from modulating the dressing amplitude �C at the re-
quired frequency �2��e−�g�. This can be obtained, e.g.,
by mixing the carrier at �C with another beam at � on a
suitable nonlinear crystal.

Strongly asymmetric � configurations can be found, e.g.,
in alkali-metal-earth atoms �49� whose laser cooling and
trapping techniques have experienced remarkable advances
in the last few years �50�. A specific choice in view of our
dynamical Casimir application can be 88Sr atoms, whose
4d 1D2 metastable state appears to have the required proper-
ties to be used as the g state of a strongly asymmetric �
scheme. It is in fact connected to the excited 5p 1P1 state by
an optically active infrared transition at �=6.5 �m which,

for a lattice spacing of 300 nm, gives a value C̄ /�e5
�10−5 not far from the Rb one. The 5p 1P1 state can be
dressed by driving the atom on the �=461 nm transition
from the absolute ground state of the atom 5s2 1S0
→5p 1P1. Before performing the dynamical Casimir experi-
ment, atoms must be optically pumped in the 4d 1D2 meta-
stable state, e.g., by means of a � Raman pulse; the lifetime
of the state being of 0.33 ms, there is enough time left to
carry out the dynamical Casimir experiment before atoms
decay to the ground state via the 5p 3PJ state: Even for a
group velocity as low as 10 m/s, the transit time across a
10-�m-thick cloud is in fact much shorter, of the order of
1 �s. Note also that this spontaneous decay channel in-
volves photons at 1.8 �m and 689 nm, in completely differ-
ent spectral regions from the dynamical Casimir ones at
6.5 �m, which can therefore be spectrally isolated with no
difficulty.

Another possible simpler solution is to stick to alkali-
metal atoms such as Rb, but use a ladder scheme �see Fig.
1�b�� where the m state is a electronically highly excited state
instead of a � one. Even though the unavoidable radiative
contribution to �m prevents the EIT effect from completely
killing the absorption, still DCE light can escape the slab
without dramatic losses. This, at least for the relatively large
values of �C that appear to be the most favorable for the
observation of DCE �Fig. 2�d��.
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Although from a rigorous standpoint this goes beyond the
Fano-Hopfield model under investigation here, still the con-
clusions of our analysis suggest that the DCE experiment
might be performed with less demanding atomic samples,
e.g., Bose-Einstein condensates or even thermal gases. For
the high value of �C that has been identified as the most
favorable regime, the consequences of spontaneous emission
from both the e and the m states do not appear in fact to be
dramatic. Additional difficulties could however arise from
the inhomogeneous broadening of �̃m due to the spatial
variations of the trapping and interaction potentials, and from
the reduced value of the atomic density �and then of the

light-matter coupling coefficient C̄�. While this latter effect
can be a serious issue in nondegenerate clouds, the inhomo-
geneous broadening of �̃m appears again to be easily over-
come by the strong dressing amplitude �C. A complete dis-
cussion of these issues will be the subject of forthcoming
work.

VII. CONCLUSIONS

In this paper we have performed a systematic analysis of
the optical properties of a gas of coherently dressed three-
level atoms trapped in an optical lattice in a Mott insulator
state. The extreme degree of coherence of this system allows
for propagation of light at ultraslow group velocities for long
times and distances. The optical properties of the medium

can be controlled in real time by varying the amplitude and
the frequency of the dressing field. For sufficiently fast
modulation rates, the zero-point fluctuations of the polariton
vacuum state are converted into observable radiation by dy-
namical Casimir effect.

We have developed a general theory to quantitatively
characterize the dynamical Casimir emission in terms of a
simple parametric Hamiltonian and we have identified the
most favorable case of a resonant dressing frequency whose
amplitude is periodically modulated in time. Experimentally
realistic geometries such as plane-parallel slabs and planar
cavities are analyzed in detail. Remarkably, a sizeable radia-
tion intensity is predicted for state-of-the-art systems and no
spurious emission from blackbody radiation or incoherent
luminescence is expected to mask the dynamical Casimir
signal.
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and avoid unphysical behaviors in the k→0 limit.
�55� In a deep lattice, the branching ratio for the decay of e into

motional states other than the ground state is equal to 
=1
−exp�−ER /2��HO�1 /�16s, where s=V0 /ER and �HO is the
frequency for quasiharmonic oscillations around the equilib-
rium position at each lattice site �32�. As expected, 
→0 in
the strong lattice limit s�0. Including processes beyond the
Lamb-Dicke limit gives a contribution to �e equal to 
�e→g,
where �e→g is the e→g radiative decay rate of an isolated
atom in free space.

�56� In our formalism, such processes correspond to the conversion
of a e excitation into a m excitation plus a polariton at a fre-
quency �e−�m far from the resonance region �e−�g. Using
Fermi golden rule, it is immediate to see that the correspond-
ing decay rate is indeed equal to the free space spontaneous
radiative decay rate for the e→m transition.

�57� Note that this plot does not include the extinction effects that
occur for frequencies within the �very small� gaps between the
bands, and which are, e.g., responsible for the operation of
distributed Bragg reflectors �1,43�.

�58� For the Rb atoms under consideration here, an absorption
length of 1 m corresponds to �abs /ke=1.24�10−7.

�59� A similar perturbative calculation for a periodic modulation of
�̃m would lead to a vanishing result at the lowest order in

perturbation theory. This is a direct consequence of the vanish-
ing value of vr,k

m,1 obtained in Eq. �36�. A complete calculation
including next-order terms results in a dynamical Casimir
emission intensity orders of magnitude weaker than for a
modulation of �C.

�60� In real space, the polariton wave function �k
in�x ,r� depends in

fact on the spatial coordinate x and on the branch index r. This
latter can be interpreted as a sort of internal degree of freedom-
like spin.

�61� As the bands have no spectral overlap, at most one propagating
polariton mode exists for a given frequency �: This guarantees
that no additional boundary conditions are required here �48�.
Rather, the energy conservation condition can be satisfied only
outside the �very small� gaps that open in the polariton disper-
sion between the LP and the MP, and between the MP and the
UP. For frequencies inside these gaps, the radiative eigenstates
are confined in the external vacuum and cannot penetrate the
atomic system: The dynamical Casimir emission is therefore
strongly suppressed. On the other hand, light escape from the
atomic system is possible only for polariton modes which lie
within the so-called radiative cone kx

2+ky
2��2 /c2: Polaritons

which are created outside this cone remain in fact trapped in
the slab and propagate through it as in a waveguide.
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