Table of contents

1. Synthesis of substituted aromatic derivatives using melted FeCl ₃ •6H ₂ C)2
1.1 General procedures	2
Bromination	2
Nitration	2
Thiocyanation	2
1.2 Spectroscopic characterisation of the products	2
1.2.1 Characterisation of brominated products	3
1.3.2 Characterisation of the nitrated products	
1.3.3 Characterisation of the thiocyanated products	6
1.3 Condition optimisation for the bromination of aromatic derivatives with	out any co-
oxidant	7
1.4 PCA analysis of the conditions for bromination reaction	8
2. Spectroscopic analyses of FeCl ₃ •6H ₂ O	9
2.1 Characterisation of FeCl ₃ •6H ₂ O	9
2.1.1 Raman studies	9
2.1.2 Direct injection mass spectrometry studies	
2.2 Characterisation of FeCl ₃ •6H ₂ O in presence of NaBr	
2.3 Characterisation of FeCl ₃ •6H ₂ O in presence of KNO ₃	
2.4 Characterisation of FeCl ₃ •6H ₂ O in presence of KSCN	11
3. Computational calculations	
3.1 Methods	
3.2 DFT calculations of the ion pair complexes	13
3.2.1 Procedure	13
3.2.2 Choice of the system studied	13
3.2.3 Results - Optimised geometry and Gibbs free energy	17
3.2.4 Results – Partial atomic charges of the optimised conformers	19
3.3 DFT calculations of the ion pair complexes in presence of anisole	23
3.3.1 Procedure	23
3.3.2 Results - Optimised geometry and Gibbs free energy	24
3.3.3 Results – Partial atomic charges of the optimised conformers	25
References	29

1. Synthesis of substituted aromatic derivatives using melted FeCl₃•6H₂O

1.1 General procedures

Reagents and solvents were purchased from Sigma-Aldrich, and were used without further purification.

Bromination

Methoxy arene (0.5 mmol), sodium bromine (51.5 mg, amount corresponding to 0.50 mmol) and FeCl₃•6H₂O (270.3 mg, amount corresponding to 1 mmol) were introduced in a sealed tube (ace glass tube, 10.2 cm x 25.4 mm) with a magnetic stirring bar and heated to 80°C in oil bath for 24 h until completion of the reaction. The reaction mixture was then diluted with an ethyl acetate/water mixture (10 /10 mL). The product is extracted three times with ethyl acetate (3 x 5 mL), washed with water (5 mL) and dried over MgSO₄. The organic phase was concentrated under reduced pressure and diluted in dichloromethane before GC-MS analysis. The analyses and yields were also confirmed by ¹H and ¹³C NMR analyses.

Nitration

Methoxy arene (0.5 mmol), potassium nitrate (50.6 mg, amount corresponding to 0.50 mmol) and FeCl₃•6H₂O (135.2 mg, amount corresponding to 0.5 mmol) were introduced in a sealed tube (ace glass tube, 10.2 cm x 25.4 mm) with a magnetic stirring bar and heated to 60° C in oil bath for 6 h until completion of the reaction. The reaction mixture was then diluted with an ethyl acetate/water mixture (10 /10 mL). The product is extracted three times with ethyl acetate (3 x 5 mL), washed with water (5 mL) and dried over MgSO₄. The organic phase was concentrated under reduced pressure and diluted in dichloromethane before GC-MS analysis. The analyses and yields were also confirmed by ¹H and ¹³C NMR analyses.

Thiocyanation

Methoxy arene (0.5 mmol), potassium thiocyanate (48.6 mg, amount corresponding to 0.50 mmol) and FeCl₃•6H₂O (270.3 mg, amount corresponding to 1 mmol) were introduced in a sealed tube (ace glass tube, 10.2 cm x 25.4 mm) with a magnetic stirring bar and heated to 80°C in oil bath for 6 h until completion of the reaction. The reaction mixture was then diluted with an ethyl acetate/water mixture (10/10 mL). The product is extracted three times with ethyl acetate (3 x 5 mL), washed with water (5 mL) and dried over MgSO₄. The organic phase was concentrated under reduced pressure and diluted in dichloromethane before GC-MS analysis. The analyses and yields were also confirmed by ¹H and ¹³C NMR analyses.

1.2 Spectroscopic characterisation of the products

Gas chromatography and mass spectrometry (GC-MS) analyses were performed using a TRACETM 1300 apparatus equipped with an ISQTM QD mass spectrometer detector (Thermo Fisher Scientific) coupled with an FID detector (Thermo Fisher scientific). Hydrogen was the carrier gas at a flow rate of 0.8 mL/min, and the program used was set as following: 80 °C for 1 min then heating to 260 °C with a rate of 45 °C/min followed by a linear gradient at 260 °C for 1 min.

NMR spectra were recorded on a Bruker Avance 400 spectrometer (Bruker), BBFO Probe, with acetone- d_6 as solvent (2.09 ppm for ¹H and 30.60 and and 205.87 ppm for ¹³C).

IR analyses were conducted using a Perkin-Elmer Spectrum 100 ATR-FT-IR spectrometer.

1.2.1 Characterisation of brominated products

4-bromoanisole (1)

¹H NMR (400 MHz, (CD₃)₂CO): δ /ppm = 7.45-7.42 (d, *J* = 9.05 Hz, 2H), 6.92-6.90 (d, *J* = 9.02 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ /ppm = 159.11, 132.15, 115.99, 112.08, 54.93.

¹H and ¹³C NMR spectra are in agreement with those previously reported.¹

4-bromo-1,2-dimethoxybenzene (2)

Yield: 51%, GC conversion: 100%.

¹H NMR (400 MHz, (CD₃)₂CO): δ /ppm = 7.08 (d, *J* = 2 Hz, 1H), 7.06-7.04 (m, 1H), 6.91-6.89 (d, *J* = 8.46 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ /ppm = 150.47, 149.02, 123.18, 115.05, 113.35, 112.07, 55.47, 55.36.

¹H and ¹³C NMR spectra are in agreement with those previously reported.²

1-bromo-2,4-dimethoxybenzene (3)

Yield: 51%, GC conversion: 97%

¹H NMR (400 MHz, (CD₃)₂CO): δ /ppm = 7.28-7.26 (d, *J* = 8.71 Hz, 1H), 6.51-6.50 (d, *J* = 2.72 Hz, 1H), 6.36-6.33 (dd, *J* = 2.74, *J* = 8.72, 1H), 3.73 (s, 3H), 3.67 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ /ppm = 160.68, 156.72, 132.98, 106.40, 101.63, 99.86, 55.60, 55.04.

¹H and ¹³C NMR spectra are in agreement with those previously reported.¹

2-bromo-1-methoxy-4-methylbenzene (4)

Yield: 64%, conversion GC: 86%

¹H NMR (400 MHz, (CD₃)₂CO): δ /ppm = 7.33-7.32 (d, *J* = 1.88 Hz, 1H), 7.09-7.07 (dd, *J* = 1.71 Hz, *J* = 8.44 Hz, 1H), 6.91-6.89 (d, *J* = 8.36, 1H), 3.79 (s, 3H), 2.21 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ /ppm = 153.93, 133.40, 131.32, 129.13, 112.23, 110.77, 55.65, 19.19. ¹H and ¹³C NMR spectra are in agreement with those previously reported.¹

4-bromo-1-methoxy-2-methylbenzene (5)

Yield: 74%, GC conversion: 100%

¹H NMR (400 MHz, (CD₃)₂CO): δ /ppm = 7.31-7.28 (d, *J* = 2.51 Hz, 1H), 7.28 (s, 1H), 6.87-6.85 (d, *J* = 8.26, 1H), 3.83 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ /ppm = 157.11, 132.77, 129.42, 128.85, 111.92, 111.73, 55.03, 15.18.

¹H and ¹³C NMR spectra are in agreement with those previously reported.³

1.3.2 Characterisation of the nitrated products

1-methoxy-4-nitrobenzene (6a)

¹H NMR (400 MHz, (CD₃)₂CO): δ = 8.09-8.07 (d, *J* = 9.25, 2H), 7.01-6.99 (d, *J* = 9.21 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 164.91, 126.38, 125.68, 114.32, 55.73.

¹H and ¹³C NMR spectra are in agreement with those previously reported.²

1-methoxy-2-nitrobenzene (6b)

Yield: 15%, GC conversion: 40%

¹H NMR (400 MHz, (CD₃)₂CO): δ = 7.69-7.67 (dd, J= 1.53, J = 8.03, 1H), 7.53-7.48 (m, 1H), 7.45-7.43 (d, J = 8.86, 1H), 7.21-7.19 (d, J = 8.40, 1H), 3.83 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 152.42, 134.04, 130.99, 124.83, 120.31, 113.92, 55.39.

¹H and ¹³C NMR spectra are in agreement with those previously reported.²

1,2-dimethoxy-4-nitrobenzene (7)

¹H NMR (400 MHz, (CD₃)₂CO): δ = 7.90-7.87 (dd, *J* = 2.67 Hz, *J* = 8.93 Hz, 1H), 7.74 (d, *J* = 2.66 Hz, 1H), 7.15-7.12 (d, *J* = 8.94 Hz, 1H), 3.97 (s, 3H), 3.96 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 155.04, 149.23, 141.28, 117.28, 110.41, 106.28, 55.80, 55.60.

¹H and ¹³C NMR spectra are in agreement with those previously reported.⁴

1-methoxy-4-methyl- 2-nitrobenzene (8a)

Yield: 36%, GC conversion: 85%

¹H NMR (400 MHz, (CD₃)₂CO): $\delta = 8.18$ (s, 1H), 7.46-7.43 (dd, J = 1.81 Hz, J = 8.53 Hz, 1H), 7.22-7.19 (d, J = 8.55 Hz, 1H), 3.94 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): $\delta = 150.41$, 138.51, 134.47, 129.72, 124.90, 113.83, 56.07, 19.13.

¹H and ¹³C NMR spectra are in agreement with those previously reported.^{4,5}

4-methyl-2-nitrophenol (8b)

Yield: 36%, GC conversion: 85%

¹H NMR (400 MHz, (CD₃)₂CO): δ = 7.90-7.89 (d, *J* = 1.27 Hz, 1H), 7.53-7.50 (dd, *J* = 2.03 Hz, *J* = 8.52 Hz, 1H), 7.08-7.06 (d, *J* = 5.91 Hz, 1H), 3.75 (s, 1H), 2.24 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 152.58, 130.22, 129.29, 124.23, 119.58, 19.04.

¹H and ¹³C NMR spectra are in agreement with those previously reported.⁶

1-methoxy-2-methyl-4-nitrobenzene (9a)

Yield: 65%, GC conversion: 100%

¹H NMR (400 MHz, (CD₃)₂CO): δ = 8.12-8.09 (dd, *J* = 2.71 Hz, *J* = 8.96 Hz, 1H), 8.04-8.03 (d, *J* = 2.29 Hz, 1H), 7.13-7.11 (d, *J* = 8.98 Hz, 1H), 4.00 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 163.00, 135.52, 127.62, 125.41, 123.48, 109.91, 55.83, 15.36.

¹H spectrum is in agreement with those previously reported.⁷

2-methoxy-1-methyl-3-nitrobenzene (9b)

¹H NMR (400 MHz, (CD₃)₂CO): δ = 7.67-7.65 (d, *J* = 7.78 Hz, 1H), 7.55-7.53 (d, *J* = 8.22 Hz, 1H), 7.22 (t, *J* = 7.85 Hz, 1H), 3.90 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 151.10, 140.94, 135.04, 134.43, 124.04, 122.35, 61.37, 15.16.

1.3.3 Characterisation of the thiocyanated products

1,2-dimethoxy-4-thiocyanatobenzene (10)

¹H NMR (400 MHz, (CD₃)₂CO): δ = 7.22 (m, 2 H), 7.08-7.06 (d, *J* = 9.02 Hz, 1 H), 3.89 (s, 3H), 3.87 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 151.43, 150.50, 125.17, 114.97, 113.81, 112.85, 55.59, 55.42.

IR: 2831, 2154 (SCN), 1583, 1501, 1251, 1230, 1176, 1137, 1018, 799, 764 cm⁻¹.

2,4-dimethoxy-1-thiocyanatobenzene (11)

Yield: 84%, GC conversion: 100%

¹H NMR (400 MHz, (CD₃)₂CO): δ = 7.55-7.52 (d, *J* = 8.65 Hz, 1H), 6.77 -6.76 (d, *J* = 2.53 Hz, 1H), 6.72-6.70 (dd, *J* = 2.53 Hz, *J* = 8.64 Hz, 1H), 4.00 (s, 3H), 3.90 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 163.50, 159.28, 134.72, 133.79, 106.94, 101.84, 99.54, 55.96, 55.27. IR: 2835, 2156 (SCN), 1573, 1453, 1279, 1208, 1161, 1066, 1020, 915, 823, 633. cm⁻¹.

2-methoxy-4-methyl-2-thiocyanatobenzene (12)

¹H NMR (400 MHz, (CD₃)₂CO): δ = 7.37 (d, *J* = 1.58 Hz, 1H), 7.26 (m, 1H), 7.07-7.05 (d, *J* = 8.53 Hz, 1H), 3.93 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 154.71, 133.62, 131.36, 129.88, 129.74, 113.56, 112.16, 55.99, 19.49. IR: 2834, 2156 (SCN), 1579, 1494, 1247, 1065, 1020, 805, 739 cm⁻¹.

1-methoxy-2-methyl-4-thiocyanatobenzenze (13a)

Yield: 56%, GC conversion: 92%

¹H NMR (400 MHz, (CD₃)₂CO): δ = 7.51-7.48 (ddd, *J* = 0.50 Hz, *J* = 2.53 Hz, *J* = 8.58 Hz, 1H), 7.45-7.44 (m, 1H), 7.08-7.07 (d, *J* = 8.60 Hz, 1H), 3.90 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 159.64, 133.91, 131.47, 129.08, 120.10, 113.18, 111.81, 55.26, 15.27. IR: 2835, 2154 (SCN), 1590, 1490, 1247, 1135, 1026, 805, 751, 640 cm⁻¹.

Spectral data are in agreement with those previously reported.⁸

4,4'-Dimethoxy-3,3'-dimethyl diphenyl sulfide (13b)

¹H NMR (400 MHz, (CD₃)₂CO): δ = 7.18-7.17 (dd, *J* = 1.87 Hz, 1H), 7.15 (d, *J* = 0.65 Hz, 1H), 6.89 (t, *J* = 7.16 Hz, 1H), 3.82 (s, 3H), 2.14 (s, 3H). ¹³C NMR (100.6 MHz, (CD₃)₂CO): δ = 157.37, 133.51, 130.33, 127.27, 126.76, 110.80, 109.93, 54.94, 15.36.

1.3 Condition optimisation for the bromination of aromatic derivatives without any cooxidant

Table 1S. Bromination of anisole using anhydrous and hydrated FeCl₃. NaBr, FeCl₃•6H₂O and anisole were put successively in a sealed tube under heating and magnetic stirring. Yields and conversions determined by GC-MS using dodecane as internal standard.

Entry	Fe source	Support	Solvent	Eq Fe	Eq NaBr	time (h)	T (°C)	Conv (%)		Yields	s (%)	
						()	(-)	()	1	2	3	4
Using su	ipports											
1	FeCl ₃	SiO ₂	-	1	1	24	80	31	21	-	-	6
2	FeCl ₃	MK10	-	1	1	24	80	33	5	-	-	6
3	FeCl ₃	MK10/molecular sieve	-	1	1	2	80	9.5	2	-	8	-
4	FeCl ₃ .6H ₂ O	SiO_2	-	1	1	24	80	15	6	-	-	4
5	FeCl ₃ .6H ₂ O	SiO ₂	-	2	1	24	80	32	20	-	-	5
6	FeCl ₃ .6H ₂ O	MK10	-	1	1	24	80	31	6	-	31	-
7	FeCl ₃ .6H ₂ O	MK10/molecular sieve	-	1	1	2	80	2.5	2.5	-	-	-
Using sc	olvents											
8	FeCl ₃ .6H ₂ O	MK10	Cyclohexane	1	1	6	80	-	Traces	-	-	-
9	FeCl ₃ .6H ₂ O	-	MeTHF	2	2	6	80	0	0	-	-	-
10	FeCl ₃ .6H ₂ O	-	Diethylcarbonate	2	2	6	80	0	0	-	-	-
Solvent-	free conditions											
11	FeCl ₃ .6H ₂ O	-	-	2	1	6	80	100	75	Traces	-	-
12	FeCl ₃ .6H ₂ O	-	-	2	1	24	80	93	85	Traces	-	Traces
13	FeCl ₃ .6H ₂ O	-	-	2	1	6	60	16	15	-	-	-
14	FeCl ₃ .6H ₂ O	-	-	2	1	6	100	100	39	35	-	-
15	FeCl ₃ .6H ₂ O	-	-	2	4	6	80	100	44	26	-	-

1.4 PCA analysis of the conditions for bromination reaction

Figure 1S. PCA analysis of the scope

2. Spectroscopic analyses of FeCl₃•6H₂O

Raman analysis was performed on a Horiba Jobin-Yvon Labram 1B Confocal apparatus, Laser Ar/Kr from 100 mW to 647.1 nm; Simple Edge Filter: observation from 150 cm⁻¹; detector CCD30-11 1024x256 Pixels.

Mass analyses were performed on a Quattro-Micro mass spectrometer equipped with an Electrospray (ESI) probe (Waters Micromass, Wythenshawe, Manchester, UK). The triple quadrupole MS was operated in full scan mode (Range 0 to 500 Da) with compounds being ionised in the negative and/or positive electrospray ionisation mode. The detection conditions were: capillary potential 3.5 kV, cone potential 30 V, source temperature 120 °C, desolvation temperature 450 °C, cone gas flow 50 L/h, and desolvation gas flow 450 L/h. Nitrogen was the nebuliser gas.

Raman analyses

FeCl₃•6H₂O has been analysed by Raman spectroscopy to confirm its composition as melted salt. 1g of FeCl₃•6H₂O was put in a sealed tube and heated at 80°C for a few second. The salt instantly melted.

Mass spectrometry analyses

Melted FeCl₃•6H₂O and melted salts mixtures have been analysed by direct infusion mass spectrometry using anisole as solvent, and with different preparation mode. 1 or 2 equivalents of FeCl₃•6H₂O and, in the case of the melted salt mixture, 1 equivalent of the natural salt are put in a sealed tube under heating.

2.1 Characterisation of FeCl₃•6H₂O

2.1.1 Raman studies

 Table 2S. Comparison of Raman frequencies of melted FeCl₃•6H₂O between data from literature and the present study

Raman frequer	icies of melted F	FeCl ₃ •6H ₂ O (cm ⁻¹)	
		FeCl ₄		$Fe(H_2O)_4Cl_2^+$
Sharma et al.	115 m	154 vw	337 vs	425 m bd
In this paper	121 m	163 vw	332 vs	409 m bd
	1.	1	. 111	1

m: medium, vw: very weak, vs: very strong, bd: broad.

2.1.2 Direct injection mass spectrometry studies

Figure 3S. Direct infusion electrospray ionization in negative mode of FeCl₃•6H₂O after heating at 80 °C.

2.2 Characterisation of FeCl₃•6H₂O in presence of NaBr

Figure 4S. Direct infusion electrospray ionization in negative mode of FeCl₃•6H₂O in presence of NaBr: a) not heated; b) heated at 80 °C for 3 hrs.

2.3 Characterisation of FeCl₃•6H₂O in presence of KNO₃

Figure 5S. Direct infusion electrospray ionization in negative mode of FeCl₃•6H₂O in presence of KNO₃ after heating at 80 °C.

2.4 Characterisation of FeCl₃•6H₂O in presence of KSCN

Figure 6S. Direct infusion electrospray ionization in negative mode of FeCl₃•6H₂O in presence of KSCN after heating at 80 °C.

3. Computational calculations

3.1 Methods

Gas phase geometry optimisations and single point energy evaluations were performed using def2-SVP double-ζ basis set at the PBE1PBE level of theory, as implemented in Gaussian 16-A.03⁹. The Gibbs free energy of the optimised conformers was calculated at 298.15 K. Minimizations were performed with the Berny algorithm using GEDIIS in redundant internal coordinates. Tight linear equation convergence and quadratic convergence SCF method have been used. No constraints relative to the positive or negative charges on ions were applied. Gausview 6.0^{10} was used for visualization of orbitals. The SCF convergence default was used for Gaussian and the symmetry constraint was ignored. A hybrid functional, which include a mixture of Hartree-Fock exchange with DFT exchange-correlation, was used. The PBE1PBE functional that uses 25% exchange and 75% correlation weighting, is known in the literature as PBE0. The 1996 pure functional of Perdew, Burke and Ernzerhof was made into a hybrid by Adamo¹¹. The double -ζ basis set def2-SVP¹² with polarization functions was used. The D3 version of Grimme dispersion with Becke-Johnson damping was added for empirical dispersion¹³ (typically used for non-covalent interactions, supramolecular complexes in solution). The ElectroStatic Potential map (ESP) was generated at isovalue: 0.03. Partial charges are created due to the asymmetric distribution of electrons in chemical bonds; calculating them can afford an interesting picture of electron density distribution in the molecule and therefore of its properties such as reactivity. As there exist several ways to calculate atomic charges, we selected relevant atomic charge types. Mulliken and CM5¹⁴ are derived from population analysis of wavefunctions. Hirshfeld charges¹⁵ are obtained by partitioning of electron density distributions while APT (Atomic Polar Tensor) charges¹⁶ are derived from dipole-dependent properties. Since the dipole moment is sensitive to the level of calculation, so are the APT charges. Given the high level of basis sets used in our study, we can be confident in its reliability and the importance of dipolar interactions towards reactivity in this work led us to rely strongly on this model for various interpretations.

3.2 DFT calculations of the ion pair complexes

3.2.1 Procedure

Figure 7S. Procedure for geometry optimisation of $(trans-FeCl_2(H_2O)_4^+, FeCl_3Br^-)$ and $(cis-FeCl_2(H_2O)_4^+, FeCl_3Br^-)$

3.2.2 Choice of the system studied

Calculations were made with and without the hydrogen-bonded water molecule (see Scheme 1, main text). No significant change in bond distances and charges were noted (see below), so the simplified complex (without HB-water) was preferred for the rest of the calculations, mainly to remove uncertainty on the positioning of the extra water molecule. Regarding the gas phase vs hydrated system, supplementary calculations were run both using the implicit IEFPCM model (with water as solvent) and eight explicit water molecules (Table 3-5S). Applying an implicit IEFPCM solvation model did not

change drastically the geometry of the stable complex, nor the charge on the considered halogen atoms (Br20 and Cl6/Cl7); the calculations were therefore executed in the gas phase for computing-time considerations.

Table 3S. APT atomic charge on Br20 and Cl6/Cl7 atoms and distances in angstrom between Br20 and Cl6/Cl7 atoms

Conformations	QBr20	QC16	d(Br20-Cl6) Å
cis-FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻	0.246167	-0.419038	2.835
<i>cis</i> -FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ 1H ₂ O - A	0.250893	-0.527982	2.876
cis-FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ 1H ₂ O - B	0.205979	-0.386993	2.913
cis-FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ 1H ₂ O - C	0.212742	-0.463271	2.866
<i>cis</i> -FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ PCMwater	0.333764	-0.476349	2.790
	QBr20	<i>Q</i> C17	d(Br20-C17) Å
trans-FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻	<i>Q</i> Br20 0.300333	<i>Q</i> C17 -0.675900	d(Br20-Cl7) Å 2.876
<i>trans</i> -FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ <i>trans</i> -FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ 1H ₂ O - A	<u><i>Q</i></u> Вг20 0.300333 0.274532	<i>Q</i> C17 -0.675900 -0.715487	d(Br20-C17) Å 2.876 2.919
<i>trans</i> -FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ <i>trans</i> -FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ 1H ₂ O - A <i>trans</i> -FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ 1H ₂ O - B	<u>QBr20</u> 0.300333 0.274532 0.227341	<i>Q</i> C17 -0.675900 -0.715487 -0.524004	d(Br20-C17) Å 2.876 2.919 2.945
trans-FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ trans-FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ 1H ₂ O - A trans-FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ 1H ₂ O - B trans-FeCl ₂ (H2O) ₄ ⁺ ,(FeCl ₃ Br) ⁻ 1H ₂ O - C	<i>Q</i> Br20 0.300333 0.274532 0.227341 0.221651	<i>Q</i> C17 -0.675900 -0.715487 -0.524004 -0.592300	d(Br20-Cl7) Å 2.876 2.919 2.945 2.917

Table 4S. Iron chloride hexahydrate models (**geom022**, cis) without the hydrogen-bonded water molecule and with the water molecule placed in 3 arbitrary positions; energy and bond distances summarised in Table 3S.

Table 5S. Iron chloride hexahydrate models (**geom121**, trans) without the hydrogen-bonded water molecule and with the water molecule placed in 3 arbitrary positions; energy and bond distances summarised in Table 3S.

3.2.3 Results - Optimised geometry and Gibbs free energy

Table 6S. Iron chloride hexahydrate models (**geom02X**) generated from crystal structures where the starting geometries are brought apart (dFe-Fe= 8.0 Å) compared to the crystalline state.

^d from geom01X, tearing apart of the ions : d(Fe-Fe) from 6.0 Å to 8.0 Å.

^{*d*} from geom11X, tearing apart of the ions : d(Fe-Fe) from 6.0 Å to 8.0 Å.

3.2.4 Results - Partial atomic charges of the optimised conformers

Table 8S. Atomic charges (derived from different models) for geom 010 iron complex

cis(FeCl ₂) ⁺ (FeCl4) ⁻			
geom010	Mulliken	Hirshfeld	CM5	APT
Fe1	0.352313	0.158794	0.416713	1.135420
Cl2	-0.210251	-0.109662	-0.175509	-0.320099
C13	-0.147286	-0.095226	-0.162548	-0.697471
Cl4	-0.182974	-0.101090	-0.167660	-0.318090
Cl5	-0.097654	-0.030241	-0.100043	0.175712
Fe6	0.449675	0.081294	0.380501	0.861703
Cl7	-0.289574	-0.193309	-0.239291	-0.377643
C18	-0.443992	-0.300342	-0.344873	-0.715666
O9	-0.259730	-0.178929	-0.569947	-0.337579
O10	-0.243999	-0.181564	-0.567575	-0.384041
011	-0.209690	-0.161401	-0.548611	-0.616568
O12	-0.240981	-0.184017	-0.564161	-0.603554
H13	0.182673	0.137792	0.306352	0.149219
H14	0.198160	0.168210	0.335405	0.292771
H15	0.176317	0.127351	0.296744	0.186865
H16	0.191506	0.161269	0.330394	0.252816
H17	0.204225	0.192708	0.362604	0.305948
H18	0.198961	0.176440	0.343062	0.371525
H19	0.204566	0.190997	0.360578	0.260902
H20	0.167737	0.140931	0.307873	0.377830

Table 9S. Atomic charges (derived from different models) for geom022 iron complex

<i>cus</i> (1 cc12)	(recibil)					
geom022	Mulliken	Hirshfeld	CM5	APT	-	
Fe1	0.325365	0.131265	0.373346	1.125163	—	
Cl2	-0.151788	-0.100017	-0.167846	-0.678430		
Cl3	-0.215387	-0.117523	-0.183513	-0.338378		
Cl4	-0.191821	-0.111345	-0.177980	-0.342531		
Fe5	0.459064	0.075035	0.371562	0.846512		
Cl6	-0.295095	-0.192171	-0.238100	-0.419038		
Cl7	-0.447697	-0.303749	-0.348161	-0.706360		
08	-0.265976	-0.180178	-0.571209	-0.361690		
09	-0.247171	-0.181441	-0.567580	-0.405628		
O10	-0.211883	-0.163186	-0.550088	-0.611340	T	13
011	-0.240522	-0.184165	-0.564795	-0.604488		
H12	0.182539	0.133903	0.302234	0.167977	U-10-5	101
H13	0.200135	0.169918	0.337195	0.296652		18 ⁻
H14	0.178470	0.127044	0.295907	0.199994		
H15	0.195358	0.164281	0.333048	0.258946	19-11	
H16	0.204124	0.192022	0.362039	0.307208		.78
H17	0.198163	0.175031	0.341640	0.371626		
H18	0.204160	0.190230	0.360007	0.265962		
H19	0.167200	0.140267	0.307223	0.381676		
Br20	-0.047238	0.034763	-0.014947	0.246167		

cis(FeCl ₂)+	(FeCl ₃ Br) ⁻
--------------------------	-------------------------------------

cis(FeCl ₂) ⁺	(FeCl₃Br)⁻				
geom021	Mulliken	Hirshfeld	CM5	APT	-
Fe1	0.329039	0.153109	0.405527	1.322845	-
Cl2	-0.166149	-0.058317	-0.126895	-0.224306	
C13	-0.140660	-0.060936	-0.128465	-0.210135	
Cl4	-0.082092	-0.055416	-0.125942	-0.581034	
Fe5	0.432466	0.084005	0.377608	1.236323	2
Cl6	-0.443536	-0.303025	-0.348346	-0.680546	- T u
Cl7	-0.418743	-0.296277	-0.342683	-0.817414	
08	-0.224343	-0.170486	-0.558589	-0.363236	3 10 5
09	-0.256922	-0.176700	-0.566272	-0.265817	
O10	-0.220199	-0.185356	-0.566698	-0.605679	
O11	-0.238476	-0.183061	-0.566862	-0.341628	
H12	0.186817	0.159204	0.330183	0.159487	19
H13	0.203860	0.178770	0.345416	0.308925	
H14	0.201378	0.159381	0.329491	0.144287	3 2 1
H15	0.178132	0.152928	0.320147	0.198280	
H16	0.181082	0.156349	0.322607	0.346698	(**)
H17	0.185387	0.162153	0.328687	0.340669	
H18	0.182604	0.146228	0.316757	0.144028	
H19	0.181314	0.153115	0.320029	0.226417	-
Br20	-0.070958	-0.015684	-0.065719	-0.338163	

Table 10S. Atomic charges (derived from different models) for geom021 iron complex

Table 11S. Atomic charges (derived from different models) for geom023 iron complex

cis(FeCl ₂) ⁺ (FeCl3Br) ⁻				
Geom023	Mulliken	Hirshfeld	CM5	APT	_
Fe1	0.322427	0.141351	0.387747	1.137586	_
Cl2	-0.085103	-0.022643	0.093701	0.148825	
C13	-0.129751	-0.086897	0.155609	-0.667956	
Cl4	-0.234758	-0.107749	0.173087	-0.299791	
Fe5	0.462197	0.080806	0.377957	0.912715	
Cl6	-0.432285	-0.303870	0.348692	-0.678882	
Cl7	-0.345323	-0.227004	0.272039	-0.508613	
O8	-0.243039	-0.177760	0.572605	-0.276293	
O9	-0.228182	-0.183954	0.562407	-0.575442	
O10	-0.205094	-0.159414	0.548058	-0.611628	
011	-0.252869	-0.186202	0.572228	-0.416030	
H12	0.177582	0.144986	0.315228	0.166127	
H13	0.184955	0.161380	0.328789	0.270000	
H14	0.176156	0.183093	0.351593	0.233627	
H15	0.177016	0.141568	0.307325	0.393920	
H16	0.200860	0.188291	0.359128	0.307107	
H17	0.198860	0.180061	0.347114	0.381103	18-00
H18	0.178775	0.135100	0.304856	0.203093	- u
H19	0.175671	0.138012	0.307844	0.226280	
Br20	-0.098094	-0.039164	0.089166	-0.345748	

nic	For	L)+	(Fol	Դեթ	
CIS	Het.	21	ггес	. 31	5r

trans(FeCl ₂)) ⁺ (FeCl ₄) ⁻				
Geom110	Mulliken	Hirshfeld	CM5	APT	_
Fe1	0.337988	0.162559	0.424305	1.126466	-
C12	-0.167314	-0.092088	-0.158340	-0.245963	
C13	-0.163022	-0.096676	-0.163407	-0.279110	
Cl4	-0.138475	-0.087148	-0.154592	-0.714202	
Cl5	-0.115271	-0.035298	-0.105938	0.071612	
Fe6	0.452709	0.082651	0.383216	0.899851	
Cl7	-0.448245	-0.313064	-0.355877	-0.740514	
C18	-0.370799	-0.263008	-0.307364	-0.406520	
O9	-0.219956	-0.168214	-0.558042	-0.324400	53
O10	-0.252198	-0.172765	-0.565418	-0.283790	
011	-0.229957	-0.179817	-0.563129	-0.629365	
O12	-0.234853	-0.169531	-0.556062	-0.651880	
H13	0.179215	0.135872	0.305752	0.165440	
H14	0.205550	0.190583	0.360830	0.298570	20
H15	0.181095	0.143616	0.312742	0.150583	
H16	0.201887	0.164702	0.333298	0.206531	
H17	0.205510	0.192089	0.360904	0.277461	
H18	0.179715	0.150409	0.317444	0.368067	
H19	0.212541	0.197186	0.364937	0.333913	
H20	0.183879	0.157942	0.324743	0.377250	

Table 12S. Atomic charges (derived from different models) for geom110 iron complex

Table 13S. Atomic charges (derived from different models) for geom114 iron complex

trans(FeCla	2) ⁺ (FeCl ₃ Br) ⁻				
Geom114	Mulliken	Hirshfeld	CM5	APT	
Fe1	0.321667	0.132941	0.378438	1.164408	
Cl2	-0.194473	-0.109965	-0.176832	-0.349724	
Cl3	-0.140915	-0.092057	-0.160598	-0.662486	
Cl4	-0.194992	-0.109876	-0.176621	-0.345130	
Cl5	-0.466275	-0.314982	-0.357800	-0.658997	
Cl6	-0.350084	-0.221624	-0.265456	-0.540955	
Fe7	0.475295	0.073515	0.369538	0.856117	
08	-0.262678	-0.182301	-0.571394	-0.387549	
H9	0.184006	0.133195	0.301720	0.179693	÷
O10	-0.206153	-0.164201	-0.550430	-0.575153	
H11	0.193279	0.171441	0.339033	0.360926	-
O12	-0.208712	-0.164419	-0.551007	-0.604901	6
H13	0.205244	0.190492	0.360020	0.295459	
O14	-0.258791	-0.185620	-0.573809	-0.408089	16
H15	0.173088	0.152119	0.319945	0.290243	
H16	0.192133	0.169841	0.337260	0.368936	
H17	0.200639	0.188252	0.358428	0.305052	
H18	0.185958	0.160882	0.328729	0.287055	
H19	0.183972	0.134587	0.303025	0.185186	
Br20	-0.032211	0.037772	-0.012199	0.239909	

з

trans(FeCl2)+(FeCl ₃ Br) ⁻				
Geom111	Mulliken	Hirshfeld	CM5	APT	
Fe1	0.332668	0.139694	0.390041	1.194299	
Cl2	-0.182698	-0.097859	-0.164648	-0.326106	
C13	-0.132727	-0.087346	-0.156187	-0.645792	
Cl4	-0.172159	-0.109454	-0.176069	-0.380575	
Fe5	0.463647	0.062476	0.359414	0.881501	
C16	-0.474012	-0.325864	-0.368191	-0.699593	
Cl7	-0.389802	-0.268903	-0.311709	-0.556371	
O8	-0.241732	-0.162352	-0.560323	-0.299227	
O9	-0.242200	-0.181896	-0.569230	-0.391238	20 20
O10	-0.234449	-0.173917	-0.560219	-0.639360	
O11	-0.223959	-0.175705	-0.560204	-0.600065	1 19 📑
H12	0.203603	0.175426	0.344136	0.202253	up 📥 🌰 🤹
H13	0.197134	0.181265	0.349573	0.265636	u) 📭 🚽 5 🥂 15 🔽
H14	0.182275	0.144835	0.314000	0.229655	
H15	0.194523	0.146718	0.316143	0.219123	
H16	0.206244	0.194105	0.362472	0.310165	
H17	0.191781	0.163587	0.330714	0.370123	<u>_</u>
H18	0.206873	0.192890	0.361158	0.323467	•
H19	0.175512	0.154738	0.322051	0.348859	
Br20	-0.060521	0.027531	-0.022954	0.193248	

Table 14S. Atomic charges (derived from different models) for Geom111 iron complex

3.3 DFT calculations of the ion pair complexes <u>in presence of anisole</u>

3.3.1 Procedure

Figure 8S. Procedure for geometry optimisation of $(trans-FeCl_2(H_2O)_4^+, FeCl_3Br^-)$ and $(cis-FeCl_2(H_2O)_4^+, FeCl_3Br^-)$ in presence of anisole.

3.3.2 Results - Optimised geometry and Gibbs free energy

Table 15S. Initial and optimised geometries of iron chloride hexahydrate models (geom211-213) generated from optimised iron salt trans configuration models to which an anisole molecule was added in different orientations.

	211		212		213	
	Distance (Å)		Bond distance (Å)		Bond distance (Å)	
	Start	End	Start	End	Start	End
Cl(6)-Br(20)	2.89	2.81	2.86	2.84	2.86	2.84
C(22)-Br(20)	5.34	3.48	6.17	3.59	5.26	3.59
C(24)-Br(20)	9.51	3.63	6.14	3.52	4.90	3.51
C(25)- Br(20)	5.79	5.47	4.94	3.61	4.17	3.61
C(26)-Br(20)	4.54	5.32	4.25	3.68	4.00	3.68

Table 16S. Characteristic distances (in Å) between selected atoms in complexes geom211-213.

Table 17S. Energies for the complex between the iron adduct and anisole (geom211-213)

geom	E /hartree	ZPE /hartree	$\Delta E / kcal.mol^{-1}$
211	-8051.263407	0.249209	+3.7
212	-8051.269328	0.249997	0.0
213	-8051.269341	0.250026	0.0

3.3.3 Results - Partial atomic charges of the optimised conformers

Table 18S. Atomic charges (derived from different models) for geom211 complex

		Mulliken	Hirshfeld	CM5	APT
Fe	1	0.327368	0.128363	0.371937	1.128163
Cl	2	-0.165641	-0.106910	-0.174225	-0.675599
Cl	3	-0.196671	-0.121250	-0.187377	-0.382860
Cl	4	-0.196964	-0.095416	-0.162671	-0.333783
Cl	5	-0.464239	-0.314619	-0.356803	-0.702586
Cl	6	-0.331956	-0.210415	-0.253882	-0.503195
Fe	7	0.480428	0.073848	0.371400	0.885466
0	8	-0.261737	-0.181471	-0.570492	-0.381979
Н	9	0.184570	0.133901	0.302385	0.182449
0	10	-0.251964	-0.182120	-0.575177	-0.407982
Н	11	0.224718	0.133002	0.306436	0.317572
0	12	-0.216471	-0.164140	-0.550053	-0.582279
Н	13	0.204711	0.192508	0.361226	0.318240
0	14	-0.234406	-0.181028	-0.565009	-0.635539
Н	15	0.173098	0.149484	0.316974	0.367117
Н	16	0.192986	0.167018	0.334273	0.343243
Н	17	0.175540	0.128629	0.299248	0.171145
Н	18	0.191483	0.167127	0.335027	0.281008
Н	19	0.210360	0.190867	0.359611	0.298418

Br	20	-0.025420	0.059462	0.010200	0.284122
С	21	-0.066386	-0.033040	-0.090350	-0.014206
С	22	-0.069974	-0.056896	-0.108444	-0.185595
С	23	0.201713	0.074570	0.090656	0.457615
С	24	-0.100848	-0.066003	-0.117628	-0.141707
С	25	-0.013160	-0.036233	-0.091179	0.045698
С	26	-0.023752	-0.049673	-0.105666	-0.122872
Н	27	0.033157	0.046687	0.102465	0.074858
Н	28	0.030288	0.040526	0.100105	0.079375
Н	29	0.017701	0.041001	0.099595	0.073169
Н	30	0.028452	0.045879	0.100707	0.042552
Н	31	0.023708	0.043594	0.098629	0.053544
0	32	-0.335265	-0.125151	-0.219556	-0.756645
С	33	0.098126	-0.000135	-0.118870	0.401220
Н	34	0.045877	0.036241	0.094531	-0.022498
Н	35	0.062981	0.044796	0.105089	0.038135
Н	36	0.047585	0.026951	0.086843	0.006214

		Mulliken	Hirshfeld	CM5	APT
Fe	1	0.312157	0.126085	0.371733	1.144839
Cl	2	-0.157524	-0.105108	-0.172692	-0.656977
Cl	3	-0.185212	-0.121162	-0.187316	-0.400946
Cl	4	-0.195031	-0.102027	-0.168920	-0.335422
Cl	5	-0.465473	-0.315927	-0.357961	-0.712356
Cl	6	-0.348204	-0.218960	-0.262191	-0.545850
Fe	7	0.482219	0.070040	0.366858	0.887104
0	8	-0.260183	-0.178073	-0.568539	-0.378234
Н	9	0.184609	0.137271	0.305928	0.186463
0	10	-0.279753	-0.192334	-0.582739	-0.470981
Н	11	0.226896	0.126949	0.315373	0.424447
0	12	-0.219452	-0.162836	-0.548853	-0.608265
Н	13	0.204335	0.191434	0.360322	0.319052
0	14	-0.236041	-0.182521	-0.566815	-0.631490
Н	15	0.172930	0.148077	0.315598	0.367949
Н	16	0.192149	0.164083	0.331122	0.359960
Н	17	0.174793	0.125750	0.297231	0.187505
Н	18	0.195909	0.171897	0.339793	0.281052
Н	19	0.210569	0.190004	0.358802	0.295239
Br	20	-0.013830	0.058923	0.009250	0.311230
С	21	-0.028798	-0.034935	-0.090149	-0.016736
С	22	-0.061756	-0.061269	-0.111903	-0.158075
С	23	0.211414	0.071262	0.085396	0.413311
С	24	-0.080950	-0.062978	-0.114576	-0.150385
С	25	-0.019420	-0.037563	-0.092262	0.036231
С	26	-0.011256	-0.049443	-0.104493	-0.112832
Н	27	0.032151	0.045840	0.101212	0.067150
Н	28	0.019818	0.042834	0.102504	0.068923
Н	29	0.017584	0.043346	0.101854	0.074558
Н	30	0.027664	0.045361	0.100168	0.042632
Н	31	0.025429	0.044095	0.098969	0.058929
0	32	-0.404047	-0.094442	-0.210107	-0.790148
С	33	0.103703	0.003028	-0.117087	0.384910
Н	34	0.051689	0.039136	0.097743	-0.017839
Н	35	0.063032	0.046280	0.107944	0.038195
Н	36	0.057877	0.027895	0.088815	0.036857

Table 19S. Atomic charges (derived from different models) for geom212 complex

		Mulliken	Hirshfeld	CM5	APT
Fe	1	0.312208	0.126094	0.371740	1.144725
Cl	2	-0.157512	-0.105121	-0.172709	-0.656971
Cl	3	-0.185338	-0.121102	-0.187257	-0.400681
Cl	4	-0.194815	-0.101830	-0.168738	-0.335308
Cl	5	-0.465399	-0.315844	-0.357872	-0.712526
Cl	6	-0.348235	-0.219101	-0.262321	-0.546219
Fe	7	0.482313	0.070045	0.366837	0.886928
0	8	-0.260144	-0.178057	-0.568531	-0.378276
Н	9	0.184588	0.137278	0.305920	0.186500
0	10	-0.279611	-0.192328	-0.582694	-0.470529
Н	11	0.226830	0.127013	0.315411	0.424301
0	12	-0.219482	-0.162825	-0.548865	-0.608401
Н	13	0.204324	0.191354	0.360265	0.319099
0	14	-0.236195	-0.182518	-0.566827	-0.631591
Н	15	0.172911	0.148032	0.315550	0.368029
Н	16	0.192064	0.164000	0.331039	0.360122
Н	17	0.174659	0.125594	0.297105	0.186987
Н	18	0.195971	0.171963	0.339858	0.281156
Н	19	0.210581	0.190058	0.358839	0.295241
Br	20	-0.013729	0.058980	0.009309	0.311625
С	21	-0.028818	-0.034943	-0.090154	-0.016742
С	22	-0.061627	-0.061267	-0.111900	-0.158082
С	23	0.211330	0.071288	0.085422	0.413366
С	24	-0.080987	-0.062973	-0.114572	-0.150430
С	25	-0.019435	-0.037580	-0.092280	0.036181
С	26	-0.011279	-0.049452	-0.104502	-0.112831
Н	27	0.032152	0.045846	0.101215	0.067134
Н	28	0.019856	0.042823	0.102491	0.068987
Н	29	0.017602	0.043338	0.101850	0.074542
Н	30	0.027663	0.045359	0.100166	0.042639
Н	31	0.025434	0.044103	0.098975	0.058853
0	32	-0.404051	-0.094470	-0.210125	-0.789988
С	33	0.103623	0.002992	-0.117130	0.384538
Н	34	0.051721	0.039136	0.097746	-0.017802
Н	35	0.063051	0.046232	0.107913	0.038218
Н	36	0.057775	0.027838	0.088779	0.037207

Table 20S. Atomic charges (derived from different models) for geom213 complex

References

- 1 E. Zysman-Colman, K. Arias and J. S. Siegel, *Can. J. Chem.*, 2009, **87**, 440–447.
- 2 L. J. Gooßen, C. Linder, N. Rodríguez, P. P. Lange and A. Fromm, *Chem. Commun.*, 2009, 7173.
- 3 M. Li and G. A. O'Doherty, Org. Lett., 2006, 8, 3987–3990.
- 4 P. J. Zeegers and M. J. Thompson, *Magn. Reson. Chem.*, 1992, **30**, 497–499.
- 5 C. P. Butts, L. Eberson, M. P. Hartshorn and W. T. Robinson, *Acta Chem. Scand.*, 1996, **50**, 122–131.
- 6 R. Sathunuru, U. N. Rao and E. Biehl, *Arkivoc*, 2004, **2003**, 124.
- 7 H. M. Meshram, P. R. Goud, B. C. Reddy and D. A. Kumar, *Synth. Commun.*, 2010, **40**, 2122–2129.
- 8 D. Bhalerao and K. Akamanchi, *Synlett*, 2007, **2007**, 2952–2956.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian16 Revision A.03*, 2016.

- 11 C. Adamo, G. E. Scuseria and V. Barone, J. Chem. Phys., 1999, 111, 2889–2899.
- 12 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–3305.
- 13 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- 14 T. A. Manz and D. S. Sholl, J. Chem. Theory Comput., 2012, 8, 2844–2867.
- 15 F. L. Hirshfeld, *Theor. Chim. Acta*, 1977, 44, 129–138.
- 16 J. Cioslowski, J. Am. Chem. Soc., 1989, 111, 8333-8336.