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Abstract—The way people consume sports on TV has drasti-
cally evolved in the last years, particularly under the combined
effects of the legalization of sport betting and the huge increase
of sport analytics. Several companies are nowadays sending
observers in the stadiums to collect live data of all the events
happening on the field during the match. Those data contain
meaningful information providing a very detailed description of
all the actions occurring during the match to feed the coaches and
staff, the fans, the viewers, and the gamblers. Exploiting all these
data, sport broadcasters want to generate extra content such as
match highlights, match summaries, players and teams analytics,
etc., to appeal subscribers. This paper explores the problem
of summarizing professional soccer matches as automatically
as possible using both the aforementioned event-stream data
collected from the field and the content broadcasted on TV. We
have designed an architecture, introducing first (1) a Multiple
Instance Learning method that takes into account the sequential
dependency among events and then (2) a hierarchical multimodal
attention layer that grasps the importance of each event in
an action. We evaluate our approach on matches from two
professional European soccer leagues, showing its capability
to identify the best actions for automatic summarization by
comparing with real summaries made by human operators.

Index Terms—Event stream data, Soccer match data, Video
Summarization, Multimodal data, Sports Analytics

I. INTRODUCTION

The consumption of multimedia content has drastically
evolved in the last decade. It is well-known that the amount
of multimedia content stored, produced, published, exchanged
on internet, is continuously increasing for more than ten
years now, with a particular focus on videos. However the
amount is not the only parameter which increases, more and
more multimedia content evolves towards being more user
immersive. This evolution of multimedia content consumption
is also noticeable in the field of sport broadcasting where
content augmentation improves immersive user experience,
providing the user with all possible modality viewpoints of
the content so as to enhance user engagement in the media.
For instance, in the main world cycling races, sensors provide
bike speed, pedaling frequency, heart rate, power produced,
by cyclists, allowing the viewers to focus on specific content
targeting a specific competitor. It is the same with soccer where
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(PACA), Université Côte d’Azur (UCA) and Wildmoka Company.

new analytics about displacements on the field, run speed, run
distance, heart rate, provide the viewer with an augmented
experience of the matches.

In addition, specifically in the sport domain, the legalization
and democratization of sport betting companies (recently in
Europe) have accentuated the need for augmenting even more
live content on players, teams, games, etc. Sport broadcasters
aim at appealing and retaining subscribers to watch always
more sports on TV, providing them with an enriched user
experience. All the main sport broadcasters mandate com-
panies, like Opta, Wyscout, Instat, Sportradar, Gamebreaker,
SportsCode and many more, to send human observers in the
stadiums to collect live data of all the events happening on
the field during the match (pass, shoot, foul, players’ position,
cards, substitutions...) . Those event data contain meaningful
information providing a very detailed description of all the
actions occurring during the match to “feed” coaches and
staffs, fans, spectators, viewers, and gamblers. Sport broad-
casters want also to generate extra multimedia content such as
match highlights, match summaries, etc, for their subscribers.
There is no fully automatic solution to produce such content
augmentation, in a short time (targeting real-time), on real
sport content (one soccer match to be summarized is at the
very least a 90 minute long video). The current solution
for sport broadcasters is thus to rely on human operators to
generate in live, highlights, summaries, specific content for
social networks, and any extra content that will build viewer
loyalty.

In this paper, we want to exploit the event data which
provide us with unique information compared to all other
available modalities (audio, visual, text...) to build a deep
architecture for automatic summarization. Furthermore, event
data are lighter in memory than video modality and thus
allow us to process faster each whole match.

Contributions:
• Proposal Generation: Event metadata are first exploited to
detect relevant categories of actions (i.e. segments of matches).
Based on the intra-category diversity and inter-category possi-
ble similarity, we approach this first step as a Multiple Instance
Learning problem (MIL) and address it through a LSTM MIL
pooling schema.



• Hierarchical multimodal attention: Actions proposed to be
in the summary, are classified into belonging or not to the
summary. We design for this second step a specific multimodal
attention model which combines event and audio modalities,
at the event level, in a hierarchical LSTM network.

Fig. 1: General schema of our approach. The left part of the
figure represents the first block of our approach: Proposals
Generation with a LSTM MIL Pooling. It gets as input the
bags of events and outputs action Proposals. The right part of
the figure is the second block of our approach: Hierarchical
Multimodal Attention. It gets as input the action proposals
(events data and audio data) and predict the likelihood for the
given action to be in the summary.

II. RELATED WORK

Event data. While our approach uses metadata acquired in
live during the matches for summarization, several approaches
use this same information for other tasks like recognizing
teams [1], analyzing advantage of playing on your home field
[2], automatically discovering patterns in offensive strategies
[3], [4], predicting passes [5], detecting tactics [6], predicting
the chance to score the next goal [7] and evaluating the
performance or contributions of the players [8]–[10].

In addition, these metadata can now more and more be
found either on program websites directly managed by the
companies producing them (Prozone, GeniusSports, Opta,
WyScout, and others) or through other open data sources
(Kaggle competition, open datasets, etc) [11], [12].

Sports Video Summarization. Early works in video sum-
marization for sports mainly relies on hand-crafted heuris-
tics. They exploit the characteristics of the field (lines, goal
mouth), cinematographic properties like the camera motions,
slow motion or zooming, and also specific edition patterns
like the replays [13]–[16] to select representative frames.
More recently, approaches have migrated to machine learning
techniques. Liu et al. [17] use 3D convolutional networks to
classify the different clips of soccer videos, and Agyeman et al.
[18] use this type of networks as feature extractor to then train
an LSTM for action classification. Javed et al. [19] propose an
extreme learning machine to detect key-events based on the
replay information. The main limitations in the state-of-the-
art of video sport summarization is the lack of standardization
in the evaluation process and the use of heuristics to make
decisions. Many of the aforementioned papers do not evaluate

their methods using summarization metrics, they usually rather
focus on the detection of most important actions like goals.

Multimodal Sports Summarization. For sports summa-
rization the video is not the only source of information. Some
methods propose to use social networks like the tweet streams
during the game [20]–[22]. Mend et al. [23] summarize a
match detecting the intervals with highest motion from the
optical flow. Tang et al. [24] design a deep learning algorithm
to classify soccer actions from the text timeline provided
by several web pages. Other methods exploit audio features
[25], [26] since they help to identify the excitement of the
commentators and the crowd, and sometimes the ball hit like
for tennis or baseball. Multiple modalities play an important
role to choose the best moments of sports videos. Several
methods [27]–[30] merge different modalities like the sound
energy, the score, camera motions, players’ reactions, referee
whistle, etc. In this work, we are also going to consider
different modalities but merging them hierarchically.

Video Summarization. Most of the works on video sum-
marization are not specifically dedicated to sports domain and
its peculiarities. For more general purpose videos, approaches
focus on different criteria. For instance, the observation that
similar videos share similar summary structures [31]–[33].
Taking as inspiration semantic segmentation, Rochan et al.
[34] use a fully convolutional network across time, where the
output is a mask showing the relevant frames for the video
summary. On the other hand [35], [36] use a combination of
objectives like interestingness, uniformity, representativeness
to identify the most appealing moments. Recent successes of
Generative Adversarial Networks have led to several works
based on unsupervised approaches for video summarization
[37], [38]. Zhang et al. [31] were the first ones using LSTM
for video summarization, their method is a bidirectional LSTM
followed by a Multi-Layer Perceptron. Although LSTM is
able to model long-range structural dependencies, Zhao et
al. [39] propose a hierarchical LSTM to help the model to
handle particularly long sequences. Most of the methods on
the summarization of general purpose videos are based on the
maximization of diversity, trying to minimize the number of
similar shots [37], [40], [41]. However, such a criterion does
not apply for sport summarization. For instance in soccer, the
easiest way to create a summary is to choose the goal clips,
even if they are all visually very similar. And this situation
holds for many sports.

To the extent of our knowledge, our method is the first
one exploiting event data to automatically generate summaries.
Event data significantly reduces the amount of information to
be processed per match compared with other modalities like
video where the number of frames in a 90 minutes match
makes video data intractable. We propose a Multiple Instance
Learning approach that, unlike comparable approaches, ex-
ploits LSTM sequentiality to process time-dependent instances
and generate proposals. Furthermore, this work also introduces
a new multimodal attention architecture that helps to learn a
multimodal representation at the event level instead of learning
a representation at the action level as existing methods.



III. PROPOSAL GENERATION

The goal of the first block of our method is to identify
the action proposals of the match, that is to say consecutive
relevant events. For instance, an action of a goal might be
corresponding to the sequence {pass, interception, pass, goal}.
Such groups of events are considered as proposals if they are
parts of the match that might belong to the summary.

In the last few years, progress has been made in the task
of object detection and one of the common core elements of
all these approaches is to split the process in two tasks, object
proposal generation as a preprocessing stage that later provides
candidate windows to an object classifier. Examples of this are
the architectures based on Region Proposal Network (RPN)
[42]–[44]. This concept was later developed for videos [45]–
[47]. In this paper we follow the same idea of splitting the
detection in two tasks, first the generation of proposals and
second the classification of these proposals.

However, we believe that in our context, a traditional
learning method is not enough. In the same match we can
find identical sequences of events, some labeled as positive
(i.e. in the summary) and some as negative (i.e. not in the
summary). In the case of soccer for instance, the sequence
pass, interception, pass can be the beginning of an action of
goal which is part of the summary but the same sequence can
belong to some section of the match where nothing relevant
is happening.

We thus decide to tackle the similarity of inter-categorical
actions with a Multiple Instance Learning (MIL) approach.

As it will be detailed further in Section V-A, our ground
truth dataset contains only the parts of matches belonging
to summaries which means that we do not have access to
the labels of the actions. To tackle this issue, we define as
candidate all the sequences of events that are identical to the
ones labeled as summary. To be more specific, for instance
in one of the summaries of the ground truth, there is a goal
action which corresponds to the sequence of events = {out,
throw-in, long ball, aerial, pass, goal}. We then look for all
the instances of this exact same sequence of events in the rest
of the match and in all the remaining matches in the training
set to label them as candidates.

We follow the event and bag representation proposed in
[48]. A match is a sequence of events {e1, e2, ..., eN} which
are all the events occurring on the field (possibly not broad-
casted on TV). X = {xe1 , xe2 , ..., xeN } represents the set
of instances, where xen is the feature vector characterizing
the n-th event of the match. We denote a bag b as a set
of consecutive events and B as the set of bags in a match
B = {b1, b2, ..., bF }. A bag is considered positive if at least
half of the events of the bag belongs to any of the candidates.

As in test phase we do not have access to the ground truth
intervals, the bags are created in a class-agnostic way, using
a sliding window with overlap across the entire match.

In the classical supervised learning problem the objective
is to find a model that predicts a target value y ∈ {0, 1},
for a given instance. In the case of MIL, instead of a single

instance there are groups of instances called bags. There is also
a single binary label Y associated with the bag. Furthermore,
it assumes that individual labels exist for the instances within a
bag, i.e., y1, ..., yk and yk ∈ {0, 1}, however there is no access
to those labels and they remain unknown during training. Then
in MIL, a bag is labeled as negative if all the instances inside
the bag are negative and a bag is labeled as positive if at least
one instance of the bag is positive:

Y =

{
0, iff

∑
k yk = 0,

1, otherwise
(1)

A. LSTM MIL Pooling

MIL is classically regarded as a general and abstract learn-
ing paradigm and, as such, it does not require or involve any
feature extraction process. However, recent works integrate
the process of solving MIL problem, within the process of
learning features by using a fully-connected neural network
and showing result improvements [49], [50]. In our approach,
we follow this line of research because it allows to consider
MIL into an end-to-end trained model.

MIL paradigm assumes neither ordering nor dependency
of instances within a bag. However that does not apply in
our problem since the selection of an action to be part of a
summary is highly dependent on the sequence of its events.
For instance, a penalty or a free-kick are always preceded
by a foul. More importantly, the permutation of events could
completely change the meaning or the interest of an action.

For this reason, we argue that fully-connected layers as
proposed by previous works are not completely suitable to
capture this sequentiality. Recurrent neural networks are better
suited to model such dependency. At the core of the LSTMs
are memory cells which encode, at every time step, the
knowledge of the inputs that have been observed up to that
step. Therefore, we propose an LSTM network followed by a
MIL Pooling to get the bag representation.

Each input sample is a sequence of event feature vectors
representing a bag. The sequence of feature vectors is then
fed to an LSTM, and the hidden state of the LSTM is given
by:

ht = LSTM(ht−1, xen) (2)

where LSTM(ht−1, xen) represents an LSTM function of
hidden state ht−1 and input vector xen .

Let bf be a bag (of events) of size K. Each event is defined
by its feature vector xen (the detail of the event metadata
features used in this work are provided in the supplementary
material). We then learn an embedding for each event feature
vector using an LSTM to preserve the sequential dependency
between events. Let Hbf = {h1, ..., hk} be the K embeddings
of the K events from bag bf . Each hk embedding is of size
L. We propose then a MIL pooling schema to learn the final
bag representation zbf , as defined in Eq.(3):

∀l=1,...,L : z
bf
l = max

k=1,...,K
hkl (3)



where zbf is a feature vector of size L, and is obtained from
getting the maximum of each position l across all the K event
embeddings of the bag.

Finally, this representation zbf is input into a single sigmoid
neuron which provides the score Obf , a value between 0 and
1, for the bag bf to be a proposal or not.

B. Proposal Definition

From the output of the MIL network we get a score Ob

providing the likelihood per bag to be proposed for the final
summary, but the overlap between consecutive positions of the
sliding window lead some events to belong to more than one
bag and thus to get related to different scores Ob. In order to
rely on the importance of each event to select or not an action
in the final summary, we need to define a score per event
instead of per bag, merging all the possible scores associated
to the given event. The score Sen for the event en is then
given by the Log-Sum-Exp (LSE) used in [48], the function
is defined in Eq. (4). The LSE is a smooth version and convex
approximation of the max function. The hyperparameter r
controls the smoothness of approximation [49].

Sen ≥ r−1 · log

[
1

|{bf | en ∈ bf}|
∑

bf |en∈bf

r ·Obf

]
(4)

After obtaining the score per event, we use a threshold to
select the positive events, this threshold is defined using the
validation set. Thus an action proposal ap is a set of positive
consecutive events. We denote A the set of all action proposals
in a match.

IV. SUMMARIZATION: HIERARCHICAL MULTIMODAL
ATTENTION

One of the biggest challenges for automatic soccer video
summarization is to produce summaries provoking as much
emotion as the ones made by human operators. To decide
which actions are added to the summary, human editors use
different sources of information. For this reason, we propose
a multimodal approach that use event metadata and audio.

A. Multimodality

The event data have been manually collected by human
observers sitting inside the stadium during the game. Each
time an event occurs on the field, the human annotates the
event with: the type (e.g., pass, foul, out or card), a timestamp,
the team and players involved, outcome (i.e., if the action
has been successful), the location (i.e., (x,y) position) on the
field. Depending on the type of event, other information is
available. For example, the final position on the field of the
event, and descriptors of each type of event (e.g., yellow or
red for the event type card), which are called qualifiers. The
detailed description of the metadata extracted from the event
data is presented in the supplementary material.

Audio plays a very important role in sports, where crowd
cheering and excitement in the commentators’ voice are
usually indicators of an important action. For this reason,

our summarization approach does not only exploit the event
metadata features but also the audio signal extracted from the
broadcasted match video. We use 9 different audio features
also detailed in the supplementary material. These features
extract the energy, the spectrum, the MFCC and the variation
of the audio signal.

Since each event en has a timestamp corresponding to a time
in the match, we extract its corresponding video time timeen
in seconds. Since the different sounds in a broadcasted video
come from the reactions of humans (spectators or commenta-
tors) just after the event occurs, the audio features of the event
en are extracted from the interval [timeen , timeen +2]. Inside
this interval, the audio signal is first divided into short-term
windows (frames) of 100 ms with 50% overlap, then for each
frame all features are calculated.

B. Multimodal Attention

In Section III we have described how we use Multiple
Instance Learning to obtain a score per event and how we
have defined that an action proposal ap is a set of positive
consecutive events. Now the goal of the second block of our
approach is to define which of these proposals indeed belong
to the summary.

As we stated before, the use of multiple modalities is
relevant to decide which actions are important in a sport match.
The audio of an action can significantly vary not only from
the type of the action but also from the events occurring
inside the action. For instance, it is not the same kind of
goal event, if the goal is preceded by several slow passes
as if it is the result of an action starting by an interception
or an error from the opponent team. For this reason, instead
of learning the importance of each modality per action, we
propose a hierarchical multimodal attention mechanism that
in the first stage learns the importance of each modality at the
event level and in the second stage learns the importance of
each event inside the action (see Figure 2c).

Thus, in the first stage of the hierarchy, the multimodal
representation vector per event is given by a weighted average:

ci = λMi h
M
i + λAi h

A
i (5)

where the weights of each modality {λMi , λAi } are deter-
mined by an attention layer shared across time-steps, see Fig.2.

An action might contain several events that are not consid-
ered as important in a match but they are relevant to provide a
context to the fans. For instance, there are many fouls during
the match, but if a card action belongs to the summary it
is important to show the foul and pass events that provoked
this card. However, depending on the excitement of the crowd
or the type of card, the importance of the events may vary.
Therefore, after obtaining a multimodal representation per
event ci, we train an attention layer that learns the importance
of each event inside the action, resulting in the weight βc

i .



(a) Naive baseline (b) Hori et al. model (c) Our model

Fig. 2: Definition of our hierarchical multimodal attention schema and comparison with state-of-the-art approaches. Blue
indicates metadatada, orange indicates audio and green indicate the multimodal representation of the events. λ and β are
attention weights.

Thus, the representation vector per action proposal is given
by a weighted average:

dap =

Lp∑
i=1

βc
i h

c
i (6)

where Lp is the length (number of events) of action ap. Finally,
each of this dap

action representation is given to a sigmoid
neuron which outputs a value between 0 and 1, that indicates
the likelihood of the action ap to be included in the summary.

For the sake of space, we detail in the supplementary
material the methodological comparison of our hierarchical
multimodal attention model Fig.2c with a Naive baseline
Fig.2a, and with Hori et al. model [50], Fig.2b.

V. EXPERIMENTS

We first describe the dataset, then we split the evaluation
in the two main tasks of our approach, the action proposals
generation using LSTM MIL Pooling and the Summarization
using the multimodal attention.

A. Dataset and metrics

Our dataset consists of event data for 20 matches from the
2017-2018 season of the French Ligue 1 and 50 matches from
the 2019-2020 season of the English Premier League. There
are 43 different types of events, related either to the flow of
the match like a yellow card or to the action on the pitch like
a shot. Each match corresponds to an average of 1700 events.

The only ground truth available are the 70 video summaries
created by professional broadcasters. We created a set of
intervals It, corresponding to the time location on the video
match of all clips inside the summary. To obtain the ground
truth in terms of events, we found all events that have a
timestamp inside the intervals It and created a new set of
intervals I . All the results reported in this section are evaluated
with respect to the event ground truth I . The Missing Intervals
rate and the F-score are computed from the fact that an interval
refers to a summary interval of the video summaries created
by professional broadcasters.

In order to obtain a fair comparison we use a 10-fold-cross-
validation. Each fold has 80%, 10% and 10% of the matches

for train, validation and test set respectively. The matches of
the two leagues are equally distributed in each fold.

For all the experiments, we replicate the models from the
literature using Keras library and choose the parameters that
have shown high classification performance on our dataset.

B. Proposal Generation

We compare our LSTM MIL Pooling method with three
state-of-the-art methods. For all the experiments reported on
Proposal Generation, in test phase we consider that the method
found an interval if at least 50% of the action is inside any
interval of I .

As we mentioned previously, action proposal generation
problem has been tackled by several approaches in video
processing. SST [46] was created to generate temporal action
proposals in untrimmed video sequences. It uses a recurrent
neural network to produce confidence scores of multiple
proposal sizes at each time step. We use the same approach
but instead of video features, we use our metadata features as
input. We use an LSTM network with 128 neurons, the output
proposals sizes are {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and in the
training phase an output interval is considered as positive if
at least 50% of it belongs to a candidate.

In terms of Multiple Instance Learning approaches, we
compare with two Neural Networks based approaches. MI-
Net [49] uses three fully connected layers to generate a
representation per sample and then with a max-pooling layer
over all the samples of the bag gets a score per bag. Ilse et
al. [51] is a similar approach but instead of using a max-
pooling layer, it adds an attention mechanism. For this reason
in our experiments we call this method MI-Net Attention. The
number of neurons for the three fully connected layers are 256,
128 and 64 respectively. For the attention we used 32 neurons.

For LSTM MIL Pooling we used a LSTM with 64 neurons,
Adam optimizer, binary cross-entropy as loss function and a
batch size of 32 bags.

For the MIL approaches, in the training phase a bag is
considered positive if at least 50% of it belongs to a candidate.

As the goal of the first block of our method is to detect
all the possible actions of the match, we will focus on a



TABLE I: Performance Comparison of Proposal Generation
methods.

Method
Missing Intervals Recall
Target

Encoding
One-Hot
Encoding

Target
Encoding

One-Hot
Encoding

SST [46] 39.79 45.53 60.11 54.35
MI-Net [49] 18.62 23.34 81.33 76.6

MI-Net Attention [51] 16.07 19.39 83.89 80.56
LSTM MIL Pooling 13.01 22.83 86.96 77.11

TABLE II: Performance comparison of Multimodal Attention
methods.

Method Missing Intervals F-score
Sanabria et al. [48] 47.95 64.30

Naive Fusion 36.19 71.23
Hori et al. [50] 32.99 72.03

Ours 27.38 74.09

low Missing Intervals rate and a high Recall. This means we
will pay more attention on not losing any potential summary
interval of the match.

For Metadata we have both categorical and real-valued
features. We consider also important to analyze the impact
of mixing these types of features. Thus we compare the per-
formance of the methods using two different representations
for the categorical features, by converting the features either
to One-Hot Encoding vectors or to real values using Target
Encoding.

In One-Hot Encoding we created a vector of the total
number of types/qualifiers with zero in all the positions and
one in the position corresponding to the type/qualifier of the
current event. On the other hand, Target Encoding gives only
one real value that represents the fraction of times an event
with this feature (type/qualifier) is labeled as 1 out of all the
times an event with this feature is in the training set.

Table I shows that Target Encoding outperforms One-Hot
Encoding in all the methods, which might be due to the
sparsity of the features. There are 43 types of events and 47
qualifiers, an event can only have one event type and very
rarely more than 3 qualifiers.

In Table I we can also see that MIL methods are clearly
better on identifying the different proposals of the match, since
SST performs at least 20% worse than the rest of the methods.
LSTM MIL Pooling outperforms state-of-the art methods, it
misses at least 3% less intervals and gets a Recall at least
3% higher compared with the second-best method (MI-Net
Attention).

C. Summarization

The inputs of our Summarization block are the actions
generated by the LSTM MIL Poolling method. We compare
our Hierarchical Multimodal Attention model (cf. Fig.2c) with
two state-of-the-art methods, Sanabria et al. [48] and Hori et
al. [50] (see Fig.2b), and a baseline (see Fig.2a).

Although Sanabria et al. [48] method does not integrate
an attention model, we consider it as a relevant approach to

Fig. 3: Examples of attention in different actions of Hori et
al [50]. On the left side, attention weights of audio part: The
x axis is the sequence of events in the action and the y axis
represents the weight values learned by the attention layer. On
the right side, multimodal attention weights in the action level:
the y axis is the weight values learned by the attention layer.
Blue and orange represent the audio and the event metadata
respectively.

compare with, since their goal is to summarize soccer matches
using event data. They propose to concatenate audio energy
with metadata features to train a hierarchical LSTM to decide
which actions belong to the summary. We used the same
features and parameters as mentioned in their paper.

As an attention baseline we have created a model called
Naive Fusion (Fig.2a) that has a LSTM per modality, then the
last state of each LSTM passes through an attention layer that
learns the importance of each modality. Finally the weighted
sum is passed to a sigmoid neuron to make the decision.

Hori et al. [50] proposed an attention-based multimodal
fusion for video description (Fig.2b). We keep the same
schema and replicate it for our video summarization problem.

For the Naive Fusion and Hori et al. approaches, we used
32 neurons for the LSTM of each modality and our audio and
metadata features as input. Our model has 32 neurons in hM

and hA, and 16 neurons in hc

Table II shows the Missing Intervals rate and the F-score
of the aforementioned methods. The big gap between the
performance of Sanabria et al. method and the others shows
that the concatenation of different modalities is not enough to
learn a representation of the actions. In Table II we can also
see that our method misses at least 5% less actions and gets
an increase of 2% in F-score than the state-of-the-art method.

We believe that our method outperforms [50] because in
this method the multimodal fusion is done at the action level.
Indeed their method has an attention layer at event level but
it is done separately per modality. Learning the importance of
the event using only the audio features of a soccer match is a
very difficult task (see sumpplementary material for a clearer
explanation of the architectures). The left side of Figure 3
displays the attention learned in the audio part by [50] in four
different actions. It seems that the attention is just learning that
the last events (i.e. the end of the actions) are more important
no matter the type of the events. The right side of this figure
displays the importance learned by the attention for the audio



Fig. 4: Examples of attention in different actions learned by
our model. On the bottom, multimodal attention weights at
the event level: The x axis is the sequence of events in the
action and the y axis represents the weight values learned by
the attention layer. On the top, attention weights learned from
the multimodal representation of each event. Blue and orange
represent the audio and the metadata respectively.

TABLE III: Performance comparison of Soccer Baselines.

Method Precision Recall F-score
Only Goals 99.55 28.29 44.18

All Shots-on-Target 40.77 75.71 52.99
Random 41.87 48.72 45.03

Ours 75.46 72.76 74.09

and metadata modalities. This not only shows that for this
model the metadata is often more important but also that the
audio modality is most of the times neglected.

On the other hand, Figure 4 shows some qualitative results
of our model. We can see that the multimodal attention does
not follow a particular pattern, audio and metadata importance
can be very different from one action to another. And the
attention learned by the second stage of our model considers
many important events where the audio was considered as
more relevant from the previous stage.

Soccer Baselines. As we previously mentioned, the evalu-
ation of most of the methods on video sports summarization
are based on the detection of most important actions, then to
perform a fair comparison, we propose three baselines:
• Only Goals: Only the goals of the match are predicted as

positive. Since the easiest way to create a summary from
a soccer video is to extract the goals of the match.

• All Shots-on-Target: All Shots on Target actions (i.e.
goals, goalkeeper saving a shot on goal, any shot on goal
which goes wide or over the goal and whenever the ball
hits the frame of the goal) are predicted as positive.

• Random: The prediction is a random value between 0 and
1, where the samples with values below 0.5 are negatives
and the ones greater or equal than 0.5 are positives.

Table III depicts the performance of these baselines. Our F-
score is clearly the highest. The Precision of our approach
is only outperformed by Only Goals, considering it is very
likely that all the goals of the match belong to the summary,
however the Recall of this baseline is the lowest since it misses
many other type of actions. The Recall of our approach is only
outperformed by All Shots-on-Target, since the Shots on Target
actions represent a big percentage of the actions included in
summaries, yet the Precision of this baseline is at least 34%
lower than ours.

TABLE IV: Performance comparison of Separete Modalities.

Method Missing Intervals F-score
Only Audio 27.75 64.17

Only Metadata 32.09 72.05
Ours 27.38 74.09

TABLE V: F1-score comparison of Audio Features.

Audio Features No Attention Attention
Energy Features 59.37 59.51
Our Features set 62.78 64.17

Multimodality. In order to show the importance of merging
multiple modalities, we evaluate the performance of each
modality separately using a LSTM with an attention layer.

Table IV shows that our method obtains the highest F-score
compared with the models using only audio and only metadata
features. Although using only audio features less intervals are
missing, the low F-score reveals the low precision of this
method since it predicts a lot of false positives. Comparing
our results with the method using only the metadata we can
see that adding the audio features helps to reduce almost 5%
of missing intervals.

Audio Features. We consider that it is also important to
show if the use of additional audio features improves the
results. Sanabria et al. [48] only used the energy of the audio
signal, however as it was mentioned in section IV-A, there
are many other audio features that have helped to improve
classifications in other contexts. We created two different
models that take as input either the energy features proposed
by Sanabria et al. or the audio features proposed in this paper
(details are in the supplementary material), in order to predict
which action belong to the summary. One model (Attention
in Table V) has an attention layer that learns the importance
of each event and the second model is a regular LSTM (No-
Attention in Table V).

Table V shows that the models using our feature set out-
performs at least by 2% the models using only the Energy
features. And this behavior holds for models with and without
attention mechanisms.

VI. CONCLUSION

In this paper, we proposed a method to summarize soc-
cer matches using multimodal event data. We introduce a
Multiple Instance Learning approach where the instances are
sequentially dependent and we have empirically shown that it
is a good method to generate proposals in a context where
the instance labels are not available. Different from existing
multimodal attention approaches, our method focuses on the
importance of each modality at event level to then, in a
second stage, learn the relevance of each event at action level.
Experiments in a dataset composed of two different soccer
leagues show the capability of our approach to identify the
best actions for automatic summarization by comparing with
real summaries made by human operators and outperforming
state-of-the-art methods.
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