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Abstract

We focus on the estimation of the intensity of a Poisson process in the presence of a
uniform noise. We propose a kernel-based procedure fully calibrated in theory and prac-
tice. We show that our adaptive estimator is optimal from the oracle and minimax points
of view, and provide new lower bounds when the intensity belongs to a Sobolev ball. By
developing the Goldenshluger-Lepski methodology in the case of deconvolution for Pois-
son processes, we propose an optimal data-driven selection of the kernel’s bandwidth, and
we provide a heuristic framework to calibrate the estimator in practice. Our method is
illustrated on the spatial repartition of replication origins along the human genome.

Keywords: Convolution, Poisson process, Adaptive estimation

1 Introduction

Inverse problems for Poisson point processes have focused much attention in the statistical
literature over the last years, mainly because the estimation of a Poisson process intensity in
the presence of additive noise is encountered in many practical situations like tomography,
microscopy, high energy physics. Our work is motivated by an original application field in
high throughput biology, that has been revolutionized by the development of high throughput
sequencing. The applications of such technologies are many, and we focus on the particular
cases where sequencing allows the fine mapping of genomic features along the genome, like
transcription factors of copy-number variations. The spatial repartition of these features can
be modeled by a Poisson process with unknown intensity. Unfortunately, detections are prone
to some errors, which produces data in the form of genomic intervals whose width is linked
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to the precision of detection. Since the exact position of the peak is unknown within the
interval, the appropriate error distribution is uniform, the level of noise being given by the
width of the intervals.

In the 2000s, several wavelet methods have been proposed for Poisson intensity estimation
from indirect data (Antoniadis and Bigot, 2006), as well as B-splines and empirical Bayes
estimation (Kuusela et al., 2015). Other authors turned to variational regularization: see
the survey of Hohage and Werner (2016), which also contains examples of applications and
reconstruction algorithms. From a more theoretical perspective, Kroll (2019) studied the
estimation of the intensity function of a Poisson process from noisy observations in a circular
model. His estimator is based on Fourier series and is not appropriate for uniform noise
(whose Fourier coefficients are zero except the first).

The specificity of uniform noise has rather been studied in the context of density deconvo-
lution. In this case also, classical methods based on the Fourier transform do not work either
in the case of a noise with vanishing characteristic function (Meister, 2009). Nevertheless
several corrected Fourier approaches were introduced (Hall et al., 2001, 2007; Meister, 2008;
Feuerverger et al., 2008). In this line, the work of Delaigle and Meister (2011) is particu-
larly interesting, even if it is limited to a density to estimate with finite left endpoint. In a
recent work, Belomestny and Goldenshluger (2019) have shown that the Laplace transform
can perform deconvolution for general measurement errors. Another approach consists in us-
ing Tikhonov regularization for the convolution operator (Carrasco and Florens, 2011; Trong
et al., 2014). In the specific case of uniform noise (also called boxcar deconvolution), it is
possible to use ad hoc kernel methods (Groeneboom and Jongbloed, 2003; van Es, 2011).
In this context of non-parametric estimation, each method depends on a regularization pa-
rameter (such as a resolution level, a regularization parameter or a bandwidth), and only a
good choice of this parameter allows to achieve an optimal reconstruction. This parameter
selection is often named adaption since the point is to adapt the parameter to the features
of the target density. The above cited works (except Delaigle and Meister (2011)) do not
address this adaption issue or only from a practical point of view, although this is central
both from the practical and theoretical points of views.

We propose a kernel estimator to estimate the intensity of a Poisson process in the pres-
ence of a uniform noise. We provide theoretical guarantees of its performance by deriving the
minimax rates of convergence of the integrated squared risk for an intensity belonging to a
Sobolev ball. To ensure the optimality of our procedure, we establish new lower bounds on
this smoothness space. Then we provide an adaptive procedure for bandwidth selection using
the Goldenshluger-Lepski methodology, and we show its optimality in the oracle and minimax
frameworks. From the practical point of view we proprose a framework to tune the hyperpa-
rameters of the method, which is notoriously difficult in the context of Goldenshluger-Lepski
methods. We propose two strategies, the first one aiming at tuning a universal hyperparam-
eter to use the selection procedure in any configuration. Then we combine this procedure
with an additional step based on the data. The empirical performance of our estimator is
then studied by simulations. Finally we provide an illustration of our procedure on experi-
mental data in Genomics, where the purpose is to study the spatial repartition of replication
starting points along chromosomes in humans (Picard et al., 2014). The code is available at
https://github.com/AnnaBonnet/PoissonDeconvolution.
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2 Uniform deconvolution model

We consider (Xi)i, the realization of a Poisson Process on R, denoted by NX , with N+ :=
NX(R) the number of occurrences. The uniform convolution model consists in observing
(Yi)i, occurrences of a Poisson process NY , a noisy version of NX corrupted by a uniform
noise, such that:

∀ i ∈ {1, . . . , N+}, Yi = Xi + εi, εi ∼ U [−a; a], (2.1)

where a, assumed to be known, is fixed. The errors (εi)i are supposed mutually independent,
and independent of (Xi)i. Then, we denote by λX the intensity function of NX , and µX its
mean measure assumed to satisfy µX(R) <∞, so that

dµX(x) = λX(x)dx, x ∈ R.

Note that N+ ∼ P(µX(R)), where P(θ) denotes the Poisson distribution with parameter θ.
Then we further consider that observing NX with intensity λX is equivalent to observing n
i.i.d. Poisson processes with common intensity fX , with λX = n× fX . This specification will
be convenient to adopt an asymptotic perspective. As for λY , the intensity of NY , it can
easily be shown that

n−1 × λY = n−1 × (λX ? fε) = fX ? fε =: fY ,

where fε stands for the density of the uniform distribution. The goal of the deconvolution
method is to estimate fX , based on the observation of NY on a compact interval [0, T ] for
some fixed positive real number T . In the following, we provide an optimal estimator of fX
in the oracle and minimax settings. Minimax rates of convergence will be studied in the
asymptotic perspective n→ +∞ and parameters a, T and ‖fX‖1 will be viewed as constant.

Notations. We denote by ‖ · ‖2,T , ‖ · ‖1,T and ‖ · ‖∞,T the L2, L1 and sup-norm on [0;T ],
and ‖·‖2, ‖·‖1, and ‖·‖∞ their analog on R. Notation . means that the inequality is satisfied
up to a constant and an = o(bn) means that the ratio an/bn goes to 0 when n goes to +∞.
Finally, Ja; bK denotes the set of integers larger or equal to a and smaller or equal to b.

3 Estimation procedure

3.1 Deconvolution with kernel estimator

To estimate fX based on observations of NY , we introduce a kernel estimator which is based
on the following heuristic arguments inspired from van Es (2011) who considered the setting
of uniform deconvolution for density estimation. We observe that fY can be expressed by
using the cumulative distribution of the Xi’s:

FX(x) :=

∫ x

−∞
fX(u)du ≤ ‖fX‖1, x ∈ R.
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Indeed, for x ∈ R,

fY (x) =

∫
R
fX(x− u)fε(u)du

=
1

2a

∫ a

−a
fX(x− u)du

=
1

2a

(
FX(x+ a)− FX(x− a)

)
, (3.1)

from which we deduce:

FX(x) = 2a

+∞∑
k=0

fY

(
x− (2k + 1)a

)
, x ∈ R.

Then, from heuristic arguments, we get

fX(x) = 2a
+∞∑
k=0

f ′Y

(
x− (2k + 1)a

)
, (3.2)

which provides a natural form of our kernel estimate f̂Y . Note that differentiability of fY is
not assumed in the following. Indeed, we consider the kernel estimator of fY such that

f̂Y (x) =
1

nh

∫
R
K

(
x− u
h

)
dNY

u ,

with dNY the point measure associated to NY , and K a kernel with bandwidth h > 0. Setting

Kh(x) =
1

h
K

(
x

h

)
,

we can write

f̂Y (x) =
1

n

N+∑
i=1

Kh

(
x− Yi

)
.

Then, if K is differentiable, we propose the following kernel-based estimator of fX

f̂h(x) =
2a

nh2

+∞∑
k=0

N+∑
i=1

K ′
(
x− (2k + 1)a− Yi

h

)
.

The proof of subsequent Lemma 1 in Appendix shows that the expectation of f̂h is a regular-
ization of fX , as typically desired for kernel estimates since we have

E[f̂h] = Kh ? fX . (3.3)

Then, our objective is to provide an optimal selection procedure for the parameter h.
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3.2 Symmetrization of the estimator

Our estimator is based on the inversion and differentiation of Equation (3.1), which can also
be performed as follows:

2a

+∞∑
k=0

fY (x+ (2k + 1)a) =

+∞∑
k=0

(
FX(x+ 2(k + 1)a)− FX(x+ 2ka)

)
= ‖fX‖1 − FX(x)

and differentiated to obtain:

fX(x) = −2a
+∞∑
k=0

f ′Y

(
x+ (2k + 1)a

)
,

which leads to another estimator

f̌h(x) = − 2a

nh2

+∞∑
k=0

N+∑
i=1

K ′
(
x+ (2k + 1)a− Yi

h

)
.

In the framework of uniform deconvolution for densities, van Es (2011) proposes to use
αf̂h(x) + (1 − α)f̌h(x), a convex combination of f̂h and f̌h, as a combined estimator, to
benefit from the small variance of f̌h(x) and f̂h(x) for large and small values of x respectively.
Unfortunately the combination that minimizes the asymptotic variance of the combined es-
timator is achieved for α = 1 − FX(x), and thus depends on an unknown quantity. van Es
(2011) suggested to use a plug-in estimator, but to avoid supplementary technicalities, we
finally consider the following symmetric kernel-based estimator:

f̃h(x) :=
1

2

(
f̂h(x) + f̌h(x)

)
=

a

nh2

+∞∑
k=−∞

sk

N+∑
i=1

K ′
(
x− (2k + 1)a− Yi

h

)
, (3.4)

with sk = 1 if k ≥ 0 and sk = −1 if k < 0. Then it is shown in Lemma 1 that

E[f̃h] = (Kh ? fX).

3.3 Risk of the kernel-based estimator

Our objective is to provide a selection procedure to select a bandwidth ĥ, that only depends
on the data, so that the L2-risk of f̃ĥ is smaller than the risk of the best kernel estimate (up
to a constant), namely

E
[
‖f̃ĥ − fX‖

2
2,T

]
. inf

h∈H
E
[
‖f̃h − fX‖22,T

]
.

Our procedure is based on the bias-variance trade-off of the risk of any estimate f̃h

E
[
‖f̃h − fX ]‖22,T

]
= ‖E[f̃h]− fX‖22,T + E

[
‖f̃h − E[f̃h]‖22,T

]
=: B2

h + vh. (3.5)

Then we use the following mild assumption:

5



Assumption 1. The kernel K is supported on the compact interval [−A,A], with A ∈ R∗+
and K is differentiable on [−A,A].

Then the variance of the estimator is such that:

Lemma 1. For any h ∈ H and any x ∈ [0, T ], we have

E[f̃h(x)] = (Kh ? fX)(x).

Under Assumption 1 and if h is small enough so that Ah ≤ a, then

vh := E
[
‖f̃h − E[f̃h]‖22,T

]
=
aT‖fX‖1‖K ′‖22

2nh3
.

The expectation of f̃h has the expected expression (derived from (3.3)), but Lemma 1 also
provides the exact expression of the variance term vh of our very specific estimate. Since our
framework is an inverse problem, this variance does not reach the classical (nh)−1 bound.
Moreover, vh depends linearly on ‖fX‖1 but also on T , which means that the estimation of
fX has to be performed on the compact interval [0, T ], for vh to be finite. This requirement
is due to Expression (3.4) of our estimate that shows that for any x ∈ R, f̃h(x) is different
from 0 almost surely. This dependence of vh on T is a direct consequence of our strategy
not to make any assumption on the support of fX , that can be unknown or non-compact.
Of course, if the support of fX was known to be compact, like [0, 1], then we would force
f̃h to be null outside [0, 1] (for instance by removing large values of |k| in the sum of (3.4)),
and estimation would be performed on the set [0, 1]. Actually, estimating a non-compactly
supported Poisson intensity on the whole real line leads to deterioration of classical non-
parametric rates in general (Reynaud-Bouret and Rivoirard, 2010).

3.4 Bandwidth selection

The objective of our procedure is to choose the bandwidth h, based on the Goldenshluger-
Lepski methodology (Goldenshluger and Lepski, 2013). First, we introduce a finite set H of
bandwidths such that for any h ∈ H, h ≤ a/A, which is in line with assumptions of Lemma 1.
Then, for two bandwidths t and h, we also define

f̃h,t := Kh ? f̃t,

a twice regularized estimator, that satisfies the following property (see Lemma 2 in Appendix):

f̃h,t = f̃t,h.

Now we select the bandwidth as follows:

ĥ := argmin
h∈H

{
A(h) +

c
√
N+

nh3/2

}
, (3.6)

where

c = (1 + η)(1 + ‖K‖1)‖K ′‖2

√
aT

2
(3.7)

for some η > 0 and

A(h) := max
t∈H

{
‖f̃h,t − f̃t‖2,T −

c
√
N+

nt3/2

}
+

.
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Finally, we estimate fX with
f̃ = f̃ĥ. (3.8)

Note that A(h) is an estimation of the bias term Bh of the estimator f̃h. Indeed,

Bh := ‖E[f̃h]− fX‖2,T = ‖Kh ? fX − fX‖2,T

and we replace the unknown function fX with the kernel estimate f̃t. The term
c
√
N+

nt3/2
in

A(h) controls the fluctuations of ‖f̃h,t − f̃t‖2,T . Finally, since E[N+] = n‖fX‖1, (3.6) mimics
the bias-variance trade-off (3.5) (up to the squares). In order to fully define the estimation
procedure, it remains to choose the set of bandwidths H. This is specified in Section 4.

4 Theoretical results

4.1 Oracle approach

The oracle setting allows us to prove that the bandwidth selection procedure described in
Section 3.4 is (nearly) optimal among all kernel estimates. Indeed, we obtain the following
result.

Theorem 1. Suppose that Assumption 1 is verified. We consider the estimate f̃ such that
the finite set of bandwidths H satisfies

minH =
1

δn
and maxH = o(1)

for some constant δ > 0. Then, for n large enough,

E
[
‖f̃
ĥ
− fX‖22,T

]
≤ C1 inf

h∈H
E
[
‖f̃h − fX‖22,T

]
+
C2

n
, (4.1)

where C1 is a constant only depending on K and η and C2 is a constant depending on ‖fX‖1,
T , a, δ, η and K.

Remark 1. For the condition minH = 1
δn , we can replace δn by any polynomial in n.

Theorem 1 shows that our procedure achieves nice performance: Up to the constant C1

and the negligible term C2/n that goes to 0 quickly, our estimate has the smallest risk among
all kernel rules under mild conditions on the set of bandwidths H.

4.2 Minimax approach

The minimax approach is a framework that shows the optimality of an estimate among all
possible estimates. For this purpose, we consider a class of functional spaces for fX , then we
derive the minimax risk associated with each functional space and show that our estimate
achieves this rate. Here, we consider the class of Sobolev balls that can be defined, for
instance, through the Fourier transform of L2-functions: Given β > 0 and L > 0, the Sobolev
ball of smoothness β and radius L is

Sβ(L) :=

{
g ∈ L2 :

∫ +∞

−∞
|g∗(ξ)|2(ξ2 + 1)βdξ ≤ L2

}
,
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where g∗(ξ) :=
∫
eixξg(x)dx is the Fourier transform of g. From a statistical perspective, the

minimax rate associated with the space Sβ(L) is

R(β, L) := inf
Zn

sup
fX∈Sβ(L)

E
[
‖Zn − fX‖22,T

]
,

where the infimum is taken over all estimators Zn of fX based on the observations (Yi)i=1,...,N+ .
We first derive a lower bound for the minimax risk.

Theorem 2. We assume that L is larger than an absolute constant. There exists a positive
constant C3 only depending on β, a and T such that, if n is large enough,

R(β, L) ≥ C3L
6

2β+3n
− 2β

2β+3 . (4.2)

The rate established in (4.2) is slower than the classical non-parametric rate n
− 2β

2β+1 . It
is the expected rate since our deconvolution problem corresponds to an inverse problem of
order 1, meaning that f∗ε , the characteristic function of the noise, satisfies

|f∗ε (ξ)| = O(ξ−1) as ξ →∞.

Note that the analog of the previous lower bound has been established in the density decon-
volution context, first by Fan (1993), but with supplementary assumption |f∗ε ′(ξ)| = O(ξ−2)
which is not satisfied in our case of uniform noise (see Equation (7.6)). Our proof is rather
inspired by the work of Meister (2009), but we face here a Poisson inverse problem, and we
have to control the L2-norm on [0, T ] instead of R. Furthermore, Theorem 2.14 of Meister
(2009) only holds for β > 1/2. Consequently, we use different techniques to establish The-
orem 2, which are based on wavelet decompositions of the signal. Specifically, we use the
Meyer wavelets of order 2.

We now show that the rate achieved by our estimate f̃ corresponds to the lower bound (4.2),
up to a constant. We have the following corollary, easily derived from Theorem 1, and based
on the following assumption.

Assumption 2. The kernel K is of order ` = bβc, meaning that the functions x 7→ xjK(x),
j = 0, 1, . . . , ` are integrable and satisfy∫

K(x)dx = 1,

∫
xjK(x)dx = 0, j = 1, . . . , `.

Remark 2. See Proposition 1.3 of Tsybakov (2008) or Section 3.2 of Goldenshluger and
Lepski (2014) for the construction of kernels satisfying Assumptions 1 and 2.

Corollary 1. Suppose that Assumptions 1 and 2 are satisfied. We consider the estimate f̃
such that the set of bandwidths H is

H =
{
D−1 : D ∈ Jlog n; δn

1
3 K
}
,

for some constant δ > 0. Then, for n large enough,

sup
fX∈Sβ(L)

E
[
‖f̃ − fX‖22,T

]
≤ C4L

6
2β+3n

− 2β
2β+3 ,

where C4 only depends on K, β, ‖fX‖1, a and T .
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To prove Corollary 1, we combine the upper bound (4.1) and the decomposition (3.5) to
obtain for any fX and any h ∈ H,

E
[
‖f̃ − fX‖22,T

]
≤ C1E

[
‖f̃h − fX‖22,T

]
+
C2

n
= C1(B2

h + vh) +
C2

n
.

Under Assumption 2, we have for any fX ∈ Sβ(L)

Bh = ‖Kh ∗ fX − fX‖2,T ≤MLhβ,

for M a positive constant depending on K and β. Indeed, the space Sβ(L) is included into
the Nikol’ski ball H(β, L′) with L′ equal to L up to a constant. We refer the reader to
Proposition 1.5 of Tsybakov (2008) and Kerkyacharian et al. (2001) for more details. Now,

we plug h ∈ H of order (L−2n−1)
1

2β+3 in the previous upper bound to obtain the desired
bound of Corollary 1 thanks to Lemma 1.

Corollary 1 shows that our estimator is adaptive minimax, i.e. it achieves the best possible
rate (up to a constant) and the bandwidth selection does not depend on the spaces parameters
(β, L) on the whole range {0 < β < ` + 1, L > 0}, where ` is the order of the chosen kernel.
We have established the optimality of our procedure.

5 Simulation study and numerical tuning

In the following we use numerical simulations to tune the hyperparameters our estimator
and to assess the performance of our deconvolution procedure. We consider different shapes
for the Poisson process intensity to challenge our estimator in different scenarii, by first
generating Poisson processes on [0, 1] based on the Beta probability distribution function,
with funisym = Beta(2, 2) (unimodal symmetric), fbisym = 0.5 × Beta(2, 6) + 0.5 × Beta(6, 2)
(bimodal symmetric), fbiasym = 0.5 × Beta(2, 20) + 0.5 × Beta(2, 2) (bimodal assymmetric).
We also generate Poisson processes with Laplace distribution intensity (location 5, scale 0.5)
to consider a sharp form and a different support. In this case, we consider that T = 10. We
consider a uniform convolution model with increasing noise (a ∈ {0.05, 0.1} for Beta, a ∈
{0.5, 1, 2, 3} for Laplace) and Poisson processes with increasing number of occurrences (n ∈
{500, 1000}). For each set (fX , n, a), we present the median performance over 30 replicates. In
order to keep a bounded variance of our estimators, we explore different values of h using a grid
denoted by H, with minimum value (aT/n)1/3 (see Lemma 1 and Corollary 1). Finally, our
procedure is computed with an Epanechnikov kernel, that is K(u) = 0.75(1− u2)1|u|≤1. Our

estimator is challenged by the oracle estimator, that is the estimator f̂h∗ , with h∗ minimizing
the mean squared error E‖fX − f̂h‖22,T , with fX the true intensity.

Then our selection procedure for the smoothing parameter h is based on the two-step
method described in Section 3. Using this procedure in practice requires to tune the value of
the hyper-parameter η that is part of the penalty c(η):

c(η) = (1 + η)(1 + ‖K‖1)

√
aT

2
‖K ′‖2,

with K the Epanechnikov kernel in our simulations. This penalty is at the core of the two-step
method that consists in computing:

Aη(h) = max
t∈H

{
‖f̃t − f̃h,t‖2,T − c(η)

√
N+

nt3/2

}
+

, (5.1)
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Figure 1: Mean squared error (square root) obtained on 30 simulations with our estimator
for different values of η and with an oracle estimator (dotted line). The mean squared errors
are computed as mean values on 30 simulations and over all different Beta scenarii (blue line)
and Laplace scenarii (orange line)

followed by

ĥ = argmin
h∈H

{
Aη(h) + c(η)

√
N+

nh3/2

}
. (5.2)

5.1 Universal hyperparameter tuning

We first propose to investigate if we could find a ”universal” value of parameter η that would
be appropriate whatever the form of the intensity function. For a grid of η in [−1; 1], we
compare the mean squared errors (MSE) of estimators calibrated with different values of η to
the MSE achieved by the oracle estimator that achieves the smallest MSE over the grid H.
Figure 1 shows that the optimal choice of η depends on the shape of the true intensity (∼ −0.5
for Beta,∼ −0.9 for Laplace). However, choosing η = −0.6 appears to be a reasonable trade-
off to obtain good performance in most settings. Reconstructions show (Figure 2) that the
quality of the results strongly depends on the shape of the true intensity, which is over-
smoothed, in particular for the bimodal symmetric Beta intensity with high noise (a = 0.1)
and for the Laplace intensity.

5.2 Going further universal tuning

In order to improve the calibration of our procedure, we propose a tuning method that
depends on the data. Our idea is to balance the estimation of the bias term (Aη(h)) with
the penalty constant c(η) by estimating a value for the hyperparameter η based on the data.
Consequently, instead of calibrating η directly, we propose to restate the procedure such that:

ĥγ = argmin
h∈H

(
min
η

{
Aη(h) + γ × c(η)

√
N+

nh3/2

})
. (5.3)
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Figure 2: Estimated intensity with the tuning method described in Section 5.1 with η = −0.6,
compared with the oracle estimator. The reconstruction is obtained with a generated dataset
that verifies the median MSE over 30 simulations.
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Figure 3: Mean squared error (square root) obtained with our estimator for different values
of γ and with an oracle estimator, for different values of n. The mean squared are computed
as mean values on 30 simulations and over all different Beta scenarii (green line) and Laplace
scenarii (orange line).

Our proposition is to introduce a trade-off parameter γ that balances the two steps of the
procedure, and to get rid of hyperparameter η by considering the minimum of the penalized
bias Aη(h) over a grid of η values (η ∈] − 1, 1[). This min-step corresponds to the objective
of minimizing an empirical risk. Then we consider different values for γ and compare the
estimation risk of f̂hγ with the risk of the oracle. Figure 3 shows that there exists a value
γ = 0.01 for which the risk of our estimator is close to the best risk, whatever the form of
the true intensity, the noise (a values), and the number of observations (n values). Hence,
in the following, we set γ = 0.01. Let us notice that this value of γ is very small: however,
we see from Figure 3 that choosing γ = 0 substantially increases the mean squared error,
which confirms the necessity of the penalization in (5.2). The estimated intensities with this
second tuning method are displayed in Figure 4: we observe that the estimations are closer to
the oracle estimator than with the first tuning approach, which validates the adaptive tuning
procedure. Figure 5 confirms that for all scenarii, the adaptive tuning method provides the
best results.

6 Deconvolution of Genomic data

Next generation sequencing technologies (NGS) has allowed the fine mapping of eukaryotes
replication origins that constitute the starting points of chromosomes duplication. To main-
tain the stability and integrity of genomes, replication origins are under a very strict spatio-
temporal control, and part of their positioning has been shown to be associated with cell
differentiation (Picard et al., 2014). The spatial organization has become central to bet-
ter understand genomes architecture and regulation. However, the positioning of replication
origins is subject to errors, since any NGS-based high-throughput mapping consists of peak-
calling based on the detection of an exceptional enrichment of short reads Picard et al. (2014).
Consequently, the true position of the replication starting point is unknown, but rather in-
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Figure 4: Estimated intensity with the adaptive tuning method described in Section 5.2,
compared with the oracle estimator. The reconstruction is obtained with a generated dataset
that verifies the median MSE over 30 simulations
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Figure 5: Mean squared errors (square root) obtained with both tuning methods (”fixed” for
the first tuning method with η = −0.6 and ”adaptive” for the second tuning method with
γ = 0.01) and with an oracle estimator over 30 simulations.

14



0.0

0.5

1.0

1.5

2.0

0.25 0.50 0.75 1.00
position on the chromosome 16 (MB)

 

Figure 6: Estimation of the intensity of human replication origins along chromosome 16, with
our procedure (plain line) that accounts for the uniform noise, and without correction (dashed
line).

ferred from genomic intervals. The spatial control of replication being very strict, the precise
quantification of the density of origins along chromosomes is central, but should account for
this imprecision of the mapping step. If this density is estimated without deconvolution,
Figure 6 shows that the naive estimator does not provide much information regarding the
shape of the origins density along the genome, whereas our calibrated estimator (based on
the second hybrid tuning procedure) perfectly illustrates the inhomogeneous nature of the
replication starting points along the first human chromosome. In this illustration, parameter
a has been estimated as the average length of the genomic intervals.
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7 Proofs

If θ is a vector of constants (for instance θ = (T, a,K)), we denote by �θ a positive constant
that only depends on θ and that may change from line to line.

In the sequel, we use at several places the following property: Setting

Sk : x 7−→
N+∑
i=1

K ′h

(
x− (2k + 1)a− Yi

)
,

since Ah ≤ a, Sk and Sk′ have disjoint supports if k 6= k′.

7.1 Proof of Lemma 1

Proof. Considering first f̂h, we have:

E[f̂h(x)] =
2a

nh2

+∞∑
k=0

∫
R
K ′
(
x− (2k + 1)a− u

h

)
nfY (u)du

=
1

h2

+∞∑
k=0

∫
R
K ′
(
x− (2k + 1)a− u

h

)
[FX(u+ a)− FX(u− a)]du

=
1

h2

+∞∑
k=0

∫
R
K ′
(
x− 2ka− v

h

)
FX(v)dv −

∫
R
K ′
(
x− 2(k + 1)a− v

h

)
FX(v)dv

=
1

h2

∫
R
K ′
(
x− v
h

)
FX(v)dv

=
1

h

∫
R
K

(
x− v
h

)
fX(v)dv = (Kh ? fX)(x).

The first point is then straightforward by using the definition of f̃h. For the second point,
observe that

f̃h(t)− E[f̃h(t)] =
a

nh2

+∞∑
k=−∞

sk

∫
K ′
(
t− (2k + 1)a− u

h

)[
dNY

u − nfY (u)du
]

=
a

nh

∫
R
Lh(t− u)

[
dNY

u − nfY (u)du
]
,

with

Lh(x) :=
1

h

+∞∑
k=−∞

skK
′
(
x− (2k + 1)a

h

)
.

Using the support [−A,A] of K, for each x

(Lh(x))2 =
1

h2

(
+∞∑

k=−∞
skK

′
(
x− (2k + 1)a

h

))2

=
1

h2

+∞∑
k=−∞

K ′2
(
x− (2k + 1)a

h

)
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as soon as Ah ≤ a. We have:∫ T

0
E[(f̃h(t)− E[f̃h(t)])2]dt =

a2

n2h2

∫ T

0
Var

(∫
R
Lh(t− u)dNY

u

)
dt

=
a2

n2h2

∫ T

0

∫
R
L2
h(t− u)nfY (u)dudt

=
a2

nh4

∫ T

0

∫
R

+∞∑
k=−∞

(
K ′
(
t− u− (2k + 1)a

h

))2

fY (u)dudt

=
a2

nh4

∫ T

0

∫
R

(
K ′
(
t− v
h

))2 +∞∑
k=−∞

fY (v − (2k + 1)a)dvdt

=
a

2nh4

∫ T

0

∫
R

(
K ′
(
t− v
h

))2

(lim
+∞

FX − lim
−∞

FX)dvdt,

which yields

E
[
‖f̃h(t)− E[f̃h(t)]‖22,T

]
=
aT‖fX‖1‖K ′‖22

2nh3
.

�

7.2 Auxiliary lemma

Our procedure needs the following result.

Lemma 2. For any h, t ∈ H,
f̃h,t = f̃t,h.

Proof. Since K ′h(x) = (1/h2)K ′(x/h), we can write

Kh ? f̂t = Kh ?

2a

n

+∞∑
k=0

N+∑
i=1

(Kt)
′(x− (2k + 1)a− Yi)


=

2a

n

+∞∑
k=0

N+∑
i=1

Kh ? (Kt)
′ (x− (2k + 1)a− Yi)

Using that Kh ? (Kt)
′ = (Kh ? Kt)

′ = (Kh)′ ? Kt, we obtain Kh ? f̂t = Kt ? f̂h.
In the same way, we can prove Kh ? f̌t = Kt ? f̌h and then Kh ? f̃t = Kt ? f̃h. �

7.3 Proof of Theorem 1

Remember that

ĥ := argmin
h∈H

{
A(h) +

c
√
N+

nh3/2

}
,

with

A(h) := max
t∈H

{
‖f̃t − f̃h,t‖2,T −

c
√
N+

nt3/2

}
+

.
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For any h ∈ H,
‖f̃ĥ − fX‖2,T ≤ A1 +A2 +A3,

with

A1 := ‖f̃ĥ − f̃ĥ,h‖2,T ≤ A(h) +
c
√
N+

nĥ3/2
,

A2 := ‖f̃h − f̃ĥ,h‖2,T ≤ A(ĥ) +
c
√
N+

nh3/2
,

and
A3 := ‖f̃h − fX‖2,T .

By definition of ĥ, we have:

A1 +A2 ≤ 2A(h) +
2c
√
N+

nh3/2
.

Therefore, by setting

ζn(h) := sup
t∈H

{
‖(f̃t,h − E[f̃t,h])− (f̃t − E[f̃t])‖2,T −

c
√
N+

nt3/2

}
+

,

we have:

A1 +A2 ≤ 2ζn(h) + 2 sup
t∈H
‖E[f̃t,h]− E[f̃t]‖2,T +

2c
√
N+

nh3/2

≤ 2ζn(h) + 2 sup
t∈H
‖Kh ? Kt ? fX −Kt ? fX‖2,T +

2c
√
N+

nh3/2

≤ 2ζn(h) + 2‖K‖1‖Kh ? fX − fX‖2,T +
2c
√
N+

nh3/2
.

Finally, since (α+ β + γ)2 ≤ 3α2 + 3β2 + 3γ2,

E[(A1 +A2)2] ≤ 12E[ζ2
n(h)] + 12‖K‖21‖Kh ? fX − fX‖22,T +

12c2E[N+]

n2h3

≤ 12E[ζ2
n(h)] + 12‖K‖21‖Kh ? fX − fX‖22,T +

12c2‖fX‖1
nh3

.

For the last term, we obtain:

E[A2
3] = E[‖f̃h − fX‖22,T ]

= E
[
‖f̃h − E[f̃h]‖22,T

]
+ ‖Kh ? fX − fX‖22,T

=
aT‖fX‖1‖K ′‖22

2nh3
+ ‖Kh ? fX − fX‖22,T .

Finally, replacing c with its definition, namely

c = (1 + η)(1 + ‖K‖1)‖K ′‖2

√
aT

2
,
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we obtain: for any h ∈ H,

E[‖f̃ĥ − fX‖
2
2,T ] ≤ 2E[(A1 +A2)2] + 2E[A2

3]

≤ 2(1 + 12‖K‖21)‖Kh ? fX − fX‖22,T +�K,η
aT‖fX‖1
nh3

+ 24E[ζ2
n(h)]

≤ �K,ηE[‖f̃h − fX‖22,T ] + 24E[ζ2
n(h)], (7.1)

by using Lemma 1. It remains to prove that E[ζ2
n(h)] is bounded by 1

n up to a constant. We
have:

ζn(h) ≤ sup
t∈H

{
‖f̃t,h − E[f̃t,h]‖2,T + ‖f̃t − E[f̃t]‖2,T −

c
√
N+

nt3/2

}
+

≤ sup
t∈H

{
(‖K‖1 + 1)‖f̃t − E[f̃t]‖2,T −

c
√
N+

nt3/2

}
+

≤ (‖K‖1 + 1)Sn,

with

Sn := sup
t∈H

{
‖f̃t − E[f̃t]‖2,T −

(1 + η)‖K ′‖2
√
aTN+√

2nt3/2

}
+

.

For α ∈ (0, 1) chosen later, we compute:

An := E[S2
n1{N+≤(1−α)2n‖fX‖1}].

Recall that (see the proof of Lemma 1)

f̃t(x) =
a

nt

∫
R
Lt(x− u)dNY

u , with Lt(x) =
1

t

∞∑
k=−∞

skK
′
(
x− (2k + 1)a

t

)
.

Since At ≤ a,(∫
R

+∞∑
k=−∞

skK
′
(
x− (2k + 1)a− u

t

)
dNY

u

)2

=

(
N+∑
i=1

∞∑
k=−∞

skK
′
(
x− (2k + 1)a− Yi

t

))2

≤ N+

N+∑
i=1

∞∑
k=−∞

(
K ′
(
x− (2k + 1)a− Yi

h

))2

≤ N2
+‖K ′‖2∞,

which yields

S2
n ≤ 2 sup

t∈H
‖f̃t‖22,T + 2 sup

t∈H
‖E[f̃t]‖22,T

≤ sup
t∈H

2a2

n2t4

∫ T

0

(∫
R

+∞∑
k=−∞

skK
′
(
x− (2k + 1)a− u

t

)
dNY

u

)2

dx+ 2 sup
t∈H
‖Kt ? fX‖22,T

≤ sup
t∈H

2a2‖K ′‖2∞TN2
+

n2t4
+ 2 sup

t∈H

‖K‖22‖fX‖21
t

.
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Therefore, since t ∈ H ⇒ t−1 ≤ δn,

An ≤
(

2δ4a2‖K ′‖2∞Tn4 + 2δn‖K‖22
)
‖fX‖21 × P(N+ ≤ (1− α)2n‖fX‖1).

To bound the last term, we use, for instance, Inequality (5.2) of Reynaud-Bouret (2003) (with
ξ = (2α − α2)n‖f‖1 and with the function f ≡ −1), which shows that there exists α′ > 0
only depending on α such that

P(N+ ≤ (1− α)2n‖fX‖1) ≤ exp(−α′n‖fX‖1).

This shows that

An ≤
�T,a,δ,α,K
n‖fX‖1

.

We now deal with
Bn := E[S2

n1{N+>(1−α)2n‖fX‖1}].

We take α = min(η/2, 1/4). This implies

(1 + η)(1− α) ≥ 1 +
η

4

and

Bn = E

[
sup
t∈H

{
‖f̃t − E[f̃t]‖2,T −

(1 + η)‖K ′‖2
√
aTN+√

2nt3/2

}2

+

1{N+>(1−α)2n‖fX‖1}

]

≤ E

sup
t∈H

{
‖f̃t − E[f̃t]‖2,T −

(1 + η/4)
√
aT‖K ′‖2

√
‖fX‖1√

2nt3/2

}2

+


≤
∫ +∞

0
P

sup
t∈H

{
‖f̃t − E[f̃t]‖2,T −

(1 + η/4)
√
aT‖K ′‖2

√
‖fX‖1√

2nt3/2

}2

+

≥ x

 dx

≤
∑
t∈H

∫ +∞

0
P

{‖f̃t − E[f̃t]‖2,T −
(1 + η/4)

√
aT‖K ′‖2

√
‖fX‖1√

2nt3/2

}2

+

≥ x

 dx.

To conclude, it remains to control for any x > 0 the probability inside the integral. For this
purpose, we use the following lemma.

Lemma 3. Let ε > 0 and h ∈ H be fixed. For any x > 0, with probability larger than
1− exp(−x),

‖f̃h−E[f̃h]‖2,T ≤ (1+ε)‖K ′‖2

√
aT‖fX‖1

2nh3
+
√

12x‖K ′‖1

√
‖fX‖1(T + 4a)

4nh2
+(1.25+32ε−1)x

‖K ′‖2
nh3/2

√
a(T + 4a)

2
.

Proof. We set:

U(t) = f̃h(t)− E[f̃h(t)]

=
a

nh2

+∞∑
k=−∞

sk

∫
R
K ′
(
t− (2k + 1)a− u

h

)[
dNY

u − nfY (u)du
]

=
a

nh

∫
R
Lh(t− u)

[
dNY

u − nfY (u)du
]
,
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with

Lh(x) :=
1

h

+∞∑
k=−∞

skK
′
(
x− (2k + 1)a

h

)
.

Let D a countable dense subset of the unit ball of L2[0, T ]. We have:

‖U‖2,T = sup
g∈D

∫ T

0
g(t)U(t)dt

= sup
g∈D

∫
R

Ψg(u)
[
dNY

u − nfY (u)du
]
,

with

Ψg(u) :=
a

nh

∫ T

0
Lh(t− u)g(t)dt =

a

nh
(L̃h ? g)(u)

and L̃h(x) = Lh(−x), where the convolution product is computed on [0, T ]. We use Corollary 2
of Reynaud-Bouret (2003). So, we need to bound E[‖U‖2,T ] and

v0 := sup
g∈D

∫
R

Ψ2
g(u)nfY (u)du.

We also have to determine b, a deterministic upper bound for all the Ψg’s. We have already
proved in the proof of Lemma 1 that

E[‖U‖22,T ] =
aT‖fX‖1‖K ′‖22

2nh3
,

which implies

E[‖U‖2,T ] ≤ ‖K ′‖2

√
aT‖fX‖1

2nh3
. (7.2)

If we denote I(h, u) := {k ∈ Z : −u−Ah− a ≤ 2ka ≤ Ah+ T − u− a}, then

Ψ2
g(u) =

a2

n2h2

(∫ T

0
Lh(t− u)g(t)dt

)2

≤ a2

n2h2

∫ T

0
L2
h(t− u)dt×

∫ T

0
g2(t)dt

≤ a2

n2h4

∫ T

0

∑
k∈I(h,u)

(
K ′
(
t− u− (2k + 1)a

h

))2

dt

≤ a2

n2h3
‖K ′‖22 × card(I(h, u))

≤ a2

n2h3
‖K ′‖22 × (T/(2a) +Ah/a+ 1)

and we can set, under the condition on H,

b :=
a

nh3/2
‖K ′‖2

√
T + 4a

2a
,
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which is negligible with respect to the upper bound of E[‖U‖2,T ] given in (7.2). We now deal
with

v0 := n× sup
g∈D

∫
R

Ψ2
g(u)fY (u)du.

We have:

v0 =
a2

nh2
sup
g∈D

∫
R

(∫ T

0
Lh(t− u)g(t)dt

)2

fY (u)du

≤ a2

nh2
sup
g∈D

∫
R

(∫ T

0
|Lh(t− u)|dt

∫ T

0
|Lh(t− u)|g2(t)dt

)
fY (u)du.

Since ∫ T

0
|Lh(t− u)|dt ≤ 1

h

∫ T

0

∑
k∈I(h,u)

∣∣∣∣K ′( t− u− (2k + 1)a

h

)∣∣∣∣ dt
≤ ‖K ′‖1card(I(h, u))

≤ ‖K ′‖1
(T + 4a)

2a
,

we obtain

v0 ≤
a2

nh2
‖K ′‖1

(T + 4a)

2a
sup
g∈D

∫
R

∫ T

0

+∞∑
k=−∞

1

h

∣∣∣∣K ′( t− u− (2k + 1)a

h

)∣∣∣∣ g2(t)dtfY (u)du

≤ a

2nh2
‖K ′‖1(T + 4a) sup

g∈D

∫ T

0

(∫
1

h

∣∣∣∣K ′( t− vh
)∣∣∣∣ +∞∑

k=−∞
fY (v − (2k + 1)a)dv

)
g2(t)dt

≤ a

2nh2
‖K ′‖1(T + 4a) sup

g∈D

∫ T

0

(∫
1

h

∣∣∣∣K ′( t− vh
)∣∣∣∣ dv) ‖fX‖12a

g2(t)dt

≤ ‖fX‖1
4nh2

‖K ′‖21(T + 4a).

Inequality (5.7) of Reynaud-Bouret (2003) yields, for any x > 0,

P
(
‖U‖2,T ≥ (1 + ε)E[‖U‖2,T ] +

√
12v0x+ (1.25 + 32ε−1)bx

)
≤ exp(−x).

Since

RHS := (1 + ε)E[‖U‖2,T ] +
√

12v0x+ (1.25 + 32ε−1)bx

≤ (1 + ε)‖K ′‖2

√
aT‖fX‖1

2nh3
+
√

12x‖K ′‖1

√
‖fX‖1(T + 4a)

4nh2
+ (1.25 + 32ε−1)x

‖K ′‖2
nh3/2

√
a(T + 4a)

2
.

�
The previous lemma states that for any sequence of weights (wh)h∈H, setting x = wh + u,

with u > 0, with probability larger than 1− exp(−u)
∑

h∈H exp(−wh), for all h ∈ H,

‖f̃h − E[f̃h]‖2,T ≤Mh +
√

12u‖K ′‖1

√
‖fX‖1(T + 4a)

4nh2
+ (1.25 + 32ε−1)u

‖K ′‖2
nh3/2

√
a(T + 4a)

2
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with

Mh := (1 + ε)‖K ′‖2

√
aT‖fX‖1

2nh3
+
√

12wh‖K ′‖1

√
‖fX‖1(T + 4a)

4nh2
+ (1.25 + 32ε−1)wh

‖K ′‖2
nh3/2

√
a(T + 4a)

2

= ‖K ′‖2

√
aT‖fX‖1

2nh3

(
1 + ε+

√
12whh

‖K ′‖1
‖K ′‖2

√
T + 4a√

2aT
+

(1.25 + 32ε−1)wh√
n‖fX‖1

√
T + 4a

T

)

≤
(1 + η/4)

√
aT‖K ′‖2

√
‖fX‖1√

2nh3/2
,

for ε small enough and for n large enough, by taking wh = h−1/2| log h|−1 for instance, since
in this case,

whh = o(1) and h−1 = O(n‖fX‖1).

Therefore,

Bn ≤
∑
h∈H

∫ +∞

0
P
({
‖f̃h − E[f̃h]‖2,T −Mh

}2

+
≥ x

)
dx.

By setting u such that

x := (g(u))2 =

(
√

12u‖K ′‖1

√
‖fX‖1(T + 4a)

4nh2
+ (1.25 + 32ε−1)u

‖K ′‖2
nh3/2

√
a(T + 4a)

2

)2

,

so

dx = 2g(u)×

(√
12

2
√
u
‖K ′‖1

√
‖fX‖1(T + 4a)

4nh2
+ (1.25 + 32ε−1)

‖K ′‖2
nh3/2

√
a(T + 4a)

2

)
du

and

Bn ≤
∑
h∈H

∫ +∞

0
e−(wh+u) × 2g(u)×

(√
12

2
√
u
‖K ′‖1

√
‖fX‖1(T + 4a)

4nh2
+ (1.25 + 32ε−1)

‖K ′‖2
nh3/2

√
a(T + 4a)

2

)
du

≤ 2
∑
h∈H

e−wh
∫ +∞

0
e−u(g(u))2u−1du

≤ �a,K,T,η
(
‖fX‖1
n

+
1

n2

)
.

Finally, we obtain

E[ζ2
n(h)] ≤ (‖K‖1 + 1)2E[S2

n] ≤ (‖K‖1 + 12)

(
�T,a,δ,α,K
n‖fX‖1

+�a,K,T,η

(
‖fX‖1
n

+
1

n2

))
,

which concludes the proof of the theorem.

7.4 Proof of Theorem 2

To prove Theorem 2, without loss of generality, we assume that T is a positive integer. We
denote a ∧ b = min(a, b) and a ∨ b = max(a, b). The cardinal of a finite set m is denoted by
|m|.
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As usual in the proofs of lower bounds, we build a set of intensities (fm)m∈M quite distant
from each other in terms of the L2-norm, but whose distance between the resulting models
is small. This set of intensities is based on wavelet expansions. More precisely, let ψ be the
Meyer wavelet built with with C2-conjugate mirror filters (see for instance Section 7.7.2 of
Mallat (2009)). We shall use in particular that ψ is C∞ and there exists a positive constant
cψ such that

1. |ψ(x)| ≤ cψ(1 + |x|)−2 for any x ∈ R,

2. ψ∗ is C2 and ψ∗ has support included into [−8π/3,−2π/3] ∪ [2π/3, 8π/3],

where ψ∗(ξ) =
∫
eitξψ(x)dx is the Fourier transform of ψ. Observe that this implies that the

functions

ξ 7→ ψ∗(ξ), ξ 7→ ψ∗(ξ)ξ−1, ξ 7→ ψ∗(ξ)ξ−2, ξ 7→ (ψ∗)′(ξ) and ξ 7→ (ψ∗)′(ξ)ξ−1

are bounded by a constant. Without loss of generality, we assume that this constant is cψ.
Let

f1(x) =
c1

1 + x2
,

where c1 is a positive constant small enough, which is chosen such that f1 belongs to Sβ(L/2).
Indeed, note that

c2
β :=

∫
|c−1

1 f∗1 (ξ)|2(ξ2 + 1)β =

∫
π2 exp(−2|ξ|)(ξ2 + 1)β <∞

so that it is sufficient to choose c1 = c−1
β L/2.

We recall a combinatorial lemma due to Birgé and Massart (see Lemma 8 in Reynaud-
Bouret (2003), see also Lemma 2.9 in Tsybakov (2008)).

Lemma 4. Let D an integer and Γ be a finite set with cardinal D. There exist absolute
constants τ and σ such that there exists MD ⊂ P(Γ ), satisfying log |MD| ≥ σD and such
that for all distinct sets m and m′ belonging to MD the symmetric difference of m and m′,
denoted m∆m′, satisfies |m∆m′| ≥ τD.

Here we choose Γ := {0, . . . , D − 1} with D := T2j−1 where j is an integer to be chosen
later, and we denote M := MD given in the previous lemma. Thus log |M| ≥ σT2j−1 and
for all m,m′ ∈M : τT2j−1 ≤ |m∆m′| ≤ T2j−1.

Now, for aj > 0 to be chosen, for m ∈M, for x ∈ R, we set

fm(x) := f1(x) + aj
∑
k∈m

ψjk(x),

where we have denoted, as usual, ψjk(x) := 2j/2ψ(2jx− k).
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We compute ψ∗jk(ξ) = 2−j/2eiξk2−jψ∗(ξ2−j), which gives

∫
|(fm − f1)∗(ξ)|2(1 + ξ2)βdξ =

∫ ∣∣∣∣∣aj2−j/2ψ∗(ξ2−j)∑
k∈m

eiξk2−j

∣∣∣∣∣
2

(1 + ξ2)βdξ

= a2
j

∫ ∣∣∣∣∣ψ∗(t)∑
k∈m

eikt

∣∣∣∣∣
2

(1 + t222j)βdt

≤ �ψ,βa2
j2

2jβ

∫ 3π

−3π

∣∣∣∣∣∑
k∈m

eikt

∣∣∣∣∣
2

dt

≤ �ψ,β22jβ|m|a2
j ≤ �ψ,βT2j(2β+1)a2

j ,

using Parseval’s theorem and |m| ≤ D = T2j−1. We assume from now on that

T2j(2β+1)a2
j ≤ C(ψ, β)L2 (7.3)

for C(ψ, β) a constant only depending on β and L small enough, so that (fm − f1) belongs
to Sβ(L/2) and then fm ∈ Sβ(L).

Let us verify that fm is non-negative, and then is an intensity of a Poisson process. For
all real x,

fm(x)− f1(x)

f1(x)
= c−1

1 (1 + x2)aj2
j/2
∑
k∈m

ψ(2jx− k).

Recall that ψ(x) ≤ cψ(1 + |x|)−2. Let us now study 3 cases.

1. If 0 ≤ |x| ≤ T + 1, we have:

(1+x2)

∣∣∣∣∣∑
k∈m

ψ(2jx− k)

∣∣∣∣∣ ≤ (T 2+2T+2)cψ
∑
k∈m

(1+|2jx−k|)−2 ≤ 2cψ(T 2+2T+2)
+∞∑
`=1

`−2,

and the last upper bound is smaller than a finite constant only depending on T and cψ.

2. If x ≥ T + 1, since |m| ≤ D = T2j−1, we have:

(1+x2)

∣∣∣∣∣∑
k∈m

ψ(2jx− k)

∣∣∣∣∣ ≤ cψT2j−1(1+2j(x−T ))−2(1+x2) ≤ cψT2−j−1 sup
x≥T+1

1 + x2

(x− T )2
,

and the last expression is smaller than a finite constant only depending on T and cψ.

3. If x ≤ −T − 1,

(1 + x2)

∣∣∣∣∣∑
k∈m

ψ(2jx− k)

∣∣∣∣∣ ≤ cψT2j−1(1 + 2j(−x))−2(1 + x2) ≤ cψT2−j−1 sup
x≤−T−1

1 + x2

(−x)2
,

Finally we obtain that there exists C̄(T, cψ) a constant only depending on T and cψ such that

|fm(x)− f1(x)|
f1(x)

≤ c−1
1 aj2

j/2C̄(T, cψ).
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We take aj such that

c−1
1 aj2

j/2C̄(T, cψ) ≤ 1

2
. (7.4)

This ensures that fm ≥ 1
2f1 ≥ 0. Another consequence is that fε?fm ≥ 1

2fε?f1. This provides

fε ? fm(x) ≥ 1

2

∫ a

−a

1

2a

c1

1 + (x− t)2
dt ≥ 1

2

c1

1 + (|x|+ a)2

≥ 1

2

c1

1 + 2a2 + 2x2
≥ c−1

2

1 + x2
,

denoting c2 = c2(a, β, L) = max(4, 2 + 4a2)/c1.
Finally, we evaluate the distance between the distributions of the observations NY when

NX has intensity nfm and nfm′ . We denote by Pm the probability measure associated with
NY , which has intensity gm := fε ? nfm, and we denote by K(Pm,Pm′) the Kullback-Leibler
divergence between Pm and Pm′ . Using Cavalier and Koo (2002), we have

K(Pm,Pm′)) =

∫
gm(x)φ

(
log

(
gm′(x)

gm(x)

))
dx

where for any x ∈ R, φ(x) = exp(x) − x − 1. Since for any x > −1, log(1 + x) ≥ x/(1 + x),
we have

K(Pm,Pm′) ≤
∫

(gm(x)− gm′(x))2

gm(x)
dx = n

∫
((fε ? fm)(x)− (fε ? fm′)(x))2

(fε ? fm)(x)
dx.

For m and m′ in M, denote

θ(x) = a−1
j (fε ? (fm − fm′))(x) =

∑
k∈m∆m′

bk(fε ? ψjk)(x)

with bk = 1 if k ∈ m and bk = −1 if k ∈ m′. Denote also θ∗(ξ) =
∫
eiξxθ(x)dx its Fourier

transform, and (θ∗)′(ξ) =
∫
ixeiξxθ(x)dx the derivative of θ∗. Parseval’s theorem gives

‖θ‖22 =
1

2π
‖θ∗‖22, and ‖xθ(x)‖22 =

1

2π
‖(θ∗)′‖22.

Thus

1

n
K(Pm,Pm′) ≤

∫
((fε ? fm)(x)− (fε ? fm′)(x))2

(fε ? fm)(x)
dx ≤ c2

∫
(1 + x2)(fε ? (fm − fm′)(x))2dx

≤ c2a
2
j

∫
(1 + x2)θ(x)2dx ≤ c2

2π
a2
j

(
‖θ∗‖22 + ‖(θ∗)′‖22

)
.

We recall that ψ∗jk(ξ) = 2−j/2eiξk2−jψ∗(ξ2−j), which gives

θ∗(ξ) =
∑

k∈m∆m′

bkf
∗
ε (ξ)ψ∗jk(ξ) =

∑
k∈m∆m′

bkf
∗
ε (ξ)2−j/2eiξk2−jψ∗(ξ2−j)

= 2−j/2f∗ε (ξ)ψ∗(ξ2−j)
∑

k∈m∆m′

bke
iξk2−j .
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Thus, remembering that for ξ ∈ R,

|f∗ε (ξ)| =
∣∣∣∣sin(aξ)

aξ

∣∣∣∣ ≤ min(1, |aξ|−1), (7.5)

we have

‖θ∗‖22 =

∫ ∣∣∣∣∣2−j/2f∗ε (ξ)ψ∗(ξ2−j)
∑

k∈m∆m′

bke
iξk2−j

∣∣∣∣∣
2

dξ

=

∫ ∣∣∣∣∣f∗ε (u2j)ψ∗(u)
∑

k∈m∆m′

bke
iku

∣∣∣∣∣
2

du

≤
∫

min(1, |a2ju|−2)|ψ∗(u)|2
∣∣∣∣∣ ∑
k∈m∆m′

bke
iku

∣∣∣∣∣
2

du

≤
∫ 8π/3

−8π/3
min(1, |a2j |−2)c2

ψ

∣∣∣∣∣ ∑
k∈m∆m′

bke
iku

∣∣∣∣∣
2

du

using the properties of ψ. Parseval’s theorem gives

1

2π

∫ π

−π

∣∣∣∣∣ ∑
k∈m∆m′

bke
iku

∣∣∣∣∣
2

du =
∑

k∈m∆m′

b2k = |m∆m′| ≤ T2j−1.

Then
‖θ∗‖22 ≤ 3πc2

ψT2j(a−22−2j ∧ 1).

Let us now bound ‖(θ∗)′‖22. First

(ψ∗jk)
′(ξ) = 2−3j/2eiξk2−j

(
ψ∗(ξ2−j)ik + (ψ∗)′(ξ2−j)

)
,

then

(θ∗)′(ξ) =
∑

k∈m∆m′

bk
[
(f∗ε )′(ξ)ψ∗jk(ξ) + f∗ε (ξ)(ψ∗jk)

′(ξ)
]

=
∑

k∈m∆m′

bk(f
∗
ε )′(ξ)2−j/2eiξk2−jψ∗(ξ2−j) + bkf

∗
ε (ξ)2−3j/2eiξk2−j

(
ψ∗(ξ2−j)ik + (ψ∗)′(ξ2−j)

)
= α1(ξ) + α2(ξ) + α3(ξ)

where

α1(ξ) = 2−j/2(f∗ε )′(ξ)ψ∗(ξ2−j)
∑

k∈m∆m′

bke
iξk2−j ,

α2(ξ) = 2−3j/2f∗ε (ξ)ψ∗(ξ2−j)
∑

k∈m∆m′

ikbke
iξk2−j ,

α3(ξ) = 2−3j/2f∗ε (ξ)(ψ∗)′(ξ2−j)
∑

k∈m∆m′

bke
iξk2−j .
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Reasoning as before, and using that

|(f∗ε )′(ξ)| =
∣∣∣∣cos(aξ)

ξ
− 1

ξ
× sin(aξ)

aξ

∣∣∣∣ ≤ 2

|ξ|
, (7.6)

we can write

‖α1‖22 =

∫ ∣∣∣∣∣(f∗ε )′(u2j)ψ∗(u)
∑

k∈m∆m′

bke
iku

∣∣∣∣∣
2

du

≤
∫

4

u222j
|ψ∗(u)|2

∣∣∣∣∣ ∑
k∈m∆m′

bke
iku

∣∣∣∣∣
2

du

≤ 4c2
ψ2−2j × 6π|m∆m′|

≤ 12πc2
ψT2−j .

In the same way, using (7.5),

‖α2‖22 = 2−2j

∫ ∣∣∣∣∣f∗ε (u2j)ψ∗(u)
∑

k∈m∆m′

ikbke
iku

∣∣∣∣∣
2

du

≤ 2−2j

∫
(1 ∧ a22−2ju−2)|ψ∗(u)|2

∣∣∣∣∣ ∑
k∈m∆m′

ikbke
iku

∣∣∣∣∣
2

du

≤ 3c2
ψ2−2j(a−22−2j ∧ 1)

∫ π

−π

∣∣∣∣∣ ∑
k∈m∆m′

ikbke
iku

∣∣∣∣∣
2

du

≤ 6πc2
ψ2−2j(a−22−2j ∧ 1)

∑
k∈m∆m′

k2

and we obtain that
‖α2‖22 ≤ cc2

ψT
32j(a−22−2j ∧ 1),

for c an absolute constant. Similarly,

‖α3‖22 = 2−2j

∫ ∣∣∣∣∣f∗ε (u2j)(ψ∗)′(u)
∑

k∈m∆m′

bke
iku

∣∣∣∣∣
2

du

≤ 2−2j

∫
(1 ∧ a22−2ju−2)|(ψ∗)′(u)|2

∣∣∣∣∣ ∑
k∈m∆m′

bke
iku

∣∣∣∣∣
2

du

≤ 3c2
ψ2−2j(a−22−2j ∧ 1)

∫ π

−π

∣∣∣∣∣ ∑
k∈m∆m′

bke
iku

∣∣∣∣∣
2

du

≤ 3πc2
ψT2−j(a−22−2j ∧ 1).

Finally, since a is smaller than an absolute constant and T is larger than an absolute constant,
we have that

K(Pm,Pm′) ≤ Cc2c2
ψna

2
jT

32j(a−22−2j ∧ 1),

for C an absolute constant.
Now, let us give the following version of Fano’s lemma, derived from Birgé (2001).
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Lemma 5. Let (Pi)i∈{0,...,I} be a finite family of probability measures defined on the same
measurable space Ω. One sets

KI =
1

I

I∑
i=1

K(Pi,P0).

Then, there exists an absolute constant B (B = 0.71 works) such that if Z is a random
variable on Ω with values in {0, . . . , I}, one has

inf
0≤i≤I

Pi(Z = i) ≤ max

(
B,

KI

log(I + 1)

)
.

We apply this lemma with M instead of {0, . . . , I}, whose log-cardinal is larger than
T2j−1 up to an absolute constant. We take aj such that

Cc2c
2
ψna

2
jT

32j(a−22−2j ∧ 1)

log |M|
≤ B,

which is satisfied if

a2
j ≤

C(ψ)

nT 2c2
(a222j ∨ 1), (7.7)

with C(ψ) a constant only depending on ψ small enough. Thus if Z is a random variable
with values in m, inf

m∈M
Pm(Z = m) ≤ B. Now,

inf
Zn

sup
fX∈Sβ(L)

EfX
[
‖Zn − fX‖22,T

]
≥ inf

Zn
sup
m∈M

Efm
[
‖Zn − fm‖22,T

]
≥ 1

4
inf

m′∈M
sup
m∈M

Efm
[
‖fm′ − fm‖22,T

]
. (7.8)

For the last inequality, we have used that if Zn is an estimate, we define

m′ ∈ arg min
m∈M

Efm
[
‖Zn − fm‖22,T

]
and for m ∈M,

‖fm′ − fm‖2,T ≤ ‖fm′ − Zn‖2,T + ‖fm − Zn‖2,T ≤ 2‖fm − Zn‖2,T .

Since fm− fm′ = aj
∑

k∈m∆m′ bkψjk and (ψjk) is an orthonormal family, we have for m 6= m′,

‖fm − fm′‖22 = a2
j |m∆m′| ≥ τa2

jT2j−1, (7.9)

for τ the absolute constant defined in Lemma 4. Furthermore,

0 ≤ ‖fm − fm′‖22 − ‖fm − fm′‖22,T =

∫
(fm(x)− fm′(x))21{|x|>T}dx

= a2
j

∫ ( ∑
k∈m∆m′

bkψjk(x)
)2

1{|x|>T}dx

≤ a2
j

∑
k∈m∆m′

b2k ×
∑

k∈m∆m′

∫
ψ2
jk(x)1{|x|>T}dx

≤ a2
j |m∆m′| ×

∑
k∈m∆m′

∫
ψ2
jk(x)1{|x|>T}dx.
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Then, since 0 ≤ k ≤ T2j−1,∫
ψ2
jk(x)1{|x|>T}dx =

∫
ψ2(u)1{|2−j(u+k)|>T}du

≤ c2
ψ

∫
(1 + |u|)−41{|2−j(u+k)|>T}du

≤ c2
ψ

∫ +∞

2jT−k
(1 + |u|)−4du+ c2

ψ

∫ −2jT−k

−∞
(1 + |u|)−4du

≤ 2c2
ψ

∫ +∞

2j−1T
(1 + u)−4du

≤
2c2
ψ

3

(
T2j−1

)−3
.

We finally obtain

0 ≤ ‖fm − fm′‖22 − ‖fm − fm′‖22,T ≤
2c2
ψ

3

(
T2j−1

)−2 × a2
j

and using (7.9), for j large enough depending on T and m 6= m′,

‖fm − fm′‖22,T ≥ C ′(ψ)a2
jT2j ,

for C ′(ψ) a constant only depending on ψ. Finally, applying (7.8) and Lemma 5, we obtain:

inf
Zn

sup
fX∈Sβ(L)

E
[
‖Zn − fX‖22,T

]
≥ 1

4
inf

m′∈M
sup
m∈M

Efm
[
‖fm′ − fm‖22,T

]
≥
C ′(ψ)a2

jT2j

4
inf

m′∈M
sup
m∈M

Pm(m′ 6= m) ≥
C ′(ψ)a2

jT2j

4
(1−B).

Now, we choose aj > 0 as large as possible such that (7.3), (7.4) and (7.7) are satisfied,
meaning that

a2
jT2j =

(
C(ψ, β)L22−2jβ

)
∧
(
c2

1TC̄(T, cψ)−2

4

)
∧
(
C(ψ)2j

nTc2
(a222j ∨ 1)

)
.

Since c2 = max(4, 2 + 4a2)/c1 and c1 = c−1
β L/2, it simplifies in

a2
jT2j = �T,ψ,β,a

(
L22−2jβ ∧ L2 ∧ L2j

n
(22j ∨ 1)

)
.

We assume that L is larger than a constant and we take

2j ≤
(
L2n

)1/(2β+3)
< 2j+1,

which yields that for n large enough,

inf
Zn

sup
fX∈Sβ(L)

E
[
‖Zn − fX‖22

]
≥ �T,ψ,β,aL6/(2β+3)n−2β/(2β+3).
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Pierre et Marie Curie.

Carrasco, M. and Florens, J.-P. (2011). A spectral method for deconvolving a density. Econo-
metric Theory, pages 546–581.

Cavalier, L. and Koo, J.-Y. (2002). Poisson intensity estimation for tomographic data using a
wavelet shrinkage approach. IEEE Transactions on Information Theory, 48(10):2794–2802.

Delaigle, A. and Meister, A. (2011). Nonparametric function estimation under fourier-
oscillating noise. Statistica Sinica, pages 1065–1092.

Fan, J. (1993). Adaptively local one-dimensional subproblems with application to a deconvo-
lution problem. The Annals of Statistics, pages 600–610.

Feuerverger, A., Kim, P. T., and Sun, J. (2008). On optimal uniform deconvolution. Journal
of Statistical Theory and Practice, 2(3):433–451.

Goldenshluger, A. and Lepski, O. (2014). On adaptive minimax density estimation on Rd.
Probability Theory and Related Fields, 159(3-4):479–543.

Goldenshluger, A. V. and Lepski, O. V. (2013). General selection rule from a family of linear
estimators. Theory Probab. Appl., 57(2):209–226.

Groeneboom, P. and Jongbloed, G. (2003). Density estimation in the uniform deconvolution
model. Statistica Neerlandica, 57(1):136–157.

Hall, P., Meister, A., et al. (2007). A ridge-parameter approach to deconvolution. The Annals
of Statistics, 35(4):1535–1558.

Hall, P., Ruymgaart, F., van Gaans, O., and van Rooij, A. (2001). Inverting noisy integral
equations using wavelet expansions: a class of irregular convolutions. In State of the art
in probability and statistics (Leiden, 1999), volume 36 of IMS Lecture Notes Monogr. Ser.,
pages 533–546. Inst. Math. Statist., Beachwood, OH.

Hohage, T. and Werner, F. (2016). Inverse problems with Poisson data: statistical regular-
ization theory, applications and algorithms. Inverse Problems, 32(9):093001.

Kerkyacharian, G., Lepski, O., and Picard, D. (2001). Nonlinear estimation in anisotropic
multi-index denoising. Probab. Theory Related Fields, 121(2):137–170.

Kroll, M. (2019). Nonparametric intensity estimation from noisy observations of a Poisson
process under unknown error distribution. Metrika, 82(8):961–990.

31

http://arxiv.org/abs/1907.11024


Kuusela, M., Panaretos, V. M., et al. (2015). Statistical unfolding of elementary particle
spectra: Empirical bayes estimation and bias-corrected uncertainty quantification. The
Annals of Applied Statistics, 9(3):1671–1705.

Mallat, S. (2009). A wavelet tour of signal processing. Elsevier/Academic Press, Amsterdam,
third edition.

Meister, A. (2008). Deconvolution from Fourier-oscillating error densities under decay and
smoothness restrictions. Inverse Problems, 24(1):015003, 14.

Meister, A. (2009). Density deconvolution. In Deconvolution Problems in Nonparametric
Statistics, pages 5–105. Springer.

Picard, F., Cadoret, J.-C., Audit, B., Arneodo, A., Alberti, A., Battail, C., Duret, L., and
Prioleau, M.-N. (2014). The spatiotemporal program of DNA replication is associated with
specific combinations of chromatin marks in human cells. PLoS Genet, 10(5):e1004282.

Reynaud-Bouret, P. (2003). Adaptive estimation of the intensity of inhomogeneous Poisson
processes via concentration inequalities. Probab. Theory Related Fields, 126(1):103–153.

Reynaud-Bouret, P. and Rivoirard, V. (2010). Near optimal thresholding estimation of a
Poisson intensity on the real line. Electron. J. Stat., 4:172–238.

Trong, D. D., Phuong, C. X., Tuyen, T. T., and Thanh, D. N. (2014). Tikhonov’s regular-
ization to the deconvolution problem. Communications in Statistics-Theory and Methods,
43(20):4384–4400.

Tsybakov, A. B. (2008). Introduction to nonparametric estimation. Springer Science & Busi-
ness Media.

van Es, B. (2011). Combining kernel estimators in the uniform deconvolution problem. Stat.
Neerl., 65(3):275–296.

32


	1 Introduction
	2 Uniform deconvolution model
	3 Estimation procedure
	3.1 Deconvolution with kernel estimator
	3.2 Symmetrization of the estimator
	3.3 Risk of the kernel-based estimator
	3.4 Bandwidth selection

	4 Theoretical results
	4.1 Oracle approach
	4.2 Minimax approach

	5 Simulation study and numerical tuning
	5.1 Universal hyperparameter tuning
	5.2 Going further universal tuning

	6 Deconvolution of Genomic data
	7 Proofs
	7.1 Proof of Lemma 1
	7.2 Auxiliary lemma
	7.3 Proof of Theorem 1
	7.4 Proof of Theorem 2


