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We study the Casimir-Lifshitz interaction out of thermal equilibrium, when the interacting objects are at
different temperatures. The analysis is focused on the surface-surface, surface-rarefied body, and surface-atom
configurations. A systematic investigation of the contributions to the force coming from the propagating and
evanescent components of the electromagnetic radiation is performed. The large distance behaviors of such
interactions is discussed, and both analytical and numerical results are compared with the equilibrium ones. A
detailed analysis of the crossing between the surface-surface and the surface-rarefied body, and finally the
surface-atom force is shown, and a complete derivation and discussion of the recently predicted nonadditivity
effects and asymptotic behaviors is presented.
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I. INTRODUCTION

The Casimir-Lifshitz force is a dispersion interaction of
electromagnetic origin acting between neutral dispersive
bodies without permanent polarizations. The original Ca-
simir intuition about the presence of such a force between
two parallel ideal mirrors �1� �or between an atom and a
mirror, i.e., the so-called Casimir-Polder force �2�� was
readily extended to real materials by Lifshitz �3–5�. He used
the theory of electromagnetic fluctuations developed by Ry-
tov �6� to formulate the most general theory of the dispersion
interaction in the framework of the statistical physics and
macroscopic electrodynamics �see also �7��. The Lifshitz
theory is still the most advanced one; today it is extensively
accepted providing a common tool to deal with dispersive
forces in different fields of science �physics, biology, chem-
istry� and technology.

It is useful to stress here that the geometry of the system
is relevant for the explicit calculation of the force, but does
not affect the nature of the interaction that preserves all its
peculiar characteristics and relevant length scales. For this
reason we refer to the Casimir-Lifshitz force for all geo-
metrical configurations. In particular, in this paper we are
interested in the force between flat and parallel surfaces of
two macroscopic bodies, and between a surface and an indi-
vidual atom.

The Lifshitz theory is formulated for systems at thermal
equilibrium. In this theory the pure quantum effect at T=0 is
clearly separated from the finite temperature effect. The
former gives a dominant contribution at small separation
��1 �m at room temperature� between the bodies and was
readily confirmed experimentally with good accuracy (see
�8� �surface-atom�, �9–12� �surface-sphere�, and �13�
�surface-surface�).

The thermal component prevails at larger distances and
was measured only recently at JILA in experiments with cold
atoms �16�. These experiments are based on the measure-

ment of the shift of the collective oscillations of a Bose-
Einstein condensate �BEC� of trapped atoms close to a sur-
face �14,15�. The JILA group measured the Casimir-Lifshitz
force at very large distances ��10 �m� and showed the ther-
mal effects of the Casimir-Lifshitz interaction �and indeed of
any dispersion interaction�, in agreement with the theoretical
predictions �17�. This measurement was done out of thermal
equilibrium �18�, where thermal effects are stronger.

There was an interest in configurations out of thermal
equilibrium since the work by Rosenkrans et al. �19� �atom-
atom�. Surface-atom interaction was analyzed by Henkel et
al. �20� and by Antezza et al. �17,21–24�. Surface-surface
force was investigated by Dorofeyev et al. �25,26� and An-
tezza et al. �23,24�. For a review of nonequilibrium effects,
see also �27�.

Further nonequilibrium effects were explored by Polder
and Van Hove �28�, who calculated the heat-flux between
two parallel plates, and Bimonte �29�, who expressed fluc-
tuations of fields for the metal-metal configuration in terms
of surface impedance.

The principal interest in the study of systems out of ther-
mal equilibrium is connected to the possibility of tuning the
interaction in both strength and sign �17,23�. Such systems
also give a way to explore the role of thermal fluctuations,
usually masked at thermal equilibrium by the T=0 compo-
nent which dominates the interaction up to very large dis-
tances, where the actual total force results to be very small.

A crucial role in explaining the peculiarity of the nonequi-
librium surface-atom force is played by cancellation effects
between the fluctuations of the different components of the
radiations, as the incident to and emitted by the surface �17�.

In this paper we present a detailed study of the Casimir-
Lifshitz force out of thermal equilibrium, with particular at-
tention devoted to the surface-surface and surface-atom in-
teractions. We perform a systematic investigation of the
contributions to the force coming from the propagating and
evanescent components of the electromagnetic radiation. The
large distance behaviors of these interactions are extensively
discussed, both analytically and numerically, and compari-*antezza@science.unitn.it
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sons with the equilibrium results are done. We perform a
detailed analysis of the relation between the surface-surface
interaction when one body is rarefied �surface-rarefied body
force� and the surface-atom force. We also present a com-
plete derivation and discussion of the recently predicted non-
additivity effects and asymptotic behaviors noted in �23�.

We are interested in the force occurring between two pla-
nar bodies, which are kept at different temperatures and
separated by a distance l. We consider that the bodies are
thick enough, in order to exclude possible effects of the pres-
ence of the vacuum gap on the radiation outside the two
bodies. We also assume that each body is in local thermal
equilibrium, the whole system being in a stationary state. In
our configuration the left-side body, 1, has a complex dielec-
tric function �1���=�1����+ i�1����, occupies the volume V1

and is held at temperature T1. The right-side body, 2, has a
complex dielectric function �2���=�2����+ i�2����, occupies
the volume V2 and is held at temperature T2. First we assume
that each body fills an infinite half-space, in particular V1 and
V2 coincide with the left and right half-spaces, respectively.
Later we consider a more general situation of two parallel
thick slabs with the external regions shined by the thermal
radiations at arbitrary temperatures. In this case additional
distance-independent contributions to the pressure are
present. Finally, we will consider the case in which one of
the two bodies is rarefied. In this case the interplay between
the finite thickness of the body and the nonequilibrium con-
figuration leads to different interesting behaviors of the pres-
sure.

The general problem can be set in the following way, for
two bodies occupying the two half-spaces. Let us choose the
origin of the coordinate system at the boundary of the half-
space 1 and let us set the z axis in the direction of the half-
space 2 �see Fig. 1�. The electromagnetic pressure between
the two bodies along z can be calculated as �30,31�

Pneq�T1,T2,l� = �Tzz�r,t�� , �1�

that should be regularized by subtracting the same expres-
sion at separation l→�. In Eq. �1�, r is a generic point
between the two bodies, and

Tzz�r,t� = −
�	


8�
�E	�r,t�E
�r,t� + B	�r,t�B
�r,t�� , �2�

is the zz component of the Maxwell stress tensor in the
vacuum gap. Here �	
 is a diagonal matrix with �11=�22
=1 and �33=−1.

To calculate the pressure �1� one must average over the
state of the electromagnetic field the squares of the spatial
components of the electric and magnetic field E�r , t� and
B�r , t�, which appear in Eq. �2�.

Before starting with the analysis of the problem we men-
tion the structure of this work in the following outline. In
Sec. II we develop the formalism, introduce the role and the
description of the fluctuations of the electromagnetic field,
and specify the approach we adopt to deal with the surface
optics. In Sec. III we recall the main results of the surface-
surface Casimir-Lifshitz interaction at thermal equilibrium,
and in particular specify the distinction between the T=0
�purely quantum� and the thermal contribution to the force,
generated by the radiation pressure of the thermal radiation.
In Sec. IV we present a detailed derivation of the surface-
surface pressure out of thermal equilibrium Pneq�T1 ,T2 , l�. In
Sec. V we show an alternative and useful expression for
Pneq�T1 ,T2 , l�, together with numerical results relative to par-
ticular couples of dielectric materials �i.e., fused silica-
silicon and sapphire-fused silica�. In Sec. VI we deal with the
distance-independent terms in the pressure due to the finite
thickness of the two bodies, and the eventual effect of exter-
nal radiation at different temperature impinging the external
surfaces. In Sec. VII we derive the large distance behavior of
the surface-surface pressure out of thermal equilibrium, and
discuss the role of the propagating waves �PW� and evanes-
cent waves �EW� contributions. We also make a comparison
with the corresponding terms of the pressure at thermal equi-
librium. In Sec. VIII we consider the interaction between a
surface and a rarefied body and derive the large distance
behaviors of the PW and EW components. In the same sec-
tion we stress the presence of nonadditivity in the interaction
out of equilibrium �in contrast with the equilibrium case� and
show the analysis of the crossing between different
asymptotic behaviors. In Sec. IX we show the transition from
the surface-rarefied body to surface-atom interactions out of
thermal equilibrium, and demonstrate the essential role of
finite thickness of the rarefied body. Finally, in Sec. X, we
provide our conclusions.

In Appendix A we give some details on the expression of
the Green functions we used in our calculation and in Ap-
pendix B we discuss in detail the force acting between a
surface and a rarefied body of finite thickness.

II. FORMALISM

Our approach is based on the theory of the fluctuating
electromagnetic �EM� field developed by Rytov �6�. In this
approach it is assumed that the field is driven by randomly
fluctuating current density or, alternatively, by randomly
fluctuating polarization field. In this respect the Maxwell
equations become of Langevin-type. For a monochromatic
field in a nonhomogeneous, linear, and nonmagnetic medium
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FIG. 1. Schematic figure of the surface-surface system out of
thermal equilibrium. Here the two bodies occupy infinite
half-spaces.
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with the dielectric function ��� ,r� the Maxwell equations
become

� ∧ E��;r� − ikB��;r� = 0, �3�

� ∧ B��;r� + ik���;r�E��;r� = − 4�ikP��;r� , �4�

where k=� /c is the vacuum wave number and ∧ is the vec-
tor product symbol. The source of the electromagnetic fluc-
tuations is described by the electric polarization P�� ;r�, re-
lated to the electric current density as J�� ;r�=−i�P�� ;r�.
We use the following notations for the frequency Fourier
transforms A�� ;r� of the quantity A�t ,r�:

A�t,r� = �
−�

+� d�

2�
e−i�tA��;r� . �5�

To find the solution of the Maxwell equations we use the
Green functions formalism. A Green function is a solution of
the wave equation for a point source in presence of surround-
ing matter. When this solution is known one can construct
the solution due to a general source using the principle of
linear superposition. This method takes into account the ef-
fects of nonadditivity, which originates from the fact that the
interaction between two fluctuating dipoles is influenced by
the presence of a third dipole. Employing this formalism we
can express the electric field at the observation point r as the
convolution

E��;r� =� Ḡ��;r,r�� · P��;r��dr�. �6�

Here P�� ;r�� is the random polarization at the source point

r� and Ḡ�� ;r ,r�� is the dyadic Green function of the sys-
tem. Then it is clear that the Green function plays the role of
the response function in a linear-response theory. The Green
function is the solution of the following equation �32�

	� ∧ � ∧ − k2���,r�
Ḡ��;r,r�� = 4�k2Ī��r − r�� , �7�

where Ī is the identity dyad. This equation, resulting from
the Maxwell equations �3� and �4� and convolution �6�, has
to be solved with proper boundary conditions characterizing
the fields components at the interfaces, as well as the condi-
tion required by a retarded Green’s function �35,36�, i.e.,

Ḡ�� ;r ,r��→0 as �r−r��→�.
Finally, it is useful to recall the relations G	
�� ;r ,r��

=G
	�� ;r� ,r� and G	

* �� ;r ,r��=G	
�−� ;r ,r�� that are the

consequence of the microscopic reversibility in the linear-
response theory and the reality of the time dependent fields,
respectively.

A. Field correlation functions

From Eq. �1� it is evident that we are interested in the
time correlations between different components of the elec-
tric �magnetic� field at equal times. In the quantum theory
such correlations are described by the averages of symme-
trized products of the field components:

�E	�r,t�E
�r�,t��sym �
1

2
�E	�r,t�E
�r�,t� + E
�r�,t�E	�r,t�� .

�8�

Notice that, although in this paper we are using symmetrized
correlations, other possible forms of the correlation functions
could be more appropriate in other situations �33�. The cor-
relations �8� in terms of their Fourier transforms can be pre-
sented as

�E	�r,t�E
�r�,t��sym

=� � d�

2�

d��

2�
e−i��−���t�E	��;r�E


†���;r���sym. �9�

Using Eq. �6� these correlations can be expressed via the
correlations of the polarization field P, which obeys the
fluctuation-dissipation theorem �30�

�P	��;r�P

†���;r���sym =

����,r�
2

coth �

2kBT
����

− �����r − r���	
, �10�

expressed via the Fourier transformed P�� ;r�. Due to the
presence of the ��r−r�� factor these fluctuations are local.
Fluctuations of the sources in different points of the material
are non-coherent. This permits to assume that in the nonequi-
librium situation, when temperature T is different in different
points, the sources correlations are given by the same equa-
tions. We must emphasize that this assumption, even being
quite reasonable, is still a hypothesis, which is worth both of
further theoretical investigation and experimental verifica-
tion. The problem was discussed previously �see particularly
�41��, but in our opinion the conditions of applicability of the
theory has not been still established. The same assumption
was used by Polder and Van Hove �28� to calculate the ra-
diative heat transfer between two bodies with different tem-
peratures.

The assumption �10� �local source hypothesis� represents
the starting point of our analysis allowing for an explicit
calculation of the electromagnetic field also if the system is
not in global thermal equilibrium.

It is now evident that EM field in the vacuum gap is given
by the sum of the fields produced by the fluctuating polar-
izations in the materials filling respectively the half-space 1,
with the dielectric function �1��� and temperature T1, and
the half-space 2 with the dielectric function �2��� and tem-
perature T2. Then the Fourier transform of the electric field
correlations can be presented as

�E	��;r�E

†���;r���sym = ��1����

2
coth �

2kBT1
�S	


�1���;r,r��

+
�2����

2
coth �

2kBT2
�

�S	

�2���;r,r������ − ��� , �11�

where S	

�i� �i=1,2� is defined as convolution of two Green

functions
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S	

�i� ��;r,r�� = �

Vi

dr�G	���;r,r��G�

* ��;r�,r�� . �12�

Here V1 and V2 are the volumes occupied by the left and
right body, respectively, and the two terms in Eq. �11� corre-
spond to the parts of the pressure generated by the sources in
each body separately.

It is interesting to see how the global equilibrium is re-
stored when T1→T2=T in Eq. �11�. In this case Eq. �11� can
be written as

�E	��;r�E

†���;r���sym =



2
coth �

2kBT
���� − ���

� �
V1+V2

dr�����,r��G	���;r,r��

�G�

* ��;r�,r�� . �13�

The integral over the product of two Green functions is con-
nected with the imaginary part of the single Green function
by the important �41,42� relation

�
�

dr�����,r��G	���;r,r��G�

* ��;r�,r��

= 4� Im G	
��;r,r�� , �14�

where � is a volume restricted by a surface where the Green
function vanishes. Keeping in mind that in the vacuum gap
��=0, one can extend the integration in Eq. �13� over the the
whole space and using Eq. �14� one recovers the well-known
form of the electric fields fluctuation-dissipation theorem
�32� valid at a global thermal equilibrium:

�E	��;r�E

†���;r���sym

= 2� coth �

2kBT
�Im G	
��;r,r����� − ��� .

�15�

Notice that all fluctuations presented in this section include
both the vacuum �T=0� and the thermal fluctuations. These
can be identified with the first and second terms, respec-
tively, of the right-hand side �RHS� of the identity

coth �

2kBT
� = sgn���1 +

2

e���/kBT − 1
�, �� 0.

�16�

B. Pressure in terms of fluctuations

The pressure �1� can be presented in terms of the Fourier
transformed fields correlations:

Pneq�T1,T2,l� = −
1

8�
� � d�

2�

d��

2�
e−i��−���t

��	
���E	��;r�E

†���;r���

+ �B	��;r�B

†���;r�����r=r�. �17�

Here the electric and magnetic contributions to the total pres-
sure are explicit, and r is a point inside of the vacuum gap.
The stress tensor is in fact constant in the vacuum gap due to
the momentum conservation required by a stationary con-
figuration �see discussion in Sec. IV A�. In this equation we
omitted the symmetrization index since the average is taken
at the same point r=r�. Using Eq. �3� it is useful to rewrite
expression �17� in terms of the electric fields only �34� as

Pneq�T1,T2,l� = −
1

8�
� � d�

2�

d��

2�
e−i��−���t

�������E���;r�E�
†���;r�����r=r�. �18�

Here the pressure is expressed in terms of the correlations
�11�, and the operator

��� = �	
�	��
� +
1

k2�	���
�������� �19�

selects the electric and magnetic contributions, given by the
first and the second term in Eq. �19�, respectively.

From Eq. �16� it is possible to express the total pressure as
the sum

Pneq�T1,T2,l� = P0�l� + Pth
neq�T1,T2,l� , �20�

where the contribution of the zero-point �T=0� fluctuations,
P0�l�, is separated from that produced by the thermal fluc-
tuations, Pth

neq�T1 ,T2 , l�. Furthermore, thanks to Eq. �11� it is
possible to express the thermal component of the pressure
acting between the bodies as the sum of two terms

Pth
neq�T1,T2,l� = Pth

neq�T1,0,l� + Pth
neq�0,T2,l� . �21�

The pressure at thermal equilibrium Peq�T , l�, being a par-
ticular case of Eq. �20�, can be written as

Peq�T,l� = P0�l� + Pth
eq�T,l� . �22�

The pressures P0�l� and Pth
eq�T , l� are given by Eq. �18�,

where the field fluctuations are provided by Eq. �15� after the
substitution, respectively, of

coth �

2kBT
� → sgn��� , �23�

coth �

2kBT
� →

2 sgn���
e���/kBT − 1

. �24�

If one simply performs such substitutions, it is well known
that Eq. �18� diverges at T=0, and contains constant
�l-independent� terms in the thermal part. The divergence has
the same origin as the usual divergence of the zero-point
fields energy in quantum electrodynamics, while the constant
terms are related to the fact that we consider infinite bodies,
and hence we neglect the pressure of the radiation exerted on
the remote, external surfaces of the two bodies. To recover
the exact finite value for the pressures P0�l�, and exclude the
constant terms in Pth

eq�T , l�, one should regularize the Green
function in the RHS of Eq. �15� by subtracting the bulk part
Gij

bu, corresponding to a field produced by a pointlike dipole
in an homogeneous and infinite dielectric �7,39,40�. In fact,
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the Green function with both the observation point r and the
source point r� in the vacuum gap �see Appendix A 1� is
given by the sum

Gij��;r,r�� = Gij
sc��;r,r�� + Gij

bu��;r,r�� �25�

of a scattered and a bulk term. The subtraction of the bulk
term corresponds to the subtraction of the pressure at l→�,
as prescribed after Eq. �1�. The expressions for the pressure
at thermal equilibrium are given explicitly in Sec. III.

Concerning the thermal pressure out of thermal equilib-
rium Pth

neq�T1 ,T2 , l� of Eq. �20�, it can be obtained from Eq.
�18� by using Eq. �11� and the substitution �24�. Also in this
case the thermal pressure Pth

neq�T1 ,T2 , l� contains an
l-dependent and a constant term, as it happens for Pth

eq�T , l�
before being regularized. Differently from the equilibrium
case, here the origin of the constant terms is not only due to
the absence of the pressure acting on the remote surfaces, but
is also related to the fact that out of thermal equilibrium there
is a net momentum transfer between the bodies. In this case
the constant terms can remain also after considering bodies
of finite thickness, and can even be different for the two
bodies, depending on the external radiations. In Secs. IV and
V we will calculate Pth

neq�T1 ,T2 , l� for two bodies filling two
infinite half-spaces, and we will mainly discuss the pure
l-dependent component. The constant terms will be dis-
cussed in Sec. VI for the general case of bodies of finite
thickness, with impinging the external radiations at different
temperatures.

C. Electromagnetic waves in surface optics

In this work we formulate the electromagnetic problem in
terms of s- and p-polarized vector waves and in terms of the
Fresnel coefficients for the interfaces �37�. Such notations
are very useful in surface optics. We will also employ the
angular spectrum representation for the description of the
EM and polarization vectors.

If x̂, ŷ, and ẑ are the coordinate unit vectors �with real
norm equal to 1�, one can write the position vector as r=R
+zẑ, where the capital letter refers to vectors parallel to the
interface �R��Rx ,Ry ,0��. Let us write the electromagnetic
�complex� wave vector in the medium m with the complex
dielectric function �m���=�m� ���+ i�m� ��� as

q�m���� = Q� qz
�m�ẑ . �26�

Here the sign ��� corresponds to an upward-propagating �or
evanescent� wave, and the sign ��� corresponds to a
downward-propagating �or evanescent� wave. The vector Q
��Qx ,Qy ,0� is the projection �always real� of q�m���� on the
interface and the z component of the wave vector, and

qz
�m� = ��mk2 − Q2, �27�

is a complex number with a positive imaginary part, with
positive real part in case Im qz

�m�=0. Real and imaginary
parts of qz

�m� are expressed by the following relations:

Re qz
�m� =�1

2
	��m���k2 − Q2� + ��m� ���k2 − Q2�
 , �28�

Im qz
�m� =�1

2
	��m���k2 − Q2� − ��m� ���k2 − Q2�
 . �29�

Then, if the medium m is nonabsorbing ��m� =0�, for Q
���m� k the wave vector qz

�m� is real and corresponds to a
wave propagating in the medium m, while for Q���m� k the
wave vector qz

�m� is imaginary and corresponds to evanescent
wave in the medium m. The following identities will be use-
ful:

2 Im qz
�m� Re qz

�m� = k2�m� ��� , �30�

�Q2 + �qz
�m��2�Re qz

�m� = k2 Re��m
*���qz

�m�� , �31�

�Q2 − �qz
�m��2�Im qz

�m� = k2 Im��m
*���qz

�m�� . �32�

It is worth noticing that the wave vectors q�m���� lie in the

plane of incidence spanned by Q̂ and ẑ. Then one can intro-
duce the s- and p-unit complex polarization vectors

es
�m���� = Q̂ ∧ ẑ , �33�

ep
�m���� = es

�m���� ∧ q̂�m���� =
Qẑ� qz

�m�Q̂
��m���k

, �34�

that are vectors transversal and longitudinal to that plane,
respectively. Usually the polarization vector es

�m����
�ep

�m����� is called transverse electric �TE� �transverse mag-
netic �TM�� since it corresponds to the electric �magnetic�
field transverse to the plane of incidence.

Our geometry consists of two half-spaces labeled with
m=1,2 separated by a vacuum gap. Inside of the gap the
wave vector q and the polarization vectors e���� are not
labeled and are obtained, respectively, from the definitions
�26�, �27�, �33�, and �34� by omitting the apices �m�, and
setting �m=1.

Finally we can introduce the well known reflection and
transmission Fresnel coefficients for the vacuum gap-
dielectric interfaces, which for the s- and p-wave compo-
nents are

rm
s =

qz − qz
�m�

qz + qz
�m� , rm

p =
qz�m − qz

�m�

qz�m + qz
�m� , �35�

tm
s =

2qz
�m�

qz
�m� + qz

, tm
p =

2��m���qz
�m�

qz
�m� + qz�m���

. �36�

In particular, the coefficients rm relate the radiation in the
vacuum gap impinging the interface m and its part reflected
back into the vacuum gap. The coefficients tm relate the ra-
diation impinging the interface m from the interior of the
dielectric m and its part transmitted into the vacuum gap �see
Appendix A�.

III. PRESSURE AT THERMAL EQUILIBRIUM

In this section, we briefly recall the main results of the
pressure in a system at thermal equilibrium. We present the
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thermal component of the pressure as the sum of PW and
EW components, and in terms of real frequencies, which will
prove useful for the rest of the discussion. The results we
show for the pressure at equilibrium are regularized �see dis-
cussion after Eq. �24��.

The Lifshitz surface-surface pressure at thermal equilib-
rium can be expressed in terms of real frequencies as

Peq�T,l� = −


2�2�
0

�

d� coth �

2kBT
�

� Re��
0

�

dQ Qqzg�Q,��� , �37�

where

g�Q,�� = �
�=s,p

r1
�r2
�e2iqzl

D�

= �
�=s,p

��r1
�r2
��−1e−2iqzl − 1�−1.

�38�

In the previous equation the multiple reflections are de-
scribed by the factor

D� = 1 − r1
�r2
�e2iqzl, �39�

and the reflection Fresnel coefficients rm
� for the vacuum-

dielectric interfaces are defined in Eq. �35�.
By performing the Lifshitz rotation on the complex plane

it is possible to write Eq. �37� in terms of imaginary frequen-
cies:

Peq�T,l� =
kBT

16�l3�
0

�

dx x2� ��10 + 1���20 + 1�
��10 − 1���20 − 1�

ex − 1�−1

+
kBT

�c3 �
n=1

�

�n
3�

1

�

dp p2g�p,i�n� , �40�

where p=�1+c2Q2 /�n
2. The dielectric functions that enter to

g�p , i�n� must be evaluated at imaginary frequencies �1,2

=�1,2�i�n�, where �n=2�kBTn /. In the first term of Eq. �40�
we have also introduced the static values of the dielectric
functions �10=�1�0� and �20=�2�0�.

The pressure at thermal equilibrium includes contribu-
tions from zero-point fluctuations P0�l� and from thermal
fluctuations Pth

eq�T , l� as Eq. �22� shows. P0�l� can be ex-
tracted from Eq. �37� with the substitutes Eq. �23� or from
Eq. �40� as the limit of continuous imaginary frequency. The
final result for the T=0 pressure is

P0�l� =


2�2c3�
0

�

d��
1

�

dp p2�3g�p,i�� . �41�

The pressure P0�l� admits two important limits, i.e., the van
der Waals–London and the Casimir-Polder behaviors, valid
at small and large distances, respectively, in respect to the
characteristic length scale �opt fixed by the absorption spec-
trum of the bodies �typically is of the order of fraction of
microns�.

The behavior of the thermal component Pth
eq�T , l� is related

to a second length scale, i.e., the thermal wavelength

�T �
c

kBT
, �42�

which at room temperature is �7.6 �m.
Then, the zero-point fluctuations dominate over the ther-

mal contribution at small distances l��T. In this limit be-
havior of the pressure is determined by the characteristic
length scale �opt��T. In the interval �opt� l��T one enters
the Casimir-Polder regime where the pressure decays like
1 / l4. For distances l��opt the force instead exhibits the 1 / l3

van der Waals–London dependence. The possibility of iden-
tifying the Casimir-Polder regime depends crucially on the
value of the temperature. The temperature should be in fact
sufficiently low in order to guarantee the condition �T
��opt.

The last part of this section focuses on the thermal com-
ponent of the pressure that will often be used along the rest
of the paper. The pressure Pth

eq�T , l� can be obtained from Eq.
�37� by using �24�. Since such a component of the pressure
will be compared with that out of thermal equilibrium, we
show here explicitly its expression for PW and EW contri-
butions:

Pth
eq,PW�T,l� = −



�2�
0

�

d�
1

e�/kBT − 1
�

0

k

dQ Qqz

� �
�=s,p

Re�r1
�r2
�e2iqzl� − �r1

�r2
��2

�D��2
, �43�

Pth
eq,EW�T,l� =



�2�
0

�

d�
1

e�/kBT − 1
�

k

�

dQ Q Im qze
−2l Im qz

� �
�=s,p

Im�r1
�r2
��

�D��2
. �44�

In particular at high temperatures, or equivalently at large
distances defined by the condition

l� �T, �45�

the leading contribution to the pressure is given by the ex-
pression for the total force �7�

Pth
eq�T,l� =

kBT

16�l3�
0

�

dx x2��10 + 1

�10 − 1

�20 + 1

�20 − 1
ex − 1�−1

.

�46�

It corresponds to the first term in Eq. �40� and is entirely due
to the thermal fluctuations of the EM field. In Ref. �7� the
asymptotic behavior �46� has been found after the contour
rotation in the complex � plane of the EW term �44�, that is
partially canceled by the PW term �43�.

One can note that in this regime only the static value of
the dielectric functions is relevant. The pressure �46� is pro-
portional to the temperature and is independent from the
Planck constant as well as from the velocity of light. We will
call this equation the Lifshitz limit. The pressure �46� can be
obtained from the thermal free energy F=E−TS of the elec-
tromagnetic field �per unit area� according to the thermody-
namic identity P=−��F /�l�T, where E and S are the thermal
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energy and entropy, respectively. It is interesting to note that,
differently from the free energy, the thermal energy E de-
creases exponentially with l, which means that the pressure
�46� has pure entropic origin �38�.

It is important that at large separations only the p polar-
ization contributes to the force �see, for example, in �24�, the
detailed derivation of the PW and EW components�. The
reason is that for low frequencies the s-polarized field is
nearly pure magnetic, but the magnetic field penetrates freely
into a nonmagnetic material �43�.

In the limit �10,�20→� we find the force between two
metals

Pth
eq,met�T,l� =

kBT

8�l3��3� . �47�

Let us empathize that this result was obtained for interaction
between real metals �44�. For “ideal mirrors” considered by
Casimir, both polarizations of electromagnetic fields are re-
flected. In this case there will be an additional factor 2 in Eq.
�46� due to the contribution of the s polarization. This ideal
case can be realized using superconducting mirrors.

It is useful to note that the surface-surface pressure
Peq�T , l� given by the Lifshitz result �40� hides a nontrivial
cancellation between the components of the pressure related
to real and imaginary values of the EM wave vectors, lead-
ing, respectively, to the propagating �PW� and evanescent
�EW� wave contributions �17,45�. This study deserves care-
ful investigation since for a configuration out of thermal
equilibrium such cancellations are no longer present, and the
PW and EW contribution will provide different asymptotic
behaviors. The new effect, as we will see, is particularly
important if one of the two bodies is a rarefied gas.

IV. PRESSURE OUT OF THERMAL EQUILIBRIUM
BETWEEN TWO INFINITE DIELECTRIC HALF-SPACES

As was discussed above �see Eqs. �11� and �21�� each
body contributes separately to the thermal pressure. In par-
ticular, the pressure resulting from the thermal fluctuations in
the body 1 is

Pth
neq�T,0,l� = −



16�3�
0

�

d�
�1����

e�/kBT − 1

�Re�����S��
�1���;r1,r2���r1=r2

, �48�

where r1=r2 is a point in the vacuum gap and the function S
is defined in Eq. �12�. In Eq. �48� we used the parity prop-
erties �����=−���−�� and S���� ;r1 ,r2�=S��

* �−� ;r1 ,r2� to
restrict the range of integration to the positive frequencies. It
is evident that Pth

neq�0,T , l� can be expressed similarly to Eq.
�48�, but with �1����→�2���� and S��

�1�→S��
�2�.

Below we specify the expressions of the tensors S��
�1� and

S��
�2� �Sec. IV A�, calculate the electric and magnetic contri-

butions to the pressure �Sec. IV B�, and finally provide the
result for the total pressure in terms of PW and EW compo-
nents �Sec. IV C�. The total pressure will be rewritten in a
different form in Sec. V by using a powerful expansion in
multiple reflections. In the present and in the next Sec. V the

pressure is calculated for two infinite bodies �see discussion
at the end of Sec. II B�.

A. S functions

In this subsection we show the result for the tensors S��
�1�

and S��
�2� defined by Eq. �12�. In terms of the lateral Fourier

transforms s��
�1��� ;Q ,z1 ,z2� and s��

�2��� ;Q ,z1 ,z2� one has

S����;r1,r2� =� d2Q

�2��2eiQ·�R1−R2�s����;Q,z1,z2� . �49�

By choosing the x axis parallel to the vector D=R1−R2 and
defining � as the angle between Q and D one gets that Qx
=Q cos �, Qy =Q sin � and the polarization vectors become

es
�m���� = ��sin ��,− cos � sin �/�sin ��,0� , �50�

ep
�m���� =

1
��mk

��qz
�m� cos �, � qz

�m� sin �,Q� . �51�

Here it is evident that �es
�m�����2=1 and

�ep
�m�����2 =

Q2 + �qz
�m��2

��m�k2 . �52�

After explicit calculation using the Green function given
in Appendix A we find for the s��

�1� and s��
�2� functions the

explicit expressions

s��
�1���;Q,z1,z2� =

4�2k2

�1����
Re qz

�1�

�qz
�1��2 �

�=s,p

�t1
��2

�D��2
�e�

�1��+ ��2

��e�,��+ �e�,�
* �+ �ei�qzz1−qz

*z2�

+ e�,��+ �e�,�
* �− �ei�qzz1+qz

*z2�e−2iqz
*lr2

�*

+ e�,��− �e�,�
* �+ �e−i�qzz1+qz

*z2�e2iqzlr2
�

+ e�,��− �e�,�
* �− �e−i�qzz1−qz

*z2�

�e−4 Im qzl�r2
��2� , �53�

s��
�2���;Q,z1,z2� =

4�2k2

�2����
Re qz

�2�

�qz
�2��2

e−2l Im qz �
�=s,p

�t2
��2

�D��2
�e�

�2��− ��2

� �e�,��− �e�,�
* �− �e−i�qzz1−qz

*z2�

+ e�,��− �e�,�
* �+ �e−i�qzz1+qz

*z2�r1
�*

+ e�,��+ �e�,�
* �− �ei�qzz1+qz

*z2�r1
�

+ e�,��+ �e�,�
* �+ �ei�qzz1−qz

*z2��r1
��2� , �54�

where D� is defined in Eq. �39�.
It is worth noticing that in the nonequilibrium but station-

ary regime the fields correlation functions s�1,2� are not uni-
form in the vacuum cavity, while on the contrary the Max-
well stress tensor Tzz �which is related to the momentum
flux� has the same value in each point of the vacuum gap.
This is valid also at equilibrium, and is a direct consequence
of the momentum conservation required by a stationary con-

CASIMIR-LIFSHITZ FORCE OUT OF … PHYSICAL REVIEW A 77, 022901 �2008�

022901-7



figuration. To show this property one can set z1=z2=z in Eq.
�53�, where the dependence on z appears only in the expo-
nential factors �the same would happen for Eq. �54��.

Let us note that now the first and the last terms in such an
expression are proportional to e2z Im qz and e−2z Im qz, respec-
tively, while the second and the third terms are proportional
to e−2iz Reqz and e2iz Reqz, respectively. As it will be clear in the
next Sec. IV B the first and the last terms will be responsible
for the PW contribution to the pressure �for which Im qz=0�,
while the second and the third terms will be responsible for
the EW contribution �for which Re qz=0�. It is then evident
that the position z disappears in the Maxwell stress tensor.

B. Electric and magnetic contributions to the pressure

The pure electric contribution to the pressure Pth
neq�T ,0 , l�

is due to the first term in Eq. �19�

�	
�	��
�S��
�1����;r1,r2��r1=r2,z1=0

= ��S11
�1� + S22

�1� − S33
�1���r1=r2,z1=0

=
2�k2

�1�
�

0

�

dQ Q
Re qz

�1�

�qz
�1��2

� � �t1
s �2

�Ds�2
�es

�1��+ ��2�1 + r2
s*e−2iq

z
*l + r2

se2iqzl

+ �r2
s �2e−4l Im qz� +

�t1
p�2

�Dp�2
�ep

�1��+ ��2 �qz�2 − Q2

k2

−
�qz�2 + Q2

k2 r2
p*e−2iq

z
*l −

�qz�2 + Q2

k2 r2
pe2iqzl

+
�qz�2 − Q2

k2 �r2
p�2e−4l Im qz�� , �55�

while the magnetic contribution is related by the second term
in Eq. �19�, and is given by

1

k2�	
�	���
�������S��
�1����;r1,r2��r1=r2,z1=0

=
1

k2�
0

� dQ

2�
Q�

0

2� d�

2�
eiQD cos ��	�3�3��s11 + s22�

+ �Q2�s33 − s22 − s11� + Qx
2s11 + Qy

2s22 + QxQy�s12 + s21��

+ �i�3�Qys23 + Qxs13� − i�3��Qys32 + Qxs31��
�D=0,z1=z2=0,

�56�

where s=s�1�. One can show that, as it happens for the equi-
librium case, the magnetic contribution �56� coincides with
the electric one �55�, after the interchange of the polarization
indexes s↔p.

C. Final expression for the pressure

Taking the sum of Eqs. �55� and �56� one finds that the
pressure Pth

neq�T ,0 , l� in Eq. �48� is

Pth
neq�T,0,l� = −



8�2�
0

�

d�
1

e�/kBT − 1
�

0

�

dQ Q
Re qz

�1�

�qz
�1��2

� � �t1
s �2

�Ds�2
��qz

2 + �qz�2��1 + �r2
s �2e−4 Im qzl� + 2�qz

2

− �qz�2�Re�r2
se2iqzl�� +

�t1
p�2

�Dp�2
Q2 + �qz

�1��2

��1����k2 ��qz
2

+ �qz�2��1 + �r2
p�2e−4 Im qzl� + 2�qz

2

− �qz�2�Re�r2
pe2iqzl��� . �57�

From this general expression one can extract the contribution
of the propagating waves �PW� in the empty gap, for which
qz is real and hence qz

2= �qz�2, and the contribution of the
evanescent waves �EW�, for which qz is pure imaginary and
hence qz

2=−�qz�2:

Pth
neq,PW�T,0,l�

= −


4�2�
0

�

d�
1

e�/kBT − 1
�

0

k

dQ Q
Re qz

�1�

�qz
�1��2

qz
2

�� �t1
s �2

�Ds�2
�1 + �r2

s �2� +
�t1

p�2

�Dp�2
Q2 + �qz

�1��2

��1����k2 �1 + �r2
p�2�� ,

�58�

Pth
neq,EW�T,0,l�

= −


2�2�
0

�

d�
1

e�/kBT − 1
�

k

�

dQ Q
Re qz

�1�

�qz
�1��2

qz
2e−2l Im qz

�� �t1
s �2

�Ds�2
Re�r2

s� +
�t1

p�2

�Dp�2
Q2 + �qz

�1��2

��1����k2 Re�r2
p�� . �59�

Now, using helpful identities �46�

Re qz
�1��t1

s �2

�qz
�1��2

=
Re qz�1 − �r1

s �2� + 2 Im qz Im r1
s

�qz�2
, �60�

Re��1
*���qz

�1���t1
p�2

��1�����qz
�1��2

=
Re qz�1 − �r1

p�2� + 2 Im qz Im r1
p

�qz�2
,

�61�

and similar ones for 1↔2, it is possible to express
Pth

neq,PW�T ,0 , l� and Pth
neq,EW�T ,0 , l� as

Pth
neq,PW�T,0,l� = −



4�2�
0

�

d�
1

e�/kBT − 1
�

0

k

dQ Qqz

� �
�=s,p

�1 − �r1
��2��1 + �r2

��2�
�D��2

, �62�
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Pth
neq,EW�T,0,l� =



�2�
0

�

d�
1

e�/kBT − 1
�

k

�

dQ Q

�Im qze
−2l Im qz �

�=s,p

Im�r1
��Re�r2

��
�D��2

.

�63�

Note that the PW term �62� contains a distance independent
contribution that will be discussed in the next section.

The pressure Pth
neq�0,T , l� can be obtained following the

same procedure but using the function sij
�2� given by Eq. �54�.

The result can be obtained without calculation simply by the
interchange r1

�↔r2
� in Eqs. �62� and �63�.

V. ALTERNATIVE EXPRESSION FOR THE PRESSURE

The thermal pressure between two bodies in a configura-
tion out of thermal equilibrium was derived in the previous
section, and expressed in terms of Eqs. �62� and �63�. In this
section we present an alternative expression for such a pres-
sure, explicitly in terms of the pressure at thermal equilib-
rium. In Sec. V A we discuss the case of bodies made of
identical materials �1=�2, in Sec. V B we discuss the general
case of bodies made of different materials, and finally in Sec.
V C we show numerical results for the pressure between dif-
ferent bodies held at different temperatures.

A. Pressure between identical bodies

In the case of two identical materials the pressure between
bodies can be found without any calculations using the fol-
lowing simple consideration. Let the body 1 be at tempera-
ture T and the body 2 be at T=0, then the thermal pressure
will be Pth

neq�T ,0 , l�. Because of the material identity the pres-
sure will be the same if we interchange the temperatures of
the bodies: Pth

neq�T ,0 , l�= Pth
neq�0,T , l�. In general, we know

from Eq. �21� that the thermal part of the pressure is given by
the sum of two terms each of them corresponding to a con-
figuration where only one of the bodies is at nonzero tem-
perature, i.e., Pth

neq�T1 ,T2 , l�= Pth
neq�T1 ,0 , l�+ Pth

neq�0,T2 , l�. It is
now evident that at equilibrium, where T1=T2=T, the latter
equation gives Pth

neq�T ,0 , l�= Pth
eq�T , l� /2 and we find for the

total pressure

Pth
neq�T1,T2,l� =

Pth
eq�T1,l�

2
+

Pth
eq�T2,l�

2
. �64�

Therefore, the pressure between identical materials is ex-
pressed only via the equilibrium pressures at T1 and T2. The
same result was obtained by Dorofeyev �25� by an explicit
calculation of the pressure. It is interesting to note that Eq.
�64� is valid not only for the plane-parallel geometry, but for
any couple of identical bodies of any shape displaced in a
symmetric configuration with respect to a plane.

B. Pressure between different bodies

It is convenient to present the general expression of the
pressure in a form which reduces to Eq. �64� in the case of

identical bodies. It can be done using Eq. �21� where
Pth

neq�T ,0 , l� is given by Eqs. �62� and �63�, and Pth
neq�0,T , l� is

obtained from Pth
neq�T ,0 , l� after the interchange r1

�↔r2
�.

In Pth
neq�T ,0 , l� we can separate symmetric and antisym-

metric parts in respect to permutations of the bodies 1↔2.
The factors sensitive to such a permutations in Eqs. �62� and
�63� are, respectively,

�1 − �r1�2��1 + �r2�2� = �1 − �r1r2�2� + ��r2�2 − �r1�2� , �65�

Im�r1�Re�r2� =
1

2
Im�r1r2� +

1

2
�Im�r1�Re�r2� − Re�r1�Im�r2�� ,

�66�

where we omitted the index �. The symmetric parts, �1
− �r1r2�2� for PW and Im�r1r2� /2 for EW, are responsible for
the equilibrium term Pth

eq�T , l� /2 in the nonequilibrium pres-
sure as Eq. �64� shows. Concerning the EW terms, if one
takes the symmetric part of Eqs. �63�, one obtains exactly
Pth

eq,EW�T , l� /2, where Pth
eq,EW�T , l� coincides with the equilib-

rium EW component �44�. The analysis of the PW term is
more delicate; in fact, if one takes the symmetric part �1
− �r1r2�2� of Eq. �62�, one obtains P̄th

eq,PW�T , l� /2, where

P̄th
eq,PW�T,l� = −



2�2�
0

� d�

e�/kBT − 1

� �
0

k

dQ Qqz �
�=s,p

1 − �r1
�r2
��2

�D��2
. �67�

The above equation is different from Pth
eq,PW�T , l� given by

Eq. �43�.
The difference has a clear origin. In fact the pressure out

of equilibrium, from which Eq. �67� is derived, is calculated
for bodies occupying two infinite half-spaces. On the con-
trary the equilibrium pressure Pth

eq,PW�T , l� was obtained after
proper regularization, and hence taking into account the pres-
sure exerted on the external surfaces of bodies of finite thick-
ness �see discussion after Eq. �24��. Then the difference be-
tween Eqs. �43� and �67� is just a constant:

P̄th
eq,PW�T,l� = Pth

eq,PW�T,l� −
4�T4

3c
, �68�

where �=�2kB
4 /60c23 is the Stefan-Boltzmann constant.

Using the following multiple-reflection expansion of the fac-
tor �D��−2:

1

�1 − Re2iqzl�2
=

1

1 − �R�21 + 2 Re �
n=1

�

Rne2inqzl� , �69�

where R=r1
�r2
�, it is not difficult to show explicitly that Eqs.

�43� and �67� are related by Eq. �68�. The constant term in
Eq. �68� comes from the first term of this expansion.

Collecting together the symmetric and antisymmetric
parts we can finally present the nonequilibrium pressure in
the following useful form:
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Pth
neq,PW�T1,T2,l� =

Pth
eq,PW�T1,l�

2
+

Pth
eq,PW�T2,l�

2
− B�T1,T2�

+  Pth
PW�T1,l� −  Pth

PW�T2,l� , �70�

Pth
neq,EW�T1,T2,l� =

Pth
eq,EW�T1,l�

2
+

Pth
eq,EW�T2,l�

2
+  Pth

EW�T1,l�

−  Pth
EW�T2,l� . �71�

This is one of the main results of this paper. Here
B�T1 ,T2�=2��T1

4+T2
4� /3c is a l-independent term, discussed

in Eq. �68�. The equilibrium pressures Pth
eq,PW�T , l� and

Pth
eq,EW�T , l� are defined by Eqs. �43� and �44� and do not

contain l-independent terms. The expressions  Pth
PW�T , l� and

 Pth
EW�T , l� are antisymmetric with respect to the interchange

of the bodies 1↔2 and are defined as

 Pth
PW�T,l� = −



4�2�
0

�

d�
1

e�/kBT − 1
�

0

k

dQ Qqz

� �
�=s,p

�r2
��2 − �r1

��2

�D��2
, �72�

 Pth
EW�T,l� =



2�2�
0

�

d�
1

e�/kBT − 1
�

k

�

dQ Q Im qze
−2l Im qz

� �
�=s,p

Im�r1
��Re�r2

�� − Im�r2
��Re�r1

��
�D��2

. �73�

Let us note that the EW term �73� goes to 0 for l→� because
evanescent fields decay at large distances. However, the PW
term �72� contains a l-independent component since in the
nonequilibrium situation there is momentum transfer be-
tween bodies. This l-independent component can be directly
extracted from Eq. �72� using the expansion �69�. This ex-
pansion shows explicitly the contributions from multiple re-
flections. The distance independent term corresponds to the
first term in the expansion �69�, and it is related with the
radiation that pass the cavity only once, i.e., without being
reflected. Finally it is possible to write  Pth

PW�T , l� as the sum
 Pth

PW�T , l�= Pth,a
PW�T�+ Pth,b

PW�T , l�, where the constant and
the pure l-dependent terms are respectively

 Pth,a
PW�T� = −



4�2�
0

�

d�
1

e�/kBT − 1
�

0

k

dQ Qqz

� �
�=s,p

�r2
��2 − �r1

��2

1 − �r1
�r2
��2

, �74�

 Pth,b
PW�T,l� = −



2�2 �
n=1

�

Re��
0

�

d�
1

e�/kBT − 1
�

0

k

dQ Qqz

� �
�=s,p

�r2
��2 − �r1

��2

1 − �r1
�r2
��2

�r1
�r2
��ne2inqzl� . �75�

At thermal equilibrium T1=T2=T the sum of Eqs. �70� and
�71� provides the Lifshitz formula except for the term
−4�T4 /3c, which is canceled due to the pressure exerted on

the remote external surfaces of the bodies, as explicitly
shown in the next section. Out of thermal equilibrium, but
for identical bodies, r1

�=r2
�, the antisymmetric terms disap-

pear:  Pth
PW�T , l�= Pth

EW�T , l�=0. In this case, Eq. �64� is
reproduced.

It is now clear that, due to the antisymmetric terms, Eq.
�64� is not valid if the two bodies are different. The problem
of the interaction between two bodies with different tempera-
tures was previously considered by Dorofeyev �25� and
Dorofeyev, Fuchs, and Jersch �26�. The authors used a dif-
ferent method, based on the generalized Kirchhoff’s law �6�.
The general formalism of �25� agrees with our Eqs. �74� and
�75�. However, our results are in disagreement with the re-
sults of �26�, where Eq. �64� was found to be valid also for
bodies of different materials, so that we argue that the results
of the last paper were based on some inconsistent derivation.

C. Numerical results for the pressure between two different
bodies out of thermal equilibrium

In this section we show the results of the calculation of
the pressure between two different bodies, for configurations
both in and out of thermal equilibrium. In Figs. 2 and 3 we
show the numerical results of the pressure for a system made
of fused silica �SiO2� for the left-side body 1 and low con-
ductivity silicon �Si� for the right-side body 2. In both cases
the experimental values of the dielectric functions in a wide
range of frequencies were taken from the handbook �47�. In
particular in Fig. 2 we show the thermal pressure
Pth

neq�T1 ,T2 , l�, sum of Eqs. �70� and �71�, as a function of the
separation l between 0.5 �m and 5 �m. Here we omit the
l-independent terms. The pressure is presented for the con-
figuration �T1=300 K, T2=0 K� �solid line� and for the con-
figuration �T1=0 K, T2=300 K� �dashed�. We plot also the
thermal part of the force at thermal equilibrium, which is the
sum of Eqs. �43� and �44�, at the temperature T=300 K �dot-
ted�. The sum of the two configurations out of thermal equi-
librium provides the force at thermal equilibrium. In Fig. 3
we show the relative contribution Pth / P0 of the thermal com-
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FIG. 2. Thermal component �only l-dependent part� of the pres-
sure out of equilibrium for fused silica-silicon system in the con-
figuration �T1=300 K, T2=0 K� �solid� and in the configuration
�T1=0 K, T2=300 K� �dashed�. We plot also the thermal part of the
force at thermal equilibrium at T=300 K �dotted�.
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ponent �only the l-dependent terms� of the pressure with re-
spect to the vacuum pressure P0�l� given by Eq. �41�.

We performed the same analysis for a different couple of
materials, and in particular we considered sapphire �Al2O3�
for the left-side body 1, and fused silica �SiO2� for the right-
side body 2. Also in this case the experimental values of the
dielectric functions were taken from the handbook �47�. The
results of such calculations are shown in Figs. 4 and 5, where
the same quantities of Figs. 2 and 3 were plotted.

From Figs. 2 and 3 it is evident that at small separations
the pressure at �T1=300 K, T2=0 K� is lower than that at
�T1=0 K, T2=300 K�, and the situation is inverted at large
separations. This is a characteristic feature of the materials
we use. In fact for the sapphire-fused silica system we found
the opposite behavior, as it is evident from Figs. 4 and 5.
This behavior is the result of the interplay between the rel-
evant frequencies in the problem, i.e., the thermal wave-
length �T, the separation l, and the different positions of the
resonances in the dielectric functions for the different
couples of materials.

VI. PRESSURE BETWEEN TWO THICK SLABS

In Secs. IV and V we derived and discussed the nonequi-
librium pressure between two materials filling two infinite
half-spaces. We did not regularize the pressure, i.e., we did
not consider the extra pressure due to the presence of the
external surfaces of the bodies. This would simply add new
l-independent terms. We focused mainly on the l-dependent
part. In this section we fill this gap, and derive the exact
constant terms of the pressure for the general case of two
bodies of finite thicknesses at different temperatures, in the
presence of external radiation.

At thermal equilibrium, due to the momentum’s conserva-
tion theorem, the pressure cannot contain constant terms. In
fact both Eqs. �43� and �44� go to zero as l goes to infinity.
Here the regularization was performed by subtracting the
bulk part of the full Green function �see discussion after Eq.
�24��. The inclusion of the bulk part would add an extra
l-independent term −4�T4 /3c, as it is evident from the non-
regularized Eq. �68�. Physically the origin of this extra term
is due to the fact that the bodies are considered to be infinite
and hence have no external surfaces. The presence of the
external surfaces generates an extra pressure 4�T4 /3c, and
finally the total pressure becomes l independent. It is worth
noticing that at thermal equilibrium the force acting on one
body is exactly the same �apart from the sign� of that acting
on the second body.

Out of thermal equilibrium, for bodies occupying two
half-spaces, one finds the nonregularized pressure given by
the sum of Eqs. �62� and �63�. In this case the pressure con-
tains distance-independent components, and is the same on
both materials �apart from the sign�. For bodies of finite
thickness one should account for extra l-independent terms
in the pressure due to the presence of two more interfaces
between the bodies and the external regions �see Fig. 6�
where, in general, the radiation is not in equilibrium with the
bodies. In this configuration the pressure acting on the body
1 can be different from that acting on the body 2. It should be
noted that the new l-independent terms should be added to
Eqs. �70� and �71�, and originate from the PW waves only.
Below we derive the result for such a general configuration
by manipulating Eq. �62�.
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FIG. 3. Relative contribution of the thermal component of the
pressure �only l-dependent part� out of equilibrium for fused silica-
silicon system in the configuration �T1=300 K, T2=0 K� �solid�,
�T1=0 K, T2=300 K� �dashed�, and at thermal equilibrium at T
=300 K �dotted�.
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FIG. 4. Same of Fig. 2, for the sapphire-fused silica system.
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FIG. 5. Same as Fig. 3, for the sapphire-fused silica system.
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Let us consider the case where both the bodies occupy
thick slabs, as represented in Fig. 6. On the left of the body
1 impinges radiation at temperature Tbb1, while on the right
of the body 2 impinges radiation at temperature Tbb2. Then
the pressure acting on the body 1 and body 2 will be respec-
tively:

P1,th
neq�Tbb1,T1,T2,l� = Pth

neq�T1,T2,l� + PL�T1,Tbb1� , �76�

P2,th
neq�T1,T2,Tbb2,l� = − Pth

neq�T1,T2,l� + PR�T2,Tbb2� .

�77�

Here Pth
neq�T1 ,T2 , l� is the pressure out of thermal equilibrium

given by the sum of Eqs. �62� and �63� for materials filling
infinite half-spaces. PL is the pressure due to the presence of
a new left-side interface of the material 1 while PR is the
pressure due to the presence of a new right-side interface of
the material 2. Both PL and PR are constant terms and in-
clude two contributions: The pressure of the external radia-
tion impinging on the outer interface and the back reaction
produced by the emission of radiation from the body to the
vacuum half-space.

For thick enough slabs, it is possible to calculate the terms
PL and PR using the expression of the pressure acting on a
body h which occupies an infinite half-space. In general, it
has a dielectric function �h, is at temperature Th, and a ther-
mal radiation with temperature Tbb impinges on its free sur-
face. There are two possible configurations. One corresponds
to the body h on the left and radiation impinging from the
right, the second correspond to the body on the right and
radiation impinging from the left. In the two cases the pres-
sures can be expressed in terms of the pressure between two
infinite bodies Pth

neq,PW�T1 ,T2 , l� derived in the previous sec-
tion and are, respectively,

PR�Th,Tbb� = ��Pth
neq,PW�0,Tbb,l� + Pth

neq,PW�Th,0,l����2=1
�1��h,

�78�

PL�Th,Tbb� = � − �Pth
neq,PW�Tbb,0,l� + Pth

neq,PW�0,Th,l����1=1
�2��h.

�79�

Here Pth
neq,PW�T ,0 , l� and Pth

neq,PW�0,T , l� are given by Eq.
�62�. After explicit calculations, one finds

�Pth
neq,PW�0,Tbb,l���2=1

�1��h = −
2�Tbb

4

3c
− Pd�Tbb� , �80�

�Pth
neq,PW�Th,0,l���2=1

�1��h = −
2�Th

4

3c
+ Pd�Th� , �81�

where

Pd�T� =


4�2�
0

�

d�
1

e�/kBT − 1
�

0

k

dQ Qqz �
�=s,p

�rh
��2,

�82�

and rh
� are defined similar to Eq. �35� but using the dielectric

function �h. Finally, we obtain the main result of this section,
i.e., Eq. �78� becomes

PR�Th,Tbb� = −
2��Th

4 + Tbb
4 �

3c
+ Pd�Th� − Pd�Tbb� . �83�

In the same way it is possible to calculate PL�Th ,Tbb� from
Eq. �79�, and it is evident that the result will be

PL�Th,Tbb� = − PR�Th,Tbb� . �84�

At equilibrium Th=Tbb=T we find that PR�T ,T�=−PL�T ,T�
=−4�T4 /3c does not depend on material characteristics and
coincides with the pressure of the blackbody radiation. It is
also interesting to see that for a white-body �W�, correspond-
ing to �rh

��2=1, and for a blackbody �B�, corresponding to
�rh
��2=0, one obtains

PR�0,T�W = −
4�T4

3c
, PR�0,T�B = −

2�T4

3c
, �85�

PR�T,0�W = 0, PR�T,0�B = −
2�T4

3c
. �86�

From these relations one can see that PR�0,T�W / PR�0,T�B

=2, as it should be for the radiation pressure. Furthermore,
one has that PR�T ,0�W=0. This is the consequence of the fact
that �rh

��2=1 the radiation impinging on the surface from the
interior of the material is fully reflected and there is no flux
of momentum outside the body.

In the particular case when the external radiation is at
equilibrium with the corresponding body, i.e., Tbb1=T1 and
Tbb2=T2, from Eqs. �83� and �84� one obtains that Eqs. �76�
and �77� become respectively

P1,th
neq�Tbb1 = T1,T1,T2,l� = Pth

neq�T1,T2,l� +
4�T1

4

3c
, �87�

P2,th
neq�T1,T2,Tbb2 = T2,l� = − Pth

neq�T1,T2,l� −
4�T2

4

3c
. �88�

If the whole system is at thermal equilibrium, T1=T2=T, the
last two equations give

1 2

T

T

T

T
1 2

bb1

bb2

z

l

FIG. 6. Schematic figure of the two-slab system out of thermal
equilibrium.
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P1,th
neq�T,T,T,l� = − P2,th

neq�T,T,T,l�

Pth
neq�T,T,l� +

4�T4

3c
= Pth

eq�T,l� . �89�

This reproduces Eq. �68�, where Pth
neq�T ,T , l�� P̄th

eq,PW�T , l�.

VII. LONG DISTANCE BEHAVIOR OF THE
SURFACE-SURFACE PRESSURE

Let us consider now the surface-surface pressure in the
limit of large separation. In this limit the relevant frequencies
are ��c / l�kBT /. If this frequency is smaller than the
lowest absorption resonance in the material, one can use the
static approximation for the dielectrics and change �i���
→�0i. Some dielectrics can have very low-lying resonances.
For this case we developed a special procedure that will be
discussed later.

At thermal equilibrium the pressure is given by Eqs. �43�
and �44� for the PW and EW components, respectively. In
the limit of large distances these components behave as �24�

Pth
eq,PW�T,l� =

kBT��3�
4�l3 , �90�

Pth
eq,EW�T,l� = −

kBT��3�
4�l3

+
kBT

16�l3�
0

�

dx x2��10 + 1

�10 − 1

�20 + 1

�20 − 1
ex − 1�−1

,

�91�

where ��3��1.2021 is the Riemann zeta function. These
equations are both valid at the condition

l�maxm=1,2 �m0

��m0 − 1
��T, �92�

where �T is defined in Eq. �42�. The first term in Eq. �91� is
canceled by the contribution from the propagating waves
�90�, and their sum provides the well known result for the
total force at equilibrium �46�. It is worth noticing that the
total force at equilibrium is valid at the condition �45�, which
is significantly different from Eq. �92� if one of the two
bodies is rarefied.

The surface-surface force in the nonequilibrium case is
given by Eqs. �70� and �71�. Omitting the l-independent
terms one finds for the large distance behavior the following
result �23�:

Pth
neq,PW�T,0,l� =

kBT��3�
16�l3 �2 −

��10 − 1 − ��20 − 1
��10 − 1 + ��20 − 1

−
�20

��10 − 1 − �10
��20 − 1

�20
��10 − 1 + �10

��20 − 1
� , �93�

Pth
neq,EW�T,0,l�

=
kBT

8�2l3�
0

�

dt�
0

�

dx
x2e−x

t �
�=s,p

Im�r1
��t��Re�r2

��t��
�1 − r1

��t�r2
��t�e−x�2

.

�94�

Here rm
��t� are the Fresnel reflection coefficients �35� in the

static approximation �m=�m0, and t is defined by the relation
Q2=k2�1+ t2�. Note that Eqs. �93� and �94� are also valid at
the condition �92�.

In the two following Secs. VII A and VII B we will de-
scribe the procedure we used to calculate the large distance
asymptotic behaviors �93� and �94� for the PW and EW com-
ponents, respectively.

A. Asymptotic behavior for PW

In this subsection we derive the expansion of the PW
contribution Pth

neq,PW�T ,0 , l� at large distances, just antici-
pated in Eq. �93�. We concentrate on the l-dependent part
only. One can start from Eq. �62�. It is helpful to use the
multiple-reflection expansion expressed by Eq. �69�. The first
term in this expansion corresponds to radiation which is
emitted by one plate and absorbed by the other one, without
being reflected back. This is a distance independent term
which we omit. All the other terms of the sum give contri-
bution to the distance dependent part to which we are inter-
ested.

Let us introduce new variables and parameters in Eq.
�62�, i.e.,

x =
�

kBT
, Q2 = k2�1 − t2�, 	 =

�T

2l
. �95�

The limit of large distances corresponds to 	�1. In terms of
these new variables one finds

Pth
neq,PW�T,0,l� =

�kBT�4

2�23c3 �
n=1

�

Re��
0

�

dx
x3

ex − 1
�

0

1

dt t2

� �
�=s,p

�1 − �r1
��2��1 + �r2

��2�
1 − �r1

�r2
��2

�r1
�r2
��neintx/	� ,

�96�

where the reflection coefficients as functions of x and t are

rm
s �t,x� =

t − ��m − 1 + t2

t + ��m − 1 + t2
, �97�

rm
p �t,x� =

�mt − ��m − 1 + t2

�mt + ��m − 1 + t2
, �98�

and �m=�m�kBTx /� is a function of the variable x. For 	
�1 the integrand in Eq. �96� oscillates fast and it is possible
to show that the relevant values of variables in the integral
are x!1 and t�	 /n. Then, expanding the reflection coeffi-
cients for small values of t and integrating over t explicitly
one finds the leading term in 	
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Pth
neq,PW�T,0,l� =

kBT

8�2l3 �
n=1

�
1

n3�
0

�

dx
sin�nx/	�

ex − 1 �
�=s,p

g��x� ,

�99�

where the following functions of x were introduced

gs�x� =
2 Re�
1�

Re�
1 + 
2�
, gp�x� =

2 Re��1�
Re��1 + �2�

, �100�

with


m�x� =
1

��m − 1
, �m�x� =

�m

��m − 1
. �101�

The leading contribution to Pth
neq,PW�T ,0 , l� comes from the

region x�	 /n�1, where ex−1�x. Note that one can do
this expansion only after explicit integration over t. After the
change of variable y=nx /	, we obtain

Pth
neq,PW�T,0,l� =

kBT

8�2l3 �
n=1

�
1

n3�
0

�

dy
sin y

y �
�=s,p

g��	y/n� .

�102�

The relevant range of integration here is y�1, and then the
important frequencies in the dielectric functions entering in
Eq. �101� are of the order of ��	kBT. Most of the dielec-
trics �but not all� at these frequencies have no dispersion in
the spectrum and one can take the static approximation
g��	y /n��g��0�. In this case the integral in Eq. �102� can
be calculated explicitly:

Pth
neq,PW�T,0,l� =

kBT

16�l3��3��gs�0� + gp�0�� , �103�

where

gs�0� =
2��20 − 1

��10 − 1 + ��20 − 1
, �104�

gp�0� =
2�10

��20 − 1

�20
��10 − 1 + �10

��20 − 1
. �105�

Equation �103� coincides with Eq. �93� after elementary
transformation. This expression is valid under the condition
�92� that justifies the expansion on t done for the reflection
coefficients �97� and �98�.

It is interesting to derive also the large distance behavior
�90� for the equilibrium case. To do this we can note that the
symmetric part of the nonequilibrium pressure in respect to
the interchange of the bodies coincides with one half of the
equilibrium pressure as Eq. �70� demonstrates. The symmet-
ric part of both gs�x� and gp�x� is equal to 1 and we imme-
diately reproduce the result �90�.

B. Asymptotic behavior for EW

In this subsection we show how to evaluate the
asymptotic behavior of the EW contribution to the pressure
Pth

neq,EW�T ,0 , l�, whose result was anticipated in Eq. �94�. We

start from the general expression for Pth
neq,EW�T ,0 , l� given by

Eq. �63�. Substituting in this equation x and 	 given by Eq.
�95�, but defining t as Q2=k2�1+ t2�, one finds for the pres-
sure

Pth
neq,EW�T,0,l� =

�kBT�4

�23c3�
0

�

dx
x3

ex − 1

� �
0

�

dt t2e−xt/	 �
�=s,p

Im�r1
��Re�r2

��
�1 − r1

�r2
�e−xt/	�2

.

�106�

Here the reflection coefficients are functions of t and x and
take the form

rm
s �t,x� =

it − ��m − 1 − t2

it + ��m − 1 − t2
, �107�

rm
p �t,x� =

i�mt − ��m − 1 − t2

i�mt + ��m − 1 − t2
, �108�

with �m=�m�kBTx /�.
Differently from the PW component, here the relevant

ranges of variables in the integral �106� are x�	 and t�1.
Small values of t do not give significant contribution because
the integrand is suppressed by a factor t coming from Im�r1

��,
that does not appear in the PW case. Then for large distances
it is possible to expand on small values of x and approximate
ex−1�x. It is convenient to introduce the new variable y
=xt /	 instead of x, for which the important range is now y
�1. In terms of y and t the pressure can be presented as

Pth
neq,EW�T,0,l� =

kBT

8�2l3�
0

� dt

t

� �
0

�

dy y2e−y �
�=s,p

Im�r1
��Re�r2

��
�1 − r1

�r2
�e−y�2

.

�109�

The relevant frequencies in the integration are ��c / l
�kBT / and then it is possible to use the static approxima-
tion for the dielectric functions. In this approximation the
reflection coefficients depend only on one variable r1,2

� �t ,y�
→r1,2

� �t� and one can reproduce �after the change y→x� the
asymptotic behavior �94� for the pressure Pth

EW�T ,0 , l�.
The pressure in the EW sector can be presented in an

alternative form using the multiple-reflection expansion. To
this end one can note that

e−xt/	

�1 − r1
�r2
�e−xt/	�2

= �
n=1

�
Im�r1

�r2
��n

Im�r1
�r2
��

e−nxt/	, �110�

and can put this expansion in Eq. �106�. In the static approxi-
mation the integral over x can be found explicitly:
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�
0

�

dx
x3

ex − 1
e−nxt/	 ="�3��1 + nt/	� , �111�

where "�3��1+nt /	� is the polygamma function �48�. Since
	 is small, one can take only the asymptotic of this function,
which is "�3��1+nt /	�→2�	 /nt�3. Then the EW pressure
can be presented as

Pth
neq,EW�T,0,l� =

kBT

4�2l3 �
n=1

�
1

n3�
0

� dt

t

� �
�=s,p

Im�r1
��Re�r2

��
Im�r1

�r2
��

Im�r1
�r2
��n.

�112�

This representation is helpful for the analysis of the rarefied
body limit that will be presented in the next section.

It is interesting to derive also the large distance behavior
�91� for the equilibrium case. One-half of the equilibrium
pressure, Pth

eq,EW�T , l� /2, is equal to the symmetric part of Eq.
�112� in respect to the bodies interchange. Therefore, to get
Pth

eq,EW�T , l� we have to change in Eq. �112�

Im�r1
��Re�r2

��
Im�r1

�r2
��

→ 1. �113�

In this case the integrand in Eq. �112� becomes an analytic
function of t with the poles at t=0 and at infinity. The inte-
gral can be calculated using the quarter-circle contour of in-
finite radius closing the positive real axis and negative imagi-
nary axis. This is because it�qz must have a positive real
part. Finally the integral is reduced to the quarters of the
residues in the poles and gives

Pth
eq,EW�T,l� = −

kBT��3�
4�l3 +

kBT

8�l3 �
n=1

�
1

n3�10 − 1

�10 + 1

�20 − 1

�20 + 1
�n

.

�114�

The sum in this expression can be written in the equivalent
integral form so that Eq. �114� coincides with Eq. �91�. Note
that only p polarization contributes to the pole at infinity.
This is because at infinity rm

s →0 but rm
p → ��m0−1� / ��m0

+1� stays finite.

VIII. PRESSURE BETWEEN A SOLID
AND A DILUTED BODY

A case of particular interest is the interaction between
solid and diluted bodies. In fact the first measurement of the
nonequilibrium interaction was done between an ultracold
atomic cloud and a dielectric substrate �16�. From the theo-
retical point of view, this case is the most simple for analyti-
cal analysis.

Here we investigate the pressure between a hot dielectric
substrate of temperature T �body 1� and a gas cloud �body 2�
at large distances. When the second body is very dilute we
can consider the limit ��2−1�→0. If both bodies are at the
same temperature T, the equilibrium pressure can be found

by expanding Eq. �46� on small values of ��2−1�. The lead-
ing term is

Pth
eq�T,l� =

kBT

16�l3

�10 − 1

�10 + 1
��20 − 1� . �115�

This pressure, valid at the condition �45�, is proportional to
��2−1�=4�n	, where n is the density of the material 2 and
	 is the dipole polarizability of its constituents �for example
atoms�. We can see that the pressure is additive since the
additivity would in fact require a linear dependence on the
gas density n and hence on ��20−1�.

If one performs first the diluteness limit of the exact
surface-surface pressure, and then takes the large distance
limit, one obtains very interesting asymptotic behaviors for
the PW and EW contributions, respectively �24�,

Pth
eq,PW�T,l� = −

�kBT�2

24l2c

�10 + 1
��10 − 1

��20 − 1� , �116�

Pth
eq,EW�T,l� =

�kBT�2

24l2c

�10 + 1
��10 − 1

��20 − 1� . �117�

In deriving these limits we assumed that kBT is much smaller
than the lowest dielectric resonance of both the body 1 and
of the atoms of the dilute body 2. Such asymptotic behaviors
for the PW and EW components depend on the temperature
more strongly than at equilibrium and decay slower at large
distances ��T2 / l2�. It is also remarkable that the PW com-
ponent of the surface-rarefied body pressure �116� depends
on the dielectric functions and is repulsive, differently from
attractive nature of the PW component of the surface-surface
pressure �90�.

The PW and EW terms �116� and �117� exactly cancel
each other, and in order to find the total pressure one should
expand the corresponding expressions to higher order. The
final result is given by Eq. �115�. In configurations out of
thermal equilibrium there will no longer be such peculiar
cancellations between the PW and EW terms. In this case the
new asymptotic behavior �T2 / l2 will characterize the total
pressure at large distances, while there will be a transition to
a�T / l3 behavior at larger distances.

In particular, the result of the surface-rarefied body pres-
sure out of equilibrium can be presented as �23�

Pth
neq�T,0,l� =

kBTC

l3

�10 + 1
��10 − 1

��20 − 1f�v� , �118�

where

v =
l��20 − 1

�T
�119�

is a dimensionless variable and C=3.83�10−2 is a constant.
The function f�v�, whose expression will be derived below
�see Eq. �149�, together with Eqs. �131�, �140�, and �141��, is
a dimensionless function of v. It is possible to show �see
derivation below� that f�v�→1 for v→�, while f�v�
→v /24C for v→0. This function is shown in Fig. 7. Equa-
tion �118� is valid at the condition of large distances l /�T
�1, which does not restrict the value of v.
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At large values of v the pressure �118� becomes

Pth
neq�T,0,l� =

kBTC

l3

�10 + 1
��10 − 1

��20 − 1, �120�

and is proportional to ��20−1. This peculiar dependence
means that the pressure acting on the atoms of the substrate 2
is not additive. The nonadditivity of the pressure can be
physically explained as follows: For large l the main contri-
bution to the force is produced by the grazing waves incident
on the interface of the material 2 from the vacuum gap with
small values of qz /k���20−1. Hence the reflection coeffi-
cients from the body 2 is not small even at small �20−1 and
the body cannot be considered as dilute from an electrody-
namic point of view �23�. This is a peculiarity of the non-
equilibrium situation. In fact at equilibrium this anomalous
contribution is canceled by the waves impinging the inter-
face from the interior of the dielectric 2, close to the angle of
total reflection. In a rarefied body such waves become graz-
ing. Notice that the pressure �120� is valid at the condition

l�
�T

��20 − 1
, �121�

which becomes stronger and stronger as ��20−1�→0.
At small v one finds from Eq. �118�

Pth
neq�T,0,l� =

�kBT�2

24l2c

�10 + 1
��10 − 1

��20 − 1� . �122�

In this case the additivity is restored but the temperature
dependence is not linear any more and the pressure decreases
more slowly with the distance. This result holds at distances

�T � l�
�T

��20 − 1
. �123�

It is worth noting that the interval �123� practically disap-
pears for dense dielectrics.

The above discussion can be summarized as follows �see
Fig. 8�. If the dielectric 2 is very dilute but still occupies an
infinite half space �or anyway is thick enough, in the sense
defined above�, there is a first region given by Eq. �123�
where the pressure is additive and coincides with Eq. �122�.

At larger distances, satisfying Eq. �121�, the pressure is given
by Eq. �120� and is no longer additive. In the intermediate
region l��T /��20−1, Eqs. �122� and �120� are of the same
order.

It is interesting to note that, due to the diluteness condi-
tion ��20−1��1, in both regions �121� and �123� the thermal
term  Pth �sum of Eqs. �73� and �75�� gives the leading
contribution into the l-dependent component of the total
pressure Pth

neq�T ,0 , l�. This clearly emerges from Eqs. �70�
and �71�, by comparing �for T2=0� the large distance behav-
ior of the pressure at equilibrium Pth

eq�T , l� given by Eq.
�115�, with the large distance behaviors of the total pressure
just derived, given by Eqs. �120� and �122�. The conse-
quences of this are remarkable. In fact, the large distance
behavior of the total pressure becomes proportional to

Pth
neq�T1,T2,l� �  Pth�T1,l� −  Pth�T2,l� ,

and the interaction between the two bodies will be attractive
if T1�T2 and repulsive in the opposite case �23�.

Below, in Secs. VIII A and VIII B, we present the deriva-
tion of Eq. �118� for both the PW and EW components,
which give rise respectively to the asymptotic behaviors
�120� and �122�.

A. PW contribution

In this section we focus on the PW contribution to Eq.
�118�. One can do explicit calculations if the dielectric func-
tions of the materials do not depend on frequency. This is a
good approximation for the diluted body 2. Since we are
interested in the large distance asymptotic, this approxima-
tion is also good for the solid body 1 if the material has no
resonances for ��c / l�kBT /. In the case of static dielec-
tric functions the integral over x in Eq. �96� can be evaluated
via the polygamma function:

�
0

� dx x3

ex − 1
eintx/	 ="�3�1 − i

nt

	
� . �124�

Then, introducing the new variable u instead of t and the
parameter b according to the definitions

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

v

f(
v)

FIG. 7. Dimensionless function f�v� �see Eqs. �118� and �149��
describing the transition between additive and nonadditive regimes.
The dashed line presents the asymptotic limit at small v.
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FIG. 8. Relevant length scales and asymptotic behaviors of the
surface-rarefied body pressure out of thermal equilibrium. There is
a first region given by Eq. �123� where the pressure is additive and
coincides with Eq. �122�, and a second region, satisfying Eq. �121�,
where the pressure is given by Eq. �120� and is no longer additive.
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u =
t

��20 − 1
, b =��10 − 1

�20 − 1
� 1, �125�

one can expand r1
��u� in series of 1 /b

r1
s � − 1 −

2u

b
�, r1

p � − 1 −
2�1u

b
� �126�

and in the same approximation one has

r2
p � r2

s = r2 =
u − �1 + u2

u + �1 + u2
. �127�

The result is the following expression for the pressure
Pth

neq,PW�T ,0 , l�:

Pth
neq,PW�T,0,l� = −

2�kBT�4

�23c3

�10 + 1
��10 − 1

��20 − 1�2

��
n=1

� �
0

1/��20−1

du u31 + r2
2

1 − r2
2 �− r2�n

�Re"�3��1 − i2nvu� , �128�

where the parameter v is given by Eq. �119�. Here the sum
on polarizations gave the factor �10+1. In the leading ap-
proximation the integration over u can be extended up to
infinity. Furthermore, the real part of "�3��1− iy� can be pre-
sented as �48�

Re"�3��1 − iy� =
�

2

d3

dy3 1

�y
− coth �y� . �129�

After some transformations Eq. �128� becomes

Pth
neq,PW�T,0,l� =

kBT

l3

�10 + 1
��10 − 1

��20 − 1fPW�v� , �130�

where fPW�v� is given by

fPW�v� = −
1

8��
n=1

�
1

n3�
0

�

du u31 + r2
2

1 − r2
2 �− r2�n

�
d3

du3� 1

2�nvu
− coth�2�nvu�� . �131�

The function fPW�v� can be calculated explicitly for large and
small values of v. When v�1, the important range of u in
the integral �131� is u�1 and one can expand the reflection
coefficient r2 on small values of u. Then the function fPW�v�
is reduced to

fPW�v → �� = −
1

16��
n=1

�
1

n3�
0

�

du u2

�
d3

du3� 1

2�nvu
− coth�2�nvu�� . �132�

The integral here is easily calculated by parts and finally one
finds

fPW�v → �� = CPW =
��3�
8�

. �133�

When v�1 the significant values of u in the integral
�131� are u�1, and one can make the corresponding expan-
sion in the reflection coefficient �127�. In this case only the
n=1 term in the sum is relevant. Then one obtains

fPW�v → 0� = −
1

32�
�

0

�

du u

�
d3

du3� 1

2�vu
− coth�2�vu�� , �134�

and finally

fPW�v → 0� =
v
48

. �135�

The function fPW�v� and its asymptotic behaviors at large
and small v are shown in Fig. 9.

B. EW contribution

The derivation of the EW component of the pressure
�118� can be performed starting from the expression �106�
for the pressure Pth

neq,EW�T ,0 , l�. By performing the multiple-
reflection expansion with the help of Eq. �110� and calculat-
ing the integral over the variable x using Eq. �111� one finds
that Eq. �106� becomes

Pth
neq,EW�T,0,l� =

�kBT�4

�23c3 �
n=1

� �
0

�

dt t2

� �
�=s,p

Im r1
� Re r2

�

Im�r1
�r2
��

Im �r1
�r2
��n"�3�

�1 +
nt

	
� , �136�

As in the case of the propagating waves one can introduce
the variable u instead of t according to Eq. �125�, and can
make the expansion for large b. Then for the reflection coef-
ficients one gets

r1
s � − 1 −

i2u

b
�, r1

p � − 1 −
i2�1u

b
� ,
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)

FIG. 9. Function fPW�v� �solid� �Eq. �131�� and its asymptotic
limits �dashed� at small �Eq. �135�� and large �Eq. �133�� values of
v.
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r2
p � r2

s =
iu − �1 − u2

iu + �1 − u2
. �137�

Now one should distinguish the integration ranges 0�u�1
and 1�u��, since the integrands are different in these
ranges. Let us do it with the superscript �1� or �2�, respec-
tively.

As in the case of propagating waves �130� the pressure
can be presented as a parameter-dependent factor times a
universal function of v= l��20−1 /�T:

Pth
neq,EW�T,0,l� =

kBT

l3

�10 + 1
��10 − 1

��20 − 1fEW�v� , �138�

where the function fEW�v� includes contributions from 0
�u�1 and 1�u�� ranges:

fEW�v� = fEW
�1� �v� + fEW

�2� �v� . �139�

For these functions one has the following expressions:

fEW
�1� �v� = −

1

4�2 �
n=1

�
1

n3�
0

1

du u3 2u2 − 1

2u�1 − u2

�Im �− r2�n d3

du3"�1 + 2nvu� , �140�

fEW
�2� �v� = −

1

4�2 �
n=1

�
1

n3�
1

�

du u3�− r2�n

�
d3

du3"�1 + 2nvu� . �141�

Here we have used the relation between the polygamma
functions

"�3��1 + y� =
d3

dy3"�1 + y� , �142�

where "�1+y� is the digamma function �48�.
Let us discuss now the asymptotic behavior of the func-

tions fEW
�1�,�2��v� at small and large values of v. For large v the

contribution from the range u!1 /v in the integral Eq. �140�
is negligible, and one can consider the digamma function at
large arguments "�1+2nvu�→ ln�2nvu�. Then the integral
can be calculated after the substitution u=sin #. It gives the
following result

fEW
�1� �v → �� = −

1

4�2 �
n=1

�
1

n3��2 + �− 1�n
�n + 3/2�

+
2

4n2 − 1
�� , �143�

where the 
 function is defined as


�y� =
1

2
�"1 + y

2
� −" y

2
�� . �144�

To find fEW
�2� �v� one can also take the asymptotic value of

"�1+2nvu�, make the change u=cosh $, and after the inte-
gration one obtains

fEW
�2� �v → �� = −

1

4�2 �
n=1

�
2�− 1�n

n3�4n2 − 1�
. �145�

Taking the sum of both functions fEW
�1� and fEW

�2� one finds
finally the large v asymptotic for fEW�v�:

fEW�v → �� = −
1

4�2 �
n=1

�
1

n3��2 + �− 1�n
�n + 3/2�

+
2�n + 1�
4n2 − 1

�� . �146�

This sum is just a number equal to

fEW�v → �� = CEW = − 0.96� 10−2. �147�

Combining together the large v contributions from PW �133�
and EW �147� one can find the constant in Eq. �118�, i.e.,
C=CPW+CEW=3.83�10−2.

In the limit of small v it is not difficult to show that
fEW

�1� �v��v3 and can be neglected. The main contribution to
fEW

�2� �v� comes from the range u�1 /v�1. For these values
the reflection coefficient r2�u��1 /4u2 is small and only the
n=1 term in the sum is relevant. Then the integral over u can
be calculated by parts and one obtains

fEW�v → 0� =
v
48

. �148�

Let us note that, for small v, the PW and EW contributions
coincide.

The function fEW
�1� �v� is shown in Fig. 10. The inset dem-

onstrates the cubic behavior at small v. It should be noted
that fEW

�1� �v� so as fPW�v� approach the large v asymptotics
rather slowly, but the sum of these functions reaches the
large v limit faster as Fig. 7 demonstrates. The function
fEW

�2� �v� is presented in Fig. 11. One can see that it behaves in
accordance with expected asymptotics.

Finally, one can establish the correspondence between the
function f�v� entering the general formula �118� for the pres-
sure in the limit of one diluted body and the functions
fPW�v�, fEW

�1� �v�, and fEW
�2� �v� given by Eqs. �131�, �140�, and
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FIG. 10. Function fEW
�1� �v� �solid� �Eq. �140��. The asymptotic

limit at large values of v �Eq. �143�� is shown by the dashed line.
The inset demonstrates v3 behavior at small v.
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�141�, respectively. This correspondence is given by the
simple relation

Cf�v� = fPW�v� + fEW
�1� �v� + fEW

�2� �v� . �149�

IX. LARGE DISTANCE BEHAVIOR
OF THE SURFACE-ATOM FORCE

OUT OF THERMAL EQUILIBRIUM

It is interesting to recover the asymptotic results of the
surface-atom force out of thermal equilibrium �obtained in
�17�� from the general expression of the pressure given by
Eqs. �62� and �63�. To do this it is crucial to carry out the
limit ��2−1�=4�n	2→0 before taking the limit of large dis-
tances. To show this, let us focus first on the EW term given
by Eq. �63�, and perform the rarefied body expansion �body
2� assuming that ��20−1 is the smallest quantity, also with
respect to �qz� /k. Due to the effect of the Bose factor, only
the frequencies ��kBT / are relevant in the integration, and
due to the exponential e−2l�qz� the relevant wave vectors are
given by

�qz�/k � �T/l� ��20 − 1. �150�

In this way at large distance it is easy to reproduce Eqs. �10�
and �11� of �17�:

Pth
neq,EW�T,0,l� =

��20 − 1�
l28�2c

�
0

�

d�
�

e�/kBT − 1

� ���1��� − 1� + ��1���� − 1�
2 + ��1��� − 1�
�2��1��� − 1�

.

�151�

In deriving Eq. �151� we also replaced �2��� with its static
value �20, which is reasonable if kBT is much smaller than
the lowest atomic resonances, and also ensures that the at-
oms of the dilute body 2 cannot adsorb the thermal radiation.

For a rarefied body one has that �20−1�4�	0na, where
na is the number of atoms of the body per unit volume and
	0 is the static polarizability of an atom. The pressure in this
case is proportional to na and the force acting on an indi-
vidual atom can be calculated as

Fth
neq,EW =

1

na

dPth
neq,EW

dl
. �152�

It is easy to check that, substituting Eq. �151� into Eq. �152�,
one obtains exactly Eq. �10� of �17�.

However, there is also the PW contribution. The expan-
sion in the l-dependent part of the PW pressure �62� pro-
duces a contribution identical to the EW one, thereby dou-
bling the value of the force �152�. This apparent
contradiction can be easily solved by the following argu-
ments. The problem approached in the present paper is not
equivalent from that approached in Ref. �17�. Here we as-
sume that the second slab, being rarefied, is still thick
enough to absorb black body radiation from the first slab. On
the contrary, the transition to individual atoms �which is the
case discussed in Ref. �17�� demands to completely neglect
the absorption. Then, to calculate the surface-atom force cor-
rectly, one must consider the limit �2�→0 at finite thickness L
of the slab 2. On the contrary using the expression �62�
means taking the opposite limit procedure, i.e., first L→�
and later �2�→0. The reason why the first limiting procedure
is correct in this case, is that if the slab 2 does not absorb
radiation completely, one should also take into account the
pressure acting on the remote surface �i.e. the external one�,
generated by the radiation coming from the left. In absence
of absorption it is possible to show that the inclusion of the
remote surface in the slab 2 results in a relatively small value
of the PW pressure. Details of calculations are presented in
Appendix B. We only notice here that neglecting of absorp-
tion actually requires the condition �2���T

2 / lL.
As a consequence, for a finite slab of rarefied gas without

absorption the EW contribution �151� provides the total pres-
sure and is equivalent to Eqs. �10� and �11� of �17� for the
surface-atom force. In particular at temperatures less than the
lowest resonance in �1��� the pressure �151� �and hence the
total pressure� takes the form �17�

Pth
neq,EW�T,0,l� =

�kBT�2

48l2c

�10 + 1
��10 − 1

��20 − 1� . �153�

The above result holds at distances �123�.

X. CONCLUSIONS

In this paper, we generalized the Casimir-Lifshitz theory
for the surface-surface pressure to a situation out of thermal
equilibrium, when two bodies are kept at different tempera-
tures in a stationary configuration. In contrast with the equi-
librium case, the nonequilibrium force cannot be presented
as the sum over imaginary frequencies and one has to work
in the real frequency domain. At real frequencies it is natural
to separate contributions from propagating and evanescent
waves. The delicate interplay between these contributions set
the total force.

For bodies made of similar materials the pressure is ex-
pressed via the forces at equilibrium. In the general case
there is an additional contribution to the pressure, which is
antisymmetric in respect to interchange of the materials. The
propagating part of the force contains distance independent
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FIG. 11. Function fEW
�2� �v� �solid� �Eq. �141�� and its asymptotic

limits �dashed� at small and large �Eq. �145�� values of v.
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terms, due to the presence of an energy flux between the
bodies in absence of equilibrium.

We presented a detailed analysis of the force, with par-
ticular attention paid to large separations and high tempera-
ture behaviors. At equilibrium significant cancellations be-
tween PW and EW contributions occur. Such cancellations
are less pronounced in the nonequilibrium situation. It is es-
tablished that at large distances the force between heated �T�
and cold �T=0� bodies behaves similar to the Lifshitz limit,
�T / l3, but with different numerical coefficient. However,
this result is true only for dense bodies. If one of them is
diluted the behavior of the force can change.

Special attention was devoted to the case when one body
is diluted. This is an important situation from which one can
recover the interaction between a body and a single atom.
Two remarkable results are found for this situation �23�.
First, at very large distances, l��T /��20−1, the pressure
becomes nonadditive, in contrast with the equilibrium case.
Namely, the nonequilibrium pressure is proportional to the
square root of the density of the diluted body, while in the
equilibrium it is proportional to the first power of the density
and, therefore, it is additive. The second result concerns
smaller distances, �T� l��T /��20−1. In this case, we found
an asymptotic behavior for the pressure, �T2 / l2, that decays
with the distance more slowly than the Lifshitz limit at equi-
librium, and has a stronger temperature dependence. A care-
ful analysis of the transition region between these two limits
was done both analytically and numerically.

The pressure between diluted and dense bodies in the dis-
tance range �T� l��T /��20−1 is used to deduce the
surface-atom force. Earlier and with different methods it was
found in �17� that at large distances this force must behave as
�T2 / l2. The direct transition from the case of the surface-
diluted body provides a force which is two times larger than
that in Ref. �17�, and both EW and PW terms contribute in
the same way. We provided a detailed explanation why if the
atom does not absorb radiation one has to neglect the contri-
bution of the PW term, hence recovering the known result.
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APPENDIX A: GREEN FUNCTIONS FOR TWO
PARALLEL DIELECTRIC HALF-SPACES

In this section we present the Green function, which is a
solution of Eq. �7�. We use the Sipe Green-function formal-
ism �37� for surface optics. Sipe formulated the problem in
terms of s- and p-polarized EM vectors waves, in of the
Fresnel coefficients of the interfaces. Here we use the lateral
Fourier transform representation for the Green’s function:

Gij��;r,r�� =� d2Q

�2��2eiQ·�R−R��gij��;Q,z,z�� . �A1�

In our geometry the Fourier transform gij�� ;Q ,z ,z�� de-
pends only on the modulus Q= �Q�.

1. Green’s function with the source and the observation points
in the vacuum gap

If both the observation point r and the source point r� are
in the vacuum gap, the Green function can be written as the
sum Gij�� ;r ,r��=Gij

sc�� ;r ,r��+Gij
bu�� ;r ,r��, of a scattered

and bulk part. In particular, the Fourier transform of these
terms are �39�

gij
sc��;Q,z,z�� =

2�ik2

qz
�
�=s,p

1

D�

�e�,i�+ �e�,j�+ �r1
�r2
�eiqz�z−z�+2l�

+ e�,i�+ �e�,j�− �r1
�eiqz�z+z��

+ e�,i�− �e�,j�+ �r2
�e−iqz�z+z�−2l�

+ e�,i�− �e�,j�− �r1
�r2
�e−iqz�z−z�−2l�� , �A2�

gij
bu��;Q,z,z�� = − 4��i3� j3��z − z�� +

2�ik2

qz

� �
�=s,p

�e�,i�+ �e�,j�+ �eiqz�z−z��%�z − z��

+ e�,i�− �e�,j�− �e−iqz�z−z��%�z� − z�� . �A3�

Here the multiple reflections enter only in the scattered term
and are described by the denominator

D� = 1 − r1
�r2
�e2iqzl. �A4�

2. Green’s function with the source in a body
and the observation point in the vacuum gap

The Fourier transform of the transmitted Green functions
with the observation point r in the vacuum gap and the
source point r� in the body 1 or 2, are respectively �39�

gij
�1���;Q,z,z�� =

2�ik2

qz
�1� �

�=s,p

t1
�

D�

�e�,i�+ �e�,j
�1��+ �eiqzz

+ e�,i�− �e�,j
�1��+ �r2

�e−iqzze2iqzl�e−iqz
�1�z�,

�A5�

gij
�2���;Q,z,z�� =

2�ik2

qz
�2� �

�=s,p

t2
�

D�

�e�,i�− �e�,j
�2��− �e−iqzz

+ e�,i�+ �e�,j
�2��− �r1

�eiqzz�eiqzleiqz
�2��z�−l�.

�A6�

The symmetry of the problem becomes clear when one set
the origin of the coordinate axis in the center of the vacuum
gap, by changing z→z− l /2 and z�→z�− l /2 in Eqs. �A2�,
�A5�, and �A6�.

APPENDIX B: FORCE ACTING ON A RAREFIED SLAB

As discussed in Sec. IX, in order to recover the surface-
atom force starting from the surface-surface expression, one
must consider the rarefied body as occupying a slab of finite
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thickness. In this case, for a nonabsorbing atom the PW term
of the pressure is negligible, and the EW one reproduces
entirely the surface-atom force derived in �17�. In this sec-
tion, we discuss this problem and show explicitly that the
PW term can be neglected. Let us consider the problem of
the thermal forces between a body 1 at temperature T, which
occupies the half-space �z�0�, and a body 2 at zero tem-
perature which occupies a slab of thickness L in the region
�l�z� l+L�. In the gap 0�z� l �region 0� and outside of
the slab z� l+L �region 3� we can take �=1. The force per
unit of area, acting on the slab in z direction, is

P�T,0� = P�0� − P�3� = �Tzz
�0�� − �Tzz

�3�� , �B1�

where Tzz
�0� and Tzz

�3� are the zz component of the Maxwell
stress tensor in vacuum, calculated in the regions 0 and 3,
respectively. For a completely absorbing slab there is no field
in the region 3, Tzz

�3�=0 and one returns to Eq. �1�. Of course
from Eq. �B1� one can calculate the force acting on a slab of
arbitrary thickness, and can recover the results of this paper
relative to a thick slab. Here we assume that the slab is
rarefied:

�20 − 1� 1. �B2�

Our goal will be to prove that for a slab without absorption
the propagating waves give the contribution PPW�PEW, and
hence can be neglected. For the proof it is enough to con-
sider a monochromatic component of the thermal radiation
impinging on the surface of the body 2 with the wave vector
k and polarization �=s , p. In terms of the complex ampli-
tudes of the fields its contribution to the pressure can be
written as �we omit �� ,k� arguments of the fields�

Tzz��,k� =
1

8�
�Ez�2 −

1

2
�E�2 + �Hz�2 −

1

2
�H�2� . �B3�

The fields in the region 0 are the sums of incident ��� and
reflected ��� waves:

E�0� = E�0+� + E�0−�, H�0� = H�0+� + H�0−�, �B4�

where E�0+� ,H�0+�&eiqzz and E�0−� ,H�0−�&e−iqzz. An impor-
tant point of the proof is that incident and reflected waves
give independent contributions to the stress tensor:

Tzz
�0� = Tzz

�0+� + Tzz
�0−�. �B5�

The additivity property �B5� is obvious. Presence of the
mixed term containing both E�0+� and E�0−�* would result in
the z dependence of Tzz. But this is not possible since it
violates the momentum conservation.

By definition we have that

�E�0−���,k��2 = R��,k��E�0+���,k��2, �B6�

where R��,k� is the reflection coefficient from the slab, for the
�� ,k� wave. Taking into account the Fresnel relations be-
tween the field components at the reflection, we easily find
that

Tzz
�0−� = RTzz

�0+�, Tzz
�0� = �1 + R�Tzz

�0+�. �B7�

Let us consider now the fields in the vacuum region 3. There
is only a refracted wave and we have �E�3��2=D��,k��E�0+��2,
where D��,k� is the transmission coefficient. In absence of
absorption D��,k�=1−R��,k�. This means that

Tzz
�3���,k� = �1 − R��,k��Tzz

�0+���,k� =
1 − R��,k�

1 + R��,k�Tzz
�0���,k� ,

�B8�

and from Eq. �B1� one has

PPW��,k� =
2R��,k�

1 + R��,k�Tzz
�0���,k� . �B9�

One can easily calculate R��,k� �see, for example, the prob-
lem N.4 in Sec. 66 of �30��. At real �20→1 one gets, inde-
pendent of the polarization, the result

R��,k� �
sin2��L

c
cos %0�

4 cos4 %0
��20 − 1�2, �B10�

where %0 is the angle of incidence. This equation is valid at
the condition cos %0���20−1. Let us note that the surface-
atom force equations of �17� must be valid in the “additive”
regime of Sec. VIII, where just the incident angles cos %0
=qz /k��T / l���20−1 are important �see Eq. �150��. For
such angles R��,k���l��20−1 /�T�4�1 and PPW�Tzz

�0�. Here
we assumed that l��T. For l!�T one gets simply R��,k�

���20−1�2. It is not difficult to check that Tzz
�0����20−1�

� PEW. Finally, we find that PPW�PEW and hence the propa-
gating waves contribution can be neglected.

Let us discuss now the role of a weak absorption. Con-
sider the case

�2 = �2� + i�2�, �2�� 1, �2� � 1. �B11�

It is not difficult to generalize Eq. �B9� for a slab with ab-
sorption:

PPW = 1 −
D

1 + R
�Tzz

�0�, �B12�

where the transmission coefficient D�1−R. If R�1,

PPW � �1 − D�Tzz
�0�. �B13�

According to problem 4 of Sec. 66 in �30�, one has that D
�exp�−�L�2� /c cos %0�. The imaginary part �2���� must be
taken in this estimate at ��kBT /. The factor �1−D� and
correspondingly PPW are small if �L�2��c cos %0. This gives
the condition for neglecting the absorption:

�2���� kBT/�� �T
2/lL . �B14�

Let us note that for evanescent waves Tzz
�3�EW does not depend

on z, while the field of an evanescent wave goes to zero at
z→�. This means that Tzz

�3�EW�0.
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