
HAL Id: hal-02964061
https://hal.science/hal-02964061v1

Submitted on 12 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dark solitons in a superfluid Fermi gas
Mauro Antezza, Franco Dalfovo, Lev P. Pitaevskii, Sandro Stringari

To cite this version:
Mauro Antezza, Franco Dalfovo, Lev P. Pitaevskii, Sandro Stringari. Dark solitons in a superfluid
Fermi gas. Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2007, 76 (4),
pp.043610. �10.1103/PhysRevA.76.043610�. �hal-02964061�

https://hal.science/hal-02964061v1
https://hal.archives-ouvertes.fr


Dark solitons in a superfluid Fermi gas

Mauro Antezza,1 Franco Dalfovo,1 Lev P. Pitaevskii,1,2 and Sandro Stringari1
1Dipartimento di Fisica, Università di Trento and CNR-INFM BEC, Via Sommarive 14, I-38050 Povo, Italy

2Kapitza Institute for Physical Problems, ul. Kosygina 2, 119334 Moscow, Russia
�Received 5 June 2007; published 10 October 2007�

We investigate the behavior of dark solitons in a superfluid Fermi gas along the BCS-BEC crossover by
solving the Bogoliubov–de Gennes equations and looking for real and odd solutions for the order parameter.
We show that in the resonance unitary region, where the scattering length is large, the density profile of the
soliton has a deep minimum, differently from what happens in the BCS regime. The superfluid gap is found to
be significantly quenched by the presence of the soliton due to the occurrence of Andreev fermionic bound
states localized near the nodal plane of the order parameter.
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I. INTRODUCTION

The interplay between effects of coherence and interac-
tion is one of the most interesting features exhibited by su-
perfluids. It shows up, in particular, through the occurrence
of topological excitations such as vortices and solitons.
These have been the object of systematic investigations in
the case of ultracold Bose gases, where coherence is the
result of Bose-Einstein condensation �BEC� and is associated
with long-range order in the one-body density matrix. The
situation is even more interesting in the case of Fermi gases
where coherence originates from the interaction between par-
ticles which, at low temperature, brings the system into a
superfluid phase characterized by long-range order in the
two-body density matrix. For this reason, the consequences
of coherence on measurable quantities, like the density dis-
tribution of the gas, are more indirect and subtle than for
bosons.

Fermi superfluid gases are now available experimentally
in 40K and 6Li and various regimes along the BCS-BEC
crossover can be explored by tuning the atomic s-wave scat-
tering length a through the Feshbach resonances exhibited by
these atoms. When a is small and negative the system is
described by the BCS theory of superfluidity. Conversely
when a is small and positive dimers of atoms of different
spin are formed and the system behaves like a BEC of mol-
ecules. Near resonance the scattering length is much larger
than the average interparticle distance and the system enters
the so-called unitary regime. Quantized vortices have been
recently observed along the BCS-BEC crossover �1� and
have been the object of several theoretical papers �2–6�.

In this work we investigate another important class of
nonlinear topological excitations: dark solitons. In three di-
mensions �3D� a dark soliton is characterized by a real order
parameter which changes sign at a planar node �a point node
in 1D�. In the BEC regime the soliton is a solution of the
Gross-Pitaevskii �GP� equation for the order parameter of the
condensate with repulsive interaction �7�. In a uniform 3D
system dark solitons are known to be unstable via the snake
instability, i.e., a sinusoidal transverse oscillation of the pla-
nar node. In trapped gases, however, the instability time
scale can be very long, so that solitons can indeed be ob-
served �8�.

While in the BEC case the node of the order parameter
causes a notch in the density distribution, in a BCS super-
fluid the density is almost unaffected by the presence of the
node �9�. The situation is similar to the one of vortices. As in
that case, the behavior of the density along the BCS-BEC
crossover is expected to be interesting and rather nontrivial,
as a result of the delicate balance of coherence and nonlinear
interactions. A major question concerns the behavior at uni-
tary where no exact many-body theory is presently available.
The problem also shares useful analogies with the interfer-
ence between two expanding Fermi superfluid gases where
the order parameter is expected to exhibit an oscillating be-
havior with a change of sign, but no quantitative predictions
are available concerning the behavior of the density.

II. BOGOLIUBOV–de GENNES THEORY

We investigate the problem by using a mean-field theory
for a 3D Fermi gas at zero temperature, based on the solution
of the Bogoliubov–de Gennes �BdG� equations �10,11�:

� Ĥ ��r�

�*�r� − Ĥ
��u��r�

v��r� � = ���u��r�
v��r� � , �1�

where Ĥ=−�2�2 /2M +Vext�r�−� is the single-particle
grand-canonical Hamiltonian. For given chemical potential �
and order parameter of the superfluid phase, ��r�, these
equations provide the spectrum �� and quasiparticle ampli-
tudes u��r� and v��r�, which are required to satisfy the nor-
malization relation �d3r�u��

* �r�u��r�+v��
* �r�v��r��=����.

The above equations must be solved together with the equa-
tions for the order parameter and the density:

��r� = − g�
�

u��r�v�
*�r� , �2�

n�r� = 2�
�

	v��r�	2. �3�

This is done by means of an iterative procedure, which starts
from a trial function ��r� and converges to the self-
consistent solution of Eqs. �1�–�3�. All sums in the equations
are limited by an energy cutoff 0����Ec. This cutoff is
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required in order to cure the ultraviolet divergences and is
accompanied by a regularization of the interaction parameter
g according to �11�

1

kFa
=

8��F

gkF
3 +

2

�

Ec

�F
. �4�

Here a is the 3D s-wave scattering length characterizing the
interaction between atoms of different spins, while �F
=�2kF

2 /2M and kF= �3�2n0�1/3 are the Fermi energy and mo-
mentum of a uniform ideal Fermi gas of density n0 �12�. For
sufficiently large values of Ec the final results should not
depend on the choice of the cutoff. It is worth stressing that
the above equations reduce to the stationary GP equation for
the order parameter of a condensate of molecules in the BEC
limit �13�, the interaction between dimers being, however,
given by the mean-field value 2a instead of the exact value
0.6a �14�. Although approximate, this mean-field theory is
expected to give a comprehensive and reasonably accurate
picture of the BCS-BEC crossover.

III. RESULTS FOR A DARK SOLITON

We look for solutions of Eqs. �1�–�3� corresponding to a
soliton at rest in the superfluid and in the absence of external
potential �Vext=0� �15�. The order parameter ��z� is chosen
to be a real and odd function of z, having a node in the xy
plane at z=0. The density n�z� is an even function of z. The
condition of reality implies the absence of currents, which
are in general associated with a z dependence of the phase of
the order parameter. The calculation is done in a finite box of
size L	L�

2 , where L is the size along z and all solutions are
forced to vanish at the boundaries. If the box size is large
enough, the effects of the boundaries on the soliton are van-
ishingly small. Due to the translational symmetry in the
transverse direction, the BdG eigenfunctions can be
written as u��r�=un,n�

�z�eik�·r�
kF /L� and v��r�
=vn,n�

�z�eik�·r�
kF /L�, where r�= �x ,y� and k�= �kx ,ky�.
The transverse momentum is quantized according to the rule
kx=2�nx /L� and ky =2�ny /L�, with n�= �nx ,ny� and nx, ny

integers. We consider a gas in a box with L=40kF
−1 and

L�=20kF
−1, and we also set Ec=50�F, which turns out to be

large enough for a reasonable convergence.
In Fig. 1 we show the order parameter �a� and the density

�b� for a dark soliton with �kFa�−1=−1, 0, and +1. Both quan-
tities are normalized to their asymptotic values far away
from the soliton, n0=kF

3 /3�2 and �0. For �0 and � we find
the values �0�0.21�F and ��0.96�F for �kFa�−1=−1 �BCS
side�, �0�0.70�F and ��0.61�F for �kFa�−1=0 �unitarity�,
and �0�1.5�F and ��−0.84�F for �kFa�−1= +1 �BEC side�.
These values almost coincide with those of an infinite uni-
form system when calculated with the same value of the
cutoff energy. This proves that the size of the box is large
enough to neglect its effects on the calculations. They instead
differ from the values calculated in a uniform gas in the limit
of infinitely large Ec. The difference is about �10% on the
BEC side and �1% in the other cases. A larger discrepancy
is of course obtained by using a lower cutoff energy, espe-
cially on the BEC side of the resonance where the formation

of molecules with energy ��2 /ma2 requires large values of
Ec to reach convergence.

Figure 1�b� shows the occurrence of a deep depletion of
the density at unitarity �solid line� with a�80% contrast,
comparable to the one of the BEC regime �dash-dotted line�.
On the BCS side �dashed line�, conversely, the contrast is
only �30% at �kFa�−1=−1 and becomes exponentially small
in the limit kF	a	
1. These results are consistent with those
obtained for the profile of a vortex core �5,6�.

In Fig. 1�a� one notices that, as for the core of a vortex,
the order parameter of the soliton in the BCS regime exhibits
two length scales: a steep slope in a narrow region of the
order of kF

−1 and a smoother slope in a wider region of size
�BCS=�vF /�0, where �BCS is the coherence length of the
Cooper pairs and vF=
2�F /M is the Fermi velocity. For
�kFa�−1=−1 one has �BCS�10kF

−1. We also find that the den-
sity exhibits oscillations with wave vector �2kF. The same
type of oscillations are found at the box boundaries, and we
checked that their shape does not depend on either the box
size or the cutoff energy. One can thus safely identify them
as Friedel oscillations. Approaching unitarity the coherence
length �BCS decreases, eventually reducing to kF

−1.
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FIG. 1. �a� Order parameter and �b� density for a dark soliton
with �kFa�−1=0 and ±1. The value �kFa�−1=0 �solid line�
corresponds to unitarity, while �kFa�−1=−1 �dashed lines� and
�kFa�−1= +1 �dot-dashed lines� are on the BCS and BEC sides of
the resonance, respectively. Both ��z� and n�z� are normalized to
their asymptotic values far away from the soliton.
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Let us focus now on the single-particle excitation spec-
trum. In the uniform superfluid the spectrum is given by the
well-known result �bulk�k�= ���2k2 /2M −��2+�0

2�1/2 �16�.
This expression is plotted with solid lines in Figs. 2�a�–2�c�
as a function of k�

2 for the three cases �kFa�−1=0 and ±1. The
minimum of this function defines the gap �gap for bulk ex-
citations, which is �gap=�0 for ��0 and �gap= ��2+�0

2�1/2

for �0. In the presence of the soliton, however, the eigen-
values �n,n�

of the BdG equations exhibit a nontrivial fea-
ture: besides the continuum of bulk states with energy above
�bulk one finds several states even below �bulk. The energy of
the lowest states for each k� is given in Figs. 2�a�–2�c� �open
circles�. The corresponding quasiparticle amplitudes are lo-
calized near the soliton, as one can see in Figs. 2�d�–2�f�
where we plot the function 	v0�z�	2 of the state with k�=0.
The origin of these localized Andreev-like states �17� resides
in the fact that the energy cost for creating a fermionic exci-
tation near a node of the order parameter is reduced with
respect to the bulk value. In the BCS limit the energy of the
lowest bound state, also called minigap in the context of
superconductivity, is expected to be of the order of �0

2 /2�F.
For a vortex in a BCS superfluid described by BdG equations
this result was proved in Ref. �18�, but the result is rather
general and can be derived also when ��z� is a step function
�20,21�. In the same limit, the eigenvectors u0�z� and v0�z� of
the lowest bound state behave like �cos�kFz�exp�z /�BCS�
and �sin�kFz�exp�z /�BCS�, respectively, as shown in Fig.
2�d�. For the minigap at �kFa�−1=−1, we find �minigap

�0.64�0
2 /2�F.

We now discuss the BEC limit, where the density profile
should approach the analytic result obtained by solving the
GP equation for a gas of bosons with mass mB=2M interact-

ing with a scattering length aBB. The density of the bosonic
dimers, nB=n /2, is given by �7� nB�z�=nB0 tanh2�z /
2�BEC�,
with nB0=n0 /2=kF

3 / �6�2�, �BEC=� /
2mBgBBnB0, and
gBB=4��2aBB /mB. Analytic solutions can be found, in the
same limit, also for the fermionic bound states. In fact, these
states can be obtained by solving a Schrödinger equation for
a fermionic impurity of mass mF=M in an inhomogeneous
bosonic superfluid. By minimizing the total energy func-
tional one derives the following equation for the impurity
wave function �:

�−
�2

2mF
�z

2 + gBFnB�z����z� = ���z� , �5�

where gBF=2��2aBF /mr is the dimer-atom coupling con-
stants, while mr=mBmF / �mB+mF�=2M /3 is the reduced
mass. The exact values of the aBB and aBF scattering lengths
are equal to 0.6a �14� and 1.2a �22�, respectively, while the
BCS mean-field theory yields the Born approximation values
2a and 8/3a �23�. Equation �5� corresponds to the
Schrödinger equation for a particle in a modified Pöschl-
Teller potential. The solutions are analytic �24� and include
bound states. The energy of these bound states can be used to
calculate the minigap for fermionic excitations in the BEC
regime. In fact, the breaking of a pair causes the unbound
motion of two fermions which will occupy the single-particle
states �0 with the lowest energy. Using the mean-field val-
ues for the scattering length, the energy of the lowest state
turns out to be exactly one-half of the bulk value gBFn0 /2
�25� so that

�gap − �minigap = 4��2an0/M . �6�

Equation �6� provides a good quantitative estimate for the
gap even for �kFa�−1= +1 where the above expression gives
the value �gap−�minigap=0.26�gap to be compared with our
numerical result �0.27�gap. In Fig. 3 the analytic curve for
the density nB�z� and the bound-state wave function �0�z�
�dashed lines� are compared with n�z� /2 and u0�z� obtained
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FIG. 2. Left panels: energy of the lowest single-particle states
for fixed k� and for �a� �kFa�−1=−1, �b� 0, and �c� +1. Circles
correspond to the lowest bound states in the presence of the dark
soliton; solid lines correspond to the lowest-energy states �bulk in a
uniform superfluid �see text�. Right panels: 	v0�z�	2 for the lowest
bound state with k�=0. The dashed line in �d� corresponds to the
ansatz v0�z��sin�kFz�exp�z /�BCS� with �BCS=10kF
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FIG. 3. Dashed lines: density profile nB�z� /nB0 and wave func-
tion of the lowest fermionic bound state, �0�z�, in the BEC limit.
Solid lines: density profile n�z� /n0 and lowest eigenvector u0�z� of
the BdG equations for �kFa�−1= +1.
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from BdG equations �solid lines�. The agreement is rather
good and the small differences are due to the fact that
�kFa�−1= +1 is still relatively far from the true BEC limit and
to the use of a finite cutoff energy Ec.

IV. CONCLUSIONS

In conclusion, we have theoretically investigated the be-
havior of dark solitons in a Fermi superfluid in the BCS-BEC
crossover, showing that the soliton at unitarity has a large
density contrast. We have also discussed the existence of
bound states. Fermionic bound states have already been the
object of investigations in the context of 1D dark solitons in
conducting polymers �26�. They play an important role also
in the physics of domain walls in the Fulde-Ferrell-Larkin-
Ovchinnikov states �see, for instance, Refs. �19,20� and ref-
erences therein� and in the case of Josephson currents
through a potential barrier �27�. In the opposite BEC limit,
the binding of the unpaired Fermi atoms on the solitonic
plane shares an interesting analogy with the Andreev state of

3He atoms on the free surface of superfluid 3He �28�. In the
geometry of the soliton, the fermionic bound state can give
rise to a 2D Fermi gas embedded into a molecular Bose
superfluid. This can be particularly interesting when the mo-
lecular BEC is made starting from a slightly imbalanced spin
population. The residual gas of unpaired atoms can easily fill
the available states in the soliton, thus forming a polarized
2D Fermi gas. From the experimental viewpoint, it seems
quite possible to observe solitons in the BCS-BEC crossover,
for instance, by producing them in the molecular BEC phase
with known techniques �8� and then tuning the scattering
length across the Feshbach resonance, similarly to what has
already been done with vortices. A natural extension of this
work is the study of solitons characterized by a complex
order parameter and moving in the superfluid �gray solitons�.
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