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Abstract

We consider sweeping domain decomposition preconditioners to solve the Helmholtz equation in the case of stripwise

domain decomposition with or without overlaps. We unify their derivation and convergence studies as Jacobi, Gauss-Seidel

or Symmetric Gauss-Seidel for different numbering of the unknowns. This enables the theoretical comparisons of the double

sweep methods in [23, 31] with that of [27, 30, 28]. It also makes possible the introduction of two new sweeping algorithms.

We provide numerical test cases that assess the validity of the theoretical studies.

1 Introduction

Solving the Helmholtz equation numerically is a difficult task, especially when dealing with high-frequency regimes, het-

erogeneous media or reflecting boundary conditions. Over the last decades a lot of effort and progress has been made in

developing efficient algorithms to solve the ill-conditioned linear system resulting from the Helmholtz operator’s discretiza-

tion. Domain decomposition methods (DDM) try to overcome these difficulties. They are hybrid methods that combine
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direct solvers in subdomains and iterative matching of the solutions across the subdomains. The original domain decompo-

sition method introduced by Schwarz [26] only works for overlapping domain decomposition. P. L. Lions [20] introduced a

new variant of this algorithm where the Dirichlet interface conditions are replaced by Robin interface conditions, his method

can be applied to both overlapping and nonoverlapping subdomains. He showed convergence for the elliptic case for a non

overlapping domain decomposition. The proof was extended by Després [9] to the Helmholtz equation and later on to the

time-harmonic Maxwell equations [10]. More recently, sweeping-type domain decomposition methods have been made pop-

ular due to their capability to achieve nearly-linear asymptotic complexity. A sweeping algorithm was first proposed and

analyzed in [23] for convection-diffusion operators. Sweeping approaches for Helmholtz problems have recently seen their

interest renewed as a preconditioner to speed up the convergence of the solver: the double sweep preconditioners of Stolk for

overlapping decomposition [27, 28] and of Vion and Geuzaine for non overlapping decomposition with high order interface

conditions [30, 31], the PML-based sweep method of Stolk [27], and the polarized traces method of Zepeda-Núñez and De-

manet [32]. There also exists sweeping-type methods that are not domain decomposition based methods, such as the sweeping

PML preconditioner of Engquist and Ying [13, 12], the source transfer method [5] , see [15] for a complete panorama and

relations between these methods.

The highlights of the article are:

• New formulation of [27, 30] which allows for two new variants introduced in § 4.4

• Unified convergence analysis for the three above mentioned algorithms which enables a comparison with the algorithms

proposed in [10], [23, 31], see Table 1.

• Theoretical and numerical comparisons that show the advantage of the double sweep method in [23, 31] over the double

sweep method in [27, 30].

We first state the problem in § 2. Then we explain in § 3 how to substructure the problem in terms of interface unknowns

and how to apply classical linear algebra preconditioners (Jacobi,Gauss-Seidel and Symmetric Gauss-Seidel) to two different

unknown numberings. After these preparatory tools have been introduced, we present and analyze in § 4 the convergence of

six sweeping algorithms. Numerical results are shown in § 5.

2 Statement of the problem and two classical algorithms

We consider the Helmholtz equation in a bounded domain Ω ¢ R
2 with frequency É, velocity c and wavenumber k defined

by k = É/c:
�

−k2 −∆
"

u = f in Ω
+ appropriate boundary conditions on ∂Ω .

(1)

We consider a layered decomposition of Ω into N slices (Ωi)1≤i≤N with or without overlap, see Figure 1. The boundary

∂Ωi \ ∂Ω is written as the disjoint union of Γi,l and Γi,r where Γi,l is on the left of Ωi and Γi,r is on its right (Ω1,l = ∅ and

ΩN,r = ∅) (see Fig. 2). The outward normal from Ωi on Γi,l (resp. Γi,r) is denoted by n⃗i,l (resp. n⃗i,r). The problem (1) can

Figure 1: Decomposition into vertical strips

be solved iteratively using a domain decomposition method where we solve locally on each subdomain Ωi the equation (1)

with appropriate boundary conditions on the physical boundaries and interfaces [9]. The method writes:

Solve in parallel:
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+ appropriate boundary conditions on ∂Ω ∩ ∂Ωi ,

(2)



where Bi,l and Bi,r are the interface conditions. Here I denotes the square root of −1 (I2 = −1). For sake of simplicity, we

consider here either zeroth-order ABC (ABC0):
�

Bi,l = ∂n⃗i,l
+ Ik

Bi,r = ∂n⃗i,r
+ Ik ,

(3)

exact ABC as interface conditions or subdomains coupling via Perfectly Matched Layer (PML) as in [27]. In practice, when

used as truncation conditions on artificial boundaries, ABC0 yields high non physical reflection of the order of 10% of the

incoming wave whereas by definition exact ABC leads to no reflection at all. ABC0 boundary conditions are easy and cheap

to use whereas exact ABC, always defined in theory, are sometimes impossible to use in practice (e.g. variable coefficients

problems). As a result, there is room for compromise and a great deal of literature has been devoted to introduce various high

order interface conditions. The most notable techniques are based on partial differential operators (see [11] and [2]) or on

PML (see [19] and [6]), see [22] as well for a gentle introduction to this question. When used as truncation conditions, the

final accuracy of the computation does depend on the choice of the ABC.

But let us stress that here, ABCs are used as interface conditions in domain decomposition methods so that the final

accuracy of the computed result is not impacted by the choice of the ABC, only the iteration counts to solution are impacted.

High-order ABC tailored to domain decomposition improve the iteration counts with respect to ABC0, see e.g. [14, 1].

A remarkable super convergence result noticed in [17] for the two subdomain case and in [24] for a decomposition into N
strips (see Fig. 1) is that the use of exact ABCs as interface conditions yields convergence in a number of iterations equal to

the number of subdomains. Since the solution in a subdomain depends on the value of the right hand side everywhere and

that in algorithm (2) a subdomain receives data only from its neighbors it is not possible to achieve convergence in less than

N iterations. When looking at the proof in [24], it appears that somehow the correct information flows from the extreme

subdomain labelled 1 to the right and at the same time from subdomain labelled N to the left.

This motivated the search for algorithms which would sweep over the subdomains to reach convergence in one iteration

consisting of a double sweep. In the sequel we will consider the double sweep algorithms introduced in [23, 31] and in [27, 30]

since they converge in one double sweep if exact ABCs are used as interface conditions. Note that both algorithms were named

double sweep algorithms which could be confusing. But as we shall see they are actually not the same and have different

convergence rates when implemented with non exact ABCs. We start with the double sweep algorithm introduced in [23]. It

consists in double sweeps over the subdomains:

left to right sweep:
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+ appropriate boundary conditions on ∂Ω ∩ ∂Ωi ,

(4)

then, right to left sweep:
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on Γi,r, 1 f i f N − 1

+ appropriate boundary conditions on ∂Ω ∩ ∂Ωi .

(5)

It can be seen as a Symmetric Gauss-Seidel version of the Jacobi algorithm (2). This statement will be made more precise in

section 4. Its study is made easier in its substructured formulation which is moreover needed to introduce the double sweep

algorithm of [27, 30]. We devote the next section to substructuring.

3 Substructuring

In this section, we introduce the substructured problem related to algorithm (2). This will be the basis for the unified

framework of DD sweeping methods. Substructuring consists in reformulating the iterative method considering only surface

unknowns on the interfaces:
�

hn
i,l := Bi,l (u

n
i ) , on Γi,l for 2 f i f N

hn
i,r := Bi,r (u

n
i ) , on Γi,r for 1 f i f N − 1 .

(6)

Considering the global vector hn containing the local unknowns (hn
i,l)2≤i≤N and (hn

i,r)1≤i≤N−1, we can reformulate the

additive Schwarz method (2) as a Jacobi algorithm on hn:

hn+1 := T (hn) +G , (7)



Bi,l(ui) = hl Bi,r(ui) = hr

Ωi

L(ui) = f

Γi,l Γi,r

Γi−1,r Γi+1,l

Figure 2: Local problem on the subdomain Ωi

where the iteration operator T can be written in the form of an operator valued matrix and G refers to the contribution of the

right-hand side f , see [24]. The above equation is what is called a substructured formulation of the volumic algorithm (2).

Taking the limit as n tends to infinity, we see that we look for a vector h such that,

(Id−T ) (h) = G . (8)

Equation (8) is what is called the substructured formulation of the domain decomposition problem. In order to define more

precisely the operator T , we introduce for each subdomain an operator Si which takes three arguments, two surface functions

hl and hr and a volume function f and maps them to the local solution v:

Si(hl, hr, f) := v (9)

where v : Ωi �→ C satisfies:



















�

−k2 −∆
"

v = f in Ωi

Bi,l(v) = hl on Γi,l (2 f i f N)

Bi,r(v) = hr on Γi,r (1 f i f N − 1)

+ appropriate boundary conditions on ∂Ω ∩ ∂Ωi ,

(10)

for 1 < i < N . For i = 1, the definition of S1 is similar except that it takes only the two arguments (hr, f) since domain Ω1

has no left interface and similarly operator SN takes only the two arguments (hl, f) since domain ΩN has no right interface.

As of now, for sake of simplicity and by abuse of notation, S1(hl, hr, f) (resp. SN (hl, hr, f)) will refer to S1(hr, f)
(resp. SN (hl, f)).

Next, we introduce the surface right hand-side G(f) by

Gi,l(f) := Bi,l(Si−1(0, 0, f)), 2 f i f N
Gi,r(f) := Bi,r(Si+1(0, 0, f)), 1 f i f N − 1 .

(11)

and the substructured operator T by:

T (h)i+1,l := Bi+1,l(Si(hi,l, hi,r, 0)), 1 f i f N − 1
T (h)i−1,r := Bi−1,r(Si(hi,l, hi,r, 0)), 2 f i f N .

(12)

The operator T has thus the following possibly non zero entries:

T(i+1,l)(i,l) := Bi+1,l(Si(·, 0, 0)), 1 f i f N − 1
T(i+1,l)(i,r) := Bi+1,l(Si(0, ·, 0)), 1 f i f N − 1
T(i−1,r)(i,r) := Bi−1,r(Si(0, ·, 0)), 2 f i f N
T(i−1,r)(i,l) := Bi−1,r(Si(·, 0, 0)), 2 f i f N .

(13)

3.1 Double sweep algorithm of [27, 30]

The rationale behind the algorithm in [27, 30] is that for exact ABC used as interface conditions, we have a decoupling of

left and right interface unknowns since

T
EABC
(i+1,l)(i,r) ≡ 0 and T

EABC
(i−1,r)(i,l) ≡ 0 . (14)



Then, the operator T EABC is nilpotent of order N−1. This is related to the convergence in N iterations of algorithm (2) with

exact ABC as interface conditions. In practice, ABC and even PML truncation techniques are not perfect and the nilpotency

effect is lost. In order to force it, a new operator is introduced:

TSDS(h)i+1,l := Bi+1,l(Si(hi,l, 0, 0)), 1 f i f N − 1
TSDS(h)i−1,r := Bi−1,r(Si(0, hi,r, 0)), 2 f i f N

(15)

which is by construction nilpotent of order N − 1 even with non exact ABCs as interface conditions. A fixed point method

based on this reads:

(Id−TSDS)(h
n+1) = (T −TSDS) (h

n) +G. (16)

More efficiently, the operator I −TSDS can then be used as a preconditioner in order to solve the substructured problem (8).

For instance the left preconditioned system

(Id−TSDS )−1 (Id−T ) (h) = (Id−TSDS )−1G (17)

can be solved by a Krylov type method. A closer look at the operator I − TSDS shows that inverting it can be made by two

concurrent sweeps, hence the name double sweep.

In the sequel, algorithms other than (7) or (17) will be introduced as classical Jacobi, Gauss-Seidel, symmetric Gauss-

Seidel applied to the substructured problem (8) with two different numberings of the interfaces. This will give a unified view

to the methods considered in [8, 23, 27, 30, 31] and it will enable the introduction of two new algorithms in § 4.4.

3.2 Three subdomain case

For sake of clarity and to give a taste of the general case, we start with a three-domain decomposition of the whole plane

R
2, see Figure 3.

3.2.1 Subdomain wise (SW) ordering

The vector h has four components which are interfaces functions living respectively on Γ1,r, Γ2,l, Γ2,r and Γ3,l, see

Figure 3:

h := (h1,r h2,l h2,r h3,l)
T .

This is the natural geometric ordering that we will refer to as the subdomain wise numbering (SW). Then for arbitrary interface

conditions Bi,l or r, the sparsity pattern of the substructured problem is:

(I −TSW )(hSW ) =









I X X 0
X I 0 0
0 0 I X
0 X X I

















h1,r

h2,l

h2,r

h3,l









, (18)

where X denotes a possibly non zero entry.

3.2.2 Left-Right (LR) ordering

Following [23], we consider now an ordering where left interfaces are numbered first and then the right interfaces in the

reverse order. In our three subdomain case, we define;

h := (h2,l h3,l h2,r h1,r)
T .

For arbitrary interface conditions Bi,l or r, the sparsity pattern of the substructured operator is:

(I −TLR)(hLR) =











I 0 0 X
X I X 0

0 X I 0
X 0 X I





















h2,l

h3,l

h2,r

h1,r











. (19)



3.2.3 Dependence of the preconditioners on ordering

Of course, systems (18) and (19) are strictly equivalent. But as a consequence of the different numberings, the approximate

inverses obtained from Jacobi or Gauss-Seidel type mechanisms may not be the same. As an example, consider the Gauss-

Seidel preconditioner for the SW numbering:

(I −TSW,GS)(hSW ) :=









I 0 0 0
T(2,l)(1,r) I 0 0

0 0 I 0
0 T(3,l)(2,l) T(3,l)(2,r) I

















h1,r

h2,l

h2,r

h3,l









, (20)

and the Gauss-Seidel preconditioner for the LR numbering:

(I −TLR,GS)(hLR) :=











I 0 0 0
T(3,l)(2,l) I 0 0

0 T(2,r)(3,l) I 0
T(1,r)(2,l) 0 T(1,r)(2,r) I





















h2,l

h3,l

h2,r

h1,r











. (21)

Even up to a reordering these two preconditioners are different since the entries of T which are kept in these two approx-

imations are not the same. In § 4, we will develop this analysis for other preconditioners with also an arbitrary number of

subdomains.

Another important fact already mentioned above, see eq. (14), is that if the interface conditions are exact absorbing

boundary conditions (EABC), four additional entries cancel in (18) or (19) so that TSW and TLR are actually nilpotent

operators of order 2. Indeed the entry T(1,r)(2,l) is the operator that maps h2,l to B1,r(v2,l) where v2,l satisfies:

L(v2,l) = 0 in Ω2 ,
B2,r(v2,l) = 0 on Γ2,r ,
B2,l(v2,l) = h2,l on Γ2,l .

(22)

Since B2,r is an EABC, v2,l can be seen as the restriction of a harmonic function defined on the half plane at the right of

Γ2,l so that B1,r(v2,l) = 0 since B1,r is an EABC as well. That is, T(1,r)(2,l) = 0. In the same way, we can prove three

other cancellations, namely: T(2,r)(3,l) = 0 and T(i+1,l)(i,r) = 0 for i = 1, 2. The only entries left are T(i,r)(i+1,r) and

T(i+2,l)(i+1,l) for i = 1. Let us denote by T EABC
SW the operator TSW when the interface conditions are EABC. We have just

proved that its sparsity pattern is then:

T
EABC
SW =









0 0 X 0
0 0 0 0
0 0 0 0
0 X 0 0









. (23)

As for the left-right numbering, let us denote by T EABC
LR the operator TLR when the interface conditions are EABC so that

with four entries cancelled, its sparsity pattern is then:

T
EABC
LR =









0 0 0 0
X 0 0 0
0 0 0 0
0 0 X 0









. (24)

Another way to see that numbering impacts the preconditoners is to remark that even for EABCs, the Gauss-Seidel precondi-

tioner for the left-right numbering is exact:

(I −T
EABC
LR,GS ) = (I −T

EABC
LR ) ,

which is not the case for the Gauss-Seidel preconditioner for the subdomain wise numbering

(I −T
EABC
SW,GS ) ̸= (I −T

EABC
SW ) .

4 Analysis in the many subdomain case

We come back to the case of a stripwise decomposition into N subdomains as in Figures 1 or 2. As in the three subdomain

case, we consider two numberings for the substructured system (8).



Γ2,l Γ1,r Γ3,l Γ2,r

Ω2

Ω1 Ω3

Figure 3: Decomposition of the plane into three subdomains

4.1 Subdomain wise (SW) numbering

The most natural numbering is to order the interface unknowns subdomain-wise (SW), i.e. one subdomain after the other.

It yields the following substructured system:

(I−TSW )(HSW ) =



































I −T(1,r)(2,l) −T(1,r)(2,r) 0

−T(2,l)(1,r) I 0 0
. . .

0 0 I −T(2,r)(3,l) −T(2,r)(3,r) 0
T(3,l)(2,l) T(3,l)(2,r) I 0 0

0 0
. . .

. . .
. . .

−T(4,l)(3,l)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . I
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h2,l

h2,r

h3,l

h3,r

h4,l

...

hN,l





























.

(25)

4.2 Left-Right (LR) numbering

The following left-right (LR) numbering, where left interface unknowns are numbered first and then the right interface

unknowns, leads to the following substructured system:

(I−TLR)(HLR) =







































I 0

−T(3,l)(2,l)

. . .

. . .
. . .

0 −T(N,l)(N−1,l) I

0 −T(2,l)(1,r)

. .
.

. .
.

−T(N,l)(N−1,r) 0

0 −T(N−1,r)(N,l)

. .
.

. .
.

−T(1,r)(2,l) 0

I 0

−T(N−2,r)(N−1,r)

. . .

. . .
. . .

0 −T(1,r)(2,r) I







































































h2,l

...

...
hN,l

hN−1,r

...

...
h1,r

































.

(26)

In order to highlight nilpotency, we introduce the restriction operator to the left (resp. right) interface unknowns Rl (resp. Rr)

as well as four (2N − 2)× (2N − 2) submatrices of the operator TLR:

Ml := RT
l TLR Rl (top left) , Al := RT

l TLR Rr (top right)

Ar := RT
r TLR Rl (bottom left) , Mr := RT

r TLR Rr (bottom right )

so that we have I −TLR = I −Ml −Al −Mr −Ar. It is easy to check that we have the following cancellation relations:

MN−1
r = M

N−1
l = 0; Ml Mr = Mr Ml = 0; A 2

l = A 2
r = 0

Al Ml = Ar Mr = 0; Ml Ar = Mr Al = 0 .
(27)



It is worth noticing that these relations come from the structure of the matrices and do not depend on the value of the entries.

Let us introduce the following operators that will play a crucial role in the sequel:

Cr := (I −Mr)
−1

Ar = (

N−2
�

i=0

M
i
r )Ar and Cl := (I −Ml)

−1
Al = (

N−2
�

i=0

M
i
l )Al . (28)

Note that using cancellation relations (27), we have

C2
r = C2

l = 0 . (29)

4.3 Jacobi, Gauss-Seidel and Symmetric Gauss-Seidel for the subdomain wise numbering

With the notations introduced above, the substructured operator (25) reads:

(I −TSW ) =



































I −Ar,2N−2,1 −Mr,2N−2,2N−3 0

−Al,1,2N−2 I 0 0
. . .

0 0 I −Ar,2N−3,2 −Mr,2N−3,2N−4 0
Ml,2,1 Al,2,2N−3 I 0 0

0 0
. . .

. . .
. . .

−Ml,3,2
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . . I



































.

(30)

When considering the decomposition of matrix I −TSW into its diagonal, lower and upper parts as I −TSW = L+D+U ,

its upper part U involves only entries of the matrices Ar and Mr and similarly, its lower part L involves only entries of the

matrices Al and Ml and the diagonal part D is simply the identity. Expressed now in the LR numbering, it is then easy to

check that we have D = I , L = −Ml−Al and U = −Mr−Ar. Thus we introduce in a classical way several preconditioners

whose formulas are given in the LR numbering:

• the Jacobi preconditioner D−1:

M−1
Jacobi := I ,

• the left Gauss-Seidel (GS) preconditioner (L+D)−1:

M−1
GS := (I −Ml −Al)

−1 ,

• the Symmetric Gauss-Seidel (SGS) preconditioner [(L+D)D−1(D + U)]−1 = (D + U)−1 D (L+D)−1:

M−1
SGS := (I −Mr −Ar)

−1 (I −Ml −Al)
−1 .

The Jacobi preconditioner amounts to Desprès-Lions algorithm and the two other preconditioners had been introduced and

studied in [23, 31]. In [23], the GS preconditioner was referred to as FDA and the SGS preconditioner as the Double Sweep

(DS) algorithm.

When used as solvers, their convergence depends on the spectral radius of the error propagation operators defined as:

Definition 4.1. For a preconditioner M−1 of a linear operator A, we denote by R its error propagation operator as: R :=
M−1(M −A).

It was proved in [23] that the spectral radius of their error propagation operators denoted by Ä(R) satisfy the following

bounds: Ä(RJacobi) f Ä1/N , Ä(RGS) f Ä2/N and Ä(RSGS) f Ä where N is the number of subdomains and Ä = Ä(Cr) Ä(Cl).
The proof was written with the help of the formal language theory, see e.g. [21]. The SGS algorithm can be studied more

classically since we have:

Proposition 4.2. The formula for RSGS is:

RSGS = (I + Cr)Cl (Mr + Ar) .

As for the power of RSGS , we have the following formula:

Rn
SGS = (I + Cr)Cl (Cr Cl)

n−1 (Mr + Ar) .



Proof. By definition, we have:

RSGS = (Id−Ar −Mr)
−1(Id−Ml −Al)

−1(Ml + Al)(Ar + Mr) .

Using the equalities: Ml Ar = Ml Mr = 0 and

Id−Ar −Mr = (Id−Ar) (Id−Mr) ,

we have:

RSGS = ((Id−Mr)
−1 + Cr)Cl (Ar + Mr) .

Note that since Mr Ml = Mr Al = 0 , we have Mr Cl = 0 and thus (Id−Mr)
−1 Cl = Cl.

As for the powers of RSGS , we first note that:

Rn
SGS = (I + Cr)Cl [(Mr + Ar)(I + Cr)Cl]

n−1
(Mr + Ar) .

Using cancellation relations (27) to simplify the middle term, we get:

(Mr + Ar)(I + Cr)Cl =
�

(
�N−2

i=1 M i
r )Ar + Mr + Ar

�

Cl

= Cr Cl ,

where the last equality comes from Mr Cl = 0.

4.4 Block Jacobi, Gauss-Seidel and Symmetric Gauss-Seidel for the left-right numbering

Considering system (26) as a block two by two matrix, the matrix I − TLR can be decomposed into its block diagonal,

lower and upper parts as L+D + U where D = I −Mr −Ml, L = −Ar and U = −Al. Thus we introduce in a classical

way several preconditioners:

• the Block Jacobi preconditioner (BJ) D−1

• the Block Gauss-Seidel (BGS) preconditioner (L+D)−1

• the Block Symmetric Gauss-Seidel (BSGS) preconditioner [(L+D)D−1(D + U)]−1 = (D + U)−1 D (L+D)−1

Remark : The BJ preconditioner was introduced in [27, 28] for overlapping decompositions and in [30] for non overlapping

decompositions. Note that a diagonal block solve consists in two independent forward substitutions on the left and right

interface unknowns. So the method was called Double Sweep although it is different from the one previously introduced

in [23] and named as well Double Sweep. We hope to have clarified this possible confusion.

We have thus three preconditioners with the following formulas:

M−1
BJ := (I −Mr −Ml)

−1 ,
M−1

BGS := (I −Mr −Ml −Ar)
−1 ,

M−1
BSGS := (I −Mr −Ml −Al)

−1 (I −Mr −Ml) (I −Mr −Ml −Ar)
−1 .

(31)

To our knowledge, the last two algorithms have not been introduced before (except for the BGS algorithm mentioned

briefly in [27] eq. (17-23), page 246). Their convergence rates nor that of BJ had not been studied before. They arise from

our way to introduce the BJ algorithm which is different from the one developed in [27, 30] and that has been recalled above

in § 3.1.

We have the following propositions.

Proposition 4.3. The error propagation operator RBJ has the following expression:

RBJ = Cr + Cl ,

and for n even we have:

Rn
BJ = (Cr Cl)

n/2 + (Cl Cr)
n/2 .

Proof. Thanks to relations (27), we have M−1
BJ = Id+

�N−2
i=1 M i

l +
�N−2

i=1 M i
r and:

RBJ = (Id+

N−2
�

i=1

M
i
l +

N−2
�

i=1

M
i
r )(Al + Ar) =

N−2
�

i=0

M
i
r Ar +

N−2
�

i=0

M
i
l Al = Cr + Cl .

Next using cancellation relation (29), the formula for Rn
BJ can easily be proved by induction.



Proposition 4.4. The error propagation operator RBGS has the following expression:

RBGS = (I + Cr)Cl ,

and for any integer n we have:

Rn
BGS = (I + Cr)Cl(Cr Cl)

n−1 .

Proof. Using the following formulas:

(I −Mr −Ml)
−1 = (I −Mr)

−1 (I −Ml)
−1 = (I −Ml)

−1 (I −Mr)
−1

(I −Mr −Ml −Ar)
−1 = (I −Mr)

−1 (I + Ar) (I −Ml)
−1

(I −Mr −Ml −Al)
−1 = (I −Ml)

−1 (I + Al) (I −Mr)
−1 ,

(32)

in addition to (27), we have:

RBGS = M−1
BGS Al = (I −Mr)

−1 (I + Ar) (I −Ml)
−1 Al

= (I −Mr)
−1 (I −Ml)

−1 Al + (I −Mr)
−1 Ar (I −Ml)

−1 Al

= (I −Ml)
−1 (I −Mr)

−1 Al + Cr Cl = Cl + Cr Cl .

As for the n-th power of RBGS , the formula can be proved by induction using the fact that:

(I + Cr)Cl (I + Cr)Cl = (I + Cr)Cl Cr Cl .

Proposition 4.5. The error propagation operator RBSGS has the following expression:

RBSGS = (I + Cl)Cr Cl ,

and for any integer n we have:

Rn
BSGS = (I + Cl) (Cr Cl)

n .

Proof. Using cancellation relations (27) and (32), we have:

RBSGS = M−1
BGSLD−1 U = M−1

BGSAr (I −Mr)
−1 (I −Ml)

−1 Al = M−1
BGS Ar Cl

= (I −Ml)
−1 (I + Al) (I −Mr)

−1(I −Mr)(I −Ml)(I −Mr)
−1 (I + Ar) (I −Ml)

−1 Ar Cl

= (I −Ml)
−1 (I + Al −Ml)(I −Mr)

−1 (I + Ar) (I −Ml)
−1 Ar Cl

= (I + Cl) (I −Mr)
−1 (I + Ar)Ar Cl = (I + Cl)Cr Cl .

As for the last formula of the proposition, it comes from the nullity of both C2
r and C2

l .

Remark 4.1. It is clear from the above results that the operators Cr and Cl (see eq. (28)) are a key measure of the efficiency

of these algorithms. If the left interface conditions are exact absorbing conditions, operator Ar = 0, see equation (22)

and thus Cr = 0 as well. Similarly if right interface conditions are exact absorbing conditions, operator Cl = 0. More

generally, the norms of Cr and Cl are proportional to that of Ar = 0 and Al = 0. Thus as expected the more absorbing

the interface conditions are, the better the convergence is. Another parameter is the number of subdomains since for given

interface conditions, as the number of subdomains increases, the norm of Cr and Cl will grow. It echoes what was noticed

in [27] at the end of § 4:

”With the Robin transmission conditions the iteration numbers grow roughly linearly in Nx, or as N1/2 in 2-D.”

In this respect, note that RBSGS satisfies

(I + Cl)
−1 RBSGS (I + Cl) = Cr Cl

so that from all algorithms listed in Table 1 it has the most favorable amplification error operator iff the norm of Cr Cl is

smaller than one. In a recent article [16], these norms have been estimated in the context of the study of the convergence rate

of the Jacobi preconditioner.



4.5 Theoretical comparison between the SGS and BJ preconditioners

We devote a paragraph to this comparison since these algorithms have been misleadingly coined the same name Dou-

ble Sweep algorithm in the articles in which they had been introduced, in [23, 31] for SGS and in [27, 30] for BJ. From

Propositions 4.2 and 4.3, we have for n even:

Rn
BJ = (Cr Cl)

n/2 + (Cl Cr)
n/2 ,

and for any n
Rn

SGS = (I + Cr)Cl (Cr Cl)
n−1 (Mr + Ar) .

Let us denote by

Ä the spectral radius of Cr Cl , (33)

which is the same as that of Cl Cr. We have for any operator norm ∥ · ∥ on the matrices the following estimates:

∥Rn
BJ∥ f ∥(Cr Cl)

n/2∥+ ∥(Cl Cr)
n/2∥ f ∥(Cr Cl)

n/2∥+ ∥Cl∥∥(Cr Cl)
n/2−1∥∥Cl∥ , (34)

so that taking the n-th square root, we get the following estimate for the spectral radius of RBJ :

Ä(RBJ) f Ä1/2 . (35)

As for the SGS algorithm, we get:

∥Rn
SGS∥ f ∥I + Cr∥ ∥Cl∥ ∥Mr + Ar∥ ∥(Cr Cl)

n−1∥ . (36)

We thus get the following estimate for the spectral radius of RSGS :

Ä(RSGS) f Ä . (37)

Thus when Ä < 1, an advantage of SGS over BJ is the square root of Ä in the ratio of the convergence rates. This is coherent

with the factor two in the iteration counts in favour of SGS observed in most tables of the numerical section 5 when PMLs are

interface conditions. Nevertheless, note that at the expense of doubling the number of cores used in the application of the BJ

preconditioner, this difference is nullified in terms of elapsed time. Indeed, during one iteration of the SGS algorithm, only

one subdomain is active at a time in the order 1 → 2 → . . . → N and then in the reverse order N → N − 1 → . . . → 1.

Whereas during one iteration of BJ, two subdomains are active at a time in the order 1 → 2 → . . . → N for one subdomain

and concurrently in the reverse order N → N − 1 → . . . → 1 for the other one. Thus, the elapsed time of one iteration of

SGS is twice as much as one iteration of BJ using two cores. This compensates for the higher iteration counts of BJ compared

to SGS when the number of cores is not limited.

Ref. Abbr. Linear Algebra Definition Ampl. Error Radius

Després (1991) Jacobi Jacobi-SW I Mr + Ml + Ar + Al ρ1/N

Nataf-Nier (1997) GS Gauss-Seidel-SW (I − Ml − Al)
−1 (I + Cl)(Mr + Ar) ρ2/N

�

Nataf-Nier (1997)

Vion-Geuzaine(2018)
SGS Symm. Gauss-Seidel-SW

(I − Mr − Ar)
−1

×(I − Ml − Al)
−1 (I + Cr)Cl (Mr + Ar) ρ

�

Stolk (2013)

Vion-Geuzaine (2014)
BJ Block Jacobi-LR (I − Mr − Ml)

−1 Cr + Cl ρ1/2

Here (2022) BGS Block GS-LR (I − Mr − Ml − Ar)
−1 (I + Cr)Cl ρ

Here (2022) BSGS Symm. Block GS-LR

(I − Mr − Ml − Al)
−1

×(I − Mr − Ml)
×(I − Mr − Ml − Ar)

−1

(I + Cl)Cr Cl ρ

Table 1: Algorithms and their convergence properties. SW means subdomain wise numbering and LR means left right

numbering

4.6 Volumic preconditioners

The substructured algorithms demand exact local solves and data structures adapted to substructured algorithms. In order

to allow for the use of fast approximate solvers in subdomains and of volumic data structures, an extension to the volumic case



is defined below. For the SGS algorithm, the volumic formulation is simply given by equations (4)-(5) followed by the use of

a partition of unity in order to iterate on functions which are uniquely defined in the overlaps. For this, we first introduce for

1 f i f N partition of unity functions Çi : Ωi → R
+ and for vi : Ωi → C, Ei(vi) denotes the extension by zero of vi to Ω

so that for any function v : Ω→ C, we have:

v =

N
�

i=1

Ei(Çi v|Ωi
) .

We introduce the operator MC (MakeCoherent) that maps a collection of local functions (vi)1≤i≤N to a global function

defined as follows:

MC((vi)1≤i≤N ) :=

N
�

i=1

Ei(Çi vi) . (38)

Let f be a source term and h be interface sources, it is then natural to introduce the following linear parallel reconstruction

algorithm Vol:

Vol(h, f) := MC((Si(hi,l, hi,r, f))1≤i≤N . (39)

Let u be the solution to the original problem (1), we have:

u = Vol((I −T )−1G(f), f) . (40)

Since a substructured preconditioner M−1 may be seen as an approximate inverse to (I−T ), it is natural to define the related

volumic precondtioner as:

Definition 4.6. Let M−1 be a substructured preconditioner for problem (8), the related volumic preconditioner to problem (1)

M−1
vol is defined as follows:

M−1
vol(f) := Vol(M−1G(f), f) = Vol(M−1G(f), 0) + Vol(0, f) . (41)

Note that if the surface variant of the preconditioner is exact as it happens for some if the interface conditions are exact

absorbing boundary conditions, this property will be inherited by its volumic counterpart.

As an example, we detail below after some rewriting the action of the volumic preconditioner associated to the surface

variant of the BJ preconditioner.
Volumic BJ Preconditioner

Left to right sweep

Subdomain 1
w1 ← S1(0, 0, f)
Subdomain 2
G2,l(f)← B2,l(w1)
h2,l ← G2,l(f)
v2,l ← S2(h2,l, 0, 0)
w2 ← S2(0, 0, f)
Subdomain 3
G3,l(f)← B3,l(w2)
h3,l ← G3,l(f) + B3,l(v2,l)
v3,l ← S3(h3,l, 0, 0)
w3 ← S3(0, 0, f)
Subdomain 4
G4,l(f)← B4,l(w3)
h4,l ← G4,l(f) + B4,l(v3,l)

...
Subdomain N
wN ← SN (0, 0, f)
vN,l ← SN (hN,l, 0, 0)

Right to left sweep

Subdomain N
wN ← SN (0, 0, f)
Subdomain N − 1
GN−1,r(f)← BN−1,r(wN )
hN−1,r ← GN−1,r(f)
vN−1,r ← SN−1(0, hN−1,r, 0)
wN−1 ← SN−1(0, 0, f)
Subdomain N − 2
GN−2,r(f)← BN−2,r(wN−1)
hN−2,r ← GN−2,r(f) + BN−2,r(vN−1,r)
vN−2,r ← SN−2(0, hN−2,r, 0)
wN−2 ← SN−2(0, 0, f)
Subdomain N − 3
GN−3,r(f)← BN−3,r(wN−2)
hN−3,r ← GN−3,r(f) + BN−3,r(vN−2,r)

...
Subdomain 1
w1 ← S1(0, 0, f)
v1,r ← S1(h1,r, 0, 0)

Then we perform local summations:

ui := wi + vi,l + vi,r, 2 f i f N − 1

and

u1 := w1 + v1,r and uN := wN + vN,l .



Finally the action of the preconditioner M−1
BJ,vol reads:

M−1
BJ,vol(f) :=

N
�

i=1

Ei(Çi(ui)) . (42)

5 Numerical results

In this section, we present numerical results for the volumic variants of the preconditioners of Table 1 used with the GM-

RES algorithm [25] with two different relative tolerances, TOL=10−6 and TOL=10−3. The Helmholtz equation is discretized

with P1 or P2 finite elements using the FreeFem++ domain specific language [18]. The following test cases are shown:

homogeneous waveguide (§ 5.1 and 5.2), open cavity (§ 5.3), Marmousi (§ 5.4) and 3D Overthrust (§ 5.5).

We also compare the use of zeroth-order ABC with that of Perfectly Matched Layers (PML) as interface conditions for the

various sweeping algorithms. It is worth noting that in order to avoid transmitting attenuated solutions between subdomains,

the width of the overlap region needs to be taken larger that the width of the PML. In the following numerical results, the

overlap ¶ is equal to 4 mesh elements and the width of the PML is 2. The PML is defined following [3]. As we can see, using

PML interface conditions, iteration counts are slightly better for all cases and much better for the Marmousi test case. Also

note that as the number of subdomains increases, the superiority of PML becomes more pronounced.

When comparing the various algorithms, we see that the iteration counts are qualitatively in agreement with the spectral

radius estimates summarized in Table 1 but only when using PML as interface conditions. For the Jacobi method, the increase

is linear w.r.t. to the number of subdomains. The sweeping methods have iteration counts that increase sublinearly with

the number of subdomains. When using PML, the Block Jacobi (BJ) methods needs twice as many iterations as the other

sweeping methods. We also see that the two new preconditioners BGS and BSGS offer no iteration count improvement over

the SGS preconditioner although they are more expensive.

5.1 Homogeneous waveguide

First, we consider the homogeneous waveguide test case with a layered decomposition into N subdomains. More specif-

ically, we consider a rectangular geometry (Ω = [0, N ]× [0, 1]) made of a homogeneous medium. On the upper and lower

sides of the waveguide, we impose homogeneous Dirichlet conditions (cf. black lines in Figure 4). In addition, we perform a

multimode excitation on the left side and we impose an absorbing boundary condition on the right side. The global problem

is written as


















�

−k2 −∆
"

u = f in Ω

(∂n⃗ + Ik)u = 0 on {x = N} × [0, 1]

(∂n⃗ + Ik)u = ug on {x = 0} × [0, 1]

u = 0 on [0, N ]× {y = 0, y = 1}

(43)

where ug = e−120(y−0.5)2sin(Ãy).

Figure 4: Homogeneous waveguide (k = 20Ã)

We considered two values for the wave number: k = 20 and k = 20Ã and results are given in Tables 2 and 4 for the zeroth

order interface conditions and in Tables 3 and 5 for PML interface conditions. The iteration counts of the various sweeping

algorithms are in agreement with the spectral radius estimates of Table 1. In this simple case, the superiority of PML over

zeroth order ABC is not so significant except for large number of subdomains.

5.2 Influence of the overlap

We have also tested the effect of the width of the overlap on the convergence in the case of the homogeneous waveguide

with zeroth-order ABC. In this case, there is little if no effect of the overlap as shown in Table 6 where the overlap varies from

2 mesh sizes up to 16 mesh sizes.



N Jacobi BJ BGS BSGS SGS

5 29 (18) 9 (5) 5 (3) 5 (3) 5 (3)

10 62 (39) 12 (7) 7 (4) 6 (4) 6 (4)

20 135 (81) 18 (10) 10 (6) 9 (6) 9 (6)

40 283 (163) 26 (12) 14 (8) 14 (7) 14 (8)

80 744 (329) 42 (20) 23 (12) 22 (12) 23 (12)

Table 2: Volumic preconditioner, homogeneous waveguide with zeroth-order ABC, k = 20, ¶ = 4h, TOL=10−6(10−3),
nppwl = 24 , P1

N Jacobi BJ BGS BSGS SGS

5 33 (21) 9 (5) 5 (2) 4 (2) 5 (3)

10 71 (40) 11 (6) 6 (3) 5 (3) 6 (3)

20 150 (80) 13 (7) 7 (4) 6 (3) 7 (4)

40 293 (143) 17 (9) 9 (5) 8 (5) 9 (5)

80 690 (276) 22 (14) 12 (7) 12 (7) 12 (7)

Table 3: Volumic preconditioner with PML interface conditions, homogeneous waveguide, k = 20, ¶ = 4h,

TOL=10−6(10−3), nppwl = 24 , P1

N Jacobi BJ BGS BSGS SGS

5 35 15 10 9 9

10 72 22 14 13 14

20 150 34 22 23 23

40 335 58 38 45 42

Table 4: Volumic preconditioner, homogeneous waveguide with zeroth-order ABC, k = 20Ã, ¶ = 4h, TOL=10−6, nppwl =

24 , P1

N Jacobi BJ BGS BSGS SGS

5 38 10 6 5 6

10 78 11 7 5 6

20 162 17 9 7 9

40 304 23 12 10 12

Table 5: Volumic preconditioner with PML interface conditions, homogeneous waveguide, k = 20Ã, ¶ = 4h, TOL=10−6,

nppwl = 24 , P1

¶ Jacobi BJ BGS BSGS SGS

2 136 19 11 10 10

4 135 18 10 9 9

8 137 17 9 8 9

16 149 21 11 11 11

Table 6: Volumic preconditioner, homogeneous waveguide with zeroth-order ABC, k = 20, ¶ varies, TOL=10−6, nppwl = 24

, P1



5.3 Open cavity test

Same as before, the domain is rectangular with an homogeneous medium and its length increases with the number of

subdomains. The open cavity test is challenging due to the homogeneous Dirichlet conditions imposed on three sides (cf.

black lines in Figure 5). In addition, we perform an excitation on the left side. The Dirichlet conditions create rebounds

leading to an increase in the number of reflections, this phenomenon is exacerbated for high-frequency regimes. The global

problem can be written as










�

−k2 −∆
"

u = f in Ω

(∂n⃗ + Ik)u = g on Γ

u = 0 on ∂Ω\Γ

(44)

where Γ := {x = 0} × [0, 1] and g = exp−ik(xcos(¹)+ysin(¹)), ¹ = Ã
8 . It corresponds to an incident plane wave propagating

at an angle Ã
8 w.r.t. to the horizontal direction, see Fig. 5. This creates numerous reflections on the lateral boundaries of the

open cavity. Here as well, there is roughly a factor two in the iteration counts in favour of the SGS, BGS and BSGS algorithms

compared to BJ algorithm.

Figure 5: Open cavity solution (k = 20Ã)

N Jacobi BJ BGS BSGS SGS

5 44 (29) 12 (8) 7 (4) 6 (4) 7 (5)

10 98 (62) 16 (11) 9 (6) 8 (5) 8 (6)

20 202 (142) 21 (14) 11 (8) 10 (8) 11 (8)

40 478 (255) 30 (22) 16 (12) 15 (11) 16 (12)

Table 7: Volumic preconditioner with zeroth-order ABC, open cavity, k = 20, ¶ = 4h, TOL=10−6(10−3), nppwl = 24 , P1

N Jacobi BJ BGS BSGS SGS

5 49 (33) 12 (8) 6 (4) 6 (4) 7 (4)

10 106 (71) 14 (10) 7 (5) 7 (5) 7 (5)

20 216 (145) 16 (11) 9 (6) 8 (5) 8 (6)

40 427 (260) 19 (12) 10 (7) 10 (6) 10 (7)

Table 8: Volumic preconditioner with PML interface conditions, open cavity, k = 20, ¶ = 4h, TOL=10−6(10−3), nppwl =

24 , P1

N Jacobi BJ BGS BSGS SGS

5 67 (37) 23 (14) 14 (7) 13 (8) 14 (8)

10 137 (77) 32 (19) 19 (11) 19 (12) 20 (13)

20 298 (152) 50 (31) 29 (21) 31 (23) 32 (23)

40 789 (351) 77 (52) 48 (37) 53 (44) 53 (41)

Table 9: Volumic preconditioner with zeroth-order ABC, open cavity, k = 20Ã, ¶ = 4h, TOL=10−6(10−3), nppwl = 24 , P1

5.4 Marmousi

Here we consider the Marmousi benchmark [4]. The velocity profile of the model is depicted in Figure 6. The domain is

of size 9.2 km × 3 km. A Neumann boundary condition is imposed at the top boundary, and PMLs are used on the other three

boundaries. The source is located at the top. The problem is discretized with P2 elements on a regular mesh with 8 points

per wavelength for the reference wavelength corresponding to c = 2. Figure 7 shows the real part of the acoustic field at 100



N Jacobi BJ BGS BSGS SGS

5 72 (42) 18 (11) 9 (6) 9 (5) 10 (6)

10 153 (84) 19 (11) 10 (6) 9 (5) 11 (6)

20 321 (162) 26 (16) 14 (9) 12 (7) 14 (9)

40 638 (313) 34 (21) 18 (11) 16 (10) 19 (11)

Table 10: Volumic preconditioner with PML interface conditions, open cavity, k = 20Ã, ¶ = 4h, TOL=10−6(10−3), nppwl =

24 , P1

Hz frequency. We present results for 25 Hz, 50 Hz and 100 Hz frequencies using the volumic preconditioner. The number

of degrees of freedom grows from 1.1 million for f = 25 Hz to 4.5 million for f = 50 Hz and 17.8 million for f = 100
Hz. Table 11 shows numerical results for zeroth order ABC interface conditions and Table 12 for PML. Interestingly we see

that for ABC results are quite bad with high iteration counts and dependence on both the number of subdomains and the wave

number. Whereas with PML interface conditions, both the iteration counts and their behaviour with respect to the number of

subdomains and wavenumber is similar to the previous test cases on waveguides and open cavity. This very bad behaviour of

zeroth order ABC at higher frequency and subdomain count can be explained by the variability of the coefficients.

Figure 6: Velocity model of the Marmousi test case

Figure 7: Real part of the solution for f = 100 Hz for the Marmousi test case

5.5 3D Overthrust

Here we consider the 3D Overthrust acoustic benchmark. The velocity profile of the model is depicted in Figure 6. The

domain is of size 20 km × 20 km × 4.65 km. A Neumann boundary condition is imposed at the top boundary, and PMLs

are used on the other five boundaries. The source is located at the top, at (2.5 km, 2.5 km). The problem is discretized with

P1 elements on a regular mesh with 10 points per wavelength for the reference wavelength corresponding to c = 2. Figure 9

shows the real part of the acoustic field at 4 Hz frequency.

Tables 13 and 14 present results for 1 Hz, 2 Hz and 4 Hz frequencies using the volumic preconditioner with zeroth order

ABC and PML interface conditions. The number of degrees of freedom grows from 0.33 million for f = 1 Hz to 16.2 million



25 Hz 50 Hz

N Jacobi BJ BGS BSGS SGS Jacobi BJ BGS BSGS SGS

3 22 (12) 11 (6) 10 (5) 7 (4) 7 (4)

7 46 (25) 17 (9) 13 (7) 10 (6) 11 (6) 49 (25) 19 (9) 16 (8) 13 (8) 14 (8)

14 94 (51) 25 (14) 18 (10) 19 (12) 20(12) 98 (51) 28 (15) 22 (12) 21 (13) 21 (11)

28 185 (100) 41 (24) 27 (16) 30 (20) 30 (19) 195 (101) 49 (26) 38 (21) 60 (48) 47 (32)

56 382 (220) 98 (69) 65 (47) 101 (91) 70 (49) 426 (222) 123(81) 90 (61) X (192) 143 (116)

112 1505 (690) X (324) X (X) X (X) X (X)

100 Hz

N Jacobi BJ BGS BSGS SGS

56 476 (216) 147 (87) 120 (77) X (X) 208 (171)

112 1701 (691) X (X) X (375) X (X) X (X)

224 X (X) X (X) X (X) X (X) X (X)

Table 11: Volumic preconditioner with zeroth-order ABC, Marmousi test case, ¶ = 4h, TOL=10−6(10−3), nppwl = 8, P2.

X means that the algorithm did not reach the convergence criterion in 2000 iterations for Jacobi, or in 400 iterations for the

sweeping methods.

25 Hz 50 Hz

N Jacobi BJ BGS BSGS SGS Jacobi BJ BGS BSGS SGS

3 14 (8) 7 (4) 6 (3) 4 (2) 5 (3)

7 33 (17) 10 (5) 8 (4) 5 (3) 6 (4) 34 (18) 10 (6) 9 (4) 6 (3) 6 (4)

14 64 (35) 11 (6) 8 (5) 6 (4) 7 (4) 69 (35) 12 (6) 10 (5) 7 (4) 8 (4)

28 126 (66) 13 (7) 9 (5) 7 (4) 8 (4) 133 (66) 14 (7) 11 (6) 7 (4) 8 (5)

56 247 (124) 18 (11) 12 (7) 11 (6) 12 (6) 260 (125) 18 (9) 13 (7) 10 (5) 11 (5)

112 531 (240) 32 (17) 22 (12) 20 (11) 21 (11)

100 Hz

N Jacobi BJ BGS BSGS SGS

56 242 (103) 18 (9) 14 (6) 10 (5) 11 (5)

112 483 (198) 29 (13) 20 (9) 15 (7) 18 (8)

224 1069 (417) 66 (32) 42 (20) 62 (44) 38 (18)

Table 12: Volumic preconditioner with PML interface conditions, Marmousi test case, ¶ = 4h, TOL=10−6(10−3), nppwl =

8, P2



for f = 4 Hz. We observe similar trends as for the Marmousi test case, although the zeroth order ABC case is not so bad, as

the frequency and number of wavelengths in one direction is not as high for this 3D test case. Moreover, we can see that the

iteration count is much more dependent on the number of subdomains than on the frequency.
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Figure 8: Velocity model of the 3D Overthrust benchmark

Figure 9: Real part of the solution for f = 4 Hz for the 3D Overthrust benchmark

6 Conclusion

We have introduced a unified framework for several sweeping algorithms which eases their derivation and theoretical

studies, see Table 1. We have focused on two double sweep methods: SGS of [23, 31] and BJ of [27, 30]. We conclude

both from their theoretical convergence rates and from our numerical results that the algorithm SGS has a better behavior

than the BJ algorithm. The numerical experiments also illustrate the superiority of PML as interface conditions compared

to zeroth order ABCs, especially in the variable coefficient case. Although these algorithms are more easily derived in their

substructured form, they lend themselves to volumic variants that allow for inexact solves in the subdomains, see § 4.6. In this

form, these methods should have then a behavior similar to the sweeping algorithm of [13].



1 Hz 2 Hz

N Jacobi BJ BGS BSGS SGS Jacobi BJ BGS BSGS SGS

3 14 (7) 7 (4) 6 (3) 4 (2) 4 (2)

7 32 (17) 9 (5) 7 (4) 5 (3) 6 (3) 34(17) 10 (5) 8 (4) 5 (3) 6 (3)

14 94 (45) 18 (9) 10 (5) 9 (5) 9 (5) 68 (34) 15 (8) 10 (5) 8 (4) 9 (4)

28 163 (80) 30 (16) 16 (9) 17 (10) 14 (8)

4 Hz

N Jacobi BJ BGS BSGS SGS

28 162 (80) 32 (17) 19 (10) 24 (15) 17 (9)

56 365 (187) 87 (48) 42 (22) 168 (133) 36 (20)

Table 13: Volumic preconditioner with zeroth-order ABC, Overthrust test case, ¶ = 4h, TOL=10−6(10−3), nppwl = 10 , P1

1 Hz 2 Hz

N Jacobi BJ BGS BSGS SGS Jacobi BJ BGS BSGS SGS

3 11 (7) 5 (3) 4 (2) 3 (2) 3 (2)

7 28 (15) 7 (4) 5 (3) 4 (2) 5 (3) 30(16) 8 (4) 6 (3) 4 (2) 5 (3)

14 59 (31) 9 (5) 6 (4) 5 (3) 6 (3) 63 (31) 11 (6) 7 (4) 6 (3) 7 (3)

28 123 (61) 16 (8) 10 (5) 7 (4) 9 (5)

4 Hz

N Jacobi BJ BGS BSGS SGS

28 121 (63) 18 (9) 11 (6) 10 (6) 11 (6)

56 224 (122) 28 (15) 18 (9) 19 (12) 16 (9)

Table 14: Volumic preconditioner with PML interface conditions, Overthrust test case, ¶ = 4h, TOL=10−6(10−3), nppwl =

10 , P1

Also, an intrinsic problem with double sweep methods is that due to the sequentiality of the algorithm, subdomains are

idle most of the time. To be more precise, in SGS, only one process is active at a time whereas in BJ, two processes are

active at a time (one for the left sweep and one for the right sweep performed concurrently). A solution to overcome this is to

introduce a pipelining technique that can be applied to multiple right-hand sides problems to improve parallelism and achieve

significant speed-ups, see [27, 30].

We have considered stripwise decompositions and it would be interesting to see if the present analysis can be extended to

L-sweeps preconditioners (see e.g. [29, 7] and references therein) used for checkerboard type decompositions.
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