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We investigate the force acting between two parallel plates held at different temperatures. The force
reproduces, as limiting cases, the well-known Casimir-Lifshitz surface-surface force at thermal equilib-
rium and the surface-atom force out of thermal equilibrium recently derived by M. Antezza et al., Phys.
Rev. Lett. 95, 113202 (2005). The asymptotic behavior of the force at large distances is explicitly
discussed. In particular when one of the two bodies is a rarefied gas the force is not additive, being
proportional to the square root of the density. Nontrivial crossover regions at large distances are also
identified.

DOI: 10.1103/PhysRevLett.97.223203 PACS numbers: 34.50.Dy, 12.20.�m, 42.50.Vk, 42.50.Nn

The study of the thermal fluctuations of the electromag-
netic field and of their effects on the force acting on
surfaces and atoms is a long-standing subject of theoretical
research starting from the seminal Lifshitz paper [1] (see
also [2] ). The elusive nature of the thermal component of
the force follows from the fact that thermal effects be-
comes visible only at large distances, of the order of the
photon thermal wave length �T � @c=kBT, where they
prevail on the Casimir force originating from the T � 0
quantum fluctuations of the field. At room temperature the
thermal wavelength corresponds to about 7 microns, a
distance at which both the Casimir and the thermal forces
are very weak and difficult to reveal experimentally. The
existence of thermal effects has been experimentally dem-
onstrated only recently by the JILA experiment [3], by
measuring the frequency shift of the center of mass motion
of an ultracold atomic cloud located at a distance of a few
microns from a dielectric substrate [4,5].

Thermal fluctuations determine the asymptotic, large
distance behavior of the electromagnetic pressure which
takes the Lifshitz form [2]

 Peq
th �T;l��

kBT

16�l3
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�
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ex�1
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in the case of two parallel surfaces separated by a distance
l. Here "10 � "1�0� and "20 � "2�0� are the static dielec-
tric constants of the two materials and T is the temperature
of the system. When the system is not in thermal equilib-
rium the pressure is expected to exhibit a different behav-
ior. In particular, in recent papers the Trento team [6–8]
has shown that the surface-atom force out of thermal
equilibrium exhibits a new asymptotic behavior at large
distances. With respect to that at equilibrium, the new force
exhibits a slower dependence on the distance and a
stronger dependence on the temperature, making its ex-

perimental detection more accessible as demonstrated in
the experiment of [3].

The purpose of the present work is to investigate the
behavior of the force out of thermal equilibrium in the case
of two parallel surfaces. The general goal is to better under-
stand the role of thermal fluctuations which is not fully ex-
ploited at thermal equilibrium, being masked by peculiar
cancellation effects between propagating and evanescent
waves [6,7]. In particular, we address the following ques-
tions: (a) how is the Lifshitz law—and its asymptotic limit
(1)—modified if the temperatures of the two bodies are
different? (b) Can one recover the results of [6] for the
surface-atom force when one body is made of a very di-
lute material corresponding to a gaseous phase with
�"� 1� ! 0?

Let us consider two parallel dielectric half-spaces lo-
cally at thermal equilibrium with different temperatures
and separated by a distance l. In our configuration the left-
side (right-side) body has a complex dielectric function
"1�!� ["2�!�] and is held at temperature T1 (T2), the whole
system being in a stationary configuration. We assume that
each body fills an infinite half-space [see, however, the
discussion after Eq. (17)]. In practice this means that the
bodies are thick compared to the penetration depth of
the thermal radiation. In such conditions the presence of
the remote surfaces of the bodies results only in a
l-independent contribution to pressure, which will not be
considered in this Letter.

Let us assume that the separation between the bodies is
in the z direction. Then the electromagnetic pressure be-
tween them is given by the average Pneq�T1; T2; l� �
hTzz�r; t�i, where Tzz�r; t� � �E2

z � E
2
x � E

2
y � B

2
z � B

2
x �

B2
y�=8� is the zz component of the Maxwell stress tensor

[9] in the vacuum gap. In this work we focus on the thermal
component Pth of the force, defined by P�T1; T2; l� �
P0�l� � Pth�T1; T2; l�, where P0 is the T � 0 quantum
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pressure originating from the vacuum fluctuations of the
field [2].

The electromagnetic field in the vacuum gap physically
originates [9] from the fluctuating polarization fields
P�!; r� in the two half-spaces whose correlations inside
each body are described by the fluctuation-dissipation
theorem
 

hPk�!; r�P�l �!
0; r0�i �

@"001;2�!�

2
coth

�
@!

2kBT1;2

�

	 ��!�!0���r� r0��kl; (2)

where "001;2�!� is the imaginary part of the dielectric func-
tion of the two materials. Because of the presence of the
��r� r0� factor these correlations are local [10] so that the
effects of the fluctuations originating from the two half-
spaces add incoherently. Assumption (2) (local source
hypothesis) was first used in [11] and represents the start-
ing point of our analysis allowing for an explicit calcula-
tion of the electromagnetic field also if the system is not in
global thermal equilibrium [6–8,12,13]. The electric field
at the point r in the gap can be in fact expressed in terms of
the source polarization field via the convolution E�!; r� �R

G�!; r; r0� 
 P�!; r0�dr0 of the Green tensor [14], where

the integration is performed over the volume containing the
sources at r0. At the same time the magnetic field is easily
evaluated using the Maxwell equation B�!; r� � �ir	
E�!; r�=k, where k � !=c. Then Eq. (2) allows us to write
the thermal pressure acting between the bodies as the sum
of two terms:

 Pneq
th �T1; T2; l� � Pneq

th �T1; 0; l� � P
neq
th �0; T2; l�; (3)

each of them corresponding to a configuration where only
one of the two materials is at nonzero temperature. It is
convenient to write

 Pneq
th �T; 0; l� � Peq

th �T; l�=2��Pth�T; l�; (4)

 Pneq
th �0; T; l� � Peq

th �T; l�=2��Pth�T; l�; (5)

where Peq
th �T; l� is the Lifshitz pressure at equilibrium [2].

If we write the electromagnetic wave vector in the vacuum
gap as k � �Qx;Qy; qz�, whose longitudinal part has

modulus Q �
�������������������
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y

q
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p
, it is pos-

sible to express the quantity �Pth as the sum �Pth �
�PPW
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th , with
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where we have separated the effect of propagating waves
(PW) from that of evanescent waves (EW) corresponding,
respectively, to real and imaginary values of qz. We have
also subtracted the l-independent contributions so that both
Eqs. (6) and (7) vanish as l! 1. In Eqs. (6) and (7) the
dielectric properties of the two materials enters through the
reflection Fresnel coefficients for the vacuum-dielectric
interfaces

 rsm �
qz � q

�m�
z

qz � q
�m�
z

; rpm �
qz"m � q

�m�
z

qz"m � q
�m�
z

; (8)

where s and p correspond to the transverse electric and
magnetic polarizations and q�m�z �

�����������������������
"mk2 �Q2

p
is the zth

component of the wave vector in the material m � 1, 2.
The effect of multiple reflections between bodies is ac-
counted for by the denominator D� � 1� r�1 r

�
2 e

2iqzl. It is
evident that the pressure Pneq

th �0; T; l� of Eq. (5) can be
obtained from Eq. (4) by replacing r�1 $ r�2 . It is also
immediate to see that Eq. (3) at thermal equilibrium T1 �
T2 � T provides the well-known equilibrium pressure
Peq

th �T; l�. For identical bodies r�1 � r�2 , yielding �Pth �
0, the pressure (3) is given by the expression

 Pneq
th �T1; T2; l� � Peq

th �T1; l�=2� Peq
th �T2; l�=2: (9)

Equation (9), previously obtained in [15], is not, however,
valid if the two materials are different. This is in disagree-
ment with the results of [16], where (9) was found to be
valid in general [17]. In particular Eqs. (4) and (5) show
that interchanging the temperatures of the two materials
implies a change in the force if the two materials are
different. This clearly emerges from Fig. 1, where the
results of a full calculation of the pressure between fused
silica (body 1) and silicon (body 2) are presented [18]. It is
interesting to note that the relative values of the pressure
for the two nonequilibrium configurations (dashed and
solid lines) strongly depends on the temperatures of the
two bodies, on the separation l, and on the positions of the
resonances of the two dielectric functions "1;2�!�. One can
also see that both values are smaller than the one at thermal
equilibrium (dotted line). This it is not, however, always
the case. In fact, if one of the two bodies is rarefied the
nonequilibrium pressure can become larger than at equi-
librium (see [6] and discussion below).

In the following we will focus on the behavior of the
force at large distances. For this study we will consider
only dielectric bodies [where the limit "1;2�!! 0� is
finite], while the case of metallic bodies will be presented
elsewhere. The expansion of Eq. (4) results in the large
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distance behaviors
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holding for l� �T [if one of the bodies is rarefied the
condition becomes more stringent, see Eq. (14) below].
Here ��3� is the Riemann function, r�m�t� are the Fresnel
reflection coefficients calculated from Eq. (8) setting the
static approximation "m � "m0, and Q2 � k2�1� t2�. The
PW and EW contributions of Eqs. (10) and (11) are of the
same order but have opposite signs, the PW term being
attractive and the EW repulsive. This feature is not, how-
ever, general and at shorter distance the signs of the PW
and EW terms can change as discussed below. At distances
of the order of the thermal wavelength Eqs. (10) and (11),
as well as the Lifshitz result (1), provide only a crude
estimate of the pressure. For example, in the case of the
fused silica ("10  3:8)-silicon ("20  11:7) configuration
at l � 5 �m, the asymptotic laws overestimate the full
calculation shown in Fig. 1 by a factor 1.5, 2, and 3 for
the dashed, dotted, and solid lines, respectively.

Since in this work we are also interested in recovering
the surface-atom force [6] which is relevant for the recent
experiments with ultracold gases [3], it is useful to study
the case in which the body 2 is cold and very rarefied,
corresponding to small values of �"2 � 1� � 4�n�. Here n

is the density of the material 2 and � is the dipole polar-
izability of the atoms. The expansion of pressure in Eq. (4)
should be performed through two limiting procedures: the
large distance l! 1 and the diluteness �"2 � 1� ! 0
conditions. It is crucial to identify the proper order of the
two limits.

One relevant asymptotic behavior is obtained by first
taking the limit of large l at fixed "2 [this yields, by the
way, expressions (10) and (11)], and then carrying out the
limit of rarefied body. One finds the expression

 Pneq
th �T; 0; l� �

kBTC

l3
"10 � 1����������������
"10 � 1
p

����������������
"20 � 1

p
; (12)

for the total pressure, where C � CPW � CEW  3:83	
10�2, is a numerical factor with CPW � ��3�=8� 
4:78	 10�2 and CEW  �0:96	 10�2.

The peculiar
����������������
"20 � 1
p

dependence of (12) means that
the pressure acting on the atoms of the substrate 2 is not
additive. Additivity would in fact require a linear depen-
dence on ("20 � 1), and hence on the gas density n, as
happens for the Lifshitz pressure (1) as �"20 � 1� ! 0:

 Peq
th �T; l� �

kBT

16�l3
"10 � 1

"10 � 1
�"20 � 1�: (13)

The nonadditivity of the pressure (12) follows from the fact
that for large l the main contribution in the force is pro-
duced by the grazing waves incident on the interface of the
material 2 from the vacuum gap at small angles corre-
sponding to small values of qz=k �

����������������
"20 � 1
p

. Hence the
reflection coefficients from the body 2 are not small even at
small "20 � 1 and the body cannot be considered dilute
from the electrodynamic point of view. This is a peculiarity
of the nonequilibrium situation. In fact, at equilibrium this
anomalous contribution is canceled by the waves imping-
ing the interface from the interior of the dielectric 2, close
to the angle of total reflection. Notice that result (12) is
valid at the condition

 l� �T=
����������������
"20 � 1

p
; (14)

which becomes stronger and stronger as �"20 � 1� ! 0.
The second limiting procedure is obtained by first taking

the expansion of (4) for small values of ("2 � 1), and then
carrying out the limit of large distances. In this case the
relevant wave vectors satisfy the condition qz=k�����������������
"20 � 1
p

, and the PW component produces a contribution
identical to the EW one, yielding

 Pneq
th �T; 0; l� �

�kBT�2

24l2c@

"10 � 1����������������
"10 � 1
p �"20 � 1�: (15)

Result (15) holds in the distance range complementary to
(14)

 �T � l� �T=
����������������
"20 � 1

p
: (16)

In deriving Eq. (15) we also replaced "1;2�!� with their
static values "m0. This is justified if kBT is much smaller
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FIG. 1. Relative contribution of the thermal component with
respect to the zero-temperature component of the pressure
between two different materials: fused silica (SiO2, body 1)
and silicon (Si, body 2).
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than the lowest resonances of both the body 1 and the
atoms of the dilute body 2. It is worth noting that the
interval (16) practically disappears for dense dielectrics.

It is also worth noticing that, due to the diluteness
condition �"20 � 1� � 1 and as a consequence of
Eqs. (4) and (5), in both regions (14) and (16) the term
�Pth gives the leading contribution to the pressure and
consequently the l-dependent interaction between the two
bodies will be attractive if T1 > T2 and repulsive in the
opposite case.

The transition between the two regimes (12) and (15)
can be investigated performing the diluteness limit �"20 �
1� ! 0 in Eq. (4), for a fixed value of the dimensionless
variable x � l

����������������
"20 � 1
p

=�T . The results are reported in
Fig. 2, where the thermal pressure Pneq

th �T; 0; l� is plotted
in units of the asymptotic behavior (12):

 Pneq
th �T; 0; l� �

kBTC

l3
"10 � 1����������������
"10 � 1
p

����������������
"20 � 1

p
f�x�: (17)

Here f�x� is a dimensionless function of the variable x.
When x! 1 [regime (12)] one has f�x� ! 1, while when
x! 0 [regime (15)] one finds f�x� ! x=24C  1:09x.

In order to recover the asymptotic result of [6] for the
surface-atom force out of thermal equilibrium it is crucial
to follow the second limiting procedure, leading to result
(15). In this case, however, the PW term must be omitted
since the atomic gas occupies a finite region of space and
does not absorb the thermal radiation. Using the formalism
of the present work this corresponds to treating the body 2
as a slab of rarefied gas of thickness L for which one should
also take into account the force acting on its remote sur-
face. In the absence of absorption [19] it is possible to show
that, including refraction at the remote surface, the PW
pressure becomes vanishingly small, of order �"20 � 1�2

with respect to Eq. (15). In this case the EW contribution,
which is 1=2 of (15), provides the total pressure acting on
the gas and is exactly equivalent to Eq. (12) of [6] for the
surface-atom force. Notice that in the derivation of [6] the

leading role of the EW term was stressed from the very
beginning.

In conclusion, we have generalized the Casimir-Lifshitz
surface-surface force to configurations out of thermal equi-
librium and calculated the corresponding asymptotic be-
havior. When one of the two bodies is a rarefied gas a
crossover region emerges where the pressure changes from
a T2=l2 behavior, characterizing the surface-atom interac-
tion, to a region at very large distances where the pressure
behaves like T=l3 and is no longer additive.
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