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Abstract
This paper presents a general high-order kernel regularization technique applicable to all

four integral operators of Calderón calculus associated with linear elliptic PDEs in two and
three spatial dimensions. Like previous density interpolation methods, the proposed technique
relies on interpolating the density function around the kernel singularity in terms of solutions
of the underlying homogeneous PDE, so as to recast singular and nearly singular integrals in
terms of bounded (or more regular) integrands. We present here a simple interpolation strategy
which, unlike previous approaches, does not entail explicit computation of high-order derivatives
of the density function along the surface. Furthermore, the proposed approach is kernel- and
dimension-independent in the sense that the sought density interpolant is constructed as a linear
combination of point-source fields, given by the same Green’s function used in the integral
equation formulation, thus making the procedure applicable, in principle, to any PDE with
known Green’s function. For the sake of definiteness, we focus here on Nyström methods for
the (scalar) Laplace and Helmholtz equations and the (vector) elastostatic and time-harmonic
elastodynamic equations. The method’s accuracy, flexibility, efficiency, and compatibility with
fast solvers are demonstrated by means of a variety of large-scale three-dimensional numerical
examples.

Keywords: Boundary integral equations, Nyström methods, singular integrals.

1 Introduction

As is well-known linear elliptic partial differential equations (PDEs) can be recast in the form
of boundary integral equations (BIEs) which can be solved numerically provided the associated
PDE’s free-space or domain-specific Green’s function is known. While BIE methods offer several
advantages over classical volume discretization techniques, such as finite difference and element
methods, they are also more difficult to understand and implement. The added difficulties largely
stem from the fact that integral operators arising in BIE formulations give rise to challenging
numerical integration problems associated with the presence of nearly-singular, weakly-singular,
singular and hypersingular kernels. This makes the robust and accurate evaluation of these integral
operators over arbitrary curves or surfaces, a persistent challenge, and the choice of the “singularity
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integration” technique constitutes a fundamental part of any BIE solution method. Depending on
the choice of discretization method (e.g. Galerkin boundary element method (BEM), Nyström or
collocation BEM) applied to the governing BIE, several techniques are available for dealing with the
singular or nearly singular integrals, such as semi-analytical methods [2,4,29,36,40,61], singularity
substraction [11, 23, 31, 32, 62, 64], Duffy-like transformations [16, 27, 47, 51, 52], polar singularity
cancellation [7,9,28,55,60,63], singularity extraction [54,56], spectral methods for smooth surfaces
represented using spherical harmonics [19, 21], and direct methods [24, 25]. Despite this plethora
of options, each of which targets specific integration problems associated to specific methods, the
“singularity integration” problem remains an active research area due to its importance and the
lack of a universal and robust approach to handle these integrals. We refer the reader to [44, 45]
for a more in-depth review of the various existing methods.

A novel class of singular integral evaluation methods, namely density interpolation methods
(DIMs), has been recently put forth in a series of papers addressing Laplace [22,44], Helmholtz [43,
45], and Maxwell equations [46]. DIMs are semi-analytical kernel regularization techniques that
rely on interpolations of the density function at singular and nearly-singular points on the surface.
The density interpolant is devised in the form of a linear combination of solutions of the under-
lying homogeneous PDE. This density interpolant is then combined with Green’s representation
formula to recast the integral operators and layer potentials in terms of “regularized” operators
with integrands whose smoothness at the singular/nearly-singular points is directly controlled by
the interpolation order. The aforementioned density interpolant is sought so that it closely mimics
a truncated Taylor series on the surface, in the sense that tangential derivatives of the interpolant
at the singular/nearly-singular point match the corresponding derivatives of the density, which
are computed numerically in the case of Nyström methods [43–45] and analytically in the case of
low-order BEM on triangular meshes [45, 46]. Higher-order Nyström DIMs, in particular, require
numerical computation of high-order derivatives of both the density and the parametrization of the
curve/surface. Naturally, the accuracy of these tangential derivatives becomes increasingly more
sensitive to the quality and smoothness of the surface parametrization as the derivative order in-
creases, thus limiting the accuracy and applicability of these methods when applied to engineering
problems involving complex three-dimensional surfaces. DIMs can be viewed as the generalization
and systematization of indirect regularization approaches based on integral identities satisfied by
simple (constant, affine...) solutions of the underlying zero-frequency PDE, which appeared early
in the development stages of the BEM [6,37,48,49] and underlie the exposition in [5].

This paper presents a new density interpolation approach that tackles in a unified manner
the nearly singular, weakly singular, strongly singular, and hypersingular surface integrals arising
in BIE formulations of linear elliptic PDEs. The proposed DIM relies on a novel density inter-
polant whose construction does not entail evaluation of tangential derivatives. Instead, the desired
Taylor-interpolation property is approximately achieved by simply matching the density and a lin-
ear combination of solutions of the homogeneous PDE at an appropriately selected set of surface
nodes at and around the singular/nearly-singular point, in a manner akin to the method of funda-
mental solutions [3, 18]. By contrast with previously-proposed DIMs, which target specific linear
elliptic PDEs, we present here a general methodology where the interpolant is sought as a linear
combination of point-source fields given in terms of the Green’s function involved in the BIE for-
mulation of the PDE. Relying on both higher-order curved triangular meshes [20], non-overlapping
quadrilateral patch manifold representation of surfaces [8, 44], and local grids corresponding to
high-order quadrature rules, we demonstrate through a variety of numerical examples, that the
proposed DIM yields a high-order accurate Nyström method for BIEs for the Laplace, Helmholtz,
elastostatic, and time-harmonic elastodynamic equations.
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The proposed method has significant practical advantages. Unlike techniques which rely on
recasting singular or hypersingular integral operators as weakly singular ones and employing spe-
cialized integration techniques for those (e.g. [5,59,60]), it requires neither the explicit computation
of surface derivatives, nor an analytical splitting of the kernel into a zero-frequency singular part
and a smooth component. In fact, it relies solely on standard quadrature rules for nonsingular
integrals and altogether avoids any need for specialized weakly-singular integration methods. The
proposed method works the same way for two- and three-dimensional problems, and more gener-
ally provides a unified implementation framework applicable to many PDEs and unburdened by
singular integration technology.

The structure of this paper is as follows. Section 2 introduces the notation and presents the
four PDEs considered in this paper. Next, Section 3 provides a comprehensive description of the
proposed density interpolation technique. The details on the construction of the density interpolant
functions using point-source fields, together with the algorithmic considerations, are given in Sec-
tion 4, with supporting error estimates derived in Section 5. Section 6, finally, presents a variety of
numerical examples in two and three spatial dimensions for both scalar and vector problems, some
of them involving large-scale models and H-matrix compression.

2 Preliminaries

We let Ω ⊂ Rd, d = 2, 3, be an open and bounded domain with smooth boundary Γ = ∂Ω which
is, for the time being, assumed to be of class C2. Letting a, b and f be given functions defined on
the boundary Γ, we let u : Ω→ Cσ be the solution of the interior boundary value problem

Lu(r) = 0 r in Ω,

a(x)(γ0u)(x) + b(x)(γ1u)(x) = f(x) x in Γ,

where L stands for either of the following linear differential operators:

Lu =


−∆u (Laplace, σ = 1),

−∆u− (ω/c)2u (Helmholtz, σ = 1),

−µ∆u− (µ+ λ)∇(∇ · u) (elastostatic, σ = d),

−µ∆u− (µ+ λ)∇(∇ · u)− ω2ρu (elastodynamic, σ = d),

(2)

involving the wave velocity c of an acoustic medium, the mass density ρ and Lamé’s first and second
parameters λ, µ of an elastic medium, and a prescribed angular frequency ω. The interior Dirichlet
and Neumann trace operators γ−0 and γ−1 , and their exterior counterparts γ+

0 and γ+
1 , are defined

for sufficiently smooth fields u defined in a neighborhood of Γ as the limits

(γ±0 u)(x) := lim
ε→0+

u(x± εn(x)),

(γ±1 u)(x) :=


lim
ε→0+

∇u(x± εn(x)) · n(x) for Laplace/Helmholtz,

lim
ε→0+

{λ (∇ · u(x± εn(x))) n(x) + 2µ∇u(x±

εn(x)) · n(x) + µn(x)× (∇× u(x± εn(x))) } for elastostatics/elastodynamics,

(where, as usual, n(x) denotes the outward unit normal to Ω at x ∈ Γ) and extended by density to
suitable Sobolev spaces, see e.g. [42]. Throughout this article, γ0 and γ1 will refer to the interior
traces if Ω is bounded, as in problem (1), or to the exterior traces if Rd \Ω is bounded, as in most
examples of Section 6.
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As is known [42], Green-like integral representation formulae can be derived for all boundary
value problems of the form (1). Indeed, letting G denote the free-space Green’s function associated
to the operator L, the following integral representation formula holds:

u(r) = S[γ1u](r)−D[γ0u](r) for r ∈ Ω, (4)

where the single- and double-layer potentials above are defined for a given density function ϕ as

S[ϕ](r) :=

∫
Γ
G(r,y)ϕ(y) ds(y),

D[ϕ](r) :=

∫
Γ

(γ1,yG(r,y))> ϕ(y) ds(y),

respectively. In (5), γ1,y denotes the operator γ1 applied with respect to the y variable and acting
in the elastic case on each column of the tensor function G. Furthermore, taking the traces γ0u
and γ1u in (4) we arrive at

1

2
γ0u(x) = S[γ1u](x)−K[γ0u](x) and (6a)

1

2
γ1u(x) = K ′[γ1u](x)− T [γ0u](x) for x ∈ Γ, (6b)

where S,K,K ′ and T are, respectively, the single-layer, double-layer, adjoint double-layer, and
hypersingular operators. Their definition in terms of G (and for a sufficiently regular density ϕ)
are:

S[ϕ](x) :=

∫
Γ
G(x,y)ϕ(y) ds(y)

K[ϕ](x) := p.v.

∫
Γ

(γ1,yG(x,y))> ϕ(y) ds(y)

K ′[ϕ](x) := p.v.

∫
Γ

(γ1,xG(x,y))ϕ(y) ds(y)

T [ϕ](x) := f.p.

∫
Γ
γ1,x (γ1,yG(x,y))> ϕ(y) ds(y),

(7)

where p.v. and f.p. indicate Cauchy principal-value and Hadamard finite-part integrals, respec-
tively. The explicit definitions of the free-space Green’s functions used in (5) and (7) are provided
in Appendix A.

Table 1 presents a summary of the singularities occurring in each kernel of the integral operators
defined in (7). We note that in the scalar cases (σ = 1), the double-layer and adjoint double-layer
operators are in fact given (for sufficiently smooth surfaces) in terms of integrable kernels, so that
the principal value is not needed in their definition. This summary makes it clear that the integral
operators (7) have integrands with various degrees of singularity. Quadrature rules designed for
smooth integrands cannot be expected to provide a good approximation of such integrals.

Remark 2.1. The developments to follow focus for expository convenience on interior boundary
value problems. However, integral equations and representations similar to (4) and (6) are appli-
cable to exterior problems (i.e., Lu = 0 for r ∈ Rd \Ω) provided a suitable condition is imposed as
|r| → ∞, namely decay conditions (for the zero-frequency cases) or radiation conditions of Sommer-
feld [13] or Kupradze [38] types (for the time-harmonic cases). The methods proposed in this work
therefore apply with minor modifications to exterior problems, and are in fact mostly demonstrated
on exterior problems in the examples of Section 6.
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L d G(x,y) γ1,yG(x,y) γ1,xG(x,y) γ1,xγ1,yG(x,y)

Laplace/Helmholtz
2 O(logR) O(1) O(1) O(R−2)
3 O(R−1) O(R−1) O(R−1) O(R−3)

Elastostatic/Elastodynamic
2 O(logR) O(R−1) O(R−1) O(R−2)
3 O(R−1) O(R−2) O(R−2) O(R−3)

Table 1: Asymptotic behavior as R = |x−y| → 0 (x,y ∈ Γ) of the kernels associated with the integral
operators defined in (7) corresponding to the differential operators introduced in (2).

3 Density interpolation

This section presents a general density interpolation approach for the regularization of the various
singular kernels arising in the integral operators defined in (7). The proposed approach enables the
integral operators to be recast as “regularized” boundary integrals to which elementary quadrature
rules are directly applicable and yield high-order convergence.

3.1 Density interpolant and kernel-regularized boundary integral operators

We begin by formalizing the definition of a (high-order) density interpolant, and then showing how
it can be used to regularize the singular integral operators defined in (7):

Definition 3.1 (Density Interpolant). Given a surface density ϕ : Γ→ Cσ, the function Φ(r;x) :
Ω×Γ→ Cσ is said to be a density (α, β)-interpolant of degree % ≥ 0 if for a given x ∈ Γ it satisfies
the conditions:

(a) LΦ(r;x) = 0 for r ∈ Ω,

(b) γ0Φ(y;x) = αϕ(x) +O(|x− y|%+1) and

(c) γ1Φ(y;x) = βϕ(x) +O(|x− y|%+1) as Γ 3 y → x ∈ Γ.

(8)

For a sufficiently smooth surface Γ that locally corresponds to the graph of a smooth function
χ : Rd−1 → Rd in a neighborhood of x, it follows by Taylor’s theorem that conditions (8b) and (8c)
are satisfied if

∂θ (γ0Φ(·;x) ◦ χ) = α∂θ (ϕ ◦ χ) and

∂θ (γ1Φ(·;x) ◦ χ) = β∂θ (ϕ ◦ χ)
(9)

at χ−1(x) ∈ Rd−1, for all |θ| ≤ %, where, utilizing the standard multi-index notation, ∂θ denotes
the derivative ∂θ1∂θ2 · · · ∂θd−1 of order |θ| = θ1 + θ2 + · · ·+ θd−1 with respect to the parameter
space variables. We note that in all previous works on DIMs, the construction of the interpolant
was achieved by imposing conditions (9), where the required (high-order) surface derivatives were
computed in spectrally accurate fashion using a Chebyshev grid.

According to Definition 3.1, the interpolants {Φ(·;x)|x ∈ Γ} form a parametric family of solu-
tions of the associated homogeneous PDE such that for every x ∈ Γ the Dirichlet and Neumann
traces of Φ(·;x) provide a local and high-order approximation of ϕ (up to scaling factors α and
β) on the surface. Definition 3.1 formalizes and extends the concept of density interpolant intro-
duced in previous works [43–45]. For example, arbitrarily higher-order (α, β)-interpolants for the
Laplace equation are developed in [44] where a basis of harmonic polynomials is used to numerically
construct them.
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The simplest example of a density interpolant is perhaps the lowest-order interpolant Φ(r;x) =
ϕ(x) for the Laplace equation, long used by the BEM community. It is not difficult to verify that
such a Φ is in fact a (1, 0)-interpolant of degree % = 0, as per Definition 3.1. A more general class of
(1, 1)-interpolants of order % = 0 have been put forth by D. Chan and collaborators for the kernel
regularization of direct Laplace [35, 57], Stokes flow [35], elasticity [34] and Helmholtz [58] bound-
ary integral equation formulations, the latter having then been recently applied to electromagnetic
scattering problems [33]. The low-order character of this class of regularization techniques makes
them aplicable only to weakly-singular integral operators enabling them to be recast in terms of
bounded but not differentiable kernels on which elementary quadrature rules render limited accu-
racy. Finally, we mention that a (1, 0)-interpolant of order % = 1 can be found in [5, section 5.3]
for the regularization of the challenging elastostatic/elastodynamic hypersingular kernels, which is
constructed by means of solutions associated to rigid-body rotation and translation. This kernel-
regularization approach expresses hypersingular elasticity operators in terms of weakly singular
integrals for which a variety of specialized procedures exist for their accurate numerical evalua-
tion, e.g. [8, 53].

The following lemma, which forms the basis for density interpolation techniques, is an immediate
consequence of the boundary integral identities (6) applied to the density interpolant and the local
properties (8b) and (8c) of the interpolant:

Lemma 3.2 (Regularized integral operators). Let α, β ∈ C and consider the following linear
combinations of integral operators

Vα,β[ϕ](x) := αK[ϕ](x)− βS[ϕ](x),

Wα,β[ϕ](x) := αT [ϕ](x)− βK ′[ϕ](x),
(10)

for x ∈ Γ, where S, K, K ′ and T are defined in (7), and let Φ be a (α, β)-interpolant of order
p ≥ 0, as per Definition 3.1. Then, using identities (6) applied to Φ, they can be recast as

(a) Vα,β[ϕ](x) = K[αϕ(·)− γ0Φ(·;x)](x)− S[βϕ(·)− γ1Φ(·;x)](x)− 1

2
γ0Φ(x;x),

(b) Wα,β[ϕ](x) = T [αϕ(·)− γ0Φ(·;x)](x)−K ′[βϕ(·)− γ1Φ(·;x)](x)− 1

2
γ1Φ(x;x).

(11)

Furthermore, Φ being an (α, β)-interpolant of order % ≥ 0, we have that

γ0Φ(y;x)− αϕ(x) = O(|x− y|%+1) and

γ1Φ(y;x)− βϕ(x) = O(|x− y|%+1),

as x→ y and thus the surface integrands in (11) are more regular than those of (10). In particular,
if γ1G(x,y) = O(|x − y|−q1) and γ0G(x,y) = O(|x − y|−q0) as y → x, then the corresponding
integral operators in (11a) are defined in terms of integrands that behave as O(|x− y|%−q1+1) and
O(|x − y|%−q0+1) as y → x. Similarly, if γ1,xG(x,y) = O(|x − y|−q2) and γ1,xγ1,yG(x,y) =
O(|x− y|−q3) as y → x, then the corresponding integral operators in (11b) are defined in terms of
integrands that satisfy O(|x− y|%−q2+1) and O(|x− y|%−q3+1) as y → x.

Remark 3.3. Since the four Calderón operators in (7) can be expressed in terms of Vα,β and Wα,β

as K = V1,0, S = V0,−1, T = W1,0 and K ′ = W0,−1, they can be regularized individually by means of
the density interpolant. Moreover, linear combinations of the form Vα,β and Wα,β occur naturally
e.g. in combined field integral equations (CFIEs) for exterior problems, see examples in Section 6.
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Lemma 3.2 states that, provided a suitable density interpolant is constructed, the boundary
integrals (7) can be rewritten in terms of integrals with regular (e.g., bounded or differentiable)
integrands which can be numerically evaluated by means of elementary quadrature rules. We
mention in passing that nearly-singular integrals, where (4) is to be evaluated for an observation
point which is close to, but not on, the surface Γ, can be similarly regularized by introducing the
orthogonal projection x? := arg miny∈Γ|y−x?| of x on Γ and performing the regularization about
x?. We refer the reader to [44] for a more through discussion on the regularization of nearly singular
integrals in the context of high-order DIMs.

3.2 Density interpolation via collocation

This section presents the novel high-order approximate density interpolant that, unlike existing
Taylor-like density interpolants, can be constructed by means of a simple collocation procedure
which does not entail evaluation of tangential derivatives of the density function.

Specifically, for a given point x ∈ Γ we consider a finite set of distinct neighboring points
{yj}Pj=1 ⊂ Γh(x) ⊂ Γ where Γh(x) is a simply connected subset of Γ containing x and satisfying
diam(Γh(x)) = supy,z∈Γh(x) |y− z| < h for some small h > 0. As discussed later in Section 4, once
a surface discretization is available, Γh(x) is selected as the surface patch to which x belongs, h is
the characteristic patch diameter, and the neighboring points are chosen as the interior quadrature
nodes used for numerical integration over that patch. The interpolant is then sought in the form

Φ(r;x) =
L∑
`=1

G(r, z`)c`(x), (12)

where {z`}L`=1 ⊂ Rd \ Ω is a judiciously chosen fixed (independent of x) set of exterior points
placed outside the domain Ω and {c`(x)}L`=1 ⊂ Cσ is a set of (a priori unknown, possibly vector)
coefficients, the total number of scalar coefficients involved in (12) being σL (with σ = 1 for scalar
PDEs and σ = d for vector PDEs, see (2)).

Since LG(·, z`)c`(x) = 0 in Ω for each ` = 1, . . . , L, the interpolant Φ(·;x) defined by (12)
satisfies LΦ(·;x) = 0 in Ω, i.e. (8a), by construction. To find the coefficients {c`(x)}L`=1 we impose
the following collocation-interpolation conditions:

γ0Φ(yj ;x) = αϕ(yj) and γ1Φ(yj ;x) = βϕ(yj), j = 1, . . . , P, (13)

at all neighboring/collocation points {yj}Pj=1. The conditions (13) give rise to a total of 2σP linear
equations for the σL unknown coefficients, which can be solved by means of the Moore-Penrose
pseudo-inverse of the associated matrix provided L ≥ 2P . More details on the construction of Φ
are given in Section 4.2.

While the regularization of the singular integrals by means of an exact interpolant (see Defi-
nition 3.1) can be easily understood through Lemma 3.2, the analysis of the regularized operators
through an approximate interpolant is more subtle. This is because the approximate interpolant
no longer enforces conditions of the type ϕ(y) − Φ(y;x) = O(|x − y|p) as Γ 3 y → x ∈ Γ, and
therefore the kernels in the “regularized” integral operators are no longer smooth when an ap-
proximate interpolant is used. As it turns out, however, the collocation interpolant can effectively
regularize weakly-singular, singular, and even hypersingular integral kernels, provided the set of
interpolation point {yj}Pj=1 is suitably selected. This is so because the resulting interpolation error
terms αϕ − γ0Φ and βϕ − γ1Φ, present in the integrands of (11), remain “small” within the set
(patch) Γh(x) containing the kernel’s singularity.
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Therefore, in order to avoid the kernel singularity altogether in the context of the collocation
density interpolants, we resort to the following approximations of the regularized integral operators:

Vα,β[ϕ](x) ≈ Ṽα,β[ϕ](x) :=

∫
Γ\Γh(x)

(γ1,yG(x,y))> {αϕ(y)− γ0Φ(y;x)} ds(y)

−
∫

Γ\Γh(x)
G(x,y) {βϕ(y)− γ1Φ(y;x)} ds(y)− 1

2
γ0Φ(x;x),

Wα,β[ϕ](x) ≈ W̃α,β[ϕ](x) :=

∫
Γ\Γh(x)

γ1,x (γ1,yG(x,y))> {αϕ(y)− γ0Φ(y;x)} ds(y)

−
∫

Γ\Γh(x)
(γ1,xG(x,y)) {βϕ(y)− γ1Φ(y;x)} ds(y)− 1

2
γ1Φ(x;x).

(14)

A proper justification of the approximations (14), and an assessment of the induced errors, are
provided later in Section 5. We first focus on the numerical discretization of the proposed DIMs.

4 Numerical discretization

This section presents the details of the proposed numerical methods for the construction of the col-
location density interpolant and the evaluation of the regularized boundary integral operators (14).
Since the expressions in (14) bypass the need to evaluate singular integrals of any kind, we develop
here a Nyström discretization method based on the direct evaluation of the desingularized inte-
grals (14) by means of elementary quadrature rules, which are used for numerical integration over
the surface patches making up Γ.

4.1 Boundary discretization and quadrature

We start by describing the BIE discretization approach used in this work. The boundary Γ ⊂ Rd,
d = 2, 3, is assumed to be given by the union of a finite number of non-overlapping patches Γm,
m = 1, . . . ,M . A canonical example of such a boundary representation would be a triangular
surface mesh in three-dimensions formed by M planar triangles. Integrals over the whole boundary
Γ can thus be expressed as ∫

Γ
F (y) ds =

M∑
m=1

∫
Γm

F (y) ds,

where the function F : Γ → Cσ is assumed to be regular (at least bounded). To approximate
such integrals over a given patch Γm, we resort to quadrature rules comprising a total of Pm nodes
Pm = {ym,r}Pm

r=1, always assumed to lie in the interior of Γm, and weights Wm = {wm,r}Pm
r=1.

For two-dimensional problems (i.e., one-dimensional line integrals), we resort to standard Gauss-
Legendre quadrature rules. In three dimensions, we consider two different quadrature types depend-
ing on the shape of the reference patch: (a) tensor products of one-dimensional Gauss-Legendre
quadratures for quadrilaterals, and (b) tabulated two-dimensional Gauss quadratures for trian-
gles [15, 17]. Figure 1 depicts the quadrature node locations for patches and rules used in this
paper for three-dimensional problems.

Aggregating the quadrature nodes and weights1 for each patch, we obtain the global set Q of

1In practice, the normal vector at each quadrature node is also stored since it is needed in the computation of
some of the integral kernels involved. For the sake of presentation simplicity, this detail has been omitted.
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+

+

P = 1+
P = 3
P = 4
P = 6

P = 1+
P = 4
P = 9
P = 16

Figure 1: Left: tensor-product Gauss-Legendre quadrature points for integrals over quadrilat-
eral patches. Right: tabulated Gauss quadrature points for integrals over triangular
patches [15,17]. P is the total number of quadrature nodes.

nodes and weights for the whole boundary Γ: Q =
{{

ym,r
}Pm

r=1
,
{
wm,r

}Pm

r=1

}M
m=1

. In the algorithmic

descriptions of the proposed numerical procedures (Sections 4.2 and 4.3), it will be convenient to
utilize a global indexing system, where the global quadrature is given by Q = {yi, wi}

N
i=1, with

N =
∑M

m=1 Pm being the total number of quadrature points. We henceforth denote by mi, where
1 ≤ mi ≤ M , the index of the patch Γmi to which the node yi belongs. Since we use quadrature
nodes which lie strictly within the patches, there is a unique patch index mi for each node yi,
1 ≤ i ≤ N . Unless otherwise stated, we employ the global indexing system of quadrature nodes
in the sequel. We additionally define the list I(m) :=

{
i : yi ∈ Γm

}
of the (global) indices of all

nodes lying on a given patch Γ(m) and the complementary list I(m) :=
{

1, . . . , N
}
\ I(m). With

this definition, I(mi) gives the global list of quadrature nodes lying in the same patch as yi.
We then adopt the Nyström solution method, whereby the relevant integral operators (14) are

approximated by applying the above quadrature to the integrals and performing a collocation at
the quadrature nodes (i.e. setting x = yi, 1 ≤ i ≤ N in (14)), the resulting discretized BIE being
solved for the density values at the quadrature nodes.

Finally, we mention that although the boundary Γ has been so far assumed to be globally
smooth, in order for the proposed methodology to work (see Section 5) Γ is is only required to be
piecewise smooth, with each patch Γm admitting a smooth C∞ parametrization χm : Rd−1 → Γm.

4.2 Collocation interpolant construction

This section provides details on the construction of the collocation density interpolant introduced
in Section 3.2.

Selecting the source points: The first task in the construction of the collocation density inter-
polant (12) is to select an appropriate set of source points {z`}L`=1. The main principle underlying
this selection is that a small number L of sources should suffice to produce, via (12), the density
interpolants Φ(r;x) associated to each quadrature node x = yi on Γ. In order to achieve that, the
set of source points is chosen as the nodes of a high-order quadrature rule on a curve/surface S
surrounding Γ (Figure 2). The rationale behind this choice is that the density interpolant can then
be interpreted as the approximation

Φ(r;x) =

L∑
`=1

G(r, z`)c`(x) ≈
∫
S
G(r,y)c̃(y;x) ds(y)

9
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Figure 2: Schematic of source locations used in the interpolant construction.

of a certain integral over S. Since the quadrature rule on S exhibits high-order convergence as
the number of quadrature nodes increases, a moderate number L of quadrature nodes produces a
sufficiently good approximation of Φ(r;x) for all r ∈ Ω and x ∈ Γ. For the sake of implementation
simplicity, S is selected as either a circle (d = 2) or a sphere (d = 3).

To define a suitable surrounding circle/sphere S, we consider the minimal (axis-aligned) bound-
ing box B ⊂ Rd of the set of surface nodes {yi}

N
i=1 ⊂ Γ, and denote by xc and R > 0 its center and

radius, respectively (Figure 2). In two dimensions we then select L source points z` on the circle
of radius tR and center xc, the multiplier t > 1 ensuring that those points do not lie too close to Γ.
The points are chosen by sampling L equispaced angles on [0, 2π) and using polar coordinates to
map those onto the circle (Figure 2); they are therefore associated to the trapezoidal rule on S,
which yields superalgebraic convergence for C∞ integrands. The value t = 5 is used for all the
numerical experiments presented in this paper. We have found the present DIM to be largely insen-
sitive to t, with values ranging from 2 to 1000 producing approximately the same results. Indeed,
in the limit t → ∞, the point source fields used for the Helmholtz and elastodymanic boundary
value problems, could be replaced by planewaves in the directions −z`/|z`|, in a manner akin to
the planewave DIM [45].

Similarly, in three dimensions the L source points z` lie on the sphere S with center xc and
diameter tR (with t = 5 in practice); more precisely, the {z`}L`=1 ⊂ S are taken as Lebedev
quadrature nodes [39], which are constructed so as to exactly integrate spherical harmonics up to
a specified order. We briefly mention here that other selection strategies were also examined, such
as points given in spherical coordinates by uniform grids in both azimuthal and polar angles, or
uniformly distributed random points on S. Overall, although the observed difference between the
aforementioned strategies was not significant (e.g., smaller than a factor of 10), the Lebedev points
appeared to consistently yield better results, so we settled on that choice.

Computing the coefficients: With the set {z`}L`=1 ⊂ S now selected, we need to find the
coefficients {c`(x)}L`=1 in the definition of the density interpolant (12) at x ∈ Γ.

Instead of constructing a collocation interpolant Φ(·;x) for each surface node x = yi, i =
1, . . . , N , we construct a single patch interpolant

Φm(r) =

L∑
`=1

G(r, z`)cm,`, m = 1, . . . ,M. (15)

10



associated with all the nodes Pm = {yr,m}Pm
r=1 contained in a surface patch Γm, m = 1, . . . ,M . The

collocation interpolant Φ(r,x) introduced in (12) is then taken at the nodes of Pm as

Φ(r,x) := Φm(r) for x ∈ Pm, m = 1, . . . ,M.

The L coefficients {cm,`}L`=1 featured in the patch interpolant Φm in (15) are obtained by imposing
the interpolation-collocation conditions (13) at all quadrature nodes yj ∈ Pm, i.e. by requiring

(γ0Φm)(r) = αϕ(r) and (γ1Φm)(r) = βϕ(r) for all r ∈ Pm = {ym,r}Pm
r=1.

For each patch Γm, m = 1, . . . ,M , we thus obtain the following linear system for the unknown set
of coefficients {cm,`}L`=1:

Mmcm = Dα,βbm, cm =
{
cm,1, . . . , cm,L

}T
, bm =

{
ϕ(ym,1), . . . , ϕ(ym,Pm

)
}T
, (16)

where

Mm =

[
M

(0)
m

M
(1)
m

]
, [M(0)

m ]r,` = γ0G(ym,r, z`), [M(1)
m ]r,` = γ1G(ym,r, z`), 1 ≤ r ≤ Pm, 1 ≤ ` ≤ L,

Dα,β =

[
αI
βI

]
, [I]i,j = δij , 1 ≤ i, j ≤ Pm.

Remark 4.1. In the vector case (σ = d), each “coefficient” is a vector cm,` ∈ Cd, and the corre-

sponding entries of Mm are matrices [M
(j)
m ]r,` ∈ Cd×d, j = 0, 1. This means that Mm, as a matrix

with scalar complex entries, has size (2σPm)× (σL) where σ = 1 (scalar problems) or σ = d (vector
problems), d = 2, 3 being the dimension of the ambient space Rd. For the sake of presentation
simplicity, in what follows we treat Mm as a matrix of size (2Pm)×L with entries in Cσ×σ and cm
as a vector of length L with entries in Cσ. This allows for the same notation and, in particular,
the same indexing system, to be used for all operators introduced in (2).

With that in mind, Algorithm 1 presents the procedure for assembling the local interpolation
matrices Mm and computing the coefficients cm for a given patch Γm using the quadrature nodes Pm.

Algorithm 1 Computation of the coefficients of the patch density interpolant (15)

Require: Patch quadrature nodes Pm =
{
ym,r

}Pm

r=1
, free-space Green’s function G; source points

{z`}L`=1, surface density ϕ
1: Mm ← initialize matrix of size (2Pm)× L
2: bm ← initialize vector of size 2Pm
3: for r = 1 to Pm do
4: [bm]r ← αϕ(ym,r)
5: [bm]Pm+r ← βϕ(ym,r)
6: for ` = 1 to L do
7: [Mm]r,` ← (γ0G)(z`,ym,r)
8: [Mm]Pm+r,` ← (γ1G)(z`,ym,r)
9: end for

10: end for
11: Solve Mmcm = bm
12: return cm

11



The calculation of the interpolant coefficients cm,` involves solving the local linear system (16),
where the matrix Mm has size (2Pm)×L over Cσ×σ. For computational efficiency, one would want
to take L as small as possible, while still having Dα,βbm in the column space of Mm to guaran-
tee that the system (16) is (possibly non-uniquely) solvable, so that the collocation-interpolation
conditions (13) are verified exactly. We have found that the minimum value L = 2Pm leads to
rank-deficient matrices Mm for some patches Γm; L is therefore chosen such that L > 2Pm, in
order to enrich the column space of Mm. In practice, values as small as L = 2Pm + 1 appear to be
sufficient. In view of the relatively small computational cost of taking a larger L, compared to the
other parts of the overall method, and of the improved conditioning observed for larger values of
L, we have set L ≈ 3P for all examples presented in this paper, where P = max1≤m≤M Pm. While
we found practical use for allowing the number of quadrature points per patch Pm to be variable
(see the examples in Section 6.3 where hybrid meshes are considered), we saw no clear advantage
of letting L vary from patch to patch; consequently, L is taken to be constant for all patches.

The solution of the local system (16) for each patch Γm, can be obtained by means of the LQ
decomposition of the matrix Mm: letting (p, q) := (2σPm, σL) denote the size of Mm , we have

Mm =
[
L 0

]
Q =

[
L 0

] [Q1

Q2

]
= LQ1,

where L ∈ Cp×p is a lower triangular matrix and Q ∈ Cq×q is a unitary matrix. The matrix
Q1 ∈ Cp×q consists of the first p rows of Q. The coefficients cm are then found by the steps

1. Solving Ly = bm using forward substitution, where y is a temporary vector of size m× 1,

2. Performing the matrix-vector product cm = Q?
1y,

which amount to setting cm = M†mbm with the pseudo-inverse M†m of Mm given by = Q?1L
−1. Note

that in the case σ = d, this step requires Mm to be converted to a standard matrix over C. Note
also that the LQ decomposition bypasses the need to explicitly invert Lm, which due to the possibly
bad conditioning of the matrix Mm, could also be poorly conditioned.

The dominant cost of solving the local system (16) is then given by the LQ decomposition, which
has complexity O(LP 2

m) using the Householder algorithm. Under the assumption that L = O(Pm),
this gives a dominant cost of O(P 3

m) per surface patch Γm. Since there are M = O(N/P ) patches,
the cost of computing the coefficients cm,` for all patches is of the order O(NP 2), and therefore
linear in the number of quadrature nodes (and problem size) N .

4.3 Operator evaluation

With the collocation density interpolant constructed, we are now in a position to evaluate the
regularized integral operators Ṽα,β and W̃α,β defined in (14). We focus on the task of evaluating

the operator Ṽα,β, which is a linear combination of the single- and double-layer operators, applied

to a given density ϕ. The evaluation of W̃α,βϕ follows a completely analogous process.

Direct operator evaluation: Fixing a target collocation point x = yi, let Γmi be the patch
containing yi, and let Φ(·;x) = Φmi denote the collocation density interpolant (15) associated
with the quadrature nodes of Γmi . Since solving the local linear system (16) allows to satisfy all
interpolation-collocation conditions (13), the operator evaluation Vα,β[ϕ](yi) is approximated by

12



Ṽα,β[ϕ](yi) as given by (14) with Γh(x) = Γmi , i.e.:

Ṽα,β[ϕ](yi) = −1

2
γ0Φmi(yi) +

∑
j∈I(mi)

wj
(
γ1,yG(yi,yj)

T
{
αϕ(yj)− γ0Φmi(yj)

}
−G(yi,yj)

{
βϕ(yj)− γ1Φmi(yj)

} )
, i = 1, . . . , N. (17)

The validity of ignoring the “self-patch” contribution will be supported by theoretical arguments
(Section 5) and computational evidence (Section 6). A straightforward (naive) implementation of
formula (17) is shown in Algorithm 2, where for each target point yi ∈ Q we simply replace the
integrand by its kernel-regularized version, and then integrate over the surface (lines 5–7).

Algorithm 2 Integral operator evaluation

Require: Quadrature Q = {yi, wi}
N
i=1; density ϕ

1: b← initialize zero vector of length N
2: {Φm}Mm=1 ← construct patch interpolant for each patch Γm (see Algorithm 1)
3: for i = 1 to N do
4: mi ← patch index of yi
5: for j ∈ I(mi) do
6: [b]i ← [b]i + wj

(
γ1,yG(yi,yj)

{
αϕ(yj)− γ0Φmi(yj)

}
−G(yi,yj)

{
βϕ(yj)− γ1Φmi(yj)

})
7: end for
8: [b]i ← [b]i − Φmi(yi)/2
9: end for

10: return b

Efficient operator evaluation. Algorithm 2 has a O(N2) complexity, incompatible with fast
BIE solution methods, and a more efficient version is therefore called for. We now reorganize it in
a way that will facilitate the use of fast operator evaluation methods, and also allow to precompute
some of the operations associated with the collocation density interpolant. The latter feature is
beneficial when repeated operator evaluations (for different input density functions) are needed, as
when iterative linear algebra solvers (such as GMRES) are applied to the discrete BIE system.

These enhancements are based on the following splitting of (17): letting ϕ ≈
{
ϕ(y1), . . . , ϕ(yN )

}T
,

we set
Ṽα,β[ϕ](yi) = [Vα,βϕ]i :=

[
V

(0)
α,βϕ

]
i
+
[
V

(1)
α,βϕ

]
i
, i = 1, . . . , N, (18)

where the matrix V
(0)
α,β is given by

V
(0)
α,β =

(
αK(0) − αS(0)

)
diag(w),

with [
K(0)

]
i,j

=

{
γ1,yG(yi,yj) for j ∈ I(mi),

0 for j ∈ I(mi),[
S(0)

]
i,j

=

{
G(yi,yj) for j ∈ I(mi),

0 for j ∈ I(mi),

and [w]j = wj .

13



We can view V
(0)
α,β as an approximation of the complete matrix Vα,β that ignores the “self-

patch” contributions: the matrix V
(0)
α,β has a zero block diagonal and is otherwise dense. Since this

approximation retains all far-field contributions to Vα,β, H-matrix or fast-multipole methods can

be applied to accelerate evaluations of
[
V

(0)
α,βϕ

]
i
.

Then, the matrix V
(1)
α,β can be understood as a correction to V

(0)
α,β, which accounts for the

local kernel-regularization performed around the diagonal (singular) entries by gathering all the
contributions arising from the collocation density interpolants. It will be found to be sparse (block-

diagonal). Unlike V
(0)
α,β, the explicit form of the entries of V

(1)
α,β cannot be straightforwardly given

and the actual procedure for its evaluation is postponed to Section 4.4. Nevertheless, it follows
from (17) and (18) that[

V
(1)
α,βϕ

]
i

= −1

2
Φmi(yi) +

∑
j∈I(mi)

wj
(
γ0G(yi,yj)γ1Φmi(yj)− γ1,yG(yi,yj)γ0Φmi(yj)

)
, (19)

where the dependency of (19) on the density vector ϕ is implicit through the density inter-
polant Φmi . The specific form (15) of Φmi suggests the definition of the following matrix Θ,
of size N × L:

[Θ]i,` = −1

2
G(z`,yi) +

∑
j∈I(mi)

wj
(
γ0G(yi,yj)γ1G(z`,yj)− γ1,yG(yi,yj)γ0G(z`,yj)

)
.

With this definition, the evaluation of
[
V

(1)
α,βϕ

]
i

becomes

[
V

(1)
α,βϕ

]
i

=
L∑
`=1

[Θ]i,`cmi,`, (20)

where only the set of coefficients {cmi,`}, which depends on the density ϕ, needs to be updated when
ϕ change. This reformulation suggests an “offline” stage for the evaluation of the operator Vα,β,
where the matrix Θ as well as the factorized forms Mm = LQ1 of the matrices Mm involved in the
local (patch-based) systems (16) governing the coefficients cmi,`, are precomputed. This “offline”
stage is summarized in Algorithm 3, where the availability of a routine performing (fast) evaluations

of
[
V

(0)
α,βϕ

]
on given (discrete) densities ϕ is assumed. The latter requirement may involve some

additional offline pre-computation work, in particular if H-matrix compression is used.

Once the required quantities are computed, the correction
[
V

(1)
α,βϕ

]
i

can be inexpensively calcu-
lated (i.e., in order O(N) complexity) through (20). The cost of the precomputation, on the other
hand, depends on the availability of an acceleration routine since evaluations of V1,0 and V0,−1 on
L different densities are needed in order to compute Θ (see line 10 in Algorithm 3). The overall

cost of the pre-computation is then of the same order as that of an evaluation of V
(0)
α,β .

4.4 Assembling the integral operator

We jsut saw how the density interpolation procedure recasts the operator Vα,β as the sum of a

dense matrix V
(0)
α,β, and a correction V

(1)
α,β, and only considered evaluations for the latter. We now

describe how V
(1)
α,β may be assembled as a sparse matrix, assuming S(0),K(0),Θ, {Lm,Qm}Mm=1 to

have been pre-computed as per Algorithm 3.

Consider the i-th row of V
(1)
α,β. Since Φmi is computed using only values of ϕj for j ∈ I(mi),

it is easy to see that
[
V

(1)
α,β

]
i,j

= 0 if j 6∈ I(mi), i.e. the matrix V
(1)
α,β is block-diagonal. Under the
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assumption that Pmi = #I(mi) � N , V
(1)
α,β is thus sparse, as expected. To compute the nonzero

entries
[
V

(1)
α,β

]
i,j

of the i-th row, we define the row vector Θi = [Θi,1, . . . ,Θi,L], and observe that

[
V

(1)
α,βϕ

]
i

=
∑

j∈I(mi)

[
V

(1)
α,β

]
i,j
ϕj =

L∑
`=1

Θi,`cmi,` = Θicmi .

Using (16) to express cmi in terms of the density ϕ yields∑
j∈I(mi)

[
V

(1)
α,β

]
i,j
ϕj = ΘiM

†
mi

Dα,β

{
ϕ
}
mi

where
{
ϕ
}
mi

:=
{
ϕj
}T
j∈I(mi)

. This gives that the non-zero entries of the i-th row are
[
V

(1)
α,β

]
i,j

=

[ΘiM†miDα,β]n for 1 ≤ n ≤ Pmi , j being the global index of the n-th quadrature node of Γmi .

It is important to mention that the product w = ΘiM
†
miDα,β, which can be interpreted as

the regularized quadrature weights, is computed through the LQ decomposition of Mmi as w =(
(ΘiQ

?)L−1
)
Dα,β, where the parentheses specify the order in which the operations are performed.

The explicit inversion of L is avoided due to the bad conditioning of Mmi , multiplications by L−1

being performed via forward substitutions. As shown in the results of Section 6, we did not observe
any numerical stability issues in our calculations when using the described procedure, and were
able to obtain convergence to tolerances smaller than 10−10 in many of the examples presented
without resorting to e.g. higher-precision arithmetic.

5 Error estimates

This section aims at justifying and assessing the errors in the approximations introduced in (14)
when the collocation interpolant is used, and implemented by the algorithms developed in Section 4.

Algorithm 3 Pre-computations for operator evaluations

Require: Quadrature Q, operator Vα,β, routine for (fast) evaluation of ϕ 7→
[
V

(0)
α,βϕ

]
1: {z`}L`=1 ← compute source locations
2: B← initialize an N × L matrix
3: C← initialize an N × L matrix
4: for ` = 1 to L do
5: for i = 1 to N do
6:

[
B
]
i,`
← G(z`,yi)

7:
[
C
]
i,`
← γ1G(z`,yi)

8: end for
9: end for

10: Θ← −B
2 + V

(0)
1,0B−V

(0)
0,−1C (columnwise evaluations of the form ϕ 7→

[
V

(0)
α,βϕ

]
)

11: for m = 1 to M do
12: M← assemble interpolation matrix, see algorithm 1
13: Lm,Qm ← precompute LQ decomposition of M
14: end for
15: return S(0),K(0),Θ, {Lp,Qp}Mp=1
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In order to examine these errors, it is helpful to consider the following one-dimensional weakly-
singular, singular (principal value), and hypersingular (finite part) integral operators:

I0[g](t) =

∫ b

a
g(s) log |t− s| ds,

I1[g](t) = p.v.

∫ b

a

g(s)

t− s
ds,

I2[g](t) = f.p.

∫ b

a

g(s)

(t− s)2
ds,

where a < t < b and b− a = δ < 1. Regarding these operators we have the next lemma:

Lemma 5.1. Let g ∈ C1,1[a, b]. Then the estimates

|I0[g](t)| ≤ 2δ{1 + | log(µδ)|}‖g‖C0[a,b],

|I1[g](t)| ≤ δ|g|C0,1[a,b] + | logµ|‖g‖C0[a,b],

|I2[g](t)| ≤ 2

µδ
‖g‖C0[a,b] + δ|g|C1,1[a,b] + | logµ|‖g‖C1[a,b],

hold true for all t ∈ [a+ µδ, b− µδ], where 0 < µ < 1
2 .

Proof. For the first operator I0, the integrability of the logarithmic kernel yields

|I0[g](t)| ≤
∫ b

a
|g(s) log |t− s||ds ≤ ‖g‖C0[a,b]

∫ b

a
| log |t− s||ds ≤ 2δ{1 + | log(µδ)|}‖g‖C0[a,b],

where we used that δ < 1. For the integral I1[g](t) we have that the Cauchy principal-value integral
can be expressed as

I1[g](t) =

∫ b

a

g(s)− g(t)

t− s
ds+ g(t) p.v.

∫ b

a

1

t− s
ds =

∫ b

a

g(s)− g(t)

t− s
ds+ g(t) log

(
t− a
b− t

)
,

which can be bounded as

|I1[g](t)| ≤ δ|g|C0,1[a,b] + | logµ|‖g‖C0[a,b].

Finally, for the finite-part integral operator we have that it can be expressed as

I2[g](t) = − g(a)

t− a
− g(b)

b− t
− p.v.

∫ b

a

g′(s)

t− s
ds,

and hence, using the bound for the principal value integral, we obtain

|I2[g](t)| ≤ 2

µδ
‖g‖C0[a,b] + δ|g|C1,1[a,b] + | logµ|‖g‖C1[a,b].

The proof is now complete.

As it turns out, Lemma 5.1 can be used to estimate the neglected quantities in the approxi-
mations (14) of each one of the four integral operators and PDEs considered, in the d = 2 case.
Indeed, in order to estimate such errors we utilize the following result:
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Lemma 5.2. Let Φ(·;x) be the collocation density interpolant of a smooth density function ϕ at
x ∈ Γh(x) ⊂ Γ ⊂ R2, constructed from a set of distinct collocation points {yj}Pj=1 ⊂ Γh(x). Let
also χ : [a, b] → Γh(x) be a smooth bijective parametrization of Γh(x) and let x = χ(t), t ∈ (a, b).
Then, the interpolation error functions

eα(s) := αϕ(χ(s))− γ0Φ(χ(s);x) and eβ(s) := βϕ(χ(s))− γ1Φ(χ(s);x), (23)

satisfy

|e(k)
α (s)| . hP−k and |e(k)

β (s)| . hP−k,

for all s ∈ [a, b] and k = 0, . . . , P , provided |F (k)
` (s)| ≤ c`, with F`(s) = γ`Φ(χ(s);x), for some

h-independent constants c`, ` = 0, 1.

Proof. Let L(s) : [a, b] → C be the (P − 1)th-degree Lagrange interpolation polynomial of the
function f(s) = αϕ(χ(s)) in the parameter space at the (distinct) points {sj}Pj=1 ⊂ (a, b) given by

sj = χ−1(xj), j = 1, . . . , P . By the interpolation-collocation conditions (13) we have that L(s) is
also the interpolation polynomial of F0(s) = Φ(χ(s);x). Therefore, using a well-known result of
Lagrange interpolation [30, Sec. 5, Theorem 1], we obtain∣∣e(k)

α (s)
∣∣ =

∣∣f (k)(s)− F (k)
0 (s)

∣∣ ≤ |f (k)(s)− L(k)(s)|+ |F (k)
0 (s)− L(k)(s)|

≤ (b− a)P−k

(P − k)!
(cf + c0), k = 0, . . . , P − 1,

where |f (P )(s)| ≤ cf and |F (P )
0 (s)| ≤ c0 for s ∈ [a, b]. Now, since (b − a) ≤ cχh, where cχ is the

Lipschitz continuity constant of χ−1, we conclude that |e(k)
α (s)| . hP−k. The terms e

(k)
β (s) can be

estimated in a similar manner.

We are now in a position to present the main result of this section:

Theorem 5.3. Let Φ(·;x) as in Lemma 5.2 and assume that dist(x, ∂Γh(x)) > µh for some
h-independent constant 0 < µ < 1. Then, the error estimates∣∣Vα,β[ϕ](x)− Ṽα,β[ϕ](x)

∣∣ . hP+1| log h| and (24a)∣∣Wα,β[ϕ](x)− W̃α,β[ϕ](x)
∣∣ . hP−1 (24b)

hold for the Laplace and Helmholtz integral operators, and∣∣Vα,β[ϕ](x)− Ṽα,β[ϕ](x)
∣∣ . hP and (24c)∣∣Wα,β[ϕ](x)− W̃α,β[ϕ](x)
∣∣ . hP−1 (24d)

hold for the elastostatic and elastodynamic integral operators, where the non-singular approxima-
tions Ṽα,β and W̃α,β are defined in (14).

Proof. First, we prove the assertion for the Laplace single-layer and hypersingular operators, which
are given by

V0,−1[ϕ](x) = S[ϕ](x) =− 1

2π

∫
Γ

log |x− y|ϕ(y)ds(y) and

W1,0[ϕ](x) = T [ϕ](x) =
1

2π
f.p.

∫
Γ

{
n(y) · n(x)

|x− y|2
− 2

n(y) · (x− y)(x− y) · n(x)

|x− y|4

}
ϕ(y)ds(y),
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respectively. As in Lemma 5.2, we let χ : [a, b]→ Γh(x) denote a local smooth parametrization of
Γh(x). Note that by virtue of the injectivity and smoothness of χ, there exist constants cχ and c̃χ
such that c̃χh ≤ δ ≤ cχh with δ = b− a.

The error in the approximation of the single-layer operator is given by

(V0,−1 − Ṽ0,−1)[ϕ](x) = − 1

2π

∫
Γh(x)

log |x− y| {ϕ(y)− γ1Φ(y;x)} ds(y)

+
1

2π

∫
Γh(x)

(x− y) · n(y)

|x− y|2
γ0Φ(y;x) ds(y). (25)

Employing the local curve parametrization χ, the first integral can be recast as

− 1

2π

∫
Γh(x)

log |x− y| {ϕ(y)− γ1Φ(y;x)} ds(y)

= I0[g0](t)− 1

4π

∫ b

a
log

(
|χ(t)− χ(s)|2

(t− s)2

)
{ϕ(χ(s))− γ1Φ(χ(s);x)})|χ′(s)| ds, (26)

where x = χ(t) and

g0(s) = − 1

2π
|χ′(s)| {ϕ(χ(s))− γ1Φ(χ(s);χ(t))} .

Since the last integrals in (25) and (26) can be bounded as . hP+1 using Lemma 5.2 and the fact
that (x− y) · n(y) = O(|x− y|2) as x→ y on smooth surfaces, the leading error term in (25), for
small values of h > 0, is the weakly-singular integral I0[g0](t). Now, in view of Lemma 5.1, we have

|I0[g0](t)| ≤ 2δ{1− log(µ̃δ)}‖g0‖C0[a,b] . h| log h|‖g0‖C0[a,b], (27)

for some constant µ̃ > 0 depending on µ and cχ. The norm of g0 can be estimated using Lemma 5.2
and the smoothness of |χ′|, to achieve ‖g0‖C0[a,b] . δ

P . hP . Therefore, from (25), (26), and (27),
we obtain ∣∣∣(V0,−1 − Ṽ0,−1)[ϕ](x)

∣∣∣ . hP+1| log h|,

which proves the bound in (24a) for the Laplace single-layer operator.
The error in the approximation of the hypersingular operator, on the other hand, is given by

(W1,0 − W̃1,0)[ϕ](x) = − 1

2π
f.p.

∫
Γh(x)

n(y) · n(x)

|x− y|2
{ϕ(y)− γ0Φ(y;x)} ds(y)

+
1

π

∫
Γh(x)

n(y) · (x− y)(x− y) · n(x)

|x− y|4
{ϕ(y)− γ0Φ(y;x)}ds(y)

− 1

2π

∫
Γh(x)

(x− y) · n(x)

|x− y|2
γ1Φ(y;x) ds(y). (28)

The last two integrals in (28) can be bounded as . hP+1 using Lemma 5.2 and the fact that
(x−y) ·n(y) = O(|x−y|2), (x−y) ·n(x) = O(|x−y|2) as x→ y on smooth surfaces. Therefore,
the leading term in (28) as h→ 0 is the finite-part integral, that can be recast as

− 1

2π
f.p.

∫
Γh(x)

n(y) · n(x)

|x− y|2
{ϕ(y)− γ0Φ(y;x)} ds(y) = I2[g2](t),
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where

g2(s) =
1

2π

(t− s)2

|χ(t)− χ(s)|2
n(χ(s)) · n(χ(t))|χ′(s)| {ϕ(χ(s))− Φ(χ(s);χ(t))} .

From Lemma 5.1, we have

|I2[g2](t)| ≤ 2

µ̃δ
‖g2‖C0[a,b] + δ|g2|C1,1[a,b] − 2 log(µ̃)‖g2‖C1[a,b], (29)

where using the result of Lemma 5.2, the norms and semi-norm of g2 can be estimated as

‖g2‖C0[a,b] . h
P , |g2|C1,1[a,b] ≤ ‖g2‖C2[a,b] . h

P−2, and ‖g2‖C1[a,b] . h
P−1. (30)

Combining (28), (29), and (30), we thus arrive at∣∣∣(W1,0 − W̃1,0)[ϕ](x)
∣∣∣ . hP−1,

which proves the bound in (24b) for the Laplace hypersingular operator.
The proof for the remaining integral operator can be performed by taking into account the

leading kernel singularity associated to each kernel, which are summarized in Table 1. In addition,
the (Helmholtz, elastodynamic) frequency-domain kernels have the same singular part as their
zero-frequency counterpart, i.e. the kernel differences are bounded, so that estimates found for the
zero-frequency singular operators carry over to their frequency-domain analogs.

Finally, we comment on how this analysis can be extended to the d = 3 case, corresponding
to surfaces in three dimensions. First, Lemma 5.1 can be used—through a change of variables to
polar coordinates centered at t = χ−1(x) ⊂ R2 in the parameter space—to estimate the errors in
the approximations (14) in terms of the size h > 0 of Γh(x) and the norm of the interpolation
errors functions (23) over Γh(x). Then, an interpolation result akin to Lemma 5.2 is needed. On
this regards we distinguish between surface discretizations based on quadrilateral and triangular
geometric patches. In the former setting, an analysis similar to the one carried out above could be
performed to derive error estimates of the form

|∂θeα(s)| . hp−|θ| and |∂θeβ(s)| . hp−|θ|, (31)

for the interpolation errors functions (23), where s = (s1, s2), θ = (θ1, θ2), and |θ| = θ1 + θ2,
for sets of P = p2 collocation points given by tensor products of one dimensional grids consisting
of p points per dimension. In the latter setting, in turn, results on Lagrange interpolation over
triangles (e.g., [1, Sec. 5.1.1]) suggest that choosing a total of P = p(p + 1)/2 collocation points
inside the triangle, in such a way that they uniquely determine a Lagrange interpolation polynomial
of the form L(ξ) =

∑
0≤|θ|≤p−1 cθξ

θ in the parameter space, one could achieve interpolation error

bounds such as (31) with p = (
√

8P + 1 − 1)/2. Finally, assuming the error estimates (31) hold
for the three-dimensional collocation density interpolant and following the arguments in the proof
of Theorem 5.3, we arrive at the following error estimates for the three-dimensional Laplace and
Helmholtz integral operators ∣∣∣Vα,β[ϕ](x)− Ṽα,β[ϕ](x)

∣∣∣ . hp+1 and (32a)∣∣∣Wα,β[ϕ](x)− W̃α,β[ϕ](x)
∣∣∣ . hp−1, (32b)
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and the following for the elastostatic and elastodynamic integral operators∣∣∣Vα,β[ϕ](x)− Ṽα,β[ϕ](x)
∣∣∣ . hp and (32c)∣∣∣Wα,β[ϕ](x)− W̃α,β[ϕ](x)
∣∣∣ . hp−1, (32d)

where the parameter p depends on the total number of quadrature/collocation points P , and on
the shape of the geometric patches used in the discretization of the surface Γ.

The results shown thereafter in Figures 3 and 4 demonstrate that the error estimates in (24)
and in (32) are in fact achieved in practice.

6 Numerical examples

In this section we present a variety of numerical examples designed to validate the proposed high-
order kernel regularization procedure, as well as demonstrate its capability to treat two- and three-
dimensional problems of either scalar or vector nature.

6.1 Operator evaluation

In this first set of examples we consider the errors incurred in the evaluation of the on-surface Green’s
identities (6a) and (6b), when all four integral operators S, K, K ′, and T , are approximated by the
procedures presented in Section 4. These examples serve as an initial validation of the proposed
methodology, for the PDEs (2) in both two and three spatial dimensions, as they allow us to easily
measure the on-surface errors in the evaluation of the integral operators on given densities.

Throughout the present section we take Γ ⊂ Rd as the kite-shaped curve [13, p. 79] for d = 2
(see the inset in Figure 3a) and the bean-shaped surface [9, p. 104] for d = 3 (see the inset in
Figure 3b). For each PDE considered we construct an exact solution of the homogeneous PDE in
the interior of Γ, given by uref(r) = G(r,xs), where xs = (1, 1) and xs = (1, 1, 1) for d = 2 and
d = 3, respectively, and where G is the free-space Green’s function provided in Appendix A. Since
xs lies outside of Ω, the function uref is a solution inside of Ω of the associated PDE. This solution
is used as reference to assess the errors in the numerically approximated Green’s formulae.

The curve Γ in the d = 2 case, is partitioned into M non-overlapping patches where p-point
Gauss-Legendre quadrature rules are employed to integrate over each individual patch, so that the
same number of quadrature points Pm = p is used for all m = 1, . . . ,M (see Section 4.1). In the
d = 3 case, we represent the surface as the union M non-overlapping logically-quadrilateral patches,
as done in [45], . We use a tensor-product quadrature rule comprising p× p Gauss-Legendre nodes
to integrate over the patches so that the same number of quadrature points Pm = p2 is used for
all m = 1, . . . ,M . Patches of approximately the same size h > 0, with h ∝ 1/N in the d = 2
case, and h ∝ 1/

√
N in the d = 3 case, are used in these examples. This yields a total number of

N = Mpd−1 quadrature nodes on Γ, resulting in N (resp. Nd) degrees of freedom for scalar (resp.
vector) problems since a Nyström discretization is used.

Letting S = V0,−1, K = V1,0, K′ = W0,−1, and T = W0,1, be the matrix approximations of
the corresponding operators in (7), which are evaluated on given densities as per the procedure
described in Section 4.3, we consider two types of errors:

E1 :=
‖ũ− u‖∞
‖u‖∞

and E2 :=
‖ṽ − v‖∞
‖v‖∞

, (33)

where the vectors
1

2
ũ := Su−Kv and

1

2
ṽ := K′u− Tv
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are given in terms of

u :=
[
γ0u

ref(y1), . . . , γ0u
ref(yN )

]T
and v :=

[
γ1u

ref(y1), . . . , γ1u
ref(yN )

]T
,

with yj , j = 1, . . . , N, denoting the quadratures points on Γ.
The E1 errors, corresponding to the combined evaluation of the single- and double-layer oper-

ators, are shown in Figure 3a (resp. 3b) for d = 2 (resp. d = 3) for various discretization sizes
h ∝ N1/(d−1) and numbers p of quadrature points per dimension per patch. As discussed in Sec-
tion 5, for a p-point (resp. (p × p)-point) quadrature rule for d = 2 (resp. d = 3), we observe, up
to logarithmic factors, E1 = O(hp+1) for the scalar problems and E1 = O(hp) errors for the vector
problems. The difference in the convergence order between the scalar and vector PDEs is due to

(a) Convergence in two dimensions. The dotted lines indicate orders p+1 for the Laplace operator (left) and p for the
elastostatic operator (right). Up to logarithmic terms, the observed convergence orders agree with estimates (24a)
and (24c) in Theorem 5.3, with h ∝ N−1.

(b) Convergence in three dimensions. The dotted lines indicate orders p+1 for the Laplace operator (left) and p for
the elastostatic operator (right). The observed convergence orders agree with estimates (32a) and (32c), with
h ∝ N−1/2.

Figure 3: Numerical errors (E1 in (33)) in the evaluation of Green’s formula (6a) for the Laplace (left)
and elastostatic (right) single- and double-layer operators in two dimensions (a) and three
dimensions (b). The results are shown for three different values of p (with p denoting the
number of Gauss-Legendre quadrature/interpolation nodes per patch per dimension) and
various total numbers N of quadrature nodes. The reference slopes, shown as dotted lines,
match the convergence orders established in Section 5.
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(a) Convergence in two dimensions. The dotted lines indicate the order p−1 for Laplace (left) and elastostatic (right)
operators. The observed convergence orders agree with estimates (24b) and (24d) in Theorem 5.3, with h ∝ N−1.

(b) Convergence in three dimensions. The dotted lines indicate the order p−1 for Laplace (left) and elastostatic
(right) operators. The observed convergence orders agree with estimates (32b) and (32d), with h ∝ N−1/2.

Figure 4: Numerical errors (E2 in (33)) in the evaluation of Green’s formula (6b) for the Laplace (left)
and elastostatic (right) adjoint double-layer and hypersingular operators in two (a) and three
(b) dimensions. The results are shown for three different values of p (with p denoting the
number of Gauss-Legendre quadrature/interpolation nodes per patch per dimension) and
various total numbers N of quadrature nodes. The reference slopes, shown as dotted lines,
match the convergence orders established in Section 5.

fact that the double-layer operator is of Cauchy principal value type in the latter case but not in the
former, see Table 1. Then, figures 4a and 4b display the E2 errors for d = 2 and d = 3, respectively,
corresponding to the combined evaluation of the adjoint double-layer and hypersingular operators.
As discussed in Section 5, the dominant errors in this case, stem from the approximation of the
hypersingular operator, yielding E2 = O(hp−1) in both two and three dimensions.

6.2 Solution of boundary value problems

In our next set of examples we apply the proposed methodology to the solution of exterior boundary
value problems in the unbounded domain R3 \Ω of boundary Γ, focusing on the (scalar) Helmholtz
equation for a fixed wavenumber k = ω/c = π. The field uref(r) := G(r,0), generated by a unit
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point source at the origin, solves (for example) the exterior Dirichlet problem

Lu = 0 in R3 \ Ω, γ0u = γ0u
ref on Γ.

We numerically solve that problem by seeking u as the combined single- and double-layer potential

u(r) = (D − iωS)[ϕ](r), r ∈ Rd \ Γ, (34)

which leads to the combined field integral equation (CFIE):

ϕ(x)

2
+ (K − iωS)[ϕ](x) = f(x), x ∈ Γ, (35)

for the unknown density function ϕ : Γ→ C, where f := γ0u
ref . As is well-known, the CFIE admits

a unique solution for all frequencies [14].
The integral equation (35) is discretized using the procedures presented in Section 4 and itera-

tively solved by means of GMRES [50]. The resulting numerical errors are measured by

Efar :=

max
j=1,...,100

∣∣ũ(rj)− uref(rj)
∣∣

max
j=1,...,100

∣∣uref(rj)
∣∣ , (36)

where the numerical solution u is evaluated using (34) with ϕ solving (35) and the test points
{rj}100

j=1 lie on a circle (resp. a sphere) of radius 5 enclosing Γ for d = 2 (resp. d = 3). Figure 5a,
shows the two-dimensional convergence results, where Γ is the kite-shaped curve previously used in
Section 6.1. The linear system solutions in these examples were obtained after about 22 GMRES
iterations for a relative error tolerance of 10−12. No significant differences in the iteration count
were observed between the various p values used. Likewise, Figure 5c displays the solution errors
in the three-dimensional case, with Γ taken as an acorn-shaped surface. Again, all simulations
converged to a residual tolerance of 10−12 within about 30 iterations, with no significant differences
observed between different values of p.

As discussed in Section 3, it is also possible to regularize the nearly singular integrals that occur
when evaluating the potential (34) at observation points r ∈ Rd\Γ located near, but not on, Γ. The
usefulness of this regularization is illustrated in Figures 5b and 5d for d = 2 and d = 3, respectively,
where the absolute solution error log10 |uref − ũ| is plotted with or without regularization of the
near-singularity (the regularization being in the former case used for all field points r such that
dist(r,Γ) < 1). As can be seen in Figures 5b and 5d, significantly better results are obtained when
regularization is applied.

Remark 6.1. The convergence of the field errors shown in Figures 5a and 5c appears to be one
order higher than predicted in Section 5 for odd values of p. The same phenomenon was observed
in [45] in the context of a plane-wave DIM for Helmholtz equation, and in [44] in the context of
the harmonic DIM for the Laplace equation.

In the next example we solve the classical problem of scattering of an incident plane wave
by a sound-soft circular (resp. spherical) obstacle, for which an exact solution is known [41].
More precisely, letting the scattered field u = utot − uinc be given as the combined potential (34),
which satisfies the Sommerfeld radiation condition, we arrive at the CFIE (35) with boundary
data f = −γ0uinc for uinc(r) = exp

(
iωr · (1, 0, 0)

)
. This setting is closer to realistic problems as

it takes into account the effect of geometrical errors associated with the surface representation,
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(a) Field errors Efar (see (36)) in the solution of the
Helmholtz equation in two dimensions.

with regularization/without regularization 

(b) Near-field errors in two dimensions.

(c) Field errors Efar (see (36)) in the solution of the
Helmholtz equation in three dimensions.

(d) Near-field errors in three-dimensions.

Figure 5: Solution of two- and three-dimensional exterior Dirichlet problems using the combined-field
integral equation (35). (a) and (c): Convergence plots as the mesh size is refined for various
values of p, where p denotes the number of quadrature nodes per patch per dimension. The
dotted lines represent reference slopes of order p+ 1. The right figure shows the field error
log10 |uref − ũ| with and without the near-field regularization.

which for complex objects is given by an approximation of the true geometry using e.g. triangular
patches. Figure 7 shows the relative solution error (36), the reference solution uref being this time
(a truncated series approximation of) the exact solution. The iteration counts incurred by GMRES
(with a relative tolerance set to 10−12) were found to be approximately constant, around 19 ± 2
for d = 2 and 35 ± 5 for d = 3, for all of the mesh sizes and values of p considered. To further
demonstrate that the resulting linear system preserves the well-conditioned behavior of the CFIE
formulation, which yields eigenvalues λ accumulating at 1/2 due to the compactness of the weakly-
singular operators S and K, we display in Figures 7a and 7b the spectrum of the resulting system
matrix for d = 2 and d = 3, respectively. The clustering of the eigenvalues around λ = 1/2 is
clearly visible in both cases.
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(a) Efar (d = 2). (b) Efar (d = 3).

Figure 6: Sound-soft scattering of a plane wave by a unit circle (left) and a unit sphere (right);
Helmholtz equation solution with ω = 2π obtained by means of the CFIE (35). Relative so-
lution errors Efar (see (36)) evaluated at a set of evaluation points located on a circle/sphere
of radius twice that of the obstacle. The value p = 3 yields an improved convergence order
equal to that for p = 4 (see Remark 6.1).

(a) d = 2. (b) d = 3.

Figure 7: Sound-soft scattering of a plane wave by a unit circle (left) and a unit sphere (right):
spectrum of the CFIE operator.

6.3 Meshed surfaces

The examples considered so far in this work involve simple (smooth) surfaces given as unions of
non-overlapping logically-quadrilateral patches admitting analytical parametrizations. Complex
three-dimensional objects of engineering interest, however, are often not available in this form. In
fact, they are typically given as CAD models from which surface meshes can be produced using
many mature codes. In this section, we consider the effect of using meshed surfaces produced by off-
the-shelf software, demonstrating that our methodology works well with high-order (geometrical)
elements generated through the freely-available mesh generation code Gmsh [20].

To this aim, the next example explores various meshing strategies for a scattering problem
onvolving a unit sphere. In particular, we consider surface meshes composed of patches of the
following types:
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(a) flat triangles,
(b) curved (cubic) triangles,
(c) flat hybrid triangles and quadrilateral, and
(d) curved (cubic) hybrid triangles and quadrilaterals.

Since our regularization technique is largely independent of the underlying geometrical represen-
tation, it is capable of handling in a unified manner surface meshes such as (d), thus providing
significant flexibility. For validation purposes, we consider once again the CFIE formulation of the
sound-soft scattering problem of a plane wave by the unit sphere, described in Section 6.2.

Figure 8a plots the real part of the total (i.e. incident plus scattered) field obtained us-
ing patches of type (b) (left) or (d) (right, with an inset showing a zoomed view of the hy-
brid mesh). The 6- and 9-node quadrature rules depicted in Figure 1 are used for the tri-
angular and quadrilateral patches, respectively. As the CFIE problem (35) is solved using a
Nyström method, the quadrature nodes are also the interpolation/collocation nodes, see Sec-
tion 4. For triangular patches, these nodes define over the reference triangle a unique interpo-
lation polynomial in P∆

2 = span
{
xrys : 0 ≤ r + s ≤ 2, (r, s) ∈ N2

}
. Similarly, for quadrilateral

patches, the 9 quadrature nodes define over the reference square a unique interpolation polynomial

Figure 8: Solution of a scattering problem using different mesh types. The surface mesh color indicates
the patch type (light gray for triangles, dark gray for quadrilaterals). The mesh either is
fully triangular (left column) or consists mostly of quadrilateral patches and a few triangles
(right column). The plots show the real part of the total field (top row) or the near-field
errors computed using regularization (bottom row).
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in P�2 = span
{
xrys : max {r, s} ≤ 2, (r, s) ∈ N2

}
. These observations suggest that the interpolation

error is, in both cases, of order O(h3) where h denotes the characteristic patch diameter.
Figure 8b, in turn, shows the absolute errors obtained in these examples. Errors using curved

(resp. flat) patches are plotted in the upper-half part (resp. lower-half part) of the panels, for
triangular (left) or hybrid (right) meshes. All errors shown are evaluated against the (truncated)
exact series solution. These results clearly demonstrate the improved accuracy attained by using
curved patches, the number N of degrees of freedom being identical. This meshing method will be
used for the remaining examples of this article.

6.4 Elastodynamic exterior Neumann problem

We now consider a time-harmonic elastodynamic scattering problem, with physical parameters
λ = 2, µ = 1, ρ = 1 and ω = π. We consider a P-wave incident field uinc(r) = d exp(ikLd ·r), where
d = (1, 0, 0) and kL = ω

√
ρ/(λ+ 2µ). The obstacle is a traction-free cavity, so that we impose the

Neumann condition γ1(u+ uinc) = 0 on Γ. We resort to an integral equation formulation based on
representing the scattered displacement field u by the combined field potential (34). Taking the γ1

trace of (34), the following integral equation for the vector density ϕ : Γ→ C3 is obtained:

(iω)

{
ϕ(x)

2
−K ′[ϕ](x)

}
+ T [ϕ](x) = −γ1u

inc(x), x ∈ Γ. (37)

As in Section 6.3, the surface Γ is represented using curved (cubic) triangular patches over which
integration/collocation is performed using 6 interior quadrature nodes.

The accurate solution of (37) requires regularization of the challenging elastodynamic hypersin-
gular operator T , whose definition involves finite-part integrals. Additional difficulties arise from
the fact that the hypersingular operator is not compact, leading to unfavorable spectral properties
of the linear system arising from (37). In the course of producing results for this example, we did
not observe severe ill-conditioning of the linear systems, and only modestly large (always less than
100) GMRES iterations were required to meet the target tolerance. For larger problem sizes and/or
higher-order quadrature rules, either analytical preconditioning (based on Calderón identities, see,
e.g. [10, 12]) or algebraic preconditioning strategies may be required.

Figure 9a displays the relative field error computed on a sphere (of radius 5) surrounding the
scatterer. The reference solution in this example was taken as a numerical approximation computed
using a highly refined mesh. Two different surfaces Γ are considered: a unit sphere, and a torus with
outer radius equal to 1 and inner radius equal to 1/2. In addition, the real part of two components
of the total displacement field, as well as the displacement magnitude, are displayed for ω = 10π in
Figures 9b (sphere) and 9c (torus). The sphere’s mesh consists of 1656 (curved) triangular patches,
carrying 1656 × 6 × 3 = 29808 degrees of freedom, and the GMRES solver converged within a
residual tolerance of 10−4 in 53 iterations. The torus mesh is made of 1248 (curved) triangular
patches, carrying a total of 1248× 6× 3 = 22464 degrees of freedom; the GMRES solver converged
in 61 iterations.

6.5 Large-scale exterior problem with complex geometry

In this last set of examples we showcase the accuracy and efficiency of the overall proposed method-
ology used in combination with an in-house implementation of a hierarchical matrix compression
algorithm [26], in conjunction with a diagonally-preconditioned GMRES [50], on complex geome-
tries of engineering interest. More precisely, we solve an exterior three-dimensional Helmholtz
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Figure 9: Time-harmonic elastodynamic scattering of a P-wave by a sphere or a torus. (a) Self
convergence of the solution field evaluated on a sphere enclosing the scatterers. (b) and
(c): Real part of the relevant components and magnitude of the total displacement field.
In all cases the scatterer is represented using curved (cubic) triangular surface patches, and
integration/interpolation within each patch is performed using a 6-point quadrature rule.

Neumann boundary value problem where the surface Γ corresponds to an A319 airplane of approx-
imate length and wingspan 34m and 36m, respectively2. For the results that follow, the surface
is approximated by means of (flat) triangular patches generated using Gmsh [20] (see Figure 10).
Throughout this section we employ a direct BIE formulation and thus solve for the unknown Dirich-
let trace ϕ = γ0u on the airplane surface Γ. The resulting direct second-kind BIE is given, with
g = γ1u, by

− ϕ(x)

2
+K[ϕ](x) = S[g](x), x ∈ Γ. (38)

For validation purposes, we begin by constructing an exact exterior solution uref by placing
a point source inside the airplane. The errors in the numerically produced solution u, which is
obtained by solving (38) for ϕ = γ0u with g = γ1u

ref , are assessed through (36) by comparing it
with uref at target points on a box sufficiently large to contain the airplane (see Figure 11). The
wavelength λ = 2π/ω considered in this case is λ = 4m, which yields about 10 wavelengths across
the airplane.

In order to gauge the effect of the mesh size on the solution quality, we utilize meshes of
approximate patch sizes h = 0.4m, 0.2m, 0.1m, and 0.05m. These values give rise to triangulations
made of 17, 258, 48, 530, 17, 1694 and 651, 344 patches, respectively. Additionally, the effect of

2https://gitlab.onelab.info/gmsh/gmsh/-/blob/gmsh_4_6_0/benchmarks/statreport/A319.brep
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0

Figure 10: Airplane surface mesh with approximate mesh size h = 0.04m utilized in some of the
numerical examples reported in Table 2. The elements are colored by the normalized ratio
between radii of inscribed and circumscribed circles, representative of the mesh quality.

the order of the method, which is directly associated with the number P of quadrature nodes per
element (see Section 5), is explored by considering the values P = 1, 3 and 6. The large scale of
the resulting linear system makes the use of fast methods essential in these cases, for which we
resort here to a standard hierarchical matrix compression algorithm [26]. In detail, a cluster tree is
constructed so that at most 128 quadrature nodes are contained in each leaf box. The interaction
matrices between spatially well-separated boxes in the tree are then represented in a compressed
format using adaptive cross approximation (ACA) with a relative tolerance 10−8.

Table 2 summarizes the results obtained, where the relative errors are displayed for various
orders and mesh sizes. Unlike the geometries so far considered, we observe a significantly larger
number of GMRES iterations needed to reach the target tolerance 10−8 on the relative residual norm
as P increases. This is likely related to the quality of the surface meshes which contains elongated
triangles as well as non-uniform patch sizes (see inset in Figure 10). These results demonstrate
the applicability of the proposed methodology to limited-quality complex meshes of engineering
interest.

Remark 6.2. The used mesh sizes correspond to about 10, 20, 40 or 80 patches per wavelength,
respectively, so are (except for the coarsest one) finer than what usual engineering solution accuracy
would require. Solution accuracy in BIE methods in general is strongly reliant on accurate eval-
uation of the singular element integrals. The high relative solution errors achieved by the refined
discretizations show that our regularization methodology meets this requirement. To attain such so-
lution accuracy levels in turn required the tighter-than-usual 10−8 tolerance on the GMRES solver,
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P h (m) # DOF # iter. error (%)

1 0.40 17,258 270 4.6220
(a) 1 0.20 48530 429 2.1534

1 0.10 171,694 478 0.7200
1 0.05 651,344 742 0.1730

(b) 3 0.40 51774 526 0.1040
3 0.20 145,590 743 0.0339
3 0.10 515,082 798 0.0034

6 0.40 103,548 932 0.0033
6 0.20 291,180 1203 0.0006
6 0.10 1,030,164 1615 0.0001

Table 2: Relative errors, measured using 36, and numbers of GMRES iterations obtained in the solu-
tion of the point-source test problem for the A319 airplane displayed in Figure 10, for various
mesh sizes h and numbers of quadrature nodes per patch P . The field errors corresponding
to the cases marked with bold letters are displayed in Figure 11.

0 0.02 0 0.001

(a) (b)

Figure 11: Field errors for P = 1 and h = 0.2m (left) and P = 3, h = 0.4m (right) corresponding to
the entries marked with bold letters in Table 2.

which partly accounts for the observed iteration counts.

In our final example we solve the Neumann (sound hard) scattering problem resulting from a

plane wave uinc(r) = eikr·(1/
√

2,0,−1/
√

2) impinging upon the airplane surface. The Dirichlet trace of
the scattered field γ0u

s is obtained by solving (38) with g = −γ1u
inc. The wavelength is taken to be

λ = 1m, which leads to approximately 35 wavelengths across the airplane. A mesh size of h = 0.1m
is used with P = 3 quadrature nodes per patch, so that the model is comprised of N = 515, 082
DOFs and features about 10 patches per wavelength. The real part and the magnitude of the total
field are shown in Figures 12(a) and 12(b), respectively. The quality of the numerical solution can
be visually assessed by noticing that the normal derivative of the total field approximately vanishes
at the surface of the scatterer, which due to the selected planewave direction, is observable on the
top of the airplane’s fuselage.
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Figure 12: Sound-hard scattering off of an A319 airplane resulting from an impinging planewave
along the (1, 0, 0) direction. The wavelength is 1m, the mesh size is h = 0.1m, and P = 3
quadrature nodes per patch were used. The left figure shows the real part of the total
field, while the right figure shows the magnitude of the total field.

7 Conclusions

We introduced a general methodology that circumvents some of the technical difficulties present
in previous high-order density interpolation techniques [44, 45]. In particular, we developed a
novel density interpolant that is effected by means of simple interpolation-collocation conditions
that render the overall method both kernel and dimension independent. Its numerical accuracy
as well as its compatibility with acceleration algorithms, was demonstrated through a series of
numerical examples involving both simple surfaces of academic interest and more complex surfaces
of engineering relevance. We are currently working toward extending this novel methodology to
three-dimensional Maxwell equations as well as making it capable of handling challenging problems
involving open surfaces (e.g., screens and cracks).
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A Free-space Green’s functions

For completeness we provide here the fundamental solutions G(r, r′) = G(r − r′) used in this
work. For time-harmonic elastodynamics, it is convenient to use the wavenumbers kL and kT of
compressive (or logitudinal) and shear (or transversal) elastic waves, respectively, defined by

k2
L =

ρω2

λ+ 2µ
, kT =

ρω2

µ
.
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The relevant two-dimensional fundamental solutions are given by:

G(R) =



− 1

2π
log |R| (Laplace)

i

4
H

(1)
0 (ω|R|) (Helmholtz)

λ+ 3µ

4πµ(λ+ 2µ)

{
− log |R|I +

λ+ µ

λ+ 3µ

1

|R|2
RR>

}
(elastostatics)

i

4µ

{
AI +BRR>

}
(elastodynamics)

with the auxiliary functions A and B given by

A = H1
0 (kT |R|)−

[
H1

1 (kT |R|)−
k2
L

k2
T

H1
1 (kL|R|)

]
,

B = −2A−
[
H1

0 (kT |R|)−
k2
L

k2
T

H1
0 (kL|R|)

]
.

Similarly, the three-dimensional fundamental solutions are given by:

G(R) =



1

4π|R|
(Laplace),

eiω|R|

4π|R|
(Helmholtz)

λ+ 3µ

8πµ(λ+ 2µ)

{
1

|R|
I +

λ+ µ

λ+ 3µ

1

|R|3
RR>

}
(elastostatics)

1

4πµ|R|

{
AI +BRR>

}
(elastodynamics)

with the auxiliary functions A and B now given by

A =

(
1 +

i

kT |R|
− 1

k2
T |R|2

)
eikT |R| −

k2
L

k2
T

(
i

kL|R|
− 1

k2
L|R|2

)
eikL|R|

B =

(
3

k2
T |R|2

− 3i

kT |R|
− 1

)
eikT |R| −

k2
L

k2
T

(
3

k2
L|R|2
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