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Abstract—Nowadays, we can observe a multiplication of multi-
view data in domains such as marketing, bank administration,
survey analysis, or social networks: We are dealing with large
data bases that share a fair amount of data representing the same
individual with different features depending on the data base.

In this context, one can use Machine Learning methods to an-
alyze this fragmented data across several heterogeneous sources
(called views). Such analysis is subject to several difficulties: First,
not all individual will be present and represented in all data
sites and views. And second, this type of cross site analysis raises
several ethical questions on privacy issues as no local site should
have direct access to data from the other sources.

To solve these problems, we present a method called the
Cooperative Reconstruction System which aims at reconstructing
information missing in some views in a multi-view context
using information available in the other views. Furthermore,
our method considers privacy issues and therefore achieves said
reconstruction without direct data transfer from one view to
another.

Index Terms—Data reconstruction, multi-view Learning, Un-
supervised learning, Neural networks

I. INTRODUCTION

With the proliferation of multi-view data in various do-
mains such as marketing, bank administration or even survey
analysis, it is necessary to develop techniques that can use
these various data sources to provide more precise insights
and analyses on these data. Multi-view learning can be a
solution to these issues. As a sub-field of Machine Learning, it
focuses on training models using databases distributed among
several independent (but communicating) views, or feature
sets. However, in order to be successful, these approaches
need to solve two problems: First, a problem inherent to multi-
view data is that while there will be large subsets of common
individual present in several views, it will be very rare to have
individuals represented in all views, thus leading to a problem
of missing data. Second, concerns about which data should
–or more often shouldn’t– be made available and shared are
rising and it is necessary for such a learning system to avoid
unnecessary data sharing.

For example, consider a remote sensing or image capture
device. Such instrument often use several sensors for redun-
dancy and information fusion, provide multiple signals or point
of views of the same observed phenomenon [1]. Amid growing

concerns over privacy issues, it is also useful to consider how
detailed information about individuals could be hidden.

The solution presented in this paper addresses these two
main challenges: how to transfer usable information in a local
view without transferring the original external data ? and how
to reconstruct more or less reliable information from different
sources to get the final result ?

To solve these problems, we present a system called the
Cooperative Reconstruction System. Our system aims at the
inference of missing data in a multi-view context with in-
dividuals whose information are complete in some views
and missing in others. Another advantage of our system
architecture is that the system can be naturally trained using
a distributed architecture.

After encoding the original data using Autoencoders [2] to
respect the security issues, our system uses a fully connected
multi-layer deep network (called Links in this article) to
combine the information coming from external views in to
the local feature set. A smart weighting step follows this
reconstruction step, to account for the respective views bias.
The weighting method is presented in this paper and called
Masked Weighting Method. The goal of this method is to
(1) combine the information from different views, (2) reduce
the weight of views with information which could hinder the
cooperative reconstruction process [3], [4], and (3) reduce
the impact of missing data during the unsupervised learning
process [5].

This paper is organized as follow: a summary of the
works related to this paper is presented in Section II, the
Collaborative Reconstruction System is defined in-depth in
Section IV and the empirical results are presented in Section V
and VI. Finally, a conclusion along with some perspectives are
given in Section VII.

II. RELATED WORKS

As far as we know, the problem of cooperative recon-
struction of an individual with security constraint has never
been analyzed in the literature. However, it is possible to
compare our approach with 3 existing fields related to specific
aspects of our proposed system, namely Deep Multi-view
representation learning (DMVRL), Collaborative Clustering
(CC) and Collaborative Filtering (CF). Some works related



to the security aspect are also presented at the end of this
section.

A. Deep Multi-view representation learning

Multi-view representation learning is concerned with learn-
ing representations or features in a setting in which we have
access to multiple unlabeled views of the data for representa-
tion learning while only one view is available at test time [6].
As one can see, this is closely related to our problem.

Models proposed to tackle this problem include deep learn-
ing based solutions similar to the ones presented in this paper.

In [7], the authors propose a system that tries to reconstruct
shared representations that are available from 2 views available
at a given time. This system relies on a split-autoencoder ar-
chitecture that tries to minimize the sum of the reconstruction
errors.

Evolutions of the previously described architecture include
correlated autoencoders [8] that consists of two autoencoders
and optimize the combination of canonical correlation between
learned bottleneck representations and the reconstruction er-
rors of the autoencoders. This architecture is used in [9] to
learn vectorial word representations using parallel corpuses
from two languages.

Canonical correlation analysis (CCA) in general has also
been the subject of many architectures, deep or not, applied
to tackle the problem of multi-view representation learning
[8], [10]–[12].

A quick survey of the literature mentioned before shows that
many algorithms are limited to only two views at a time, or
make strong assumption about similitude and shared elements
between the views, or more importantly have no concern for
information having to be shared between views to train their
models. It so happens that most practical applications have
more than 2 views available at a time and do not allow for
information to be shared or for an algorithm to access several
views at the same time.

B. Collaborative Clustering

The aim of Collaborative Clustering is to make different
algorithms cooperate in order to find a consensus between
the clusterings of several independent views. This is achieved
through the exchange of information between the views. Sys-
tems built with this paradigm are similar to our reconstruction
system in that they make independent views collaborate to
improve what can be achieved locally. Collaborative Clus-
tering also respects the security constraint because no native
information (meaning no information contained in a specific
view) is exchanged during inter-view communications. The
communication is performed by exchanging either individuals
affectations to their clusters [13], or indirect information
used by each clustering algorithms during its learning phase.
Several works are also focused on how to choose the best
views to collaborate with [4], which can be compared to the
Masked Weighting Method introduced in this paper.

However, Collaborative Clustering and the Collaborative
Reconstruction System differ regarding their final goals. With

Collaborative Clustering, the user tries to find the best con-
sensus between several clustering algorithms or clustering
partitions. With our system, the user wants to reconstruct
missing data.

C. Collaborative Filtering

The second field related to our Collaborative Reconstruction
System is Collaborative Filtering. In Collaborative Filtering, a
set of individuals rate a set of items with a certain sparsity,
meaning that each individual rates only a small percentage
of the items available. The aim of Collaborative Filtering is
therefore to predict what would be the rating of an individual
for some items knowing all the other individuals ratings.
In [14] as well as in [15], the authors present the state of the
art and the challenges of Collaborative Filtering. The system
presented in this article can be considered as a multi-view
alternative to Collaborative Filtering. Moreover, the fact that
Collaborative Filtering methods use raw available data to make
their predictions does not respect the security constraint. One
can also notice that in the past few years, some works have
focused on the usability of Neural Networks [16], [17], in
particular Autoencoders [18]–[20], in Collaborative Filtering.

D. Security

To prevent the direct identification of individual during data
transfer or their use by an algorithm, two main approaches
can be used: The first approach, K-Anonymity relies reducing
the number of unique attribute combinations in the dataset,
thus rendering the dataset records undistinguishable from each
other, so that a potential attacker could not identify a unique
individual.

Only recently the link between K-anonymity and dimen-
sionality reduction has been studied. In [21], Tail et al, show
that Autoencoders can provide k-anomity by dimensionality
reduction. Thay also high light a trade-off between data utility
and k-anonymity depending on the hidden layer size of the
Autoencoder network. This work demonstrates that by using
Autoencoders, a certain level of data privacy can be achieved
while preserving utility of the data. Our DCRS system relies
on this assumption by using Autoencoders to encode and
exchange data between views.

III. PROBLEM DEFINITION

Let X be a set of individuals. Let V0, V1, ..., Vn be a set of
views, each in its own feature space F0,F1, ...,Fn , such that
Vi : X → Fi. Let Xi ⊂ X be the subset of individuals visible
in view Vi. In other words Xi is the subset of the population
for which data is available in the feature set of view Vi. We
note Vi|j the subset of Vi (in the feature space of Vi) which
individuals are also present in Vj .

To its core, the cooperative reconstruction system (CRS)
aims at learning, in view i, a reconstruction function Fi of
individuals x /∈ Xi in view Vi, based on information provided
by the other views. Therefore ie: Fi : ∪j 6=iFj → Fi:

x̃u,i = Fi(x ∈ Xj 6=i) (1)



This formulation is often used in recommender systems (see
Section II), but in the context of multi-view systems, it ignores
two critical constraints:

1) Data Security: in the context of this paper, data security
is defined as the constraint of not being able to access
original data if it is not from its original view. The input
space of the reconstruction function should be different
from the concatenation of the other views feature spaces.

2) Scalability: If a new view is added (rep. removed) to/from
the system, how is learning the new representation af-
fected by this change.

These two constraints provide new way to formulate the
problem:

x̃u,i = Fi(x ∈ Ej 6=i(Xj 6=i)) (2)

Where Ei is an encoding function on Fi. This encoding
must be designed in such a way that only the view containing
the individual’s original features can reconstruct the values
from the encoding.

IV. COOPERATIVE RECONSTRUCTION SYSTEM

In this section, we describe the architecture of our proposed
Cooperative Reconstruction System. A representation of this
system can be found on Figure 1. Our system is based
on several modules: first, to solve the problem of security-
friendly information transfer, the system uses a set of N
Autoencoders [2] –with N being the number of views–, to
locally encode data to make them impossible to read from
outside of their views. In a way, our proposal is similar to the
architecture proposed in [22], but differs in the sense that we
aim at multi-view reconstruction instead of a single consensus
representation.

Let’s consider the case where an individual has no repre-
sentation in a view. Each external view can send an encoded
version of its local data on this individual, resulting in the
transfer of potentially N − 1 encoded vectors. Then, any
of the N − 1 encoded external version can be used by a
fully connected deep network to try to infer the features this
individual would have had in the view it is missing, thus
leading to potentially N − 1 possible versions of the missing
individual.

Fig. 1: Cooperative Reconstruction System. Ψ represents au-
toencoders. In this example, Views j and k are sending their
coded version of the individual to View i.

The combination of the inferred individuals can then be
used to reconstruct an accurate representation of the missing

individual. However, since disagreement may occur between
the different N − 1 sources of information, the inferred data
from each view need to be weighted to ensure an optimal
reconstruction. This is solved using a weighting method we
introduce in Section IV-D and called the Masked Weighting
Method. The basic idea of this method is to learn a set of N−1
scalar vectors, called masks, to weight each approximation
generated locally (cf. Fig. 2). These masks can be trained using
either Gradient Descent or using an iterative update rule. The
description of both methods can be found in Section IV-D.

The global system is designed to be modular: when a new
view is available, the system just has to learn its auto-encoder
and the neural networks responsible for the links between this
new view and the existing ones. However, due to the nature of
the weighting methods between the views, all masks have to
be learned again. This modularity is important because of the
usually long learning time of a Deep Neural Network: learning
the masks again does not take long, while having to re-train
all neural networks would take a lot of time. Therefore, this
modularity provides a substantial gain of time when a new
view is added. This point has to be considered together with
the fact that for a system made of N views, approximately
N2 networks have to be trained.

Our system has been tested on two points: how good are the
reconstructed individuals compared to their original versions,
and what are the classification scores of these reconstructions
compared to the original ones. Thus, we tested both its
efficiency at reconstruction and whether or not reconstructed
data could be used for further Machine Learning.

A. Preconditions

We assume that for all pairs of views i 6= j, Vi|j = Xi ∩
Xj 6= ∅. The size of this set is important because it will define
the quantity of information available to train the inter-views
Links (cf. Section IV-C)

B. Autoencoders

Autoencoders are specific types of Deep Neural Net-
works [2] which use their data both as input and output.
Their main purpose is to obtain a new representation of the
input data. They can also be used as a compression method
if the encoding layer length is set to be smaller than the
number of features describing the original data [2]. Formally,
an Autoencoder is trained by minimizing a loss function, in
our case, the Mean Square Error (MSE). With our notations,
the MSE for a view Vi would be defined as follows:

1

|Vi|
∑
x∈Vi

(x− x̂)
2 (3)

With x̂ being the output of the Autoencoder used in the
i-th view for the input vector x and |Vi| being the number of
elements of Vi.

We have selected Autoencoders to transfer information from
a view to another because they offer two advantages : First,
they encode data as scalar values, which allows to use the
codes as input for further analysis, and second, they make it



difficult to retrieve the original data without their decoding
part, thus limiting possibilities of security breach. These
properties made autoencoders widely used in the literature for
other similar deep multi-view learning methods. Moreover, in
our setting the Autoencoders used in each view do not need
to have the same architecture nor code lengths. This flexibility
allows each view to use the best encoding architecture to
describe their data.

When all the Autoencoders are trained, each view j is able
to encode the subset Vj|i of its dataset Vj , before sending the
result to every other view i it has to collaborate with.

C. Links

A Link is a Neural Network in charge of infering the
values of missing individuals based on the encoded data it
received from an external view. In this article, a Link is
more specifically a fully connected multi-layer network: to
reconstruct data in a local view i given information from view
j, the Link will be trained using the version of Vj|i encoded by
the j-th Autoencoder as its input, and Vi|j the original data as
its output. We remind that Vi|j and Vj|i are the sets of shared
individuals described in Vi and Vj feature spaces respectively,
so they necessarily represent the exact same set of individuals.

It has to be noted that the receiving view j never tries to
decode the encoded version of Vi|j , it only tries to infer the
individuals features used in its local view. This latter point
is important because it is the one that ensure the security
provided by the system.

In some cases, it may happen that Vi|j = {∅}, or is not
big enough to learn the link between views i and j. The
modularity of the method presented here implies that in this
case, the information coming from the external view j is not
taken into account, and the local view i will reconstruct its
missing individuals based on the information from the other
external views.

As this case does not change the global method, for the
rest of the paper we will only consider the case in which the
individuals used in the training sets are present in all views.
This simplification only aims at clarifying future algebra
presented in Section IV-D. When all the Links have been
trained, each view has access to (at most) N−1 Links allowing
it to infer (at most) N − 1 version of the missing individual
values.

D. Masked Weighting Method

When a local view i is missing a data and when it has
access to the N − 1 inferred versions of this missing data,
{xi|j , j ∈ [1..N ] \ i}, it is necessary to find an efficient way
to combine them to get the final result. We present a method
based on a set of scalar vectors Wi = {wi|j , j ∈ [1..N ] \ i}
such that wi|j is of same dimension as vectors of Vi. To get
the final output x̃i of the system in the local view i, we use
the following formula:

x̃i =
∑

j∈[1..N ]\i

xi|j ⊗ wi|j (4)

with ⊗ the pointwise vector product and xi|j the version of
the missing data inferred using data from the view j.

The coefficients are first initialized using equal weights
summing to 1 for all features. Then, they can be learned using
two methods : either using gradient descent on the reconstruc-
tion error, or through an iterative update using the zero of the
derivate of this latter error. The analytical description and the
characteristics of each method are described in the following
section.

Fig. 2: The Masked Weighting Method. View 2 has got the
reconstructed individuals from Views 1 and 3, and it uses the
masks previously trained to get the final weighted result.

1) Gradient Descent: Using the system output, it becomes
possible to perform a Gradient Descent on the parameters of
Wi. In this paper, the error being used is the MSE between
target data and reconstructed ones. The computation of the
error Ei for the view i can be written as follows:

Ei =
1

|Vi|
∑
xi∈Vi

dim(Vi)∑
k=1

(xki −
∑

j∈[1..N ]\i

wk
i|jx

k
i|j)

2
(5)

where xki is the k-th coordinate of the individual xi. The
differentiation of Ei w.r.t. the parameters wk

i|j of Wi can then
be written:

∂E

∂wk
i|j

=
2

|Vi|
∑
xi∈Vi

xki|j
(
x̃ki − xki

)
(6)

This latter formula makes it possible to update the weight
wk

i|j using the usual gradient formula

(wk
i|j)

new
= (wk

i|j)
old − ε ∂E

∂wk
i|j

(7)

where ε > 0 is the parameter defining the learning rate of
the process. This update process is performed on every weight
until convergence. In practice, the learning is stopped when
the norm of the update value defined in Eq. 6 goes under a
threshold fixed by the user.

2) Iterative update: : It is also possible to update weights
based on the minimum of Ei found using Eq.6, which after a
few developments gives us:



∂Ei

∂wk
i|j

= 0

⇒ wk
i|j =

∑
xi∈Vi

xki|j
(
xki −

∑
j′∈[1..N ]\{i,j} w

k
i|j′x

k
i|j′
)

∑
xi∈Vi

(xki|j)
2

(8)

Eq.8 shows that the update of wk
i|j requires the

values of {wk
i|j′ , j

′ ∈ [1..N ]\{i, j}}. Thus it is possible
to define an iterative update for which the values of
{wk,t

i|j′ , j
′ ∈ [1..N ]\{i, j}} at time t are used to obtained

wk,t+1
i|j at time t+ 1. This problem being convex, the iterative

process is performed until convergence of the weights.

This weighting method is used because it offers several
advantages:

1) With either a noisy external view or a low-quality Link,
the weighting coefficients for this view will converge to
a value under 1

N−1 which is the value corresponding to
a mean of the external views. By doing so, the method
lowers the impact of the bad reconstruction on the result.

2) On the opposite, this method will favor views which
might greatly improve the final reconstruction with a
weight over 1

N−1 .
3) Contrary to a weighted mean which would assign a single

scalar to a view, this method allows to favor only a
subpart of an inferred vector. One can easily imagine
that an external view would only allow to recover parts
of the local information (see the Cube dataset V-A).
Our weighting method makes it possible to automatically
identify these parts during parameters training.

When Wi has been trained for all the views, the system is
ready to use on missing data. An abstraction of the reconstruc-
tion process can be found on Figure 3, and a summary of the
system architecture can be found on Figure 1. This latter can
be used to attest that there is no original data going from a
local view to an external one.

V. EXPERIMENTAL SETTING

This Section presents the experiments that have been con-
ducted to test our proposed method. In Section V-A we
detail the datasets used for our experiments, then the global
methodology used to analyze the system behavior is described
in Section V-B. The measures used to quantify the results
are presented in Section V-C, and finally numeric results are
presented in Section VI.

A. Datasets

We used the following 3 datasets:
1) Wisconsin Diagnostic Breast Cancer (WDBC): This

dataset has 569 instances with 32 variables (ID, diagnosis,
30 real-valued input variables). Each data observation is
labeled as benign (357) or malignant (212). Variables are
computed from a digitized image of a fine needle aspirate

Fig. 3: Reconstruction process: Identification of a missing
item, encoding in the remote view, and reconstruction in the
local view.

(FNA) of a breast mass. They describe characteristics of
3 cell nuclei, so we have 3 natural views.

2) Multi-Features Digital Dataset (MFDD) [1]: This dataset
consists of features of handwritten numerals (from 0 to
9) extracted from a collection of Dutch utility maps. 200
patterns per class (for a total of 2,000 patterns) have been
digitized in binary images. These digits are represented
in terms of the following six feature sets, each set being
here used as a view: 76 Fourier coefficients of the
character shapes, 216 profile correlations, 64 Karhunen-
Love coefficients, 240 pixel averages in 2 × 3 windows
and 47 Zernike moments morphological features. Each
set of coefficient stands for a view.

3) Madelon: This dataset is an artificial dataset containing
4400 data points with 500 features. The data can be
grouped in 32 clusters placed on the vertices of a five
dimensional hypercube and randomly labeled +1 or -1.
The five dimensions constitute 5 informative features.
15 linear combinations of those features were added to
form a set of 20 (redundant) informative features. Based
on those 20 features one must separate the examples
into the two classes (corresponding to the +-1 labels).
Finally 480 features called ‘probes’ having no predictive
power were added by the authors. The order of the
features and patterns is random. This dataset is the most
challenging among these used in this article. It is used to
test the ability of our sytem to ignore noise (it should
not reconstruct it) and to show that despite the large
number of noisy features, we still have good classification
results regardless of the poor reconstruction. Because no
further information in available on this dataset, the views
are randomly generated by picking a random set of 125
features for each.

4) Cube: In addition of the three previously described
datasets, we have created a toy example which we mainly
use to test the effectiveness of the Masked Weighting
Method. This dataset, which we will refer to as the Cube



dataset, is made of 1000 3-dimensional points divided
in 4 classes of 250 members each. The points of each
class are generated using a normal law with a standard
deviation of 0.1 and centered either on the center of
the feature space (0, 0, 0), or at the extremity of one on
the three unit vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1). A
graphical representation of the Cube dataset can be seen
on Figure 4. The 3 views are obtained by projecting the
whole dataset according to one of the three previous unit
vectors. The point of this segmentation is explained in
Section VI.

Fig. 4: The Cube dataset

B. Methodology

In order to analyze each aspect of the system, several sets
of experiments have been conducted. The first set consists
in training a system with and without the Masked Weighting
Method and to analyze the results in terms of reconstruction
quality (Section VI-A). When it comes to combining the
results from each external views, the system without our
combination method simply uses a normalized equi-weighted
sum of the reconstructed external vectors. This first experiment
has been conducted in order to both test the viability of the
method and determine the impact of our new combination
method. An intermediary result is presented in Section VI-B:
the reconstruction of images from the MFDD dataset is
graphically presented. We use this reconstruction as an ex-
ample of our multi-view reconstruction system: based on its
training and informations from the other views (the 76 Fourier
coefficient, profile correlations, Karhunen-Love coefficient,
the Zernik moments, or any combinations of theses), our
algorithm attempt to reconstruct from scratch the accurate
pixel representation of the digits.

The second set of experiments consists of the analysis
of the results obtained during the first set, but this time
considering the impact of the Masked Weighting Method
on a classification task performed on the reconstructed data
(Section VI-C). Finally, the third and last set of experiments
consists of the analysis of the masks values for the toy example
(Section VI-D). This is done to ensure the method is able
to determine which reconstructor is better for which part of
the reconstructed individuals. Gradient descent optimization is
used in the last experiments.

For all sets of experiments, the global methodology remains
the same: each view is split in a training set (90%) and a test

set (10%), then all neural networks (Autoencoders and Links)
are trained using the required training set. To test the system,
the process described in Figure 3 has been conducted on the
test dataset of each view, with the results being compared to
the original data.

As there might be some variability in the results depending
on the initialization of each neural network, the experiments
have been conducted several times and the results have been
averaged. Experiments on the WDBC dataset were repeated
50 times, while these performed on MFDD 20 times, these on
Madelon 10 times and these on Cube 50 times. This difference
is due to different dataset sizes, which increases the training
time necessary for each neural network.

In Table I above, we specify the architecture that we used
to each dataset, with NF the number of features in the views.
The numbers in this table are the number of units per layer
for the autoencoders and the links. All activation functions are
”ReLu”.

C. Measures

To determine the performance of our system, we used three
measures. The first one is the Mean Squared Error (MSE)
between the reconstructed vector and its target. Given two K-
dimensional vectors x and y with respective coordinates sets
{xi}i∈[1..K] and {yi}i∈[1..K], their MSE can be computed as
follow:

MSE(x, y) =
1

K

K∑
i=1

(xi − yi)2 (9)

The global error is then the average of the MSE of all the
reconstructed vectors compared with their target values. The
point of this measure is to get a global idea of the distance
between the reconstructed vectors and the target ones.

The second error we use is the Mean Relative Difference
(MRD) between the feature values of the reconstructed vector
and these of the target vector. Given the same x and y than
above, their MRD is computed as follow:

MRD(X,Y ) =
1

K

K∑
i=1

∣∣∣xi − yi
yi

∣∣∣ (10)

Here again, the global error is the average of the MRD of
all the reconstructed vectors compared to their target values.
This measure is used pairwise with the MSE in order to get
more precise information about the difference between the
reconstructed vector and the target one. Because of the security
constraint and because of the difficulties the system may have
to link the views, we do not expect these errors to be as good
as these obtained by reconstruction and inference systems with
less constraints such as standard Multi-Layer Peceptron [23].

We test the usability of the reconstructed vectors on a
classification task: Random Forest classifiers were trained on
the original data (one for each view), then we tested whether
or not the data reconstructed using our proposed method
were classified correctly. The results were compared with



TABLE I: Neural network configuration

Dataset Cube Madelon MFDD WDBC
Autoencoders NF 5 NF NF 200 NF NF 150 NF NF 15 NF

Links 5 20 NF 200 100 NF 150 150 NF 15 15 10 NF

performances on a test set with complete non reconstructed
data.

The error considered here is the mean difference between
the classification scores obtained in each view on their test
datasets with the original data and the ones obtained with the
reconstructed individuals. For the remainder of the paper, we
will name this error the Classification Difference. Contrary to
the two previous ones, this error is not intended to determine
the difference between a vector and its reconstruction, but
rather to look at the impact of the reconstruction process
on later data processing (such as a classification task). Even
with mitigated reconstruction scores (MSE and MRD), a low
Classification Difference would mean that the reconstructed
individuals can be used in further applications. This score is
presented along with the classification scores of each view.
The Random Forest classifiers were trained using the entropy
cost function, with 50 estimators and with a max depth of 5.

Finally, to ensure the efficiency of the Masked Weighting
Method, we simply analyzed the vectors values of these masks
for the Cube dataset. This dataset is particular because the
projection performed to obtain a view entails the overlap
of 2 clusters around the point (0, 0). Moreover, projecting
according to a specific axis, which is equivalent to supress
a column in the original 3-dimensional dataset, prevents the
local view to have any information on this axis, while its pairs
will need this information to reconstruct their local individuals.
If the Masked Weighting Method works as intended, a huge
difference between the values of the mask should be observed.
This process is illustrated in Figure 5.

Fig. 5: The combination of two partially good reconstructions
into a good one. In this example, each view has enough
information to reconstruct only one feature out of the two
in the local view (doted lines). The Masked Weighted Method
is designed to favor the best reconstructed part of each partial
reconstruction, hence the ×0 and ×1 in the masks.

VI. RESULTS

This Section is divided following the different kind of exper-
iments that were conducted. Section VI-A presents the numeric

results of the reconstruction process. Section VI-B details
some visual results showing the quality of the reconstructed
individuals using the MFDD database. Section VI-C presents
the results obtained on the classification process performed
on the reconstructed individuals, and finally Section VI-D
presents the analysis conducted on the evolution of the masks
coefficients depending on the information shared by views.

A. Basic reconstruction with and without the Masked Weight-
ing Method

During this experiment, we were interested in the impact
of our combination method on the results of the system. A
summary of the results on WDBC, MFDD, Madelon and Cube
can be found in Figure 6.

For WDBC, MFDD and Cube, the Masked Weighting
Method significantly reduces the MSE for almost every view
(Figures 6a, 6b and 6d). This was expected because the use
of this method implies the optimization of parameters w.r.t.
this error. Moreover, the MRD is reduced for all the views
in WDBC, MFDD and Cube (Figures 6e, 6f and 6h): the
reconstructed individuals are closest to their original versions.
The exceptionnal results obtained for the MSE on the Cube
dataset (Figure 6d) can be explained by the fact that this
dataset has been created as a perfect example for our weighting
method. Further results can be found in Section VI-D.

Considering the reconstruction results on the Madelon
dataset (Figure 6c and Figure 6g), the high MSE and MRD
values were expected because of the numerous noisy features
present in every view (480 out of 500): the Links could
not reconstruct noise based on some more noise. The values
around 1 for the MSE and MRD (Figure 6c and 6g) can be
explained by the fact that during the training, the trained Links
were only returning values around 10−2 (the noise could not
be reconstructed as expected), while the scaled dataset mostly
consists of values around 1. This case presents an extreme
situation for which our system does not work as intended: the
fact that it tries to reconstruct every feature of the local view
implicitly implies that these features are not too noisy and
can also be explained using the information available in the
external views, which is not the case for the Madelon dataset.

B. Graphical Reconstruction of Handwritten Digits

To better analyze the quality of the reconstructed individu-
als, we have used a specific view of the MFDD dataset, namely
the one with the 240 pixel averages in 2 × 3 windows. The
individuals of the tests datasets have been reconstructed and
plotted.

While the MSE and the MRD are high for this reconstruc-
tion (Figure 6b and Figure 6f), the reconstructed individuals
can be easily recognized as shown in Fig. 7.



(a) WDBC (b) MFDD (c) Madelon (d) Cube

(e) WDBC (f) MFDD (g) Madelon (h) Cube

Fig. 6: Mean Squared Error and Mean Relative Difference for all the datasets. A lower value corresponds to a better result.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: Sample of the reconstructed images available in the
MFDD dataset. Some well reconstructed examples.

However, while it is true for most of the reconstructed
images, some examples do not work as well, as presented in
Figure 8. Moreover, even if one can recognize the numbers,
a blurring effect is observed even on the best reconstructed
examples. This highlights that the system tends to remove
noise from the data it reconstruct, which is a good thing,
but also that it may sometimes be suffering from overfitting
and reconstructing data based mostly on the most discriminant
elements, thus resulting in a good classification of poorly
reconstructed data. We can imagine, that especially in the case
of image reconstruction this can be problematic.

C. Impact on the Classification Accuracy

For the second experiment, one needs to refer at Table II
and Figure VI-C. Figure VI-C is obtained by substracting
the accuracies obtained on the original data to the accuracies
of the system with and without the MWM. We notice that
the Collaborative Reconstruction System gives a classification
accuracy comparable to these obtained on the original data:

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8: Sample of the reconstructed images available in the
MFDD dataset. Some poorly reconstructed examples.

for WDBC, MFDD and Cube, the maximum absolute value of
the Classification Difference is 7.5% (for the version using the
Masked Weighting Method) when the mean original scores are
respectively 90.9%, 88.4% and 73,35%. Secondly, Figure VI-C
shows that for a majority of views, our combination method
tends to lower the absolute Classification Difference.

TABLE II: Mean classification rate per database on the original
data.

Dataset WDBC MFDD Madelon Cube

Mean rate 0.909 0.884 0.606 0.733

Even if we do not have clearly identified the source of
this phenomenon, we suggest the following explanation: the
quality of the output of a reconstruction system which does
not use our combination method is highly dependent on the
quality of the Links which make the inter-view reconstruction
possible. Even if many tests have been performed for each



(a) WDBC (b) MFDD (c) Madelon (d) Cube

Fig. 9: Classification Accuracies relative to the classification rates obtained on whole datasets for WDBC, MFDD, Madelon and
Cube: classification scores from the reconstructed data without and with the Masked Weighting Method and their differences.

database, the results depends on both manageable (hyperpa-
rameters of all the neural networks) and unmanageable (local
minimum, initialization) points, both being very sensitive for
the system training. That being said, it is very likely that
the system results are very sensitive, which would explain
the higher variability of the results obtained without the
combination method compared to these obtained with it. This
latter probably tends to mitigate the variability of the results
because it depends far less on sensitive points: it only requires
a learning step if the gradient descent method is used to update
the weights and the initialization is the same every time. This
phenomenon is particularly visible for the Cube dataset: while
every view represents approximately the same thing, results
without the MWM are more variable than those with.

D. Adaptation of the masks coefficients

The point of this last set of experiments was to analyze the
evolution of the masks coefficients to ensure that the method
was able to determine which part of each reconstructed vector
was the most useful to reconstruct the final individual. To make
that possible, the Cube dataset was generated as explained in
Section V-A, leading to the creation of 3 views each defined
by 2 features. For each view, one of its feature is shared by
one of the external views and the other feature is shared by
the other external view. The point of this structure is to limit
the mutual information that two views can share. If the mutual
information is limited to a specific set of features (the set being
composed of only one feature in this example), the quality
of the partial reconstructions should vary depending on the
reconstructed feature, as presented in Figure 5.

In the Cube example, the information is either totally shared
(same values if the feature is present in both views) or not at
all (the feature not being present in the external view). Thus,
we expect to obtain mask values around respectively 1 and 0.
The results obtained empirically are described in Table III. It
clearly appears that the masks values adapt depending on the
feature they are weighting: while these linked to the shared
features are above 0.9, the ones linked to the other features
never exceed 0.15. This validates the efficiency of the masks
adaptation depending on the mutual information.

TABLE III: Mean and standard deviation of the values of the
masks coefficients depending on the feature they are weighting

Mean Standard deviation

Shared feature 0.920 0.026

Non shared feature 0.143 0.034

VII. CONCLUSION & PERSPECTIVES

In this paper, in a global context of multiplication of multi-
view data, we have presented a new system called the Cooper-
ative Reconstruction System. The purpose of this system is to
reconstruct data missing in some views by using information
contained in other views. We do so without sharing the original
data, thus avoiding security issues. To do this, the system relies
on three modules: Autoencoders to encrypt the data under a
compressed scalar vector form, fully connected deep networks
-called Links- to decipher an external code in a local view, and
the Masked Weighting Method, a new weighting method to
combine all external reconstructions, thus obtaining the final
reconstruction.

The Masked Weighting Method has 3 functions: combining
external information, reducing the influence of views with
information which could hinder the reconstruction process,
and reducing the impact of missing data during the system
training process.

The efficiency of both our reconstruction system and our
combination method has been tested on four different datasets:
WDBC, MFDD, Madelon and Cube. To this end, two criterion
have been considered: the adequation of the reconstructed
individuals to their original versions considering using the
Mean Squared Error and the Mean Relative Difference, and the
impact of the use of reconstructed individuals instead of the
original ones for classification purposes (tested against Ran-
dom Forests in this paper). These experiments have demon-
strated the main strengths and weaknesses of the system. Its
main strengths are its ability to reconstruct an individual usable
in a classification task without sharing data between views
as well as its ability to weight views in such a way that it
improves the final result compared to a standard meaning
of the external reconstructions. On the opposite, its main
weaknesses are its relatively weak reconstruction scores. This



is due to our system both removing noise and reconstructing
mostly based on the most discriminative characteristics of each
classes, thus leading to a good classification accuracy, even
with data that are poorly reconstructed.

As future works, we plan on improving the reconstructions
acquired from the external views through the modification of
the inter-view Links. Likewise, because of the potentially high
dimensionality, the use of another error than the MSE should
be considered. A feature selection process may be added to
the system, thus limiting the impact of the noise features in
the original dataset. Another possible future extension of this
work would be to work on a lighter architecture that would
scale better with large datasets, or to work on an online version
to alleviate the issue of scaling to large datasets.
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