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Abstract. Age-Related Macular Degeneration (ARMD) is an eye dis-
ease that has been an important research field for two decades now.
Researchers have been mostly interested in studying the evolution of le-
sions that slowly causes patients to go blind. Many techniques ranging
from manual annotation to mathematical models of the disease evolu-
tion bring interesting leads to explore. However, artificial intelligence
for ARMD image analysis has become one of the main research focus
to study the progression of the disease, as accurate manual annotation
of its evolution has proved difficult using traditional methods even for
experienced doctors. Within this context, in this paper, we propose a
neural network architecture for change detection in eye fundus images to
highlight the evolution of the disease. The proposed method is fully un-
supervised, and is based on fully convolutional joint autoencoders. Our
algorithm has been applied to several pairs of images from eye fundus
images time series of ARMD patients, and has shown to be more ef-
fective than most state-of-the-art change detection methods, including
non-neural network based algorithms that are usually used to follow the
evolution of the disease.

Keywords: Change detection · Unsupervised learning · ARMD.

1 Introduction

Dry age-related macular degeneration (ARMD or AMD), a degenerative disease
of the retina, is a main cause of irreversible visual loss. It is characterized by
a centrifugal progression of atrophy of the retinal pigment epithelium (RPE),

? This study has been approved by a French ethical committee (Comité de Protection
des Personnes) and all participants gave informed consent.
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(a) (b) (c) (d) (e) (f)

Fig. 1: 3 examples of pairs of images acquired 6 months apart. The GA corre-
sponds to the bright areas. The green arrow in (f) shows a new lesion.

a cellular layer playing a key role in the maintenance of the photoreceptors.
Blindness may occur when the fovea (the central part of the eye), is affected. The
disease can be diagnosed and monitored using fundus images: ophthalmologists
can observe pathologic features such as drusens that occur in the early stages of
the ARMD, and evaluate the geographic atrophic (GA) progression in the late
stages of degeneration (Fig. 1).

Automatic analysis of dry ARMD fundus images is of high medical interest
and this has been an important research field for two decades, for diagnosis
[15] or follow up [10],[16] purposes. Imaging modalities are most often color eye
fundus images [11, 13, 3], fundus autofluorescence (FAF) [12, 6, 16], and, to a
lesser extent, confocal scanning laser ophthalmoscopy (cSLO) in infrared (IR),
or optical coherence tomography (OCT) [5]. In this work, we use cSLO images
in infrared (IR): this modality is comfortable to acquire for the patients, and
has better resolution and contrast than color imaging, an older technology. Our
goal is to detect the appearance of new atrophic areas and quantify the growth
of GA from pairs of images acquired from follow-up exams and to ultimately
propose predictive models of the disease progress.

Figure 1 shows 3 pairs of consecutive images, taken at 6 months interval. The
lesions (GA) in the fundus and around the optical disk are the brighter areas.
Monitoring the GA progression in these areas is obviously challenging because
of the images quality: uneven light, saturation issues, illumination distortion
between images, GA poorly contrasted with retinal structures interfering (vessel,
optical disk), blur, etc. The difficulty also lies in the high variability of the lesions
in terms of shape, size and number. The lesion boundary is quite smooth in some
cases (c and d) and very irregular in others (a and b). At any time, new spots
can appear (as shown by the green arrow between e and f) and older lesions can
merge. All these defaults make the manual delineation task very complex, even
for expert ophthalmologists.

In order to assess the disease progression, it is necessary to perform a differ-
ential analysis between consecutive images to get the lesion growth, so that the
lesion growth can be modelled. In this paper, we propose a fully unsupervised
differential analysis method based on a joint autoencoders. Our model does not
require labeled images that are difficult to come by in quantity and quality high
enough to train a supervised neural network. Our method is applied to pairs
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of images of a patient eye fundus time series and aims at efficiently segmenting
medically significant changes between the two images: we are interested only
in changes in the GA lesions, while meaningless differences and light artefacts
should be ignored.

2 Related Works

The following works are most related to our proposed algorithm as they are
unsupervised algorithm applied to various eye disease images, including ARMD:
In [18], Troglio et al. published an improvement of their previous works realized
with Nappo [19] where they use the Kittler and Illingworth (K&I) threshold-
ing method. Their method consists of applying the K&I algorithm on random
sub-images of the difference image obtained between two consecutive eye fundus
images of a patient with retinopathy. By doing so, they obtain multiple predic-
tions for each pixel and can then make a vote to decide the final class. This
approach has the advantage that it compensates for the non-uniform illumina-
tion across the image, however it is rather primitive since it does not actually
use any Machine Learning and rely on different parameters of the thresholding
method to then make a vote. To its credit, even if it achieves a relatively weak
precision, it is fully unsupervised like our method. In [13], the authors tackle a
similar problematic to ours where they correct eye fundus images by pairs, by
multiplying the second image by a polynomial surface whose parameters are es-
timated in the least-squares sense. In this way, illumination distortion is lessened
and the image difference enhances the areas of changes. However, the statistical
test applied locally at each pixel is not reliable enough to get an accurate map
of structural changes.

Other works related with eye diseases take the different approach of segment-
ing lesions in individual images instead of looking for changes in pairs of images.
In [11], Köse et al. proposed an approach where they first segment all healthy
regions to get the lesions as the remaining areas. This approach also requires
segmenting separately the blood vessels, which is known to be a difficult task.
This method involves many steps and parameters that need to be supervised
by the user. In [16], Ramsey et al. proposed a similar but unsupervised method
for the identification of ARMD lesions in individual images: They use an un-
supervised algorithm based on fuzzy c-means clustering. Their method achieves
good performances for FAF images, but it performs less well for color fundus
photographs. We can also mention the work of Hussain et al. [7] who proposed
another supervised algorithm to track drusen progression for ARMD. It uses a
U-Net to segment vessels and detect the optic disc to reduce the region of inter-
est of drusen detection. After that, they detect the drusen using intensity ratio
between neighbor pixels.

Other traditional Machine learning algorithms have also been used for GA
segmentation such as random forest [3] or k-nearest neighbor classifiers [6]. Fea-
ture vectors for these approaches typically include intensity values, local energy,
texture descriptors, values derived from multi-scale analysis and distance to the
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image center. Nevertheless, these algorithms are supervised: they require train-
ing the classifier from annotated data, which brings us back to the difficulty of
manually segmenting GA areas.

Apart from medicine, change detection algorithms have been proposed for
many different applications such as remote sensing or video analysis. In [1] the
authors reveal a method combining principal component analysis (PCA) and
K-means algorithm on the difference image. In [8], an architecture relying on
joint auto-encoders and convolutional neural networks is proposed to detect non-
trivial changes between two images. In [2] the authors propose an autoencoder
architecture for anomaly detection in videos.

Finally, as we have seen that quite a few methods rely on segmentation first
and change detection after. We can also mention a few noteworthy unsupervised
segmentation algorithms used outside the field of medicine: Kanezaki et al. [9]
used CNN to group similar pixels together with consideration of spatial conti-
nuity as a basis of their segmentation method. Finally, W-Nets using with a soft
Normalized-Cut Loss are another option.

3 Data description

In this section, we will provide some details on the data we used.
Our images were all acquired at the Quinze–Vingts National Ophthalmology

Hospital in Paris, in cSLO with IR illumination. Patients have been followed-up
during a few years, hence we have series of retinal fundus images, often for both
eyes, showing the progression of the GA. The average number of images in each
series is 13. We used 336 images from 15 patients time series taken between 2007
and 2019. All pictures are in grayscale and vary greatly in size, but the most
common size is 650 ∗ 650 pixels.

As mentioned in the introduction, the images contain many imperfections
such as blurs, artifacts and, above all, non-uniform illumination (see Fig. 2). All
images were spatially aligned with i2k software4. Furthermore, all images are
surrounded by black border that contain no useful information. These borders
were removed from the segmentation area using a mask.

All images were preprocessed using a new method (not published yet) to
reduce the light distortion within images series. This algorithm relies on an il-
lumination / reflectance model and corrects all images of a serie with respect
to a common reference image. Uneven illumination generally remains present
in every processed image (Fig. 2) but the smooth illumination distortions are
compensated. The calculus of the absolute value of the difference between two
consecutive images demonstrates the benefit of this algorithm (Fig. 2, last col-
umn).

We used 3 different series of images to rate our proposed change detection
method: they feature different characteristics in terms of disease progress, lesion

4 https://www.dualalign.com/retinal/image-registration-montage-software-
overview.php
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(a) (b) (c) (d) (e) (f)

Fig. 2: Illumination correction. The 3 images on the left represent the 2 original
consecutive images and their raw difference in absolute value; On the right: the
same images after illumination correction and the new difference.

Fig. 3: Autoencoder architecture

shape and size. We developed several user-guided segmentation tools for ophthal-
mologists to build the validation images with the expected segmentation: These
tools allowed them to provide a manual segmentation of some of our dataset im-
ages using techniques such as segmentation algorithms, local thresholdings and
simple linear interpolation to draw the lesions borders. However, it is worth not-
ing that the task remained long and tedious and couldn’t be done for all images
as on average, it took 13 minutes to process one single image. Finally, the binary
change mask between two consecutive images was obtained by subtraction of
the segmentation masks.

4 Proposed algorithm

Our algorithm uses principles from previous remote sensing applications [8],
where an unsupervised deep autoencoder was used to automatically detect mean-
ingful changes between two satellite images with the goal of finding new con-
structions or changes in the landcover, all the while discarding seasonal changes.

In our paper, we use the common issues between satellite imaging and our
medical ARMD eye fundus to adapt this deep learning algorithm: both types
of images may suffer from lighting issues, noise issues, blurry elements, complex
objects present in the images, various intervals between images, and most im-
portantly the common goal of detecting only the changes from specific classes
within the images.

While the problematic look similar, remote sensing and medical applications
also have specific issues: medical images only have one channel, the textures are
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different, and the size and scale of both the images and objects to analyze is
quite different. To account for these specificities, we had to modifiy their AE
architecture as described in the next subsection.

4.1 Joint Autoencoder Architecture

As mentioned previously, our algorithm is based on autoencoders. Autoencoders
[4] are a type of neural networks whose purpose is to make the output as close as
possible to the input. The learnign process consists in an encoder part learning
some meaningful representations of the original data and a decoder transforming
them back into the original data: in a fully convolutional AE, a stack of convo-
lutive layers is applied to the input image in order to extract feature maps (FM)
which will then be used to reconstruct the input image.

Usually AEs with dense layers are used to perform a dimensionality reduction
followed by a clustering or segmentation. However, in computer vision, fully
convolutionnal AEs are prefered for their ability to extract textures. Examples
of such networks include fully convolutional networks (FCNs) or U-Nets [17].
However, in our case we do not use pooling layers, and so we keep the same
dimensions as the input and only the depth increases.

Our network (Fig 3) is made of 4 convolutional layers in the encoder of size
16, 16, 32, 32 respectively, and in the same way of 4 convolutional layers of size
32, 32, 16, 16 respectively in the decoder side. We apply a batch normalization
and a ReLU activation function at each step of the network except for the last
layer of the encoder where we only add the L2 normalization, and also for the
last layer of the decoder where we apply a Sigmoid function (see in Figure 3).

4.2 Algorithm steps

Our algorithm is made of four steps. We start by dividing the images into several
patches. Then we build the joint autoencoder where it learns how to reconstruct
the images, and after we tweak the method by learning the autoencoder to
reconstruct not the image itself but the precedent or the future image. The neural
networks will learn the changes caused by the non-uniform illumination or noise,
but will fail on ARMD progression generating a high reconstruction error (RE),
consequently making it possible to detect them. The next subsections will detail
some of these steps:

Pre-training Let us consider a series of M images representing the progression
of ARMD in a patient’s eye. Each image has the same number of N useful

patches, and we sample

⌊
N

M

⌋
of the patches from every image. This allows us

to build a unique autoencoder AE that works for all pairs in the series, and to
prevent overfitting. We also apply a gaussian filter to the patches in order to
weight the pixels by giving more importance to the center of the patch in the
RE calculus.
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Fig. 4: Structure of the algorithm. Example for series of two images Im1 and
Im2 and n the number of patches.

During the encoding pass of the AE, the model extracts feature maps of N
patches of chosen samples with convolutional layers (Figure 4), and then during
the decoding pass, it reconstructs them back to the initial ones.

Fine-tuning For every consecutive pair i, i + 1 with i ∈ [[1;M − 1]] of images
we are going to build two autoencoders initialized with the weights found in the
pre-training part. On one hand AEi,i+1, aims to reconstruct patches of Imi+1

from patches of Imi and, on the other hand, AEi+1,i is going to reconstruct
patches of Imi from patches of Imi+1.

The whole model is trained to minimize the difference between: the decoded
output of AEi,i+1 and Imi+1, the decoded output of AEi+1,i and Imi, and the
encoded outputs of AEi,i+1 and AEi+1,i, see Figure 4.

This joint configuration where the learning is done in both temporal di-
rections, using joint backpropagation, has empirically proven to be much more
robust than using a regular one-way autoencoder [8]. To optimize the parameters
of the model, we use the mean squared error (MSE) of the reconstructed patches

Reconstruction and Thresholding Once the models are trained and stabi-
lized, we perform the image reconstruction. For each pair, we note Imi+1′ the
reconstruction of Imi+1 from Imi with AEi,i+1 and likewiwse we note Imi′

the reconstruction of Imi from Imi+1 with AEi+1,i. Then, we calculate the re-
construction error RE for every patch between Imi and Imi′ on one side and
between Imi+1 and Imi+1′ on another side. This gives us two images for each
pair representing the average REs for Imi′ and Imi+1′ , that we average to get
only one. The model will easily learn the transformation of unchanged areas from
one image to the other: changes in luminosity and blurring effects. At the same
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time, because the changes caused by the disease progression are unique, they will
be considered as outliers by the model, and thus will have a high RE. Hence,
we apply Otsu’s thresholding [14] that requires no parameters and enables us to
produce a binary change map (BCM) (Figure 4).

5 Experimental results

5.1 Experimental settings

We chose to compare our methods presented in subsection 4.1 with 3 other
methods, all on the preprocessed images. We applied all the methods to 3 of our
series for which we have a ground truth.

The following parameters were chosen for all convolutional layers of our
method: kernel size to 3, stride to 1 and padding to 1. Adam algorithm was used
to optimize the models. We set the number of epochs to 8 for the pre-training
phase and just 1 for the fine-tuning phase. For both phases, the learning rate
was set to 0.0001 and the batch size to 100. Using trials and errors to determine
the best parameters, we chose a patch size P = 13 and a value σ = 12 for the
Gaussian filters.

The first method that we use for comparison is a simple subtraction of two
consecutive images with an application of Otsu’s thresholding on the result. The
second comparison is a combination of principal component analysis (PCA) and
K-means algorithm on the difference image proposed by Celik et al. in [1], and
we apply it to medical images with blocks of size 5. To finish we take a Deep-
Learning based approach [9] which uses CNN to group similar pixels together
with consideration of spatial continuity. This work by Kanezaki et al. was initially
made for unsupervised segmentation, consequently, we apply the algorithm to
our images and then do the segmentation substractions to get binary change
maps. The convolutive layers have the same configuration than for our network
and we set the minimum number of labels to 3.

All algorithms were executed on an Nvidia GPU (RTX TITAN) with 64 GB
of RAM and an Intel 9900k. It took about 20 minutes for a series of 8 frames
with a patch size P of 13, with the execution time increasing with it.

5.2 Results

The results for patients 1, 3 and 5 are shown in Table 1, as well as Figures 5 and
6 that we added for visual inspection purposes. Note that the scores presented
in Table 1 are for the complete series (15 to 20 pairs per patient), while the
scores schown in the Figures are for the individual couples of images used in
each example.

When looking at Table 1, we can see that the simple difference coupled with
Otsu thresholding achieves the best recall results on average, that there is no
clear winner for the Precision, and that our proposed method on average has the
best F1 Score. Note that we did not use Accuracy because of the strong class
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Table 1: Results and comparison of the different approaches. It contains the
means of the recall, the precision and the F1 score for each serie.

Patient ID Method Recall Precision F1 score

001
15
images

Diff+Otsu 0.68 0.11 0.16
Kanezaki 0.32 0.29 0.18

Celik 0.48 0.28 0.3
Our method 0.44 0.21 0.26

003
5 images

Diff+Otsu 0.55 0.1 0.17
Kanezaki 0.2 0.27 0.07

Celik 0.24 0.33 0.27
Our method 0.29 0.28 0.28

005
8 images

Diff+Otsu 0.46 0.2 0.26
Kanezaki 0.2 0.43 0.21

Celik 0.26 0.37 0.28
Our method 0.33 0.34 0.32

Total
(pa-
tients’
mean)

Diff+Otsu 0.57 0.14 0.2
Kanezaki 0.24 0.33 0.15

Celik 0.33 0.33 0.28
Our method 0.35 0.28 0.29

imbalance, with a large majority of ”no change class” pixels leading to results
over 95% of accuracy for all methods that were irrelevant.

Our interpretation of these results is the following: Otsu thresholding applied
to the difference between two images has the best recalls because it detects most
real change pixels. But the binary change map is also very noisy, corresponding
to a high number of false positives (wrongly detected changes) which is confirmed
by the very low precision score. This can also be observed on Figure 5-d which is
an example of the high number of false positive detected using Otsu thresholding
compared with the ground truth in Figure 5-c, or our method result in Figure
5-e.

(a) (b) (c) (d) (e)

Fig. 5: Difference + Otsu thresholding VS our approach (AE) on patient 003.
a&b-Images taken 3 months apart, c-groundthruth, d-difference with Otsu (F1
score = 0.26), e-our method (F1 score = 0.36).



10 G. Dupont et al.

In Figure 6, we compare our approach with the 2 other algorithms relying
on more advanced Machine Learning techniques. First we can see that like in
Table 1, our approach gets the best F1-score for both patients and pairs of im-
ages. Then, we can see that Kanezaki et al. approach achieves over-segmentation
in Figure 6-d and under-segmentation in Figure 6-j, which highlights that it is
more difficult to parametrize and may require different parameters for each pair
of image, which is not the case for both our approach and Celik et al. approach.
Finally, regarding the comparison between Celik et al. approach and our pro-
posed method, we can see from Figures 6-e, 6-f, 6-k and 6-l, that also like in
Table 1, Celik et al. approach achieves overall good results that are compara-
ble to the ones of our method. However, in the same way that we have better
F1-score and accuracy results, the visual results for our methods are also better
as the changes we detect in the lesions are cleaner and overall less fragmented
into very small elements compared with the ones found by Celik et al. approach.
Furthermore, we can see that our method finds changes that are more in the
peripheral areas of the lesions, while Celik et al. approach tends to find elements
inside existing lesions (6-k) which are of lesser interest from a medical point of
view.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6: Comparison of 3 methods on patients 001 (1st line) and 005 (2nd line):
a-Patient 001 April 2017, b-Patient 001 October 2017, c-ground truth, d-
Asako Kanezaki approach (F1= 0.17), e-Turgay Celik approach (F1= 0.43),
f-our method (F1= 0.43), g-Patient 005 October 2017, h-Patient 005 June 2018,
i-ground truth, j-Asako Kanezaki approach (F1= 0.15), k-Turgay Celik ap-
proach (F1= 0.35), l-our method (F1= 0.4).

Overall, we can conclude that both Otsu thresholding and Kanezaki’s ap-
proach suffer from risks of over-segmentation detecting a lot of noise, or under-
segmentation detecting nothing, both of which are impossible to exploit from
a medical point of view. On the other hand, despite somewhat mild recall and
precision scores, Celik approach and our method are visually much better at



Change Detection using Joint AE for ARMD 11

detecting meaningful changes in ARMD lesions structures. Moreover, we can see
that our proposed method has a slightly higher F1-Score and finds structures
that are visually better and more interesting from a medical point of view since
they tend to be more at the border of existing lesions instead of inside them,
and are also less fragmented.

6 Conclusion and future works

In this work, we have introduced a fully unsupervised deep learning new ar-
chitecture that detects the evolution of ARMD lesions in eye fundus series of
images. With a pre-cleaning of the series to remove as much lighting issues as
possible, our proposed method is based on an auto-encoder architecture that
can detect non-trivial changes between pairs of images, such as the evolution
of a lesion, while discarding more trivial changes such as lighting problems or
slight texture changes due to different image angles. Our proposed method was
applied to 3 real sets of images, and was compared with 3 methods from the
state of the art. Despite mild F1-Score results due to various issues, our method
has shown to give good enough results for a fully unsupervised algorithm and to
perform better than the other methods from the state of the art, and may prove
useful to assist doctors in properly detecting the evolution of ARMD lesions by
proposing a first raw segmentation of the evolution.

In our future works, we plan on working on an approach that can work on full
time series rather than pairs of images. This would require both better lighting
correction algorithms as well as more accurate ground-truth but may lead to
more interesting models to predict the evolution of ARMD.
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