
HAL Id: hal-02963833
https://hal.science/hal-02963833v1

Submitted on 10 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IoTRec: the IoT Recommender for smart parking
system

Yasir Saleem, Pablo Sotres, Samuel Fricker, Carmen Lopez de La Torre, Noel
Crespi, Gyu Myoung Lee, Roberto Minerva, Luis Sanchez

To cite this version:
Yasir Saleem, Pablo Sotres, Samuel Fricker, Carmen Lopez de La Torre, Noel Crespi, et al.. IoTRec:
the IoT Recommender for smart parking system. IEEE Transactions on Emerging Topics in Comput-
ing, 2022, 10 (1), pp.280-296. �10.1109/TETC.2020.3014722�. �hal-02963833�

https://hal.science/hal-02963833v1
https://hal.archives-ouvertes.fr


Saleem, Y, Sotres, P, Fricker, S, Lopez de la Torre, C, Crespi, N, Lee, GM, 
Minerva, R and Sanchez, L

 IoTRec: The IoT Recommender for Smart Parking System

http://researchonline.ljmu.ac.uk/id/eprint/13444/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Saleem, Y, Sotres, P, Fricker, S, Lopez de la Torre, C, Crespi, N, Lee, GM, 
Minerva, R and Sanchez, L (2020) IoTRec: The IoT Recommender for Smart 
Parking System. IEEE Transactions on Emerging Topics in Computing. ISSN
2168-6750 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1

IoTRec: The IoT Recommender for Smart Parking
System

Yasir Saleema, Pablo Sotresb, Samuel Frickerc, Carmen López de la Torreb, Noel Crespia, Gyu Myoung Leed,
Roberto Minervaa and Luis Sánchezb

aInstitut Mines-Telecom, Telecom SudParis, CNRS UMR 5157, France
bNetwork Planning and Mobile Communications Laboratory, University of Cantabria, Santander, Spain

cInstitute for Interactive Technologies, Fachhochschule Nordwestschweiz, Switzerland
dDepartment of Computer Science, Liverpool John Moores University, Liverpool, UK

Abstract—This paper proposes a General Data Protection
Regulation (GDPR)-compliant Internet of Things (IoT) Recom-
mender (IoTRec) system, developed in the framework of H2020
EU-KR WISE-IoT (Worldwide Interoperability for Semantic
IoT) project, which provides the recommendations of parking
spots and routes while protecting users’ privacy. It provides
recommendations by exploiting the IoT technology (parking and
traffic sensors). The IoTRec provides four-fold functions. Firstly,
it helps the user to find a free parking spot based on different
metrics (such as the nearest or nearest trusted parking spot). Sec-
ondly, it recommends a route (the least crowded or the shortest
route) leading to the recommended parking spot from the user’s
current location. Thirdly, it provides the real-time provision of
expected availability of parking areas (comprised of parking
spots organized into groups) in a user-friendly manner. Finally,
it provides a GDPR-compliant implementation for operating in
a privacy-aware environment. The IoTRec is integrated into the
smart parking use case of the WISE-IoT project and is evaluated
by the citizens of Santander, Spain through a prototype, but it
can be applied to any IoT-enabled locality. The evaluation results
show the citizen’s satisfaction with the quality, functionalities,
ease of use and reliability of the recommendations/services offered
by the IoTRec.

Index Terms—GDPR, Internet of Things (IoT), parking statis-
tics, recommendations, smart parking.

I. INTRODUCTION

During the past decade, there is a significant number of
cars circulating in the cities which makes the parking and
the traffic, two serious issues. Customarily, drivers try to
find available parking spots on the streets by driving around,
only locating a parking spot empirically due to their local
knowledge and luck. This practice wastes a significant amount
of both time and fuel, and sometimes it is impossible to find
a free parking spot during high vehicle traffic times. One
solution would be to find a parking area with high capacity
of free parking spots, increasing the chances of getting a
parking spot. However, this parking area could be very far
from the user’s destination. Another solution is to design a
system that shows free parking spots to the driver and lets the
driver chooses a free parking spot manually. However, this is
not an optimal solution because firstly, it is an extra task for
the drivers to select a parking spot by themselves. Secondly,
the path leading to the selected parking spot could be very

congested, causing the parking spot to be occupied when the
driver arrives.

IoT technology has revolutionized almost all fields of daily
life, including parking systems, by exploiting the immense de-
velopments in technology. Inspired by these new possibilities,
a smart parking system has been designed to automate the
recommendation of free parking spots to the drivers looking
for them, thereby minimizing the time spent on finding free
parking spots, as well as minimizing the cost associated
with hiring humans for manual parking management [1], [2],
[3]. Such a solution is based on a parking spot reservation
system that utilizes various wireless networking technologies,
such as ZigBee, Radio Frequency Identification (RFID) and
the Internet. The system provides information about nearby
free parking spots and allows drivers to reserve the parking
spots through their devices by using the ID that univocally
identifies each vehicle in a parking spots reservation system
[1]. However, it is not always possible to reserve parking
spots in advance because of the regulations in some cities (e.g,
Santander, Spain). Therefore, there is still a need for a system
that can recommend the best possible parking spots based on
certain metrics.

In additional, in the recommendation of parking spots, it
is very important to consider the traffic on the route to each
available parking spot and to recommend the least congested
route leading to the recommended parking spot. To better
understand the importance of traffic congestion, let us consider
a rush hour scenario when the traffic in the city center is at its
peak. In this scenario, the streets will be very congested, and
many people will be looking for parking spots. When a driver
finds an available parking spot and heads towards it, there is a
high likelihood that when the driver reaches the parking spot,
it will already be taken because multiple drivers are looking
for similar parking spots, and the traffic congestion caused a
delay in reaching the parking spot. We solve this problem by
selecting a parking spot that is the nearest to the user and
by providing the expected availability (occupancy statistics)
of parking areas to the users.

Many of the IoT applications available today have been
developed in a vertical manner by focusing on a specific
scenario or use case without considering data exchange and
reuse with other IoT applications. This very specific focus



2

results in poor service because of the lack of integration of
different data and hence the interoperability in the IoT data
and systems. However, if IoT applications could collaborate
by exchanging and reusing each other’s data, opportunities
for new value-added and more efficient services could be
generated. The semantic web is a promising technology with
which to achieve the needed interoperability [4]. Hence, newer
IoT applications, including smart parking system should be
semantics-enabled adopting semantic data modeling and se-
mantic web technologies for supporting the interoperability in
IoT.

With the enforcement of the EU General Data Protection
Regulation (GDPR), protecting the privacy of EU citizens
throughout the data collection, data storage and data process-
ing of a user’s personal data is now a basic requirement [5],
[6]. Parking systems gather a lot of contextual data and it is
quite possible that the users’ personal data can be collected
indirectly. GDPR affects also smart parking applications and
hence, the smart parking systems should therefore be designed
in a way that protects user’s privacy and thus be GDPR-
compliant.

A smart city infrastructure was deployed in Santander, Spain
in 2010−2013 as part of an EU project, SmartSantander [7],
[8], [9]. Quite a number of sensors were deployed, including
traffic, parking, bus stop, bus line, irrigation, environmental
and mobile sensors [10]. Fig. 1 presents the deployment of
traffic and parking sensors in the city of Santander.

In this paper, we propose the IoT Recommender (IoTRec),
a smart parking system that is GDPR-compliant and considers
the road traffic conditions. We utilized the semantic IoT data
of the deployed parking and traffic sensors as presented in Fig.
1 for the recommendation of available parking spots and the
best routes based on some metrics. The envisaged metrics for
parking spots are the nearest, or nearest trusted parking spot,
while the metrics for a route are the least congested or the
shortest route. A trusted parking spot is defined as a parking
spot that is trusted by the user based on his past experience,
and that is also trusted based on the quality assessment of
the parking sensor. For the nearest trusted parking spot, a
Trust Monitoring component developed in our recent work
[11] calculates the trust scores of parking spots by analyzing
the user’s experience through a feedback mechanism [12] and
sensor quality assessment. Such trust scores are utilized by
the IoTRec in the calculation of the nearest trusted parking
spot. The Trust Monitoring component is not the main scope
of this paper; the readers are referred to our recent work [11]
for details. The IoT recommender is novel and different from
other recommender systems in four primary aspects. Firstly,
the IoT recommender mainly considers the IoT data of parking
and traffic sensors, rather than the data shared or acquired
by users’ terminals. Secondly, the IoT recommender provides
trusted recommendations by integrating with Trust Monitoring
component of WISE-IoT project. Thirdly, it provides GDPR-
compliant, as well as normal implementations that work in a
privacy-aware and non-privacy-aware environment. Fourthly,
it offers the expected availability (occupancy statistics) of
parking areas to users and enable them to analyze the weekly,
monthly and yearly statistics by themselves. To the best of our

knowledge, these features do not exist in current recommen-
dation systems.

In this paper, we first present the semantic data modeling
of parking and traffic sensors data utilized by the IoTRec in
the recommendations of parking spots and routes and we then
present an overview of our proposed IoTRec. To allow the
drivers to analyze the expected availability (occupancy statis-
tics) of parking areas (parking spots organized into groups) in a
user-friendly interface and to select a parking area, we develop
and present the statistics of Santander’s parking areas. Our
proposed IoTRec is integrated into the real world in Santander
in a prototype of the H2020 EU-KR WISE-IoT project [13],
[14] called the Rich Parking application, making use of REST
APIs. REST APIs make the integration with the smart parking
application easy and simple, and also ease the interoperability
and reusability by allowing other IoT applications to integrate
these APIs and offer new efficient services. It is important to
note that although the IoTRec is evaluated by the citizens in
Santander, it can be applied to other cities that have similar
infrastructure.

The contributions of this paper are summarized as follows:
• Development of a parking spot (nearest or nearest trusted)

and route (least congested or shortest) recommendation
system by exploiting the semantic IoT data of traffic and
parking sensors;

• The real-time provision of expected availability (occu-
pancy statistics) of parking areas based on historical IoT
data;

• The development of a GDPR-compliant implementation
that can work on a privacy-aware environment; and

• A prototype for the demonstration and evaluation of our
proposed IoTRec by citizens of a smart city.

This paper is organized as follows. Section II discusses
the related work. The semantic data modeling of parking
and traffic sensor is presented in Section III, followed by
an overview of IoTRec in Section IV. Section V discusses
the mechanisms of parking spot and route recommendation,
as well as the GDPR-compliant implementation. Section
VI presents the provision of real-time expected availability
(occupancy statistics) of parking areas with some proposed
algorithms using historical IoT data. The IoTRec prototype and
its evaluation are presented in Section VII, and then Section
VIII concludes the paper and presents future work.

II. RELATED WORK

Much work has been done on smart parking systems since
the emergence of smart cities. However, our proposed system
is significantly different in terms of recommendations of
nearest parking spots, as well as routes by considering the
traffic congestion on the streets and the trust scores of parking
spots, expected availability (occupancy statistics) of parking
areas, a prototype and evaluation. We present the state-of-the-
art and explore the need for the features we offer in IoTRec.

Pham et al. [1] developed a cloud-based smart parking
system using the Global Positioning System (GPS) coordi-
nate data of vehicles, the number of free parking spots in
parking areas, and the distance between parking areas to



3

Fig. 1. Deployment of traffic and parking sensors in Santander, Spain (a) traffic sensor deployment, (b) parking sensor deployment.

calculate the costs of a parking request made by a driver. They
also developed a prototype using an open-source platform
based on Arduino, RFIDs and smartphones. Mainetti et al.
[2] designed a smart parking system by integrating RFID,
Ultra-High Frequency (UHF) and Wireless Sensor Network
(WSN) technologies. This system comprises software features
to collect parking spot occupancy and was developed into
an application to navigate drivers to the nearest free parking
spot. The application also enables users to pay their parking
fee through an Near-Field Communication (NFC)-based e-
wallet system. It uses Java REST APIs and Google cloud
messaging, installed on a central server for managing alerts
(such as the expiration of purchased time and the abuse of the
reserved space) which promptly alerts the traffic police. This
system was demonstrated with a proof-of-concept prototype.
However, the authors mainly implemented the prototype and
did not evaluate the performance of the parking system.

Hsu et al. [3] proposed SmartValet, a parking guidance
system in which drivers can make parking spot reservation
by smartphone thirty minutes in advance. SmartValet was
developed for outdoor as well as indoor parking. It reserves
a parking spot using a vehicle ID. The location of the
reserved parking spot is passed to the driver on the map using
Dedicated Short-Range Communication (DSRC) technology
at the entrance to the parking area. SmartValet implements
a navigation system, called the inertial navigation system, to
guide the vehicle to the reserved parking spot. The status of
the parking spot is updated periodically, ensuring system’s
accuracy. The authors used the accuracy of the inertial navi-
gation system as a parameter for evaluating the system perfor-
mance, and GPS accuracy as a parameter for evaluating the
system implementation. Similarly, Barone et al. [15] designed
an architecture called Intelligent Parking Assistant (IPA) for
parking management in Smart Cities. IPA provides information
about parking spot availability to drivers and allows them to
reserve the most suitable parking spot before their arrival for
their destination by using RFIDs and magnetic loops. When
a vehicle parks or leaves the parking spot, the magnetic loop
and RFID reader identifies such an action and informs the
unit controller. The unit controller subsequently updates the

status of the parking spot. However, it is not always possible
to reserve parking spots in advance because of the regulations
in some cities. Therefore, there is a need for a system that can
recommend the best possible parking spot instead of reserving
parking spots.

Shiyao et al. [16] also proposed and implemented a smart
parking system. Their proposed system is based on ZigBee
technology which forwards the information at the server
through a gateway, and the server subsequently updates the
database. For people looking for free parking spots, the
application layer of this system obtains the parking spot
availability information through the Internet, gathers all the
scattered parking spots’ information using web services and
passes the information to drivers. However, it is a simple
application that does not consider complex problems, such
as traffic congestion, navigation and expected availability of
parking spots. Furthermore, Shiyao et al. did not evaluate the
performance of their system.

Lambrinos et al. [17] designed a parking management
system for disabled people called DisAssist. This system is
built upon the IoT and smart cities’ capabilities by integrating
smartphones, sensors and mobile/wireless communications.
DisAssist offers real-time availability information about dis-
abled parking spots in the area of interest to disabled drivers
(or clients) and allows them to reserve parking spots. How-
ever, similar to other existing work, DisAssist considers the
reservation of parking spots, which is not always possible.

Yavari et al. [18] centered on contextualization and pro-
viding personalized parking recommendation to the users by
utilizing the data collected in smart cities. Although the au-
thors provide context-aware parking recommendations, how-
ever, their main focus is on the contextualized information of
users’ preferences and habits. We, on the other hand, provide
recommendations of parking spot and route based on various
metrics, two implementations of parking recommender system
for privacy-aware and non-privacy-aware environments, as
well as occupancy statistics of parking areas.

Rathore et al. [19] proposed an architecture of smart city
using IoT-based Big Data analytics. The authors consider
various sensors deployment, such as sensors deployed for



4

TABLE I
PROPERTIES OF PARKING SPOT, PARKING AREA (ONSTREETPARKING) AND TRAFFIC INFORMATION (TRAFFICFLOWOBSERVED) ENTITIES.

Entity Property Type Description

Parking spot, parking area &
traffic information

id String Unique identifier of a parking spot, parking area and traffic flow
type String Type of entity. Must be either a ParkingSpot, OnStreetParking or TrafficFlowOb-

served
dateModified DateTime (ISO8601) The last modified time of the entity in ISO8601 format (e.g., 1900-12-

31T23:59:59.000Z))
location geo:json The location coordinates of the entity in geo:json format

Parking spot & parking
area

name String The name of the entity for identification and distinguishing
category String The category of the entity (e.g., onStreet or offStreet for parking spot. free,

forElectricCharging, feeCharged or forDisabled for parking area)

Parking spot status String The occupancy status of the parking spot, e.g., free or occupied
refParkingSite String A reference to OnStreetParking or OffStreetParking based on the value of the

category property

Parking area

chargeType List<Text> The type of charges for the parking site, such as free, monthlyPayment,
annualPayment and flat rate

requiredPermit List<Text> The permit required to park in that area, such as residentPermit, government-
Permit, emergencyVehiclePermit and noPermitNeeded

permitActiveHours List<Text> Hours/days during which the permit is required
allowedVehicleType String The type of vehicle that is allowed, such as a car, bicycle, motorcycle, bus, small

truck, minivan
areBordersMarked Boolean Indicates whether parking spots are separated with borders (painted lines) or not
totalSpotNumber Integer Number of spots in the parking area
occupancyDetectionType List<String> Technique of identifying the occupancy of a parking spot, such as modelBased,

singleSpaceDetection, balancing and none

Traffic information

dateObserved DateTime (ISO8601) The observed date and time of the traffic sensor in ISO8601 format (e.g., 1900-
12-31T23:59:59.000Z))

intensity Integer The number of vehicles detected during the observation period (e.g., twenty
vehicles in one minute)

occupancy Integer The fraction of observation time in which vehicles occupy the road
roadLoad Integer Estimation of the traffic congestion calculated by the intensity and occupancy

the monitoring of surveillance, parking, weather, water, smart
home and vehicles. However, instead of providing smart
parking recommendations, their main focus is on smart city
architecture using Big Data analytics.

Sadhukhan [20] developed a prototype of IoT-based E-
parking system that exploits parking meters to detect improper
parking, estimation of the duration of parking spot utilization
by a vehicle and automatic payment of parking fee. However,
authors do not focus on parking recommendation services.

Chatzigiannakis et al., [21] worked on public key
cryptography-based privacy preservation of smart parking sys-
tem, known as elliptic curve cryptography, that is suitable for
resource constraint devices and is platform independent. The
authors achieved privacy by using zero knowledge proofs that
avoids the exchange of confidential information and evaluated
the performance by studying system overhead and execution
time. However, the main focus of authors is on preserving the
privacy of smart parking system instead of providing parking
recommendations.

The work mentioned above either considers the reservation
of parking spots or their proposed architecture has been
implemented without real-time planned routes, or are designed
specifically for disabled persons, or are mainly focused on
user-based contextualized information or focused on privacy
preservation of existing smart parking system. To the best of
our knowledge, none of the systems recommends the nearest
parking spots and routes by considering the traffic congestion
on the streets and the trust scores of parking spots, offers the
expected availability (occupancy statistics) of parking areas
and evaluates the system. Additionally, none of the systems
uses semantic data models for their parking systems which is
nowadays a very important requirement to an IoT system for
the interoperability with other IoT applications and systems.

III. SEMANTIC DATA MODELING

The purpose of semantic data modeling in the IoT is to
facilitate data interoperability, data sharing and data reuse
across cross-domain IoT applications. The IoTRec is designed
for the smart parking system of a WISE-IoT project [13]
that is mainly focused on the: i) interoperability between
two IoT platforms: FIWARE [22] and oneM2M [23]; ii)
interoperability between two continents: Europe and Asia
(South Korea); and iii) interoperability between cross-domain
IoT applications. Therefore, the parking and traffic sensors’
data are semantically modeled for interoperability and easy
integration with other IoT applications and platforms.

One of the best practices of the semantic web is to reuse
existing ontologies and data models instead of creating new
ones from the scratch. Therefore, we have reused the data
models provided by FIWARE. FIWARE [22] is an open-source
IoT platform that offers various data models [24] for the IoT.
For our IoTRec, we use FIWARE Data Models that provide a
semantic representation of our required entities (e.g., parking
spot, parking area and traffic information).

Table I presents a consolidated data model of the parking
sensors (parking spot and parking area) and traffic sensors,
and Fig. 2 illustrates the ontology of the parking spot, On-
StreetParking (parking area) and TrafficFlowObserved (traffic
information) entities. The rest of this section provides the
details about their semantic data modeling.

A. Semantic Data Modeling of Parking Sensors (Parking Spots
and Parking Areas)

There are hundreds of parking sensors deployed in the city
of Santander to identify the status of parking spots (i.e., free
or occupied). The parking sensor data is structured using an
NGSI [25] model in JSON format. A parking sensor represents
a parking spot, and parking spots are grouped into various



5

parking areas to provide additional valuable information. The
IoTRec offers the expected availability (occupancy statistics)
of parking areas using the parking sensor data.

The FIWARE Data Model offers a list of attributes for
defining the characteristics of a parking spot entity [26]. We
have selected some parking sensor attributes that are mainly
required for our case. Similarly, for defining the characteristics
of a parking area entity, FIWARE offers a data model, called
OnStreetParking [26] that provides the attributes required to
describe parking areas. Both of these groups of attributes (as
entities and their properties) are presented in Table I and in
the ontology in Fig. 2.

B. Semantic Data Modeling of Traffic Sensors

Traffic sensors provide traffic information, such as occu-
pancy, intensity and load. The IoTRec utilizes traffic infor-
mation to calculate the least congested route leading to the
recommended parking spot. FIWARE provides a data model
of TrafficFlowObserved [27] entity for them that offers the
required attributes to describe the traffic flow information
in a city. We have selected some of the attributes from the
TrafficFlowObserved data model to define the characteristics
of our traffic information entity, and add a new attribute
roadLoad that is not offered by the TrafficFlowObserved
FIWARE data model. roadLoad estimates the level of traffic
congestion calculated by intensity and occupancy parameters.
These attributes (as entities and their properties) are presented
in Table I and in the ontology presented in Fig. 2.

IV. OVERVIEW OF THE IOT RECOMMENDER (IOTREC)

This section presents an overview of the IoTRec for a smart
parking system. The IoTRec exploits the semantic IoT data of
parking and traffic sensors (see Section III) to offer recommen-
dations of available parking spots and optimal routes leading
to the recommended parking spots based on users’ preferences
(or metrics). For the recommendations of parking spots, the
users’ preferences (or metrics) include the nearest or nearest
trusted parking spot, while for the recommendations of routes,
the users’ preferences (or metrics) include the least crowded
or shorted route. If the user does not provide any preference,
then the IoTRec selects the nearest trusted parking spot and
the least crowded route, by default. From a recommendation
perspective, the IoTRec is different from non-IoT based rec-
ommendation systems in four primary aspects. Firstly, the
IoTRec mainly considers the IoT data provided by parking
and traffic sensors, rather than the data shared or acquired
by users’ terminals. Google Maps1, for example, provides a
routing path from one point to another by showing the real-
time Google Traffic and recommends a least congested route.
However, Google Traffic is based on crowdsourced GPS-based
locations collected from a large number of users through
their smartphones [28]. Google analyzes Google Traffic by
calculating the speed of users along the road to calculate the
congestion in the streets. The IoTRec considers and analyses
traffic sensors data to estimate the level of congestion on the
streets to recommend the least crowded route. Hence, if there

1https://www.google.com/maps

is a lot of traffic on the streets but very few (or none) of
the users has GPS location enabled on their smartphones,
Google Traffic will not be able to estimate the congestion,
while this is not the case for the IoTRec because it considers
IoT data from the traffic sensors. Secondly, the IoTRec pro-
vides the recommendations of trusted parking spots (based on
users’ past experience and sensors quality) by integrating with
Trust Monitoring [11], a component of the WISE-IoT project.
The Trust Monitoring component calculates trust scores by
analyzing users’ experience through a feedback mechanism
[12] and sensor quality assessment, forwarding the trust scores
to the IoTRec which are then utilized by the IoTRec in the
calculation of its recommendations. To the best of our knowl-
edge, this feature does not exist elsewhere in the literature.
Thirdly, the IoTRec provides GDPR-compliant, as well as
normal implementations that work in a privacy-aware and non-
privacy-aware environment. Fourthly, the IoTRec offers the
expected availability (occupancy statistics) of parking areas to
users and enables the users to analyze the weekly, monthly
and yearly statistics of their preferred parking areas in a
user-friendly interface. Hence, in addition to the automatic
recommendation of parking spots, the IoTRec also allows
users to select a parking area themselves by analyzing the
occupancy statistics.

To better understand how this system functions, we sum-
marize the main mechanisms in the operation of the IoTRec
below. The IoTRec:

• exploits the semantic IoT data of parking sensors and the
user’s current location to identify the nearest parking spot
to the user;

• uses trust scores from the Trust Monitoring component
in the recommendation of the parking spot to determine
the nearest trusted parking spot;

• utilizes the semantic IoT data of traffic sensors for
analyzing the road congestion;

• provides GDPR-compliant implementation for privacy-
aware environments;

• exploits the historical semantic IoT data of parking
sensors to generate the real-time expected availability
(occupancy statistics) of parking areas and shows the
statistics in a user-friendly manner to allow a user to
analyze parking areas; and

• uses the extracted congestion data and selected parking
spot/area to recommend the least congested route to the
user.

Fig. 3 presents the proposed IoTRec architecture. The
IoTRec first obtains a request (containing the user’s current
location for GDPR-compliant implementation, or the user’s
current location and user id for normal implementation) from
the smart parking application to find a parking spot and a route.
The IoTRec then accesses the semantic IoT data of parking
sensors from the FIWARE Orion Context Broker which is
an NGSIv2 server implementation and is mainly used for
the management of context information and its availability.
It allows users to create context elements and to then use
updates and queries to manage them. It receives all the
heterogeneous IoT sensor measurements, annotates the data



6

Fig. 2. Ontology of the parking spot, OnStreetParking (parking area) and TrafficFlowObserved (traffic information) entities.

using semantic technologies and provides semantic IoT sensor
data via REST API. The readers interested in Orion Context
Broker are referred to [29] for complete details. Subsequently,
the Trust Monitoring component [11] obtains the trust scores
by interacting with Orion Context Broker and user feedback
database. The trust scores are used by the IoTRec to find the
nearest trusted parking spot. Once the IoTRec finds the most
suitable parking spot (i.e., the nearest trusted parking spot), it
interacts with a BRouter routing engine [30] to obtain various
routes from the user’s current location to the selected parking
spot. BRouter is a routing engine that offers both online and
offline versions and is built on the top of Open Street Maps
(OSMs) [31]. It calculates the routes using elevation data and
OSMs. After obtaining the routes, the IoTRec accesses the
semantic IoT data from the FIWARE Orion Context Broker
for appropriate traffic sensors and maps the traffic sensors into
the routes obtained from the BRouter routing engine using the
algorithm proposed in our previous work [32] on the mapping
of sensor and route coordinates. The IoTRec then selects the
least congested route and recommends the parking spot and
the route to the smart parking application using REST API.
The details of how the recommendation of parking spots and
routes functions are provided in Section V.

Additionally, the IoTRec also provides the expected avail-
ability (occupancy statistics) of parking areas using historical
IoT data to allow a user to manually select a parking area. The
complete details about the expected availability (occupancy
statistics) of parking areas are provided in Section VI.

Fig. 3. Architecture of IoTRec system.

V. RECOMMENDATION OF PARKING SPOTS AND ROUTES

This section presents the mechanisms for parking spot and
route recommendation. We provide two parking spot recom-
mendation systems, a normal implementation for scenarios
that do not operate in a privacy-aware envirornment (e.g.,
South Korea) and one for GDPR-compliant implementation
in a privacy-aware environments (e.g., Europe).



7

A. Normal Implementation of Nearest and Nearest Trusted
Parking Spot Recommendation

In a normal implementation that does not operate in a
privacy-aware environment, when asking for a recommenda-
tion, the application provides the user’s current location and
user id to the IoTRec. Next, the IoTRec obtains the list of
available parking spots and calculates the distance from the
user’s current location to the available parking spots using the
BRouter routing engine [30]. It then sorts the available parking
spots based on their distance from the user and selects the
nearest parking spot for the nearest parking spot recommen-
dation. For the nearest trusted parking spot recommendation,
the IoTRec obtains the trust score of the selected nearest
parking spot from the Trust Monitoring component associated
to the user’s id. This trust score is dependent upon the user
and on sensor quality. For example, the trust score for the
same parking spot for two different users may vary. Similarly,
the trust scores for two different parking spots for the same
user will also vary. If the obtained trust score is below the
defined threshold (the threshold value lies between 0 and 1,
and was here set to 0.5 based on experimentations and to
find a balance), it indicates that the selected parking spot is
not appropriate for the user due to some specific reasons.
For example, the user had a bad experience with the selected
parking spot in the past, or the selected parking spot has some
technical problems (e.g., the sensor is not working properly).
After finding an available parking spot that does not have a
trust score above the threshold value, the IoTRec selects the
second nearest parking spot and obtains its trust score from
the Trust Monitoring component. If the trust score is again
below the threshold value, the IoTRec will keep checking the
parking spots one by one until it finds a parking spot with a
trust score that meets the threshold value. When the trust score
for the selected parking spot meets the threshold value, the
IoTRec selects the parking spot as the recommended parking
spot. Subsequently, it finds a route (the least congested or the
shortest) from the user’s current location to the recommended
parking spot (see Section V-C) and sends the recommended
parking spot and route back to the smart parking application.

B. GDPR-compliant Implementation of Nearest Trusted Park-
ing Spot Recommendation

We also provide GDPR-compliant implementation for the
recommendation of parking spot and route for scenarios that
require users’ privacy protection and that are operated in a
privacy-aware environments. In a normal implementation, the
application provides the user’s current location and user id to
the IoTRec and the IoTRec then passes the user id to the Trust
Monitoring component to obtain the trust scores of the parking
spots based on the user’s past experience and on the sensor
quality. However, since the IoTRec receives user ids from the
application, it breaches the user’s privacy because, through
the user id, the IoTRec could acquire much information
about users, including tracking their movements, and perhaps
deducing their routines. This knowledge is a breach of user
privacy if the user is not willing to share his or her information.
To cope with this problem, we offer privacy-protected and
GDPR-compliant implementation in which the IoTRec does

not receive user ids from the application and does not
directly interact with the Trust Monitoring component. Instead,
the application first obtains the trust scores of all the parking
spots for a specific user from the Trust Monitoring component,
then passes the trust scores (comprised of trusteeId,
score and timestamp) to the IoTRec. Subsequently, the
IoTRec utilizes these trust scores in a similar way as discussed
above to select the nearest trusted parking spot. In this manner,
the IoTRec does not have any direct knowledge of the users.

The selection of the normal or the GDPR-compliant im-
plementation depends upon the scenario. For instance, if the
application/service needs to operate in privacy-aware environ-
ment, they should use the GDPR-compliant implementation.
Otherwise the applications/services that do not have privacy
issues can choose the normal implementation, which reduces
the overhead on the application. For example, since the IoTRec
is reusable by other applications/services through REST APIs,
applications that do not have privacy issues would generally
not be willing to undertake the complications of first obtaining
the trust scores for the specific user from the Trust Monitoring
component at each request and then passing the user’s current
location and trust scores to the IoTRec. Such applications/ser-
vices would most likely prefer making the IoTRec responsible
for interacting with the Trust Monitoring component and thus
should utilize the normal implementation.

C. Least Congested and Shortest Route Recommendation

After identifying the recommended parking spot, the IoTRec
selects the route (the least congested or the shortest route
based on the user’s preference). The least congested route
is identified by exploiting the semantic IoT data of traffic
sensors that provide the measurements of road load, occupancy
and traffic intensity. The traffic sensors are magneto-resistive
loops buried under the asphalt and deployed across the city in
different roads (as shown in Fig. 1). These sensors identify
the presence and mobility of vehicles, providing the real-
time measurement of lane occupancy and traffic intensity
parameters. To identify the route possibilities, the IoTRec
uses a third-party BRouter routing engine [30] to obtain the
coordinates of various available routes from the user’s current
location to the recommended parking spot. Next, the IoTRec
applies our previously proposed algorithm [32] to map the
traffic sensor coordinates into the route coordinates. After
mapping the coordinates, in the case of the shortest route, it
selects the shortest available route from user’s current location
to the recommended parking spot. For the case of the least
congested route, it utilizes the road load measurements pro-
vided by traffic sensors to find the least congested route. Road
load measurements provide the estimated level of congestion
on the streets by interpreting the traffic intensity (i.e., the
number of vehicles per hour). Since a route is comprised of
multiple traffic sensors and hence multiple measurements of
the road load, the IoTRec calculates the average of the road
load measurements provided by the traffic sensors on each
route. Subsequently, it selects the route with the least average
road load (i.e., the least bottlenecked road load) as the least
congested route. In the future, we plan to study the bottleneck
road loads of routes and develop a route selection mechanism



8

TABLE II
EXAMPLE OF STATUS-WISE STORAGE OF PARKING SENSOR DATA.

ID Status Start Time End Time Duration
(sec)

3601 occupied 2018-07-26 08:00:00 2018-07-26 09:30:00 5400
3602 occupied 2018-07-26 08:00:00 2018-07-26 10:00:00 7200
3601 free 2018-07-26 09:30:00 2018-07-26 10:00:00 1800
3602 free 2018-07-26 10:00:00 2018-07-26 10:30:00 1800
3601 occupied 2018-07-26 10:00:00 2018-07-26 10:15:00 900
3601 free 2018-07-26 10:15:00 2018-07-26 10:30:00 900

by applying machine learning techniques.
A sequence diagram of the interactions between IoTRec and

other systems to calculate the aforementioned parking spot and
route recommendations can be seen on Fig. 4.

VI. EXPECTED AVAILABILITY (OCCUPANCY STATISTICS)
OF PARKING AREAS

The IoTRec also offers the real-time expected availability of
parking areas by calculating the occupancy statistics to allow
users to select a parking area themselves by analyzing the
statistics presented in a user-friendly manner. In this section,
we explain the mechanisms and the calculation of parking area
occupancy statistics. First, we provide an overview of parking
area occupancy statistics, then we discuss their calculation and
finally present the algorithms utilized to store the information
used to calculate the statistics.

A. Overview

To better organize the expected availability (occupancy
statistics) of parking areas, parking spots are aggregated into
parking areas as presented in Fig. 5. Each line in a different
color represents a parking area that comprises multiple nearby
parking spots. For parking area occupancy statistics, storing
the occupancy data of parking sensors is the first step. The
parking sensors’ data is updated at a FIWARE Orion Con-
text Broker [26] every Tupd = 120 seconds. For expected
availability (occupancy statistics) of parking areas, the parking
sensors’ data is collected for the duration of nine months, i.e.,
from October 2017 to June 2018. For the storage of parking
sensors’ occupancy data to be used in calculating parking
areas occupancy statistics, instead of storing a new record of
parking sensor data every Tupd duration, we store the status-
wise data. For example, if a record Ri for a parking sensor
PSi data having status PSi,status = free is stored at time
instant Tn, then at the next time instant Tn+1, if the status
remains the same (i.e., PSi,status = free at Tn+1), we update
the duration of the record Ri rather than adding a new record
Ri+1. Otherwise, if the status of parking spot PSi is changed
(i.e., PSi,status = occupied at Tn+1), we add a new record
Ri+1. This approach helps to avoid one step of the processing
to aggregate all the consecutive records having the same status
while calculating the duration of the free and occupied status.
Table II presents an example of status-wise storage of two
parking sensors’ data which shows the ID of the parking sensor
(i.e., 3601 and 3602), the status (free or occupied), start time,
end time and the duration.

B. Calculation of Parking Areas’ Occupancy Statistics

The status-wise storage of parking sensor data is used in
calculating the occupancy statistics of parking areas. At the

beginning of each day, we calculate and store the statistics
for the previous day in the database. We calculate the parking
areas’ occupancy statistics for a timing window of every hour
to provide more accurate statistical information. We offer three
levels of statistic granularity: weekly (past 1 week), monthly
(past 4 weeks) and yearly (the last 52 weeks) through a
REST API and present them in a user-friendly interface to
be analyzed by the end user.

For better understanding of this process, we present a
scenario in which a user looking for a parking spot wants
to analyze the parking area occupancy statistics by himself.
The smartphone parking application shows the parking area
statistics to the user. These are shown to the user in terms of
occupancy percentage, i.e., parking area A was occupied 65%
on Monday from 13:00 to 14:00. The user clicks on a parking
area on Monday at 13:10 to see the statistics. The user will
receive three types of statistics: the statistics of last Monday
from 13:00 to 14:00 (i.e., weekly statistics); the statistics of the
average value of the last four Mondays from 13:00 to 14:00
(i.e., monthly statistics); the statistics of the average value
of last fifty-two Mondays from 13:00 to 14:00 (i.e., yearly
statistics). All three levels of statistics are shown to the user
in terms of occupancy percentage.

The calculation of parking areas occupancy statistics is
divided into two parts. In the first part, we calculate the hourly
occupancy duration of each parking spot for each day for
fifty-two weeks (one year) and store them in our database. In
the second part, we calculate the weekly, monthly and yearly
occupancy statistics of parking areas for each hour of the day
by aggregating and averaging the hourly occupancy duration
of parking spots belonging to parking areas, and store them
in another database.

For the first part, to store the parking spot occupancy
statistics of 52 weeks for each hour of a day, we present the
structure of the database in Table III. In this table, the parking
area is the area where the parking spot is situated. There
are two parking areas in this table, i.e., HernanCortesCentre
and DaoizVelardeEast. Parking spot ids are the identifiers
of the parking spots, which are grouped into parking areas.
There are four parking spots in this table, i.e., parking spots
3601 and 3602 belonging to parking area HernanCortesCentre,
and parking spots 3620 and 3623 belonging to parking area
DaoizVelardeEast. The day indicated in the Day column is
the day for which the statistics are being calculated, which
is Monday in our example. The start time and the end
time delineate the one-hour timing window. In our example
table, we considered two timing windows of one hour each:
09:00:00−10:00:00 and 10:00:00−11:00:00. Week 1, Week
2, ... Week 52 show the occupancy duration in seconds of
the parking spot during the considered hourly timing window
for the specific day. For example, in the first row of Table
III, 1500 in the column of Week1 represents the occupancy
duration in seconds of parking spot 3601 which is in the
HernanCortesCentre parking area from 09:00:00 to 10:00:00
on Monday for the first week of the year.

The second part generates the occupancy statistics of park-
ing areas by aggregating and averaging the hourly occupancy
statistics of parking spots within each area. Table IV presents



9

Fig. 4. Operation of the IoTRec via sequence diagram for both cases of normal and GDPR-compliant implementation for the recommendations of nearest
trusted parking spot and the least crowded route.



10

TABLE III
EXAMPLE OF STORAGE OF PARKING SPOT OCCUPANCY STATISTICS FOR 52 WEEKS.

Parking Area Parking
Spot ID

Day Start Time End Time Week 1 Week 2 Week 3 Week 4 ... Week 52

HernanCortesCentre 3601 Monday 09:00:00 10:00:00 1500 1800 1500 900 ... 1200
HernanCortesCentre 3601 Monday 10:00:00 11:00:00 1800 1200 1500 2100 ... 1800
HernanCortesCentre 3602 Monday 09:00:00 10:00:00 1200 2400 1800 2100 ... 1200
HernanCortesCentre 3602 Monday 10:00:00 11:00:00 1800 2700 1800 1200 ... 1500
DaoizVelardeEast 3620 Monday 09:00:00 10:00:00 2700 2100 3000 3600 ... 2700
DaoizVelardeEast 3620 Monday 10:00:00 11:00:00 3000 2700 2400 3600 ... 2700
DaoizVelardeEast 3623 Monday 09:00:00 10:00:00 2100 2700 1800 2100 ... 3000
DaoizVelardeEast 3623 Monday 10:00:00 11:00:00 2400 2100 2400 3600 ... 2400

TABLE IV
EXAMPLE OF STORAGE OF PARKING AREA OCCUPANCY STATISTICS.

Parking Area Day Start
Time

End Time Weekly
Stats

Monthly
Stats

Yearly
Stats

HernanCortesCentre Monday 09:00:00 10:00:00 1500 1650 1560
HernanCortesCentre Monday 10:00:00 11:00:00 1650 1762 1740
DaoizVelardeEast Monday 09:00:00 10:00:00 2850 2512 2580
DaoizVelardeEast Monday 10:00:00 11:00:00 3600 2775 2730

Fig. 5. Aggregation of parking spots into parking areas.

the structure of the database table that stores the final oc-
cupancy statistics of parking spots. Let us assume we are
currently in week 5. Then in the first row of Table IV, 1500
in the Weekly Stats column shows the average occupancy
duration of all the parking spots in the HernanCortesCentre
parking area (e.g., 3601 and 3602 in Table III) for Week
4. The value of 1650 in Monthly Stats shows the average
occupancy duration of all the parking spots in parking area
HernanCortesCentre for Week 4, Week 3, Week 2 and Week
1. Similarly, 1560 in the Yearly Stats column shows the
average occupancy duration of all the parking spots in the
HernanCortesCentre parking area for the last fifty-two weeks.

For a detailed discussion and complete understanding, we
present the algorithms in the next subsection.

C. Algorithms

We present the algorithms for the status-wise storage of
parking spots, hourly parking spot occupancy statistics and
for the calculation of parking area occupancy statistics.

1) Status-wise Storage of Parking Sensor Data: Algorithm
1 presents the mechanism for status-wise storage of parking
spot data. This algorithm runs periodically every Tupd = 120
seconds and collects parking spot data from an Orion Context
Broker and stores the data in the database based on their status
(i.e., free or occupied). In each cycle, this algorithm starts
by fetching the parking sensors’ data PS∗ from an Orion
Context Broker. Next, it processes each parking sensor’s data

Algorithm 1 Status-wise storage of parking sensor data.
1: Fetch parking sensor data PS∗ from Orion Context Broker every

Tupd duration;
2: for PSi in PS∗ do
3: Ri ← latest record corresponding to PSi in DB;
4: /* Part I: The first entry. Add a new record. */
5: if Ri = ∅ then
6: /* It is the first entry */
7: Add a new record Ri for PSi;
8: Ri,parkingSpotId ← PSi,id;
9: Ri,status ← PSi,status;

10: Ri,startT ime ← currentTime;
11: Ri,endTime ← currentTime;
12: Ri,duration ← 0;
13: /* Part II: The status stays the same. Update the existing

record. */
14: else if Ri,status = PSi,status then
15: Update record Ri;
16: Ri,duration ← (currentTime−Ri,startT ime);
17: Ri,endTime ← currentTime;
18: /* Part III: The status changes. Update the existing record

and add a new record. */
19: else if Ri,status ̸= PSi,status then
20: Update record Ri;
21: Ri,duration ← (currentTime−Ri,startT ime);
22: Ri,endTime ← currentTime;
23: Add a new record Ri+1;
24: Ri+1,parkingSpotId ← PSi,id;
25: Ri+1,startT ime ← currentTime;
26: Ri+1,endTime ← currentTime;
27: Ri+1,status ← PSi,status;
28: Ri+1,duration ← 0;
29: end if
30: end for

PSi by first fetching the latest record Ri from the status-wise
parking spot database corresponding to the parking spot PSi.
As presented in Part I of Algorithm 1, if there is no record
in the database corresponding to PSi (i.e., Ri = ∅), it shows
that this is the first entry of the PSi. Therefore, it adds a new
record Ri for PSi in the database by setting the parking spot
Id Ri,parkingSpotId and status Ri,status to be same as those of
the parking spot PSi (i.e., PSi,id and PSi,status). Since it is
the first entry, it sets the start time Ri,startT ime and end time
Ri,endTime as the current time (currentTime), and sets the



11

Algorithm 2 Calculation of hourly parking spot statistics.
1: Input: dateToCalculate, database of status-wise statistics

of parking spots;
2: /* Part II: Add hourly parking spot statistics from status-wise

statistics */
3: PS∗ ← parking spots data from status-wise DB having status =

occupied;
4: dayOfWeek ← GetDayOfWeek(dateToCalculate);
5: weekOfYear ← GetWeekOfYear(dateToCalculate);
6: numHoursOfDay ← 24;
7: for PSi in PS∗ do
8: parkingArea ← Mapping(PSi,id, parkingAreas);
9: /* Part I: Loop on 24 hours of the day for hourly statistics

*/
10: for h in numHoursOfDay do
11: startHourWindow = h;
12: endHourWindow = h+ 1;
13: excessDuration ← 0;
14: currentDuration ← 0;
15: actualDuration ← 0;
16: /* Part II: Add an hourly entry Ri of parking spot in

hourly stats DB */
17: if no Ri for PSi in hourly stats DB then
18: Ri,parkingArea ← parkingArea;
19: Ri,parkingSpotId ← PSi,id;
20: Ri,day ← dayOfWeek;
21: Ri,startT ime ← startHourWindow;
22: Ri,endTime ← endHourWindow;
23: end if
24: /* Part III: Calculate the occupancy duration */
25: if startTimeWindow > PSi,startT ime then
26: excessDuration←

startTimeWindow−PSi,startT ime;
27: end if
28: if PSi,endTime > endTimeWindow then
29: excessDuration.append(PSi,endTime−

endTimeWindow);
30: end if
31: currentDuration = PSi,duration−

excessDuration;
32: Fetch Ri corresponding to PSi;
33: occupancyValue ← Ri,weekOfY ear;
34: actualDuration ← occupancyValue +

currentDuration;
35: Update Ri|Ri,weekOfY ear ← actualDuration;
36: end for
37: end for

duration Ri,duration as zero, a value which will be updated in
the next round. Otherwise, as presented in Part II, if the current
status of the parking spot did not change from its previous
status and there is a matching record Ri in the database for
PSi with the same status (i.e., Ri,status = PSi,status), it
updates the record Ri by calculating the new duration (i.e.,
currentTime−Ri,startT ime) and updating the end time
Ri,endTime to the currentTime. Finally, as presented in
Part III, if the status of the latest record Ri,status is different
from the current status PSi,status, it first updates the duration
Ri,duration and end time Ri,endTime as explained in Part II,
and then it adds a new record Ri+1 as explained in Part I.

The same process continues for all the parking spots. At the
end of each cycle, the status-wise database is maintained as
presented in Table II.

2) Calculation of Hourly Parking Spot Occupancy
Statistics: Algorithm 2 presents the mechanism for calculating
hourly parking spot occupancy statistics. This algorithm takes
as input the dateToCalculate (date of the previous day
because this algorithm starts at the beginning of each day)
and the status-wise data of parking spots. The algorithm starts
by fetching the status-wise occupied parking sensors’ data
PS∗ and initializing the dayOfWeek, weekOfYear and
numHoursOfDay. Next, it processes each record of parking
spot PSi in PS∗. It first extracts the parkingArea from
the mapping of the parking spot id and parking areas (i.e.,
Mapping(PSi,id, parkingAreas)) and runs a loop h for each
hour of the day in numHoursOfDay, as presented in Part I
of Algorithm 2. To store the hourly occupancy statistics and
calculate the occupancy duration in each hour, it then sets
the startHourWindow as h, endHourWindow as h+ 1,
and initializes excessDuration, currentDuration
and actualDuration to zero. excessDuration
is the duration outside of the pre-set window time. For
example, let us consider the first row of Table II with
totalDuration = 5400. If we want to calculate hourly
statistics from 08:00:00−09:00:00, the excessDuration
is 1800 seconds (i.e., 09:00:00−09:30:00) which
we need to exclude in our calculation, and hence,
the currentDuration is totalDuration -
excessDuration (i.e., 5400−1800=3600 seconds).
Finally, the actualDuration is the sum of the
previous occupancy duration occupancyValue and
the currentDuration.

Part II of Algorithm 2 adds an hourly entry Ri of parking
spots in the hourly statistics database without a duration.
The duration will be calculated in Part III of the algorithm.
Part III first checks whether the startTimeWindow is
higher than the parking sensor’s start time PSi,startT ime,
and if so, it calculates the excessDuration by taking
the difference of the startTimeWindow from the parking
sensor start time PSi,startT ime. Part III also checks whether
the parking sensor end time PSi,endTime is higher than
the endTimeWindow, which is the case in our considered
example, e.g., endTimeWindow=9:00:00, while the parking
sensor end time PSi,endTime =9:30:00. Hence, it updates the
excessDuration by appending the difference of the park-
ing sensor end time PSi,endTime to the endTimeWindow
and calculates the currentDuration by subtracting the
excessDuration from the total duration PSi,duration.
Finally, to calculate the actual duration for the current week
of the year for the current day, it first fetches the record
Ri corresponding to PSi, obtains the occupancyValue
(i.e., the sum of previous occupancy duration) and calcu-
lates the actualDuration by taking the sum of the
currentDuration and the occupancyValue. Subse-
quently, it updates the occupancy statistics of the current
week of the year of the current day Ri,weekOfY ear with the
actualDuration. The same process follows for all the
parking spots. In the end, this algorithm creates a database
as shown in Table III.

3) Calculation of Parking Areas’ Occupancy Statistics:
Algorithm 3 presents the mechanism of calculation of parking



12

Algorithm 3 Calculation of parking areas occupancy statistics.
1: /* Part I: Create arrays of weekly, monthly and yearly occupancy

statistics for each hour of the parking spots associated to parking
areas.*/

2: parkingAreasJson ← new JSON;
3: currentWeek ← GetWeekOfYear();
4: RS ← Occupancy stats of parking spots from hourly stats DB;
5: for PSi in RS do
6: parkingAreaId ← PSi,parkingAreaId;
7: day ← PSi,day;
8: startTime ← PSi,startT ime;
9: endTime ← PSi,endTime;

10: /* Part I(a): Define nested JSON objects/arrays for parking
area, daily, hourly, weekly, monthly and yearly stats for those
not already defined*/

11: parkingAreasJson.parkingArea ← new JSON;
12: parkingAreasJson.parkingArea.day ← new

JSON;
13: parkingAreasJson.parkingArea.day.hour ←

new JSON;
14: parkingAreasJson.parkingArea.day.hour.

weeklyStatArray ← new JSON;
15: parkingAreasJson.parkingArea.day.hour.

monthlyStatArray ← new JSON;
16: parkingAreasJson.parkingArea.day.hour.

yearlyStatArray ← new JSON;
17: /* Part I(b): Calculate weekly, monthly and yearly average

stats*/
18: j ← currentWeek−1;
19: weeklyStatArray.append(PSi,weekj );
20: monthlyStatArray.append(AVG(

∑j
k=j−4 PSi,weekk ));

21: yearlyStatArray.append(AVG(
∑j

k=j−52 PSi,weekk ));
22: end for
23: /* Part II: Calculate the accumulated weekly, monthly and yearly

occupancy statistics of parking areas for each hour of the day and
each day of the week and store the statistics in the database*/

24: for parkingAreaJson in parkingAreasJson →
dayJson in parkingAreaJson → hourJson in
dayJson do

25: /* Part II(a): Calculate the accumulated weekly, monthly and
yearly occupancy statistics of parking areas*/

26: parkingArea ← key(parkingAreaJson);
27: day ← key(dayJson);
28: hour ← key(hourJson);
29: weeklyStatArray ← hourJsonweeklyStatsArray;
30: monthlyStatArray ← hourJsonmonthlyStatsArray;
31: yearlyStatArray ← hourJsonyearlyStatsArray;
32: lengthw ← length(weeklyStatArray);
33: lengthm ← length(monthlyStatArray);
34: lengthy ← length(yearlyStatArray);
35: avgWeeklyStat ← AVG(

∑lengthw
k=1 weeklyStatArray);

36: avgMonthlyStat ← AVG(
∑lengthm

k=1 monthlyStatArray);
37: avgYearlyStat ← AVG(

∑lengthy

k=1 yearlyStatArray);
38: /* Part II(b): Store the statistics in the database*/
39: Add a new record Rl in parking areas stats DB;
40: Rl,parkingArea ← parkingArea;
41: Rl,day ← day;
42: Rl,startT ime ← startTime (fetched from hour);
43: Rl,endTime ← endTime (fetched from hour);
44: Rl,weeklyStats ← avgWeeklyStat;
45: Rl,monthlyStats ← avgMonthlyStat;
46: Rl,yearlyStats ← avgYearlyStat;
47: end for

areas’ occupancy statistics. This algorithm is comprised of two
main parts. In the first part, it creates arrays of weekly, monthly
and yearly occupancy statistics for each hour of the parking
spots associated with the parking areas. Each element within
an array corresponds to the occupancy duration of all the
parking spots within a parking area. For example, if parking
area A has five parking spots, then in this part, the weekly,
monthly and yearly arrays will have five elements each. In
the second part, this algorithm calculates the average weekly,
monthly, and yearly occupancy statistics of parking areas for
each hour of the day and each day of the week and stores the
occupancy statistics in the database.

The algorithm starts by initializing the variables
parkingAreaJson, currentWeek and the result
set RS of occupancy statistics of parking spots from the
hourly statistics database. As presented in Part I(a) of
Algorithm 3, the algorithm processes each parking spot PSi

in the result set RS and defines nested JSON objects/arrays
(for those not already defined) of parkingArea, day,
hour, weeklyStatArray, monthlyStatArray
and yearlyStatArray statistics. Part I(b) calculates the
average weekly, monthly and yearly statistics. For weekly
statistics, since that is comprised of just one past week
which does not require an average, it appends the occupancy
statistics of the past week. For monthly statistics, it first takes
the sum of the occupancy statistics of last four weeks, then
takes their average and appends that value into a monthly
statistics array. The yearly statistics are calculated similar
to the monthly statistics, but for fifty-two weeks instead
of four weeks. Similarly, the weekly, monthly and yearly
occupancy statistics for other parking spots belonging to the
same parking area are also appended into the same weekly,
monthly, and yearly arrays.

Part II(a) of Algorithm 3 calculates the accumulated weekly,
monthly and yearly occupancy statistics of parking areas.
It iterates on each JSON object in parkingAreasJson
(i.e., parkingAreaJson, dayJson and hourJson),
and obtains the ids of parkingAreas, days and
hours, respectively, from their keys. Next, it ob-
tains the weeklyStatArray, monthlyStatArray and
yearlyStatArray from hourJson and calculates their
lengths. Then for weekly statistics, it first takes the sum of
all the weekly statistics in the array and takes their average,
which is the accumulated weekly occupancy statistics of a
parkingArea for the particular hour of the specific day.
The monthly and yearly accumulated statistics are calculated
in a similar fashion. Finally, as presented in Part II(b) of
the algorithm, the accumulated weekly, monthly and yearly
statistics are stored in the database of parking area occupancy
statistics, which is used to generate the REST API for parking
area occupancy statistics. Table IV presents a snapshot of
the final parking area occupancy statistics database where the
weekly, monthly and yearly statistics are presented for each
hour of the day and each day of the month.



13

Fig. 6. Screenshots of the prototype Rich Parking application: (a) view of
free and occupied parking spots; (b) recommendation of a parking spot and
a route; (c) walking route to the parked car; and (d) an example of parking
areas occupancy statistics.

VII. THE PROTOTYPE AND EVALUATION

A. The Prototype

We developed an Android application, called Rich Parking,
as a prototype for the IoTRec in the WISE-IoT project. Rich
Parking application was tested and evaluated as a prototype
by the citizens of Santander, Spain. The prototype serves as
the first step towards developing a fully-fledged application
to improve the parking experience of users in the city. The
Rich Parking application provides various functionalities to the
users using the services offered by the IoTRec through REST
APIs. The screenshots of these functionalities are depicted in
Fig. 6. We present the features of the Rich Parking application
in this section.

1) Show Parking Spots: The Rich Parking application al-
lows users to see the status of parking spots. To request the
status of parking spots, a user clicks the corresponding button.
The Rich Parking application calls the REST APIs of the
IoTRec for free and occupied parking spots and obtains the

list of free and occupied parking spots. It subsequently shows
the free parking spots as green markers and occupied parking
spots as grey markers, as presented in Fig. 6(a).

2) Recommendation of Parking Spot and Route: A user can
request a parking spot recommendation and that of a route
from their current location by specifying their preferences
(e.g., for a parking spot: nearest or nearest trusted parking spot,
and for a route: least crowded or shortest) in the application.
The application then calls the required REST API of the
IoTRec of the parking spot and route recommendation and
presents the recommended parking spot and route to the user,
as presented in Fig. 6(b).

3) Walking Route to the Parked Car: After a user has
parked his car in the recommended parking spot and saved
the location of the car in the application, he can later request
a walking route from his current location to his parked car.
The application then calls the REST API of the IoTRec for
the walking route to the parked car and shows the walking
route to the parked car on the application screen, as presented
in Fig. 6(c).

4) Parking Area Occupancy Statistics: The Rich Parking
application shows the parking areas to the user if the user
wants to analyze the statistics manually, as presented in Fig.
6(d). When the user clicks on any parking area, the application
calls the REST API of the IoTRec for parking area occupancy
statistics, obtains the parking area statistics for the current day
and current hour for the selected parking area, calculates the
occupancy statistics in percentage, and presents the results to
the user. For example, in Fig. 6(d), when the user clicks on
the area Sta. Lucia east, the application shows a popup
to the user that indicates there is a 54% chance of finding a
free parking spot in this parking area.

B. Evaluation Overview
To evaluate our IoTRec system, we developed a prototype,

the Rich Parking android application, which was shared with
the citizens of Santander, Spain. For expected availability
(occupancy statistics) of parking areas, the parking sensors’
data is collected for the duration of nine months, i.e., from
October 2017 to June 2018. We approached a higher number
of Santander’s citizens through various meetups requesting
volunteers for the evaluation of our application. We then
conducted a meeting with the volunteered citizens willing to
participate in the evaluation and explained to them how to use
and evaluate the application. A total of 41 citizens of Santander
committed to being engaged in our evaluation, and 30 of
them installed our application from the Google Play store.
To conduct our evaluation, we designed a questionnaire that
participants completed at the end of evaluating our application.
Out of the 30 participants, 27 evaluated our application by an-
swering our questionnaire. Table V presents the questionnaire
with its possible answers to these questions for the evaluation
of our prototype.

C. Evaluation Results
The evaluations results are based on the questionnaires

completed by the 27 citizen participants. We present the
evaluation results for each question in the questionnaire.



14

TABLE V
QUESTIONNAIRE FOR THE EVALUATION OF OUR PROTOTYPE, RICH

PARKING APPLICATION.

No. Question Possible Answers
1 Quality of the routes and parking

information?
1-star (very bad) to 5-stars (very good)

2 Functionality of show parking
spots?

1-star (little useful) to 5-stars (very useful)

3 Functionality of route calculation? 1-star (little useful) to 5-stars (very useful)
4 Functionality of walking route to

the parked car?
1-star (little useful) to 5-stars (very useful)

5 Functionality of parking statistics? 1-star (little useful) to 5-stars (very useful)
6 Easy to navigate? 1-star (very difficult) to 5-stars (very easy)
7 Easy to calculate a route? 1-star (very difficult) to 5-stars (very easy)
8 Easy to analyze a route? 1-star (very difficult) to 5-stars (very easy)
9 Provided data of parking spots and

statistics are reliable?
No, Probably No, I do not know, Probably
Yes, Yes

Fig. 7. Evaluation results of the quality of recommended routes and parking
spots.

1) Quality: Fig. 7 presents the evaluation results of the
quality of the recommended routes and parking spots. It shows
a good response as 89% and 81% of the involved citizens were
satisfied (identified by their positive ratings of 3, 4 and 5-
stars) with the quality of the recommended routes and parking
spots, respectively. 78% and 63% of the participants found the
quality of recommended routes and parking spots, respectively
to be good/very good (4 and 5-stars). Overall, these evaluation
results give us a good indication of the high quality of the
recommended routes and parking spots and the satisfaction of
the users.

2) Functionality: Fig. 8 shows the evaluation results of the
recommendation of parking spots, routes calculation, walk-
ing route and parking area occupancy statistics in terms of
usefulness, with a scale of 1-star (very useless) to 5-stars
(very useful). For the functionalities of the recommendations
of parking spots, route calculation, walking routes and parking
area occupancy statistics, around 93%, 96%, 93% and 85%,
respectively, of the participants found these functionalities to
be useful (identified by positive ratings of 3, 4 and 5-stars),
and 85%, 81%, 70% and 78% of them found these respective
functionalities to be useful/very useful (ratings of 4 and 5-
stars).

3) Ease of Use: Fig. 9 presents the evaluation results
of the ease of use of the navigation, route calculation and
route analysis in the application. For the ease of use of the
navigation, route calculation and route analysis, around 81%,
67% and 74% of the participants gave positive ratings. More
specifically, 67%, 52% and 48% of the participants found it
easy or very easy to use the navigation, route calculation and

Fig. 8. Evaluation results of the functionalities of the recommendations for
parking spot availability, route calculation, walking route to a parked car and
parking area statistics.

Fig. 9. Evaluation results of the ease of use of the navigation, route calculation
and route analysis.

route analysis, respectively. This result indicates that we need
to focus more on improving the application interface for route
calculation and route analysis.

4) Reliability: The results for the reliability question about
whether the participants believe that the provided data of
parking spot and parking area occupancy statistics are reliable
are shown in Fig. 10. Based on the interaction of the involved
citizens with the application, close to 85% of them believe
that the data provided about parking spot and parking area
occupancy statistics are reliable, which is a good indication.

Fig. 10. Evaluation results of the reliability of the provided parking spot data
and parking area occupancy statistics.



15

VIII. CONCLUSION AND FUTURE WORK

This paper has presented the development, implementation
and evaluation of an IoT Recommender (IoTRec) for a smart
parking system. The main purpose of this system is to provide
a better experience to both users and managers in terms of
vehicular mobility in a city by relying on IoT technologies.
The IoTRec mainly provided the GDPR-compliant recommen-
dations of a parking spot (nearest or nearest trusted parking
spot) and a route (least congested or shortest route) leading
to the recommended parking spot, as well as the real-time
provision of the expected occupancy of parking areas based
on the historical IoT data. Finally, the proposed system was
evaluated through a prototype, called Rich Parking, which was
utilized and tested by the citizens of Santander, Spain.

As future work, we are planning to study the bottleneck of
road loads along the calculation of the least congested route
and add the ability to select a better route by applying machine
learning techniques. We also have a strong plan to extend
IoTRec in future projects and enhance performance evaluation
in terms of average service/response time with respect to
different number of users, as well as adding a qualitative
comparison between our proposed IoTRec with some other
existing systems. Additionally, we plan to extend the parking
area occupancy statistics to more than one year. We also
intend to apply machine learning techniques to predict the
state of parking spots in the near future and to consider that
in the recommendation of parking spots. We will also explore
the possibility to integrate Google Analytics with our smart
parking smartphone application to further analyse when and
how often the users interact with it.

IX. ACKNOWLEDGMENT

This research was supported by the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 723156, the Swiss State Secretariat for Educa-
tion, Research and Innovation (SERI) and the South-Korean
Institute for Information & Communications Technology Pro-
motion (IITP) grant funded by the Korea government (MISP)
(No. R7115-16-0002). This research was partially funded by
the Spanish Government (MINECO) under Grant Agreement
No. RTI2018-093475-AI00, project FIERCE (Future Internet
Enabled Resilient smart CitiEs)

REFERENCES

[1] T. N. Pham, M.-F. Tsai, D. B. Nguyen, C.-R. Dow, and D.-J. Deng,
“A Cloud-based Smart-parking System based on Internet-of-Things
Technologies,” IEEE Access, vol. 3, pp. 1581–1591, 2015.

[2] L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi, and R. Vergallo, “In-
tegration of RFID and WSN technologies in a Smart Parking System,”
in 22nd International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), 2014, pp. 104–110.

[3] C. W. Hsu, M. H. Shih, H. Y. Huang, Y. C. Shiue, and S. C. Huang,
“Verification of Smart Guiding System to Search for Parking Space
via DSRC Communication,” in 12th International Conference on ITS
Telecommunications, 2012, pp. 77–81.

[4] S. Poslad, S. E. Middleton, F. Chaves, R. Tao, O. Necmioglu, and
U. Bugel, “A Semantic IoT Early Warning System for Natural Envi-
ronment Crisis Management,” IEEE Transactions on Emerging Topics
in Computing, vol. 3, no. 2, pp. 246–257, 2015.

[5] G. Vojkovic, “Will the gdpr slow down development of smart cities?”

[6] E. Mougiakou and M. Virvou, “Based on GDPR Privacy in UML:
Case of e-Learning Program,” in 2017 8th International Conference on
Information, Intelligence, Systems & Applications (IISA), 2017, pp. 1–8.

[7] P. Sotres, J. Lanza, L. Sanchez, J. R. Santana, C. Lopez, and L. Munoz,
“Breaking Vendors and City Locks through a Semantic-enabled Global
Interoperable Internet-of-Things System: A Smart Parking Case,” Sen-
sors, vol. 19, no. 2, p. 229, 2019.

[8] P. Sotres, J. R. Santana, L. Sanchez, J. Lanza, and L. Munoz, “Practical
Lessons from the Deployment and Management of a Smart City Internet-
of-Things Infrastructure: The SmartSantander Testbed Case,” IEEE
Access, vol. 5, pp. 14 309–14 322, 2017.

[9] L. Sanchez, L. Munoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutier-
rez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis et al., “Smart-
Santander: IoT experimentation over a smart city testbed,” Computer
Networks, vol. 61, pp. 217–238, 2014.

[10] Smart Santander Data Sets. [Online]. Available: http://datos.santander.
es/data/

[11] H. Baqa, N. B. Truong, N. Crespi, G. M. Lee, and F. Le Gall, “Quality
of Information as an Indicator of Trust in the Internet of Things,” in
IEEE 17th International Conference On Trust, Security And Privacy In
Computing And Communications/12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE), 2018,
pp. 204–211.

[12] D. Wuest, F. Fotrousi, and S. Fricker, “Combining Monitoring and
Autonomous Feedback Requests to Elicit Actionable Knowledge of
System Use,” in International Working Conference on Requirements
Engineering: Foundation for Software Quality (RefsQ). Springer, 2019,
pp. 209–225.

[13] Worldwide interoperability for semantics iot (wise-iot). [Online].
Available: http://wise-iot.eu/en/home/

[14] P. Sotres, C. L. de la Torre, L. Sanchez, S. Jeong, and J. Kim, “Smart
City Services Over a Global Interoperable Internet-of-Things System:
The Smart Parking Case,” in Global Internet of Things Summit (GIoTS),
2018, pp. 1–6.

[15] R. E. Barone, T. Giuffre, S. M. Siniscalchi, M. A. Morgano, and
G. Tesoriere, “Architecture for Parking Management in Smart Cities,”
IET Intelligent Transport Systems, vol. 8, no. 5, pp. 445–452, 2013.

[16] C. Shiyao, W. Ming, L. Chen, and R. Na, “The research and implement
of the intelligent parking reservation management system based on
zigbee technology,” in Sixth International Conference on Measuring
Technology and Mechatronics Automation (ICMTMA). IEEE, 2014,
pp. 741–744.

[17] L. Lambrinos and A. Dosis, “DisAssist: An Internet of Things and
Mobile Communications Platform for Disabled Parking Space Man-
agement,” in IEEE Global Communications Conference (GLOBECOM),
2013, pp. 2810–2815.

[18] A. Yavari, P. P. Jayaraman, and D. Georgakopoulos, “Contextualised
Service Delivery in the Internet of Things: Parking Recommender for
Smart Cities,” in IEEE 3rd World Forum on Internet of Things (WF-IoT),
2016, pp. 454–459.

[19] M. M. Rathore, A. Ahmad, and A. Paul, “IoT-based Smart City De-
velopment using Big Data Analytical Approach,” in IEEE International
Conference on Automatica (ICA-ACCA), 2016, pp. 1–8.

[20] P. Sadhukhan, “An IoT-based E-parking System for Smart Cities,” in
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), 2017, pp. 1062–1066.

[21] “A Privacy-preserving Smart Parking System using an IoT Elliptic Curve
based security platform, author=Chatzigiannakis, Ioannis and Vitaletti,
Andrea and Pyrgelis, Apostolos, journal=Computer Communications,
volume=89, pages=165–177, year=2016, publisher=Elsevier.”

[22] FIWARE. Last accessed: March 2019. [Online]. Available: https:
//www.fiware.org

[23] “oneM2M - Standards for M2M and the Internet of Things,” accessed:
May 2016. [Online]. Available: http://onem2m.org/

[24] FIWARE Data Models. Last accessed: March 2019. [Online].
Available: https://fiware-datamodels.readthedocs.io/en/latest/Parking/
doc/introduction/index.html

[25] OMA, “Open Mobile Alliance, NGSI Context Management,”
2012, last accessed: March 2019. [Online]. Available:
http://www.openmobilealliance.org/release/NGSI/V1 0-20120529-A/
OMA-TS-NGSI Context Management-V1 0-20120529-A.pdf

[26] FIWARE Data Model for Parking. Last accessed: March 2019.
[Online]. Available: https://fiware-datamodels.readthedocs.io/en/latest/
Parking/doc/introduction/index.html

[27] FIWARE Data Model for Traffic Flow. Last accessed: March 2019.
[Online]. Available: https://fiware-datamodels.readthedocs.io/en/latest/
Transportation/TrafficFlowObserved/doc/spec/index.html



16

[28] D. Barth, “The Bright Side of Sitting in Traffic: Crowdsourcing Road
Congestion Data,” Google Official Blog, 2009.

[29] Orion Context Broker. Last accessed: April 2019. [Online]. Available:
https://fiware-orion.readthedocs.io/en/master/

[30] Brouter Offline Routing Engine. Last Accessed: November 2018.
[Online]. Available: http://brouter.de/brouter/offline.html

[31] Open street maps. Last Accessed: November 2018. [Online]. Available:
https://www.openstreetmap.org

[32] Y. Saleem and N. Crespi, “Mapping of Sensor and Route Coordinates
for Smart Cities,” in 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), vol. 1. IEEE, 2018, pp. 570–
576.

Yasir Saleem received the B.S. degree in Informa-
tion Technology from the National University of Sci-
ences and Technology (NUST), Islamabad, Pakistan,
in 2012, and the M.Sc. degrees in Computer Science
by Research from Sunway University, Malaysia, and
Lancaster University, U.K. (under a dual degree
program) in 2015. He is currently pursuing the Ph.D.
degree with the Service Architecture Laboratory,
Institut Mines-Telecom, Telecom SudParis, France.
His research interests include Internet of Things,
Semantic Web, social Internet of Things, cognitive

radio networks, and wireless sensor networks. He served in the TPC for IEEE
MELECON 2016 and FMEC 2016 conferences He is also a Reviewer of
various journals, such as the IEEE Wireless Communications, the IEEE Com-
munications Magazine, Pervasive and Mobile Computing, Ad Hoc Networks,
Computer Networks, the Journal of Network and Computer Applications,
Artificial Intelligence Review, the IEEE ACCESS, Wireless Networks, and
many others. He also has been a Reviewer for various conferences, such as
IEEE ICC 2013, IEEE Globecom 2014, IWCMC 2015, MICC 2015, ICIN
2017, and ISNCC 2017. http://www.yasirsaleem.com/

Pablo Sotres is a senior research fellow at the
University of Cantabria, Spain. He has been involved
in several different international projects framed
under the smart city paradigm, such as SmartSan-
tander; and related to inter-testbed federation, such
as Fed4FIRE, Fed4FIRE+, Wise-IoT and FED4SAE.
Among his current research interests are IoT-enabled
smart cities, M2M communications and network
security.

Samuel Fricker is a Professor of Software En-
gineering at University of Applied Sciences and
Arts Northwestern Switzerland (FHNW). He has
received his doctoral degree in Informatics from
University of Zurich, a Master’s degree in Software
Engineering from the Royal Institute of Technology
in Stockholm, and a Swiss federal diploma in Com-
puter Sciences from École Polytechnique Fédérale
de Lausanne in Lausanne. He is a member of the
IEEE. His research interests are in the intersection
of artificial intelligence and software engineering,

automating the alignment of technological systems and their social context
in which they create value.

Carmen López de la Torre is a former research
fellow at University of Cantabria, Spain. She is
currently working as high school teacher with par-
ticular interest on the ICT area. During her research
career she has been active in different FP7 and
H2020 EU international projects where her research
interests have been focused in wireless networks
optimization, IoT platforms and Smart Cities.

Noel Crespi holds Masters degrees from the Univer-
sities of Orsay (Paris 11) and Kent (UK), a diplome
d’ingenieur from Telecom ParisTech, a Ph.D and
an Habilitation from Paris VI University (Paris-
Sorbonne). From 1993 he worked at CLIP, Bouygues
Telecom and then at Orange Labs in 1995. He
took leading roles in the creation of new services
with the successful conception and launch of Or-
ange prepaid service, and in standardisation (from
rapporteurship of IN standard to coordination of all
mobile standards activities for Orange). In 1999, he

joined Nortel Networks as telephony program manager, architecting core
network products for EMEA region. He joined Institut Mines-Telecom in
2002 and is currently professor and Program Director, leading the Service
Architecture Lab. He coordinates the standardisation activities for Institut
Mines-Telecom at ITU-T, ETSI and 3GPP. He is also an adjunct professor at
KAIST, an affiliate professor at Concordia University, and gust researcher at
the University of Goettingen. He is the scientific director the French-Korean
laboratory ILLUMINE. His current research interests are in Service Archi-
tectures, Sofwarization, Social Networks, and Internet of Things/Services.
http://noelcrespi.wp.tem-tsp.eu/

Gyu Myoung Lee (S’02, M’07, SM’12) received his
BS degree from Hong Ik University, Seoul, Korea,
in 1999 and his MS and PhD degrees from the
Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea, in 2000 and 2007. He is
with the Liverpool John Moores University (LJMU),
UK, as Reader from 2014 and with KAIST Institute
for IT convergence, Korea, as Adjunct Professor
from 2012. Prior to joining the LJMU, he has
worked with the Institut Mines-Telecom, Telecom
SudParis, France, from 2008. Until 2012, he had

been invited to work with the Electronics and Telecommunications Research
Institute (ETRI), Korea. He also worked as a research professor in KAIST,
Korea and as a guest researcher in National Institute of Standards and
Technology (NIST), USA, in 2007. His research interests include Internet of
things, future networks, multimedia services, and energy saving technologies
including smart grids. He has been actively working for standardization in
ITU-T, IETF and oneM2M, etc. In ITU-T, he currently serves as a WP chair
in SG13, the Rapporteur of Q16/13 and Q4/20 as well as the chair of FG-
DPM. He is a Senior Member of IEEE.

Roberto Minerva holds a Ph.D in Computer Sci-
ence and Telecommunications from Telecom Sud-
Paris, France. He was the Chairman of the IEEE IoT
Initiative, an effort to nurture a technical community
and to foster research in IoT. Roberto has been
for several years in TIMLab with responsibilities
on service architectures. Currently he is involved in
activities on SDN/NFV (technical leader of the Soft-
FIRE H2020 project), 5G, Big Data, architectures
for IoT. Now he is a research engineer in Telecom
SudParis working on IoT software architecture and

the digitalization of businesses in several industries. He is author of several
papers published in international conferences, books and magazines.

Luis Sánchez received the Telecommunications En-
gineering and Ph.D. degrees from the University of
Cantabria, Spain, in 2002 and 2009, respectively. He
is currently an Associate Professor at the Depart-
ment of Communications Engineering, University
of Cantabria. He is active on IoT-enabled smart
cities, meshed networking on heterogeneous wireless
scenarios, and optimization of network performance
through cognitive networking techniques. He has a
long research record involved in projects belonging
to the fifth, sixth, seventh, and H2020 EU Frame-

work Programs. He has authored over 60 papers at international journals and
conferences and co-authored several books. He often participates in panels and
round tables discussing about innovation supported by IoT in smart cities. He
also acts as an expert for French ANR (Agencie National Recherche) and
Italian MIUR (Ministero dell’Istruzione, dell’UniversitÃ e della Ricerca)
reviewing and evaluating research and development proposals.


