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Abstract

The non-linear frequency modulation (NLFM) waveform is one of the existing waveforms that can be used in high range
resolution radar applications. However, a high sampling frequency and consequently an expensive ADC are required. To
overcome this drawback while taking advantage of the features of the NLFM waveform, we suggest approximating the
wideband NLFM waveform by a piecewise linear waveform and using it in a stepped frequency (SF) framework. Thus, a
variable chirp rate SF-LFM waveform is proposed where SF is combined with a train of LFM pulses having different chirp
rates, durations, and bandwidths. In this paper, these parameters are derived from a tangent-based NLFM waveform.
At the receiver, a generalized version of the time domain (TD) algorithm is proposed to process the received echoes. Our
purpose is to obtain the high range resolution profile (HRRP) whose properties are of the same magnitude orders as those
obtained using a tangent-based NLFM waveform. These properties are the peak sidelobe ratio, the integrated sidelobe,
and the range resolution. Toward this goal, a multi-objective optimization issue is addressed to deduce the parameters of
the proposed waveform by using two types of approaches based on evolutionary algorithms. Their relevance is compared.
Our analysis and simulations show that the proposed approaches attain the targeted performance goals with a smaller
sampling frequency at the receiver.

Keywords: Stepped frequency waveforms, piecewise NLFM, peak sidelobe ratio, time domain algorithm,
multi-objective optimization, genetic algorithm, NSGA-II.

1. Introduction

Over the last decades, the demand for attaining high
range resolution (HRR) in radar has steadily increased. It
is considered as one of the most essential metrics in various
radar applications from ground penetrating radar (GPR)
and synthetic aperture radar (SAR) to target recognition
radar.
The range resolution of the radar can be enhanced by us-
ing two main families of approaches:
On the one hand, a waveform that exploits one of the pulse
compression techniques can be considered. However, as it
possesses a high instantaneous bandwidth, an expensive
analog-to-digital converter (ADC) is required. Among the
pulse compression techniques, the linear frequency modu-
lation (LFM) is the most popular one. This is probably
due to its simplicity to be generated and its Doppler toler-
ance [1]. At the receiver, a matched filter (MF) is applied
to the received LFM pulses to maximize the signal-to-noise

∗Corresponding author
Email addresses: mahdi.saleh@u-bordeaux.fr (Mahdi Saleh),

samir.omar@liu.edu.lb (Samir-Mohamad Omar),
eric.grivel@ims-bordeaux.fr (Eric Grivel),
pierrick.legrand@u-bordeaux.fr (Pierrick Legrand)

ratio (SNR) at the MF output. In this case, the MF out-
put represents the high range resolution profile1 (HRRP).
For a single-point stationary target and without additive
disturbances, the mainlobe width and the sidelobe levels of
the MF output are characterized by the correlation func-
tion of the LFM waveform. To reduce the sidelobe levels,
an amplitude windowing is generally combined with a MF
done in the frequency domain. This comes at the cost of
a smaller SNR at the output of the MF and an increase of
the mainlobe width. As an alternative, a non-linear fre-
quency modulation (NLFM) can be used. There are some
waveforms that are ”naturally” NLFM, such as the hybrid
NLFM [2], the tangent-based, and the sine-based wave-
forms [3] [4]. However, others can be designed to meet
certain requirements. Thus, the principle of stationary
phase can be used to synthesize an NLFM waveform that
has a power spectral density (PSD) similar to certain well-
known windows such as the Taylor and Blackman-Harris
windows [5] [6]. In [7], the authors exploited the princi-
ple of stationary phase to derive a mathematical model in
which the non-linear time–frequency relation is expressed

1HRRP is representative of the reflectivity of the target to an
HRR radar waveform projected onto the radar line-of-sight.
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as the combination of a linear function and a sine series. In
[8] a high-precision NLFM signal generator with the abil-
ity of predistortion compensation is developed. A train of
piecewise linear functions [9] can also be considered. For
instance, the authors in [10] proposed what they called
a single-carrier piecewise NLFM (SC-PW-NLFM) wave-
form. It consists of two symmetric sets, where each one is
composed of N +1 consecutive linear chirp subpulses with
different bandwidths and pulse widths. The corresponding
instantaneous frequency f(t) occupies a global band equal
to B Hz during the time Tp and has two main properties:
Firstly, it is a piecewise continuous linear function of the
time. Secondly, f(t) = B − f(Tp − t) for 0 ≤ t ≤ Tp

2 .
It should be noted that with NLFM waveforms, there is
no need to apply an amplitude windowing to the MF out-
put since the sidelobe levels are low. Hence, the SNR at
the MF output is maximized with no losses. However, the
NLFM waveform is less Doppler tolerant than the LFM
one [3].
On the other hand, a waveform with a large bandwidth dis-
tributed among the pulses can be considered. This wave-
form exhibits a small instantaneous bandwidth. The most
attractive one is the stepped frequency (SF) waveform [11]
[12] [5]. It is composed of narrow-band pulses with differ-
ent equally-spaced carrier frequencies. The corresponding
received pulses are coherently combined at the receiver to
obtain the HRRP. Using SF waveforms makes it possible
to exploit an ADC with a small sampling rate. Moreover,
it reduces the dispersion effects in some systems such as
phased array radar [5]. At the receiver, the HRRP of a tar-
get induced by the SF waveforms can be obtained with two
different approaches. In the first one, the MF is applied to
the whole train of the received echoes. It requires a high
computational power. In the second one, three algorithms
exist, namely the Inverse Fast Fourier Transform (IFFT),
the frequency domain (FD) algorithm, and the time do-
main (TD) algorithm [11]. The FD and IFFT algorithms
have a relatively-low computational cost. As for the TD
algorithm, it has been only investigated with a SF-LFM
waveform where a train of LFM pulses having the same
chirp rates, durations, and bandwidths is processed at the
receiver [13].
The above two families can be used separately or together.
In various radar applications, the SF waveform can be
combined with one of the pulse compression techniques
to reduce the number of transmitted pulses within the
coherent processing interval (CPI) [14]. Thus, the SF-
LFM waveform [15] [16] [17] [18], the SF phase coding
(SFPC) [19] [20], and the SF-NLFM [21] are studied in
the literature. Furthermore, in [22] and [23], special efforts
were made to reduce both the grating lobes and the peak
sidelobes of the autocorrelation function of the SF-LFM
waveform. In [24], a framework for ISAR imaging is pro-
posed through sparse stepped-frequency waveforms (SS-
FWs) where some portions of frequency subbands are used
to reconstruct full-resolution images by exploiting sparsity.

Recently, in [25], a new way has been proposed to com-

bine SF with PC or NLFM. This has the advantage of
overcoming the drawbacks of the standard combination.
It consists in splitting the spectrum of a PC or NLFM
pulse into a predetermined number of portions and then
transmitting the corresponding time-domain signals. At
the receiver, a modified FD algorithm has been proposed
to produce the HRRP. The latter algorithm does not nec-
essarily provide significant results when Np becomes large,
the reconstruction of the power spectrum of the waveform
being strongly distorted. To overcome this drawback, a
TWR algorithm has been proposed in [26].
In order to fairly compare the properties of the waveforms
in a radar system, some criteria must be taken into ac-
count, such as the computational cost and the sampling
frequency at the receiver. In addition, designers usually
aim at maximizing the probability of detection (PD) for
a given probability of false alarm. For this purpose, var-
ious performance measures are taken into consideration
due to their great influences on the PD. Among them, two
characterize the HRRP. These are the peak sidelobe ratio
(PSLR) and the integrated sidelobe ratio (ISLR) [27] [28].
In this paper, in order to avoid the hardware complexities
that may occur when transmitting a wideband SC-PW-
NLFM within a single pulse, we propose a SF-LFM wave-
form with a variable chirp rate. It consists of a train of
narrow-band LFM pulses with different chirp rates that
are derived from an NLFM waveform. In this paper, a
tangent-based NLFM is considered to illustrate our point.
However, our proposed scheme is applicable to any NLFM
waveform. To produce the HRRP at the receiver, we pro-
pose a generalized version of the TD algorithm to process
the back-scattered echoes. This processing chain in the
presence of narrow-band LFM pulses at the receiver makes
it possible to use an ADC with a sampling rate smaller
than that used for the wideband NLFM waveform. In
counterpart, an interpolation step has then to be added to
be able to retrieve the wideband NLFM waveform in the
time domain. Our goal is to obtain an HRRP that could be
as similar as possible as that of the tangent-based NLFM
waveform while using a much smaller sampling frequency.
To this end, the parameters of this train are selected by ad-
dressing a multi-objective issue. The latter is defined from
three different criteria related to the PSLR, the ISLR, and
the range resolution of the waveform. They aim at getting
PSLR, ISLR and range resolution as close as possible to
those obtained with the tangent-based NLFM waveform.
However, minimizing one of these criteria does not nec-
essarily reduce the two others. As no analytic expression
of the parameters can be obtained easily, we suggest us-
ing two types of approaches. The first one is a genetic
algorithm where the fitness function to be minimized is
a weigthed sum of the three criteria to be taken into ac-
count. In this case, one solution is obtained for a set of
weights. The second one is derived from the NSGA-II,
which is a fast sorting and elite multi-objective genetic al-
gorithm that was initially proposed in [29]. It provides
Pareto fronts. It should be noted that both are designed
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to take into account a constraint on the selection of the
durations of the LFM pulses.
The remainder of this paper is organized as follows: first
of all, the processing chain of the SC tangent based NLFM
waveform is presented in section 2. It makes it possible to
introduce some concepts such as the HRRP, the PSLR, the
ISLR and the range resolution. In section 3, the SF-LFM
waveform is recalled, and its generalization with a vari-
able chirp rate is introduced. The processing chain of this
waveform is presented. This includes what is done at the
transmitter and the receiver. In section 4, the optimiza-
tion issue is addressed. A brief presentation of the two
approaches we suggest using is done. In section 5, simula-
tion results, as well as comments, are provided. In section
6, the relevance of our approach is analyzed to check its
reliability in the presence of multiple targets and Doppler
effect. Conclusions and perspectives end up the paper.

2. Preamble: processing chain of the SC tangent-
based NLFM waveform

In this section, the standard processing chain of the
SC tangent-based NLFM waveform is presented. The de-
scription of this waveform will be useful in the rest of the
paper. Moreover, some performance measures related to
the HRRP are defined.

2.1. At the transmitter: definition of the waveform

The SC tangent-based NLFM transmitted waveform
can be formulated as follows:

stx(t) = Arect
( t− Tp

2

Tp

)
exp
(
jφ(t− Tp

2
)
)
exp(j2πfct) (1)

where A is the magnitude, rect(t) stands for a rectangular
pulse equal to 1 for − 1

2 ≤ t ≤ 1
2 and zero elsewhere, Tp

is the pulse duration, fc is the carrier frequency and φ(t)
is the instantaneous phase. The latter is related to the
instantaneous frequency for −Tp

2 ≤ t ≤
Tp

2 as follows [3]:

f(t) =
1

2π

dφ(t)

dt
= B

tan(2βt/Tp)

2tanβ
= −f(−t) (2)

where B is the total bandwidth covered by the waveform
during Tp since f(t) varies between −B2 and B

2 where:{
f(−Tp

2 ) = −B2
f(

Tp

2 ) = B
2

(3)

In addition, β ∈ [0, π/2] is a parameter that can be ad-
justed by the practitioner. When β tends to 0, this cor-
responds to the linear frequency modulation (LFM) case.
The degree of non-linearity increases with β, as shown in
Fig. 1.
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Figure 1: Instantaneous frequency of the SC tangent-based NLFM
waveform for different values of β with B = 100 MHz and Tp = 20
µs.

2.2. At the receiver: demodulation, matched filtering, HRRP,
and features characterizing it

The received signal is a delayed version of the trans-
mitted waveform disturbed by additive disturbances. It
can be modeled by:

srx(t) = αstx(t− td) + η(t) (4)

where td = 2R
c is the time delay that corresponds to the

range R of the target and c is the speed of light. In addi-
tion, η(t) corresponds to the disturbances such as the mea-
surement white noise and the clutter, and α is an atten-
uation coefficient that depends on many factors including
among others the radar cross section (RCS) of the target,
the range, and the frequency of the waveform. In the se-
quel, for the sake of space, especially in the equations, we
focus our attention on the signal part. Nevertheless, each
step of the algorithm is also applied to the disturbances.
Thus, the ”ideal”2 received signal can be modeled by:

srx(t) = Arect
( t− Tp

2
− td

Tp

)
exp
(
jφ(t− Tp

2
− td)

)
(5)

× exp
(
j2πfc(t− td)

)
The latter is first demodulated as shown below:

sd(t) = srx(t)exp(−j2πfct) = exp
(
− j2πfctd

)
×Arect

( t− Tp

2
− td

Tp

)
exp
(
jφ(t− Tp

2
− td)

)
(6)

Then, the demodulated signal is sampled at a sampling
rate Fs = 1

Ts
= B Hz. Hence, given the expression of td,

the nth sample of the demodulated received signal is equal
to:

sd(n) = Aexp
(
jφ(nTs −

Tp
2
− 2R

c
)
)
exp
(
− j2πfc

2R

c

)
(7)

In (7), n ∈ J0, L− 1K where L denotes the number of sam-

ples associated with the received pulse. It is equal to
Tp

Ts

in the ideal case. Otherwise, L = bTp

Ts
c, where b.c is the

floor function.

2i.e. without disturbance and attenuation coefficient.
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At this level, the HRRP can be created by applying a MF
to (7). It consists in convolving sd(n) with the conjugate

of the reference signal, sref (−n) = exp
(
jφ(−(nTs− Tp

2 ))
)

.

The latter can hence be deduced from the ambiguity func-
tion.
The HRRP usually exhibits a mainlobe and sidelobes. The
levels of the sidelobes have a great influence on the per-
formance of detection [30]. Therefore, three different mea-
sures are usually considered to characterize the HRRP.
In the following, the peak sidelobe ratio (PSLR) and
the integrated sidelobe ratio (ISLR) are respectively
given by: PSLR = 20log

[
max(sidelobe peak)

mainlobe peak

]
ISLR = 10log

[
total energy in sidelobes

energy in mainlobe

] (8)

Finally, various criteria are used to define the range reso-
lution. Two of the more common criteria used to define it
are [1]:

• The 3-dB width of the mainlobe which defines the
range resolution as the separation between the peak
point and the point that corresponds to the half of
the peak power.

• The Rayleigh criterion which defines the range res-
olution as the separation between the peak and the
null.

In this paper, the first criterion is used.
When the SC tangent-based NLFM waveform is used in
high range resolution radar applications, a high sampling
frequency is required. Consequently, expensive ADCs must
be used. To overcome this drawback, a SF waveform would
be of interest. In the next section, we propose a SF inspired
scheme.

3. Our proposed waveform from the transmitter to
the receiver

In this section, we present two of our contributions:
firstly, the generalization of the standard SF-LFM wave-
form whose chirp rate varies from pulse to pulse is pre-
sented. The latter is called ’variable chirp rate SF-LFM’,
whose parameters correspond to a set of pulse bandwidths
and durations. We show how to derive them from an
NLFM waveform. In this paper and without loss of gener-
ality, we suggest considering the SC tangent-based NLFM
presented in the preamble. Secondly, the whole process-
ing chain from the transmitter to the receiver is detailed.
More particularly, we present how the parameters of the
waveform are exploited to construct a train of baseband
pulses at the transmitter and how the received signals are
processed to produce the HRRP. We will see that one of
the key issues is to guarantee the continuity of the phase,
especially when one aims at reducing the sampling fre-
quency at the receiver.

3.1. From the SF-LFM waveform to the variable chirp rate
SF-LFM waveform

3.1.1. About the SF-LFM waveform

The SF-LFM radar transmits a burst of Np linear mod-
ulated pulses, whose carrier frequency monotonically varies
from pulse to pulse by a fixed frequency step size de-
noted as ∆f , as shown in Fig. 2. For the (m+ 1)th pulse
(m ∈ J0, Np − 1K) which corresponds to the time interval
mTr ≤ t ≤ mTr +Tp, the transmitted waveform is defined
as follows:

stx,m(t) = vm(t)exp(j2πf (m)
c t) (9)

where:

• vm(t) is the (m + 1)th baseband LFM pulse defined
by:

vm(t) = Arect
( t−mTr − Tp

2

Tp

)
(10)

× exp
(
jπγ(t−mTr −

Tp
2

)2
)

In (10), A is the magnitude. Tp and Tr denote the
pulse width and the pulse repetition interval respec-
tively. If Bp is the passband bandwidth of each pulse,
the chirp rate γ is given by:

γ =
Bp
Tp

(11)

In addition, the instantaneous frequency of each pulse
is:

f(t) = γ(t−mTr −
Tp
2

) (12)

When t = mTr, f(t) = −Bp/2 whereas f(t) = Bp/2
for t = mTr + Tp.

• The carrier frequency of the (m + 1)th transmitted
pulse is given by:

f (m)
c = fc +∆f (m) (13)

where

∆f (m) =
(1−Np

2
+m

)
∆f (14)

with fc the central carrier frequency of the complete
train of pulses. Usually, ∆f is smaller than Bp to
avoid creating gaps in the transmitted waveform.
When ∆f = Bp, the total bandwidth covered by
the waveform is B = NpBp.

It is true that with the standard SF waveforms, the carrier
frequency monotonically changes either in an increasing or
decreasing order. However, an alternative exists where the
carrier frequency can change from pulse to pulse using the
Costas codes [31].
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Figure 2: The standard Stepped frequency linear frequency modu-
lated waveform.

3.1.2. Generalization of the SF-LFM waveform: the vari-
able chirp rate SF-LFM waveform

In this paper, we suggest generalizing the above wave-
form by modifying the bandwidth and the pulse duration
from one pulse to another. In this case, the chirp rate
varies from one pulse to another, as shown in Fig. 3. Its no-
tation becomes for the (m + 1)th pulse, with
m = 0, ..., Np − 1:

γ(m) =
B

(m)
p

T
(m)
p

(15)

where B
(m)
p and T

(m)
p respectively denote the passband

bandwidth and the duration of the (m + 1)th pulse, with∑Np−1
m=0 B

(m)
p = B. In addition, the carrier frequency still

follows (13) but ∆f (m) now satisfies:{
∆f (0) = −B2 +

B(0)
p

2

∆f (m) = −B2 +
∑m−1
l=0 B

(l)
p +

B(m)
p

2 for m = 1, . . . , Np − 1
(16)

The so-called ”variable chirp-rate SF-LFM waveform” is

defined by the set of the pulse bandwidths {B(m)
p }m=0,...,Np−1

and of the pulse durations

{T (m)
p }m=0,...,Np−1.

Figure 3: Stepped frequency linear frequency modulated waveform
with variable chirp rate

In the next section, let us see how to generate it from an
NLFM waveform.

3.2. At the transmitter part

Let us first present some details of the different steps
done at the transmitter.

1. From the SC tangent-based NLFM waveform
to its linear piece-wise approximation: Let us
consider a tangent-based NLFM waveform whose in-
stantaneous frequency satisfies:

ftan(t) = f(t− Tp
2

)) +
B

2
(17)

where f(t) is defined in (2). This instantaneous fre-
quency is illustrated in Fig. 4a.
Remark: while f(t) satisfies f(t) + f(−t) = 0 since
its an odd function, ftan has the following property:

ftan(t)− B

2
= f(t− Tp

2
) =
f(t) odd

−f(−t+
Tp
2

)

(18)

=
(17)
−(ftan(−t+ Tp)−

B

2
)

Consequently, one has:

ftan(t) + ftan(Tp − t) = B (19)

In order to derive the parameters of our waveform,
we first suggest approximating ftan(t) by a linear
piece-wise function. We could select the time in-
stants between 0 and Tp, but as the tangent-based

NLFM waveform is odd with respect to
Tp

2 , we sug-

gest selecting the time instants between 0 and
Tp

2 .

Then, the time instants between
Tp

2 and Tp as well
as the corresponding instantaneous frequencies can
be deduced so that the anti-symmetry is maintained.
Thus, at different time instants denoted as
{0 ≤ τm ≤ Tp

2 }m=0,...,N+1, the instantaneous fre-

quency takes the values {0 ≤ νm ≤ B
2 }m=0,...,N+1

and coincides with ftan(t) as follows:
(τ0, ν0) = (0, 0)

(τN+1, νN+1) = (
Tp

2 ,
B
2 )

νm = ftan(τm) = f(τm − Tp

2 ) + B
2

for m = 0, ..., N + 1

(20)

where f(t) is given in (2).

For
Tp

2 ≤ t ≤ Tp, using (19), the time instants and
the corresponding instantaneous frequencies are then
given by:

(τ2N+2, ν2N+2) = (Tp, B)
τm = Tp − τ2N+2−m for m = N + 2, ..., 2N + 2
νm = ftan(τm) = B − ν2N+2−m

(21)

Therefore, the number of couples of parameters re-
quired to define a SC-PW-NLFM waveform can be
reduced to N + 2, namely {(τm, νm)}m=0,...,N+1.
Using (20) and (21), the SC tangent-based NLFM
waveform can be approximated by a SC-PW-NLFM
waveform as illustrated in Fig. 4.b.
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Figure 4: Instantaneous frequency of the (a) tangent-based NLFM
waveform with β = 1.21 (b) SC-PW-NLFM waveform.

2. From the SC-PW-NLFM to the expression of
the transmitted waveform: To get the expression
of the proposed waveform, the parameters in (20)
and (21) are used to define a train of Np baseband
LFM pulses with different chirp rates and durations.
As illustrated in Fig. 4b, the two pieces around

Tp

2
have the same duration and bandwidth. Two possi-
bilities can hence be considered to define the pulses
of the proposed waveform from the SC-PW-NLFM
waveform: On the hand, the two pieces around

Tp

2
can be used to generate two pulses of the proposed
waveform. In this case, Np = 2N + 2.
On the other hand, the two pieces are combined to
represent a single pulse with a duration and a band-
width equal to twice that of one piece. In this case,
Np = 2N + 1.
In the following, we will focus our attention on an
approximation where the first possibility is consid-
ered. There is no particular piece in this case and
there is the same number of pieces characterizing the
intervals [0,

Tp

2 ] and [
Tp

2 , Tp]. This also follows the
definition of a train of a piecewise linear functions
given in [10]. Thus, the Np LFM baseband pulses
shown in Fig. 5a can be modeled for m = 0, ..., 2N+1

as:

sbb,m(t) =rect
( 1

τm+1 − τm
(t−mTr −

τm+1 − τm
2

)
)
(22)

× exp
(
jπγ(m)(t−mTr −

τm+1 − τm
2

)2
)

where the term mTr− τm+1−τm
2 is required in the rect

function to focus on the interval [mTr,mTr+τm+1−
τm]. It is also required in the complex exponential
to have a spectrum centered around zero.

Figure 5: Instantaneous frequency of the (a) train of baseband chirp
pulses (b) transmitted variable chirp rate SF-LFM waveform with
center frequency fc

In addition, according to (21), the durations of the
(m+1)th and the (2N+2−m)th pulses are the same
for m = 0, ..., N . So, one has:{

T
(m)
p = τm+1 − τm for m = 0, ..., N

T
(m)
p = T

(2N−m+1)
p for m = N + 1, ..., 2N + 1

(23)

The bandwidth B
(m)
p of the (m+1)th pulse is defined

as follows:{
B

(m)
p = νm+1 − νm for m = 0, ..., N

B
(m)
p = B

(2N−m+1)
p for m = N + 1, ..., 2N + 1

(24)
Finally, the chirp rate of the (m+ 1)th pulse is given
by:{

γ(m) =
B(m)

p

T
(m)
p

for m = 0, ..., N

γ(m) = γ(2N−m+1) for m = N + 1, ..., 2N + 1
(25)

Afterward, the whole train is frequency translated
to the carrier frequency fc, as shown in Fig. 5b.
This is done by multiplying sbb,m(t) with the proper
exponential term. For the (m + 1)th pulse (m ∈
J0, 2N+1K), the proposed transmitted waveform can
be expressed as follows:

stx,m(t) = sbb,m(t)exp(j2πf (m)
c t) (26)

where f
(m)
c = fc + ∆f (m) and ∆f (m) is defined in

(16).
By combining (22), (23) and (26), the transmitted
waveform can be expressed in a detailed manner as
follows:

stx,m(t) = rect
( 1

T
(m)
p

(t−mTr −
T

(m)
p

2
)
)

(27)

exp
(
j2π
(γ(m)

2
(t−mTr −

T
(m)
p

2
)2 + (fc +∆f (m))t

))
In the next section, let us analyze how the receiver
part is organized.
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3.3. At the receiver part

3.3.1. Introduction

In order to process the back-scattered received echoes
in the time domain, there exists a well-defined algorithm
in the literature called the TD algorithm [5]. However, the
latter deals with a train of pulses having a constant chirp
rate, with constant pulse-width and bandwidth, which is
not the case in this paper. Thus, we suggest exploiting
a generalized version of the TD algorithm. It aims at re-
constructing a wide-band NLFM waveform by coherently
combining an ensemble of variable narrow-bandwidth chirp
waveforms in the time domain. The resulting time-frequency
relationship of the reconstructed waveform is equivalent to
a baseband version of the wideband SC-PW-NLFM wave-
form similar to the one shown in Fig. 4 but centered at
zero Hz.
Concerning the steps of the TD algorithm at the receiver,
it should be noted that they are applied to each range win-
dow3 separately. The latter may correspond to more than
one scatterer as shown in Fig. 6. For the sake of simplic-
ity, each range window is assumed to correspond to one
scatterer in the sequel.
At the receiver, three aspects have to be addressed:

• How to guarantee the phase continuity when recon-
structing the waveform.

• How to address the phase continuity problem in the
discrete-time domain.

• How to optimize the receiver part in terms of reduc-
ing the sampling frequency.

Directly presenting the final algorithm taking into account
these three aspects could not be clear enough for the reader.
For this reason, the remainder of this section is organized
as follows: in section 3.3.2, we illustrate how the sig-
nal would be processed in the continuous-time domain to
maintain the phase continuity. Then, in section 3.3.3, the
TD algorithm is presented where the last two issues are
addressed.

Figure 6: Transmitted and received pulses over one range window

3It represents the range over which the received echoes are col-
lected and processed.

3.3.2. Preamble: processing steps that would be done if
the signal was only processed in the continuous-time
domain

Our purpose is to present how the waveform would
be reconstructed if the signal was only processed in the
continuous-time domain. In this case, the main issue to
be addressed is to guarantee the phase continuity of the
pulses at the receiver.
At the receiver, the signal can be formulated as follows:

srx,m(t) = αmstx,m(t− td) + n(t) (28)

where αm and n(t) respectively denote the (m+1)th chan-
nel attenuation coefficient associated with the (m + 1)th

pulse, and the additive measurement white Gaussian noise.
In the sequel, αm = 1 is considered because the burst that
consists of 2N+2 pulses is assumed to be transmitted dur-
ing the CPI, hence it is subject to the same channel effect.
Furthermore, to ease the grasp of the steps of our algo-
rithm, we will focus on the signal part only. This amounts
to addressing the ideal case.
Subsequently, the ”ideal” received (m+ 1)th pulse is down
converted to baseband, as shown in Fig. 7a. This is done
by multiplying the received (m + 1)th pulse with the ap-
propriate sinusoidal signal as follows:

srx,bb,m(t) =
(28)

stx,m(t− td)exp(−j2πf (m)
c t) (29)

=
(26)

sbb,m(t− td)exp(−j2πf (m)
c td)

This amounts to saying that:

srx,bb,m(t) = rect
( 1

T
(m)
p

(t−mTr −
T

(m)
p

2
− td)

)
(30)

× exp
(
j2π
(γ(m)

2
(t−mTr −

T
(m)
p

2
− td)2 − f (m)

c td
))

Figure 7: Instantaneous frequency of (a) the train of received base-
band chirp pulses (b) the train of received chirp pulses shifted in
frequency

Then, we suggest frequency shifting each pulse to its proper
position, as shown in Fig. 7b. This is done by multiplying
each pulse by the proper exponential factor as follows:
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Figure 8: Instantaneous frequency of the reconstructed SC-PW-
NLFM waveform

sfshiftrx,bb,m(t) = srx,bb,m(t)exp
(
j2π∆f (m)t

)
(31)

Using (30) and (31) and rearranging some terms, one can
rewrite the mth frequency-shifted received pulse as follows:

sfshiftrx,bb,m(t) = rect
( 1

T
(m)
p

(t−mTr −
T

(m)
p

2
− td)

)
(32)

× exp
(
j2π
(γ(m)

2
(t−mTr −

T
(m)
p

2
− td)2

+∆f (m)(t−mTr −
T

(m)
p

2
− td)

))
× exp(−j2πfctd)exp

(
j2π∆f (m)(mTr +

T
(m)
p

2
)
)

By introducing:

φshiftrx,bb,m(t) = 2π
(γ(m)

2
t2 +∆f (m)t

)
(33)

the above signal can be rewritten as follows:

sfshiftrx,bb,m(t) = rect
( 1

T
(m)
p

(t−mTr −
T

(m)
p

2
− td)

)
(34)

× exp
(
jφfshiftrx,bb,m(t−mTr −

T
(m)
p

2
− td)

)
× exp(−j2πfctd)exp

(
j2π∆f (m)(mTr +

T
(m)
p

2
)
)

Given the set of received pulses that have been frequency-
shifted, the purpose is now to reconstruct the whole wave-
form. The reconstructed waveform can start at a time
Tstart, as shown in Fig. 8. Moreover, the time shifts can-
not depend on td for two reasons: td is unknown and the
delay lines that will be used to time-shift the signals are
pre-defined and cannot be adjusted to td. Thus, we could
consider that the reconstruction of the waveform starts Tw
seconds after receiving the last pulse. This means that:

Tstart = (2N + 1)Tr + Tp − τ2N+1 + td + Tw (35)

In this case, as the first pulse has to start at time Tstart,
it has to be time-shifted by:

δt0 = Tstart − td (36)

=
(35)

(2N + 1)Tr + Tp − τ2N+1 + Tw

More generally, the (m + 1)th pulse has to start at time
τm and hence must be time-shifted by:

δtm = Tstart + τm − (mTr + td) (37)

=
(35)

(2N + 1−m)Tr + Tp + τm − τ2N+1 + Tw

Given (37), the time-shifted pulses can be written as:

stshiftrx,bb,m(t) = rect
( 1

T
(m)
p

(t−mTr − δtm −
T

(m)
p

2
− td)

)
(38)

exp
(
jφfshiftrx,bb,m(t−mTr − δtm −

T
(m)
p

2
− td)

)
× exp(−j2πfctd)exp

(
j2π∆f (m)(mTr +

T
(m)
p

2
)
)

or, equivalently:

stshiftrx,bb,m(t) = rect
( 1

T
(m)
p

(
t− (Tstart + τm +

T
(m)
p

2
)
))

(39)

exp
(
jφfshiftrx,bb,m(t− (Tstart + τm +

T
(m)
p

2
))
)

× exp(−j2πfctd)exp
(
j2π∆f (m)(mTr +

T
(m)
p

2
)
)

In order to reconstruct the SC-PW waveform, a continuity
in the phases of the pulses should be guaranteed before
adding them. For this purpose, one just has to express

stshiftrx,bb,m(Tstart + τm+1) and stshiftrx,bb,m+1(Tstart + τm+1). At
these time instants, the rect function is always equal to
1. Moreover, exp(−j2πfctd) does not play a role for the
continuity as it appears for each time interval. Therefore,
the continuity must be guaranteed between:

exp
(
jφfshiftrx,bb,m(Tstart + τm+1 − (Tstart + τm +

T
(m)
p

2
))
)

(40)

× exp
(
j2π∆f (m)(mTr +

T
(m)
p

2
)
)

and

exp
(
jφfshiftrx,bb,m+1(Tstart + τm+1 − (Tstart + τm+1 +

T
(m+1)
p

2
))
)

(41)

× exp
(
j2π∆f (m+1)((m+ 1)Tr +

T
(m+1)
p

2
)
)

Given (33), let us express the phases of both terms:

φfshiftrx,bb,m(
T

(m)
p

2
) + 2π∆f (m)(mTr +

T
(m)
p

2
) (42)

= 2π
[γ(m)

2

(T (m)
p

2

)2
+∆f (m)(mTr + T (m)

p )
]

and

φfshiftrx,bb,m+1(−T
(m+1)
p

2
) + 2π∆f (m+1)((m+ 1)Tr +

T
(m+1)
p

2
)

(43)

= 2π
[γ(m+1)

2

(T (m+1)
p

2

)2
+ (m+ 1)Tr∆f

(m+1)
]
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Let us start with the first case, i.e. m = 0. This leads to:

φfshiftrx,bb,0(
T

(0)
p

2
) + 2π∆f (0)

T
(0)
p

2
(44)

= 2π
[γ(0)

2
(
T

(0)
p

2
)2 +∆f (0)T (0)

p

]
and

φfshiftrx,bb,1(−T
(1)
p

2
) + 2π∆f (1)(Tr +

T
(1)
p

2
) (45)

= 2π
[γ(1)

2
(
T

(1)
p

2
)2 +∆f (1)Tr

]
Let us introduce a phase compensation u1 so that:

φfshiftrx,bb,0(
T

(0)
p

2
) + 2π∆f (0)

T
(0)
p

2
(46)

= φfshiftrx,bb,1(−T
(1)
p

2
) + 2π∆f (1)(Tr +

T
(1)
p

2
) + 2πu1

This means that stshiftrx,bb,1(t) is multiplied by exp(j2πu1).
By combining the three equations written above, one can
deduce u1.

u1 = −γ
(1)

2
(
T

(1)
p

2
)2 −∆f (1)Tr +

γ(0)

2
(
T

(0)
p

2
)2 +∆f (0)T (0)

p

(47)

More generally, one has:
u0 = 0

um = um−1 − γ(m)

2

(T (m)
p

2

)2 −m∆f (m)Tr

+γ(m−1)

2

(T (m−1)
p

2

)2
+∆f (m−1)

(
(m− 1)Tr + T

(m−1)
p

)
for 1 ≤ m ≤ 2N + 1

(48)
At this stage, the reconstructed waveform would be pro-
cessed by a MF in order to produce the HRRP.
So far, the signal processing steps have been illustrated
in the continuous-time domain. In the sequel, the way to
process the signal in the discrete-time domain is presented.
In this case, two problems have to be addressed when de-
signing the TD algorithm: How to use a small sampling
frequency? How to use a discrete-time signal while pre-
serving the continuity of the phases?

3.3.3. Processing steps in the discrete-time domain

In this section, the processing steps in the discrete do-
main are presented. Instead of directly sampling the re-
ceived signal at a sampling frequency equal to B Hz, we
propose to operate in two steps: sampling at a lower rate
and then interpolating. The advantage of the proposed
processing chain over the one used for the SC-PW-NLFM
waveform is to avoid a high sampling frequency thanks to
the SF methodology used. The steps of the TD algorithm
depicted in Fig. 9 can be summarized as follows:

Figure 9: Steps of the generalized TD algorithm

1. For each received pulse, sample the baseband sig-
nals whose expression is given in (29) by using the
sampling frequency that satisfies:

F (Rx)
s =

1

T
(Rx)
s

=
B

η
(49)

where η is defined by:

η =

 B

2 max
0≤m≤N+1

B
(m)
p

 (50)

This means for instance that:

η = 2 if
B

6
< max

0≤m≤N+1
B(m)
p ≤ B

4
(51)

In this case, the number of samples that represent

each pulse is equal to bF (Rx)
s T

(m)
p c. If F

(Rx)
s T

(m)
p is

not an integer, the duration of the pulse cannot be
retrieved exactly and hence must be approximated.
Thus, the truncated duration and bandwidth of the
(m+1)th sampled received pulse must be considered
and are respectively denoted as:

T
(m)
p,trn =

bF (Rx)
s T

(m)
p c

F
(Rx)
s

(52)

and

{
B

(m)
trn = νm+1,trn − νm for m = 0, ..., N

B
(m)
trn = B

(2N−m+1)
trn for m = N + 1, ..., 2N + 1

(53)
where νm+1,trn = ftan(τm+1,trn) and τm+1,trn is de-
fined as:{

τ0,trn = 0

τm+1,trn = τm + T
(m)
p,trn for m = 0, ..., N

(54)

It should be noted that (52) and (54) will be used

in the following steps when F
(Rx)
s T

(m)
p is not integer
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to avoid any problem in the reconstruction of the
HRRP.
Then, for the sake of simplicity, let us address the
example where the delay is strictly a multiple of the
sampling period, at the receiver, i.e.:

td = dT (Rx)
s (55)

Hence, using (26), (29) becomes for n ∈ J0, Lm − 1K
with Lm = bT (m)

p F
(Rx)
s c:

srx,bb,m(n) = sbb,m
(
(n− d)T (Rx)

s

)
exp
(
− j2πf (m)

c dT (Rx)
s

)
(56)

2. Interpolate srx,bb,m(n) so that the new sampling fre-
quency becomes:

F (int)
s =

1

T
(int)
s

= B = ηF (Rx)
s (57)

where T
(int)
s denotes the new sampling time. This

can be done either in the time domain or in the
frequency domain4. The resulting signal is denoted

sintrx,bb,m(n) for n ∈ J0, η.Lm− 1K. Sampling at F
(Rx)
s

and then interpolating the received signal instead
of directly sampling it at the sampling frequency B
makes it possible to use a cheap ADC.
Remark: For a proper interpolation of srx,bb,n(n),
Lm should be greater than 2. Thus, the minimum
duration between any two consecutive time instants
should be greater than a certain threshold denoted
by ε. For any m ∈ J0, N − 1K, this leads to:

T
(m)
p,trn ≥ T (m)

p ≥ ε =
2

F
(Rx)
s

(58)

3. Frequency-shift each pulse to its proper position so
that it occupies a frequency band shifted by −B2 Hz
compared with its corresponding one, the SC-PW-
NLFM waveform shown in Fig. 4. This is done by
multiplying each pulse by the proper exponential fac-
tor as follows:

sint,fshiftrx,bb,m (n) = sintrx,bb,m(n)exp
(
j2π∆f (m)nT (int)

s

)
(59)

where ∆f (m) is defined in (16). When F
(Rx)
s T

(m)
p is

not integer, ∆f (m) satisfies:
∆f (0) = −B

2
+

B
(0)
p,trn

2

∆f (m) = −B
2
+
∑m−1
l=0 B

(l)
p,trn +

B
(m)
p,trn

2

for m = 1, . . . , Np − 1

(60)

4In the former, the signal is upsampled by a factor equal to η and
then interpolated by using a low-pass finite-impulse response (FIR)
filter. Polyphase filters are often considered. As for the latter, the
discrete Fourier transform (DFT) of srx,bb,m is decomposed into two
parts. Zeros are then introduced in between to obtain a sequence of
length ητm. Then the real part of the inverse DFT is computed.[32]

4. Time-shift the result obtained for each pulse in (59)

by δtm defined in (37). When F
(Rx)
s T

(m)
p is not in-

teger, δtm now satisfies:

δtm = (2N + 1−m)Tr + Tp + τm,trn − τ2N+1 + Tw
(61)

5. Add a phase correction term to each pulse to avoid
any phase discontinuity in the reconstructed PW-
NLFM waveform. It is done by multiplying (59) with
an appropriate exponential term, as follows:

sint,fshift,pcrx,bb,,m (n) = sint,fshiftrx,bb,m (n)exp(j2πum) (62)

where um is defined in (48). When F
(Rx)
s T

(m)
p is not

integer, um satisfies:

u0 = 0

um = um−1 − γ(m)

2

(
T

(m−1)
p,trn − T

(m)
p

2

)2 −m∆f (m)Tr

+ γ(m−1)

2

(T (m−1)
p

2

)2
+∆f (m−1)

(
(m− 1)Tr + T

(m−1)
p,trn

)
for 1 ≤ m ≤ 2N + 1

(63)

6. Add the obtained pulses together. The reconstructed

waveform denoted as sSC−PW−NLFM
rx (nT

(int)
s −dT (int)

s ),
is a delayed discrete baseband version of a SC-PW-
NLFM waveform. Its instantaneous frequency is sim-
ilar5 to the one given in Fig. 4.b, but its spectral
components are centered around the zero-component
instead of B

2 .
7. Apply a MF in the frequency domain to the recon-

structed waveform. It consists in applying a DFT to

sSC−PW−NLFM
rx (nT

(int)
s − dT (int)

s ) after padding it
with ηLm − 1 zeros.
Then, multiply the result by

SSC−PW−NLFM
tx,bb (k) , where

(
.
)

denotes the conjugate,

SSC−PW−NLFM
tx,bb (k) is the DFT of sSC−PW−NLFM

tx,bb,pad (n).

The sequence sSC−PW−NLFM
tx,bb,pad (n)is a padded version of

sSC−PW−NLFM
tx,bb (n)with ηLm− 1 zeros. Thus, the ob-

tained result can be written for k ∈ J0, 2ηLm − 2K
as:

Z(k) = |SSC−PW−NLFM
tx,bb (k)|2exp

(
− j2π k

2ηLm − 1

2R

c

)
(64)

8. Produce the HRRP by applying an inverse DFT to
(64).

In this section, the processing chain from the transmit-
ter to the receiver has been presented. Nevertheless, the
performance is not optimized in terms of PSLR, ISLR,
and range resolution. The latter are mainly related to the
selection of the parameters of the waveform, namely the
time instants {τm}m=1,...,N . In the following, we present
two ways to choose them by using genetic algorithms.

5few approximations may exist due to the segment truncations
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4. Optimizing the parameters of the proposed wave-
form

4.1. Introduction

The performance in terms of PSLR, ISLR, and range
resolution of the proposed waveform depend on the set
of parameters {(τm, νm)}m=1,...,N . Our purpose is to se-
lect the parameters that lead to the closest performance
to that of the tangent-based NLFM waveform. As the set
of frequencies {νm}m=1,...,N+1 can be deduced from the
set of time instants {τm}m=1,...,N+1 by using (20), only
{τm}m=1,...,N have to be optimized.
For this purpose, a multi-objective optimization problem
can be considered. It can take into account the perfor-
mance of the processing chain in terms of PSLR, ISLR,
and range resolution. In this optimization problem, we
suggest considering the following three criteria:

FPSLR(x) =
∣∣∣PSLR(x)− PSLRref

PSLRref

∣∣∣ (65)

FISLR(x) =
∣∣∣ISLR(x)− ISLRref

ISLRref

∣∣∣ (66)

and

FRres
(x) =

∣∣∣Rres(x)−Rres,ref
Rres,ref

∣∣∣ (67)

where x denotes the vector storing the time instants
{τm}m=1,...,N . PSLR(x), ISLR(x), and Rres(x) are re-
spectively the PSLR, the ISLR, and the range resolution
obtained when using the waveform parameters x. In addi-
tion, PSLRref , ISLRref , andRres,ref are respectively the
ISLR, the PSLR, and the range resolution of the tangent-
based NLFM waveform for a specific value of β.
In this paper, two approaches are considered to address
the multi-objective optimization issue. The first one con-
sists in minimizing a single fitness function that consists
of a weighted sum of the three above criteria whereas the
second one consists in addressing the multi-objective prob-
lem by considering the Pareto front. Both approaches are
based on genetic algorithms (GAs). GA is a stochastic
global search optimization technique based on the princi-
ple of genetics and natural selection [33]. It has been ex-
tensively used as a search and optimization tool in many
fields including sciences, manufacturing, and engineering
[34] [35]. GA is an iterative process. It starts with an
initial population consisting of a certain number of can-
didates. The relevance of each candidate is evaluated ac-
cording to a fitness function. Then, new solutions are gen-
erated using selection, crossover, and mutation operators.
In the following, both methods are presented.

4.2. First GA-based approach using a single fitness func-
tion

In this section, we consider using the standard GA
for minimizing a single fitness function that consists of a

weighted sum of the three criteria defined in the previous
section. The latter is given by:

F (x) =(1− λ1 − λ2)FPSLR(x) + λ1FISLR(x) (68)

+ λ2FRres
(x)

where 0 ≤ λ1 ≤ 1 and 0 ≤ λ2 ≤ 1 − λ1 are the weights.
These weights can be adjusted by the practitioner. This
depends on the environment and the type of targets to be
detected. If the purpose is to detect targets with small
RCS in the presence of targets with high RCS, a greater
level of importance should be given to the PSLR. However,
if the goal is to detect targets in the presence of distributed
clutter, a greater level of importance should be given to
the ISLR. Similarly, if the scenario of operation requires
high range resolution, a greater level of importance should
be given to Rres. To take into account the fact that
there is a constraint on the minimum duration between
any two consecutive time instants (See (58) in section 3.3)
we operate as follows:

• Generation of the initial population: As τ0 = 0 and
τN+1 =

Tp

2 , the initial population is generated so
that for m ∈ J0, N − 1K, the time instants satisfy:

τm + ε < τm+1 <
Tp
2
− (N −m)ε

where ε was introduced in (58).
As a consequence, the initial population corresponds
to a set of Qp vectors of size N .

• Selection: It consists in randomly selecting two vec-
tors, namely Cfi = [τf1 , τ

f
2 , ..., τ

f
k−1, τ

f
k , ..., τ

f
N ] and

Cmi = [τm1 , τ
m
2 , ..., τ

m
k−1, τ

m
k , ..., τ

m
N ] from the popu-

lation at the ith generation.

• Crossover: After using the single-point crossover, the
resulting candidates, called children, are:

C1 = [τf1 , τ
f
2 , ..., τ

f
k−1, τ

m
k , ..., τ

m
N ] (69)

C2 = [τm1 , τ
m
2 , ..., τ

m
k−1, τ

f
k , ..., τ

f
N ] (70)

The time instants of one of the obtained candidates
necessarily respect the constraint. Thus, if τmk −
τfk−1 > ε, C1 is chosen. Otherwise, C2 is kept. Be-
fore belonging to the population of candidate vectors
at the (i+ 1)th iteration, a mutation will be done on
the chosen child vector.
Remark: When N is equal to 1, the above crossover
cannot be applied. Therefore, we suggest using a
linear crossover. In this case, the child is defined as
follows:

C1 =
1

2
Cfi +

1

2
Cmi (71)

• Mutation: Let us assume that C1 was chosen by the
crossover operator. We suggest mutating each ele-
ment, or equivalently each time instant, of C1 sep-
arately in a way that guarantees that the resulting
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candidate respects the constraint (58). It is done as
follows:
The mutations on the time instants are done succes-
sively. Let us start with the first time instant C1(1).
A random number r uniformly distributed between
0 and 1 is drawn. If r is smaller than the probabil-
ity of mutation pM , the mutation leads to the time
instant equal:

C1(1) + x1

where x1 is a random number that belongs to the
interval ]− C1(1) + ε, C1(2)− C1(1)− ε[.
After mutating the first time instant, C1 becomes:

C1 = [τf1 + x1, τ
f
2 , ..., τ

f
k−1, τ

m
k , ..., τ

m
N ] (72)

More generally, for m ∈ J1, NK, the mutation leads
to the mth time instant equal to:

C1(m) + xm (73)

where xm ∈]C1(m − 1) − C1(m) + ε, C1(m + 1) −
C1(m) − ε[ with C1(0) = 0. If r > pM , the value of
the time instant is not changed.

The selection, crossover, and mutation are repeated until
N new candidates are created. Then, the best N candi-
dates among the new candidates and those of the ith popu-
lation are selected to create the population at the (i+1)th

generation.

4.3. Second GA-based approach (NSGA-II)

When solving multi-objective problems, practitioners
may be interested in a set of Pareto-optimal solutions6.
For this purpose, the NSGA was one of the first evolution-
ary algorithms proposed to find the Pareto-optimal solu-
tions in one single simulation run [36]. However, due to
its computational complexity and lack of elitism, Deb et
al. proposed an improved version called NSGA-II [29] to
overcome the aforementioned drawbacks with the advan-
tages of better convergence and higher speed.
As in GA, an initial population is first generated based
on the optimization problem. Then, the candidates of the
initial population are sorted according to non-domination
levels into fronts. Afterward, a crowding distance, which
measures how close each candidate is to its neighbors in
the same front, is computed for each candidate. As for
the selection, the individuals are selected using a tourna-
ment selection based on the front rank and the crowding
distance. The genetic operators used to produce the off-
spring population are the simulated binary crossover and
the polynomial mutation. Finally, the population that
consists of the initial population and the offspring pop-
ulation are sorted according to the front rank. The best

6A solution is called Pareto optimal, if there does not exist an-
other solution that dominates it.

candidates are selected for the next generation. This pro-
cess is repeated until convergence.
In this paper, when NSGA-II is used with the proposed
waveform, with the constraint (58), the simulated binary
crossover and the polynomial mutation are replaced by the
crossover and the mutation we proposed in the section 4.2.

4.4. Conclusions on the two approaches

Two philosophies are hence considered in this paper:
On the one hand, the practitioner a priori decides the val-
ues of the weights λ1 and λ2 in the fitness function. One
solution is then obtained by using a GA-based approach.
It should be noted that the method could be iterated sev-
eral times by using different values of the weights in the
fitness function. This would lead to a set of solutions that
may favor the first, the second, or the third criterion, de-
pending on the values of the weights. In this case, one
solution would be associated to a specific set of weights
and the number of potential solutions would depend on
the number of times the GA algorithm is launched.
On the other hand, a Pareto front can be directly obtained
by using the NSGA-II algorithm. In this case, the set of
solutions is discrete, and its size depends on the parame-
ters of the NSGA-II, such as the population size.
In both philosophies, given the specifications in terms of
PSLR, ISLR and range resolution, the practitioner can se-
lect one solution among all the proposed ones. In the next
section, we use both approaches to select the time instants
characterizing our transmitted waveform.

5. Simulations and results

In this section, the results obtained using GA are pre-
sented. This section is organized as follows: firstly, the
simulation protocol is given. The results obtained by us-
ing the first method combining a single fitness with GA are
given. Then, the results obtained with the second method
based on NSGA-II are presented. Finally, general com-
ments on the results are provided.

5.1. Simulation protocol

In the simulations, we focus on the tangent-based NLFM
that has the following parameters: Tp = 20 µs, B = 100
MHz. The value of β can be selected by the user. In this
paper, given the evolutions of PSLR, ISLR, Rres with re-
spect to β in Appendix A, the value of β is chosen equal to
1.22 for two reasons: 1) to approximate a tangent-based
NLFM waveform with high degree of non-linearity 2) to
have a compromise between PSLRref and ISLRref on
the one hand and Rres,ref on the other hand. In addition,
the reference measures that are considered in the optimiza-
tion issue are given in Table 1.
To illustrate our point, three values of N are considered,
namely N = 1, 2 and 10. This makes it possible to high-
light how the performance of the algorithm evolve when
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Table 1: Reference measures taken into account for the optimization
issue based on GA.

PSLRref (dB) ISLRref (dB) Rres,ref (m)
-31.2 -25 1.37

N increases. Concerning GA, the size of the population
Qp is equal to 200 for N = 1, 2 and 1000 for N = 10. The
probability of mutation pM is set at 0.1 and ε = 0.12 µs.

5.2. Simulation results of 1st method combining a single
fitness function and GA

In this section, the parameters and the performance
measures obtained for different values of N are presented.
Let us start with the case when N = 1.

5.2.1. Waveform parameters for N = 1

Let us first address the case when the weights are se-
lected as follows: λ1 = 0.4 and λ2 = 0.2. Given the values
of the weights, the PSLR and ISLR has the same level of
importance and greater than that of Rres.
The time instants as well as the PSLR, the ISLR, and the
range resolution that have been obtained using GA are
given in Table.2.

Table 2: Performance measures and value of the time instant of the
approximated PW-NLFM when N = 1 and GA is used with λ1 = 0.4
and λ2 = 0.2.

Time instants (µs) PSLR (dB) ISLR (dB) Rres (m)
τ1=1.6099 -20.4486 -13.2833 1.1892

In addition, the sampling frequency at the receiver is
equal to 100 MHz. Moreover, the time evolution of the
instantaneous frequency of the tangent-based waveform,
as well as the piecewise-linear approximation optimized
by taking into account the criterion (68) are provided in
Fig.10.
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Figure 10: Instantaneous frequency of the tangent-based NLFM
waveform and the approximated PW-NLFM waveform when N = 1,
λ1 = 0.4 and λ2 = 0.2. τ1 = 1.6099µs

Let us now address the case when the weights vary.
Thus, λ1 varies between 0.1 and 1, and λ2 varies between
0 and 1 − λ1, both with a step equal to 0.1. In Fig. 11-
14, the time instant, the PSLR, the ISLR, and the range
resolution are respectively presented as functions of λ1 and
λ2.
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Figure 11: Time instant versus λ1 and λ2 obtained with the 1st

method when N = 1
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Figure 12: PSLR versus λ1 and λ2 obtained with the 1st method
when N = 1
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Figure 13: Value of the ISLR versus λ1 and λ2 obtained with the
1st method when N = 1

Let us look at λ1 = 0.1. In this case, based on (68), the
performance in terms of ISLR does not necessarily play a
key role in the criterion. For values of λ2 smaller than
0.4, the time instant τ1 does not change. In addition, the
range resolution is the same and smaller than Rres,ref .
When λ2 increases, the time instant and the range reso-
lution increase. The latter becomes closer and closer to
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Figure 14: Range resolution versus λ1 and λ2 obtained with the 1st

method when N = 1

Rres,ref .
Given Fig. 12, we can observe that for small values of λ1
and λ2, the PSLR is the closest one to PSLRref . Indeed,
in these cases, the criterion F (x) is mainly defined by the
normalized difference on the PSLR. When the sum of λ1
and λ2 becomes closer to 1, F (x) is mainly defined by the
normalized differences on the ISLR and the range resolu-
tion; one can notice that the PSLR increases. For instance,
for λ1 = 0.1. and λ2 < 0.6, the PSLR remains unchanged.
When λ1 increases, the PSLR increases. The performance
measures presented in Fig. 11-14 make it possible to define
a set of solutions for the multi-objective optimization issue
which are each associated to a set of weights. Moreover,
based on the time instants presented in Fig.11, the sam-
pling frequency at the receiver is equal to 100 MHz for any
set of weights.
In Fig. 15, the performance measures obtained for differ-
ent set of weights are presented. When comparing the
values of the PSLR, the ISLR, and the range resolution
we obtain with the performance measures of reference, the
difference can be significant (e.g. at least 10 dB for the
PSLR). This is probably due to the strong approximation
that is made when only one time instant is used. Thus,
increasing N should reduce it. For this reason, in the next
section, N = 2 is considered.

5.2.2. Waveform parameters, for N = 2

The weights are still selected as follows: λ1 = 0.4 and
λ2 = 0.2. The results are presented in Table. 3 and Fig.16.
We can notice that increasing N to 2 reduces the normal-
ized differences on the performance measures.

Table 3: Performance measures and the values of the time instants
of the approximated PW-NLFM when N = 2.

Time instants (µs) PSLR (dB) ISLR (dB) Rres (m)
τ1=2.2970; τ2=5.0211 -24.7427 -16.0011 1.3107

Let us now see how the waveform parameters evolve when
the weights change. To this end, λ1 varies between 0.1 and
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Figure 15: Performance measures obtained with the 1st method us-
ing different weights when N = 1.
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Figure 16: Instantaneous frequency of the tangent-based NLFM
waveform and the approximated PW-NLFM waveform when N = 2.

1, and λ2 still varies between 0 and 1 − λ1, both with a
step equal to 0.1. In Fig. 17-20, the PSLR, ISLR, the range
resolution, and the sampling frequency at the receiver are
respectively presented as functions of λ1 and λ2 when N =
2.
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Figure 17: PSLR versus λ1 and λ2 obtained with the 1st method
when N = 2.

For a fixed value of λ1, when λ1 +λ2 = 1, the PSLR takes
the maximum value. This is coherent with the fact that
the criterion to be optimized no longer depends on the
PSLR. When λ1 = 0.1 and λ2 = 0, the PSLR is the closet
one to PSLRref . In this case, a great importance is given
to the PSLR. Let us now look at λ1 = 0.3. For values of
λ2 smaller than 0.7, the PSLR is almost the same.
Given Fig. 18, the ISLR takes the maximum value when
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Figure 18: ISLR versus λ1 and λ2 obtained with the 1st method
when N = 2
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Figure 19: Range resolution versus λ1 and λ2 obtained with the 1st

method when N = 2
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Figure 20: Sampling frequency versus λ1 and λ2 obtained with the
1st method when N = 2

λ1 = 0.1 and λ2 = 0.9 and the minimum value when
λ1 = 1 and λ2 = 0.
According to Fig. 20, the sampling frequency at the re-
ceiver depends on λ1 and λ2. It takes two distinct values:
50 MHz and 100 MHz.
In Fig. 21, the performance measures obtained for differ-
ent set of weights are presented. As a conclusion, when N
is equal to 2, the performance measures become closer to
the reference ones. Moreover, the sampling frequency at
the receiver could be reduced.
We may a priori imagine that increasing the number of
instants more and more should lead to better performance

measures and a smaller sampling frequency at the receiver.
For this reason, in the following section and after various
simulation tests we did, we suggest optimizing the wave-
form parameters when N = 10.
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Figure 21: Performance measures obtained with the 1st method us-
ing different weights when N = 2.

5.2.3. Waveform parameters, for N = 10

In this section, the waveform parameters when N = 10
are optimized by using GA for λ1 = 0.4 and λ1 = 0.2. In
this case, Qp is equal to 1000. The results are presented
in Table. 4. Based on the time instants provided in Ta-
ble. 4, the sampling frequency that should be used is equal
to 33.3333 MHz.
Given Table. 4, we can observe that the normalized dif-
ferences on the PSLR and the range resolution are ap-
proximately equal to zero. As for normalized difference on
the ISLR, it is equal to 0.1171. It is worth-noting that
the value of N has been arbitrarily chosen to be relatively
large to show the potential of our arrangement in order
to be as close as possible to one or more of the reference
performance measures.

Table 4: Performance measures and the values of the time instants
of the approximated PW-NLFM when N = 10.

Time instants (µs) PSLR(dB) ISLR(dB) Rres(m)
τ1=0.7658;τ2=2.2058
τ3=3.2628;τ4 = 4.2901
τ5 = 5.4037;τ6 = 6.2491
τ7 = 7.2719;τ8 = 8.7119
τ9 = 9.3766;τ10 = 9.5402

-31.2 -22.0713 1.3816

5.2.4. Conclusions concerning the 1st method combining a
single fitness function and GA

We have analyzed three different cases: N = 1, N = 2 and
N = 10. As expected, the larger N , the better the per-
formance and the smaller the sampling frequency. More-
over, the time it takes to send all the pulses is large. In
each case, depending on the weights a priori chosen by the
practitioner, one solution can be obtained. In the follow-
ing section, we search for a set of non-dominated solutions
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by minimizing the normalized errors on the performance
measures using NSGA-II.

5.3. Simulation results of the 2nd method based on NSGA-
II

In this section, we aim at finding the Pareto-optimal
solutions using NSGA-II. The objective functions to be
minimized are the normalized errors on the PSLR, ISLR,
and Rres i.e. (65), (66) and (67). In Fig. 22 and Fig. 23,
the Pareto fronts obtained when N = 1 and 2 are respec-
tively presented. It is up to the practitioner to choose one
of the non-dominated solutions depending on the perfor-
mance measures needed in his application.
Moreover, we noticed that all the solutions obtained with
GA for different set of weights in Fig. 15 and Fig. 21 exist
in the Pareto front obtained with NSGA-II with a very
slight difference.
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Figure 22: Pareto front obtained with the 2nd method based on
NSGA-II when N = 1
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Figure 23: Pareto front obtained with the 2nd method based on
NSGA-II when N = 2

5.4. General comments on the results

We have presented the results obtained using two meth-
ods. The second method requires a computational cost

smaller than that of the first method when the latter is it-
erated. Moreover, we noticed that increasing the number
of time instants i.e., the number of pulses within the CPI,
leads to performances closer to the reference ones and re-
duces the sampling frequency at the receiver.
In practice, the CPI is limited by several factors. These
factors depend on the application of the radar. For in-
stance, in radar target classification, the CPI is limited by
the speed of the target. In scenarios where the speed of
the target is fast, the dwell time7 is small. Thus only a
small number of time instants can be used. On the con-
trary, in scenarios where the speed of the target is small or
moderate, a larger number of time instants could be used.
Therefore, a trade-off exists between the number of time
instants, on the one hand, the performance measures and
the sampling frequency, on the other hand.

6. Analyzing the relevance of our approach in al-
ternative scenarios

In this section, we aim at analyzing the relevance of
our approach in alternative scenarios such as multiple scat-
terers and Doppler effect. It should be noted that these
assumptions were not taken into account in the mathe-
matical development presented in section 3. The general
parameters used are: Tp = 20 µs, Tr = 10000, fc = 3 GHz,
and N = 10. The time instants used to generate the wave-
form are those provided in Table. 4. Let us start with the
scenario when echoes from multiple scatterers are received
at the receiver.

6.1. HRRP of a stationary target

In this subsection, the HRRP of a stationary point tar-
get obtained using the TD algorithm is compared with
that obtained using the MF. The target is located at range
R = 1440 m. In Fig. 24, the HRRPs obtained by using
both algorithms are presented. The PSLR and the ISLR
obtained using the TD algorithm are much better than
those obtained using the MF. This is due to the fact that
by using the MF, the train of variable chirp pulses are
not processed in the appropriate way that permits the re-
construction of the PW-NLFM waveform at the receiver.
This sheds light on the indispensable role of the process-
ing steps namely, interpolation, frequency shift, time shift,
and phase correction, that should precede the MF, as il-
lustrated in section 3.3.

In order to see the influence of the performance measures
on detection, let us suppose it is required to detect and
identify a certain target from some of its scatterers. In this
case, let us assume three point scatterers with reflection
coefficients [α1A1, α2A2, α3A3] = [1, 0.8, 0.1]. The ranges

7It is the time that an antenna beam spends on a target. It can
correspond to the duration of one CPI or more CPIs.
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Figure 24: HRRP of a stationary point target obtained using (a) TD
algorithm (b) matched filter.

between the scatterers and the radar are [R1, R2, R3] =
[1420m, 1440m, 1470m], as shown in Fig. 25. It is obvious
that the third scatterer with the lowest RCS cannot be
distinguished from the sidelobes of the other two scatterers
with larger RCSs when the proposed waveform is processed
with MF.
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Figure 25: HRRP of a stationary point target that consists of three
scatterers obtained using (a) TD algorithm (b) matched filter.

6.1.1. Influence of Doppler on the HRRP

In this subsection, we aim at analyzing the influence
of Doppler on the HRRP of the VCR SF-LFM waveform.
For this purpose, three scenarios with different target ve-
locities are considered. In this simulation, the target is
located at range R = 1440 m.
In figures 26, 27, and 28, the HRRP of the VCR SF-LFM
waveform obtained for relatively low, moderate, and high
speeds namely, v=50 ms−1, 150 ms−1, and 250 ms−1 are

respectively presented. The received echoes are processed
using both the generalized version of the TD algorithm,
and the MF algorithm. It is worthy to note that by ap-
plying the MF directly to the received echoes, the recon-
structed waveform is no longer a PW-NLFM waveform
but rather an ordinary SF-LFM waveform. Whatever the
speed of the target, the attenuation that results from the
Doppler shift is relatively less severe in case of the TD al-
gorithm than the MF algorithm. As for the range shift, at
low and moderate speeds, the MF slightly outperforms the
TD. However, at high speeds the range shifts are similar.
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Figure 26: HRRP of a moving target with v=50 ms−1 obtained using
(a) TD algorithm (b) matched filter.
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Figure 27: HRRP of a moving target with v=150 ms−1 obtained
using (a) TD algorithm (b) matched filter.
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Figure 28: HRRP of a moving target with v=250 ms−1 obtained
using (a) TD algorithm (b) matched filter.

7. Conclusions and perspectives

Two evolutionary methods have been evaluated to es-
timate the parameters of the variable-chirp rate SF-LFM
waveform, whose processing chain from the transmitter
to the receiver has been described in the paper. If the
practitioner wants to analyze different cases, the first ap-
proach based on GA can be iterated for different set of
weights, whereas the second approach based on NSGA-II
directly provides a Pareto front. According to the simula-
tions we conducted for one scatterer, the NSGA-II-based
method is probably the more suitable due to its smaller
computational cost. The approach has been also tested in
scenarios with multiple scatterers or Doppler effect. The
results are promising. In the future, we aim at designing
the same type of approach without referring to a tangent-
based NLFM method. In this case, the time instants as
well the frequency band will have to be estimated to tend
to PSLR, ISLR, and range resolution the practitioner will
a priori define.
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Appendix A: PSLR, ISLR, and Rres of tangent-
based NLFM waveform
The PSLR, ISLR, and Rres of a tangent-based NLFM
waveform vary when β varies. In Fig. 29, the PSLR and
the ISLR are presented for different values of β. When
β ∈ J0, 0.9K, the instantaneous frequency given in Fig 1 is
close to a linear function of the time. The resulting PSLR

and the ISLR tend to evolve in a smooth way. When β
becomes larger, the degree of non-linearity is more signif-
icant. In this case, the performance in terms of PSLR
and ISLR vary much. In Fig. 30, the range resolution ver-
sus β is presented. As β increases, the range resolution
increases.
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Figure 29: PSLR and ISLR versus β when B = 100 MHz.
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Figure 30: Range resolution versus β when B = 100 MHz.
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