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INTRODUCTION

A periodic medium is a material or a structural system that exhibits spatial periodicity. The study of periodic structures has a long history in the field of vibrations ans acoustics. Newton described the propagation of sound in air [START_REF] Brillouin | Wave propagation in periodic structures[END_REF]. He assumed that sound was propagated in air like an elastic wave would be propagated along a lattice of point masses. This topic has interested researchers over the years, and a growing activity on this field is observed on the last years, with the objective of designing structures exhibiting properties that conventional ones cannot possess. The methods currently used are most of the time based on those derived from wave propagation in crystals [2], where almost no dissipation occurs. Reaching the upper scale for structural dynamics implies that damping effects have to be included in the analyses which are performed. A very detailed review of historical origins, recent progress and future outlook of this topic has been published recently by [START_REF] Hussein | Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook[END_REF]. The reader is invited to refer to this article and the following discussion by [START_REF] Mace | Discussion of Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook[END_REF] that cover the most important aspects of this topic.

STRUCTURE PRESENTATION

The structure is presented in ref. [START_REF] Wu | Waveguiding and frequency selection of lamb waves in a plate with a periodic stubbed surface[END_REF]. The system consists in an infinite periodic bidirectional waveguide shown in (Fig. 1). It is a 1 mm thick plate with periodic cylindrical pillars made of isotropic Aluminium 6063-T83 (ν = 0.33, E = 69e9[P a] and ρ = 2700[kg/m 3 ]). Due to the periodicity, the unit cell is used and the corresponding first Brillouin zone is described in (Fig. 2). 

CLASSICAL FLOQUET-BLOCH METHOD

The Floquet-Bloch approach is a method commonly used for the study of periodic structures but its use in a damping context is not easy in 2D and 3D cases.

The material constitutive law is linear, elastic and isotropic. The periodicity is defined on the borders of the domain u R = e -jkxr 1 u L and v R = e -jkyr 2 v L (Fig. 2) where u R is the displacement on the right border and u L is the displacement on the left border in x axis, v R is the displacement on the right border and v L is the displacement on the left border in y axis, k x and k y are respectively the wavenumbers in the x and y directions. Tetrahedral quadratic elements (TET10) are used to mesh the plate.

The harmonic homogeneous dynamical equilibrium of the system is driven by the following partial derivative problem

ρω 2 u + ∇σ = 0 σ = C : ε, (1) 
where u ∈ R 3 is the displacement, σ is the stress tensor, C is the elastic tensor and ǫ is the strain tensor.

A parametric eigenvalue analysis is performed using the Pardiso solver [START_REF] Schenk | Solving unsymmetric sparse systems of linear equations with pardiso[END_REF], two parameters (wavenumbers) are considered, namely k x = [0 π/r 1 ] and k y = [0 π/r 2 ]. The eigen frequencies are obtained by solving the problem. The wave's dispersion curves of the undamped system are plotted on all the first Brillouin zone (Fig. 3) and on the contours (Fig. 4). The frequencies defining the bandgaps can always be found by considering only the contour of the irreducible Brillouin zone [2]. So, (Fig. 4) is sufficient to observe partial bandgaps and complete bandgap in all the directions. It appears that the structure exhibits both partial bandgaps for frequencies around 2 × 10 4 and 1 × 10 5 Hz in some specific directions and a complete bandgaps between 114 and 143 kHz.

In the approach, the wavenumbers are parameters of the eigenvalue problem, the solutions being the frequencies. Therefore, this approach is not suitable for systems with frequency-dependent characteristics. 

"SHIFTED-CELL OPERATOR" METHOD

The "Shifted-Cell Operator" technique consists in a reformulation of the PDE problem by "shifting" in terms of wave number the space derivatives appearing in the mechanical behavior operator inside the cell, while imposing continuity boundary conditions on the borders of the domain. The formulation leads to the following eigenvalue problem [START_REF] Collet | Floquet-bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems[END_REF] [(K -

ω 2 M ) + λ i (L -L T ) -λ 2 i H]φ r i = 0, (2) 
where λ i = jk i is the i-th eigen value, φ r i denotes the right eigenvector associated to λ i , M and K are respectively the standard symmetric definite mass and symmetric semi-definite stiffness matrices, L is a skew-symmetric matrix and H is a symmetric semi-definite positive matrix. In this formulation, all matrices can depend on ω.

Continuity boundary conditions are imposed on the borders of the domain, namely u R = u L and v R = v L .

A parametric eigenvalue analysis is performed using Pardiso solver. In this problem, the pulsation ω is fixed as real parameter. The wavenumbers λ i = jk i and the associated right eigenvectors φ r i are computed by solving the quadratic eigenvalue problem. This approach allows to introduce damping effects. The problem being damped, all the wavenumbers are complex, and the distinction between "propagative" and "evanescent" waves becomes difficult. This is why sorting criteria are proposed in the following.

First of all, all the waves are shifted to the first irreducible Brillouin zone. Then, criteria are defined as:

• ratio between real and imaginary part of each wavenumbers: real(k)/imag(k) > 1;

• ratio between real and imaginary part of the velocity of energy transport [START_REF] Vladimir | Complex group velocity and energy transport in absorbing media[END_REF] v = I/E where I is the energy flux and E the total energy density, approximated from the kinetic energy

E = 2E c : real(v)/imag(v) > 1;
• ratio between real and imaginary part of the group velocity [START_REF] Moiseyenko | Material loss influence on the complex band structure and group velocity in phononic crystals[END_REF]: real(C g )/imag(C g ) > 1.

For frequency-dependent damped systems, the estimation of the group velocity is not trivial. We propose to rewrite (Eq. 2) as

A 1 (ω)ψ r i = λ i A 2 (ω)ψ r i (3) 
with

A 1 (ω) = 0 I d (K -ω 2 M ) L , (4) 
A 2 (ω) = I d 0 L T H , (5) 
and

ψ r i = φ r i λ i φ r i . (6) 
Conversely, a left-eigenvector for the same eigenvalue satisfies

ψ l i T A 1 (ω) = λ i ψ l i T A 2 (ω). (7) 
Generally, left and right eigenvectors for the same eigenvalue are not equal. In the resolution of the right eigenvalue problem, the i-th mode (i ∈ N * ) is defined by its λ i ≥ 0 and its eigenvector φ r i . For each mode i, a mode -i is associated with λ -i ≤ 0 such that λ -i = -λ i and φ r -i such that φ r -i = φ l i . So, by solving the right eigenvalue problem, the adjoint solution is found too. (Eq. 2) is differentiated and multiplied by the left eigenvector such that

∂A 1 (ω) ∂ω ψ r i + A 1 (ω) ∂ψ r i ∂ω = ∂λ i ∂ω A 2 (ω)ψ r i + λ i ∂A 2 (ω) ∂ω ψ r i + λ i A 2 (ω) ∂ψ r i ∂ω , (8) 
ψ l i T ∂A 1 (ω) ∂ω ψ r i + ψ l i T A 1 (ω) ∂ψ r i ∂ω = ψ l i T ∂λ i ∂ω A 2 (ω)ψ r i + ψ l i T λ i ∂A 2 (ω) ∂ω ψ r i + ψ l i T λ i A 2 (ω) ∂ψ r i ∂ω , (9) 
which gives the expression of the group slowness using

λ i = jk i ∂k i ∂ω = real   -j ψ l i T ∂A 1 (ω) ∂ω -λ i ∂A 2 (ω) ∂ω ψ r i ψ l i T A 2 (ω)ψ r i   , (10) 
The group velocity is the inverse of the group slowness

C g = real ∂ω ∂k i = real jφ l i T [(L -L T ) -2λ i H]φ r i φ l i T [2ωM -∂K ∂ω -λ i ( ∂L ∂ω -∂L T ∂ω ) + λ 2 i ∂H ∂ω ]φ r i . (11) 
We now focus on homogeneous cases where the frequency dependency is characterized by a Young's modulus such that E = f (ω)E 0 and a constant Poisson's ratio. Hence

K = f (ω)K 0 , H = f (ω)H 0 and L = f (ω)L 0 .
Therefore, the group velocity is expressed as

C g = real ∂ω ∂k i = real   jφ l i T [f (ω)(-L 0 + L T 0 + 2λ i H 0 )]φ r i φ l i T [ω 2 ∂f ∂ω f (ω) -2ω]M φ r i   . (12) 
For frequency-independent cases, a simplification is possible [9]

C g = real ∂ω ∂k i = real j[φ l i T (L -L T )φ r i -2λ i φ l i T Hφ r i ] 2ωφ l i T M φ r i . (13) 
A comparison between the results obtained using the Floquet-Block method and the "Shifted-Cell Operator" is firstly performed on a conservative structure to validate the implementation of both methods and in particular the implementation of the "Shifted-Cell Operator". Fig. 5 presents the dispersion curves obtained along the Γ-X direction when φ is equal to zero. Both methods lead to similar results and the shift-cell method is thus validated. Damping effects are then introduced in the system and results obtained using the "Shifted-Cell Operator" are presented with increasing damping on (Fig. 6). An hysteretic damping factor is used as a first step. A complex Young's modulus is obtained such E * = E(1 + jη) with η is the loss factor. Damping effects mainly affect the curves at higher wavenumbers. Moreover, the damping reduces the frequency bandgap and reduces the amplitude resonance. So, from a design point of view, a compromise has to be found.

The method has another advantage, the group velocity constitutes a pertinent indicator for the branches tracking from one computational point to another (see Fig. 7 and Fig. 8). In order to do that, an algorithm allows to compare the computed group velocity ∂ω ∂k i and the post processed group velocity ∆ω ∆k i . The finite difference method is used to calculate the post-processed group velocity directly with the dispersion relation. 

CONCLUSION

Periodic structures are interesting for waves propagation as they may exhibit complete or at least partial frequency bandgaps such that the associated waves cannot propagate through the structure.

The determination of the dispersion curves is thus necessary to design specific structures for an absorption purpose. The Floquet-Bloch method is a commonly used approach well-adapted for such problems but its application in presence of damping is difficult. Another approach is here presented consisting in the "Shifted-Cell Operator" based on a reformulation of the PDE problem.

The method is first applied to undamped periodic structure and the good agreement with the results given by the classical method validate the implementation. The method is then applied to a structure presenting an hysteretic behavior : the impact of the damping on the frequency bandgaps can thus be analysed. 
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 1 Figure 1. Infinite plate.
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 3 Figure 3. Dispersion surfaces on the Brillouin zone.
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 4 Figure 4: Dispersion relation on the contour of the Brillouin zone. Complete and partial bandgap in the Γ -X direction respectively in the blue and green regions.
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 5 Figure 5. Dispersion curves when φ = 0 • -Methods comparison.
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 6 Figure 6. Dispersion curves with increasing hysteretic damping.
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 7 Figure 7. Dispersion curves with branches tracking.

Figure 8 .

 8 Figure 8. Group velocity with branches tracking.
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