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Abstract. In this paper, a computational model for large amplitude vibrations of a parametri-

cally excited carbon nanotube (CNT) is developed. The continuous model includes geometric

and electrostatic nonlinearities. The Galerkin discretization is used to transform the nonlinear

partial differential equation to a finite degrees of freedom system which is numerically solved

using the harmonic balance method (HBM) coupled with the asymptotic numerical method

(ANM). The influence of higher modes on the nonlinear dynamics of the considered resonator

is investigated in order to retain the number of modes which will be used by the HBM+ANM

procedure. It is shown that at least two modes are required in order to predict accurately the

CNT frequency responses.
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1 INTRODUCTION

Nano electromechanical systems (NEMS) have an important impact in a variety of domains

such as the mass detection. Several types of NEMS resonators have been developed like can-

tilevered sensors, clamped-clamped beams and arrays of beams. Due to their reduced size,

NEMS have high frequencies (1 GHz), low power consumption and quality factor in the range

of 102-104. These tiny devices permit the investigations of nonlinear properties such as bifurca-

tion topology, bistability and periodic attractors.

The mass spectrometry is the detection of tiny amounts of mass [1] and it is used for highly

sensitive tasks. It provides quantitative identification of individual protein species in real time

[2]. A Mass spectrometer is composed essentially by three parts: analyte ionization, analyte

separation and detection [3]. It allows to achieve femtogram (1 fg = 10−15 g), attogram (1 ag =
10−18 g) and zeptogram (1 zg = 10−21 g) resolutions. Recently, some devices can reach the

mass sensitivity of the range of dalton (1 Da = 1 AMU ) [4].

When attaching a mass to a resonator, the particle will change the mass response of the sen-

sor. Therefore, the frequency shifts in the fundamental mode of vibration [5]. For an efficient

detection of this particle, we should have an accurate method that allows the simultaneous de-

tection of the mass and position. In addition, if we want to reach ultrasensitive sensing, the

material composing the sensor plays an important role for precision. Due to the low mass of

the nanotube (few attograms), a tiny amount of atoms deposited onto it represents a significant

fraction of the total mass. Furthermore, nanotubes are mechanically ultra-rigid permitting the

increase of the resonance frequency. Hence, the carbon nanotube (CNT) is the most appro-

priate device for mass detection applications [6]. Several investigations were done in order to

develop a technique allowing the simultaneous position and mass detection. But, such algo-

rithms are very complicated and demand a sophisticated mathematical methods to be solved.

The alternative to avoid this problem is to find relations between mass and position of the added

particles and the resonant frequencies of the cantilever by measuring the resonant frequencies

of the beam without and with added mass for several vibrational modes. In [6], the design of a

cantilevered CNT with modeled in the case of the primary resonance.

In this paper, the nonlinear dynamics of a carbon nanotube (CNT) is investigated. To this

end, a multiphysics model of a clamped-clamped carbon naotube parametrically excited and

including the main sources of nonlinearities is developed. An efficient numerical procedure has

been used to investigate the responses of a CNT oscillator for the detection of the mass and the

position of an added particle. The main idea is to provide numerical tools for NEMS designers

in order to enhance the performances of resonant mass sensors.

Firstly, a design of an electrostatically actuated CNT is proposed and modeled. Then, the

system of equations is specifically normalized the electrostatic nonlinearities are expanded up to

the fifth order Taylor series in order to take into account all relevant nonlinear terms for NEMS

[7, 8, 9, 10]. The Galerkin discretization procedure is used in order to transform the multi-

physics continuum problem into a finite system of nonlinear ordinary differential equations in

time. The reduced-order model is solved numerically using the harmonic balance method cou-

pled with the asymptotic numerical continuation technique. Based on these numerical methods,

the frequency responses of the CNT for a specific set of design parameters are derived and in-

vestigated in the nonlinear configurations, so that, we can retain the number of modes which

gives the most accurate results. Finally, the frequency shifts of the resonance peaks are numeri-

cally tracked on the first mode for a particular CNT design and several added masses in different

positions along the NEMS length.
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2 DESIGN AND MODEL

We consider a carbon nanotube (CNT) resonator depicted in Figure 1. It consists of a single

nanobeam with an annular cross section initially straight and clamped at its two ends. It is

actuated by two symmetric electrodes providing an electrostatic force v(t̃) = Vdc+Vac cos(Ω̃t̃),
where Vdc is the dc polarization voltage, Vac is the amplitude of the applied ac voltage, t̃ is the

time and Ω̃ is the excitation frequency.The two electrodes are positioned at a distance d1 from

the fixed end in order to place a piezoelectric or piezoresistive transduction [11] and at a distance

d2 from the free extremity.

The CNT is modeled as an Euler-Bernoulli beam of length L and with a quality factor Q. It

has an internal radius R̃1, an external one R̃2.
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g 

2 R 

d1 d2 

L 

~ 

~ 

Le 

g 

Figure 1: Schematic of a clamped-clamped carbon nanotube electrostatically actuated under parametric resonance.

3 ANALYTICAL SOLVING

Let the small and lumped added mass of mass mp and of tiny size fall onto the CNTs surface.

The CNT and the added mass constitute a continuum whose bending behavior is governed by

the following equation applied to an infinitesimal volume dx̃, with δx̃0
(x̃) the Dirac function.

The equations of motion of the CNT can be written as [13]:

E I ∂x̃,x̃,x̃,x̃w̃ + ρ A ∂t̃,t̃w̃ + c̃ ∂t̃w̃ + δx̃0
(x̃)mp∂t̃,t̃w̃ = E A

2 L

(∫ L
0 (∂x̃w̃)

2
dx̃
)

∂x̃,x̃w̃ +H(x̃) F̃

H(x̃) = H (x̃− d1)−H (x̃− L+ d2)

(1)

where ∂x̃ denotes the partial differentiation with respect to x̃ which is the coordinate along

the nanotube length L, ∂t̃ is the partial differentiation with respect to the time t̃, w̃(x̃, t̃) is
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the in-plane bending deflection, E is the effective Young’s modulus, I = π
4

(

R̃2
4 − R̃1

4)

is

the moment of inertia of the circular cross-section, ρ is the density of the nanotube material,

A = π
(

R̃2
2 − R̃1

2)

is the cross-section area and c̃ is the coefficient of the viscous damping

per unit length and mp is the mass of the added particle.

The carbon nanotube is subject to the electrostatic actuation H(x̃) F̃ , where H(x̃) includes

Heaviside functions H in order to indicate the position of the electrodes with respect to the

oscillator, wherein d1 + d2 < L, and F̃ is the electrostatic force expressed as

F̃ =
π ǫ0(Vdc+Vac cos(Ω̃ t̃))

2

√

(g−w̃) (g−w̃+2R̃) (cosh−1(1+ g−w̃

R̃
))

2
− π ǫ0(Vdc+Vac cos(Ω̃ t̃))

2

√

(g+w̃) (g+w̃+2R̃) (cosh−1(1+ g+w̃

R̃
))

2 (2)

where ǫ0 is the dielectric constant of the gap medium. The boundary conditions are:

w̃(0, t̃) = 0, ∂x̃w̃(0, t̃) = 0, w̃(L, t̃) = 0, ∂x̃w̃(L, t̃) = 0 (3)

3.1 Normalization

For convenience, Equation (1) is normalized. This normalization is particular for our case

because the time constant τ depends on Vdc and k (which we represent later). So, we have

τk corresponding to each mode. The first step is to introduce the following nondimensional

variables into Equation (2):

w = w̃
g
, x = x̃

L
, t = t̃

τk
(4)

with k the mode number.

Then, Equation (1) is divided by the coefficient of ∂t,tw (ρ A g

τ2
) and the electrostatic force is

expanded up to the fifth order Taylor series. The Galerkin decomposition method is applied to

the obtained equation. To this end, the beam deflection w(x, t) can be written in this form

w(x, t) =
Nm∑

k=1

ak(t) φk(x) (5)

where Nm is the number of modes retained in the solution, ak(t) is the kth nondimensional

modal coordinate and φk(x) is the kth normalized linear undamped mode shape of a straight

beam which is the eigenmode solution of

d4φk(x)

dx4
= λ4

k φk(x) (6)

where λk is the solution of the transcendental equation

1− cos(λk) cosh(λk) = 0 (7)

The modal projection consists in substituting Equation (5) into the equation obtained after

the normalization and the division by the coefficient of ∂t,tw , multiplying the result by φk (x),
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using Equation (6) to eliminate
d4φk(x)

dx4 and integrating the outcome from x = 0 to 1. Doing so,

we obtain the following equation of motion for the first mode

a′′i + ci a
′

i + ai − 2
Nm∑

j=1

Nm∑

k=1

(∫ 1
0 φkφjφi dx

)

aka
′′

j +
Nm∑

j=1

Nm∑

k=1

Nm∑

l=1

(∫ 1
0 φlφkφjφi dx

)

alaka
′′

j

−2
Nm∑

j=1

Nm∑

k=1

(∫ 1
0 φkφjφi dx

)

cjaka
′

j +
Nm∑

j=1

Nm∑

k=1

Nm∑

l=1

(∫ 1
0 φlφkφjφi dx

)

cjalaka
′

j

−2
Nm∑

j=1

Nm∑

k=1

(∫ 1
0 φkφjφi dx

)

akaj +
Nm∑

j=1

Nm∑

k=1

Nm∑

l=1

(∫ 1
0 φlφkφjφi dx

)

alakaj

−
(

N0 + α1

(
Nm∑

s=1

Nm∑

p=1

(∫ 1
0 φ′

sφ
′

p dx
)

asap

))

(
Nm∑

j=1

(∫ 1
0 φ′′

jφi dx
)

aj − 2
Nm∑

j=1

Nm∑

k=1

(∫ 1
0 φkφ

′′

jφi dx
)

akaj +
Nm∑

j=1

Nm∑

k=1

Nm∑

l=1

(∫ 1
0 φlφkφ

′′

jφi dx
)

alakaj

)

= α2 H(x) Fi

(∫ 1
0 φi dx

)

H(x) = H
(

x− d1
L

)

−H
(

x− 1 + d2
L

)

(8)

where d1+d2
L

< 1 and the expressions of the nondimensional parameters introduced in Equa-

tion (8) are

α1 =
E g2 τ2

k

2 L4 ρ(1+δx0 (x)m)
, α2 =

τ2
k

ρ A g2(1+δx0 (x)m)
Vac Vdc, c = c̃ τk

ρ A(1+δx0 (x)m)
,

Ω = Ω̃ τk, R2 =
R̃2

g

(9)

with m = mp

ρ A L
the mass ratio. The electrostatic force Fi is written as

Fi =
π ǫ0(Vdc+Vac cos(Ω t))2√

(1−ai) (1−ai+2 R) (cosh−1(1+ 1−ai
R ))

2 − π ǫ0(Vdc+Vac cos(Ω t))2√
(1+ai) (1+ai+2 R) (cosh−1(1+ 1+ai

R ))
2 (10)

Equation (8) can be written in matrix-vector form as

[M0 +M1(a) +M2(a)]a
′′ + [C0 + C1(a) + C2(a)]a

′ + [K0 +K1(a) +K2(a)]a
−[N0 + α1 T2(a)][KT (a) +KT1(a) +KT2(a)]a = α2 H(x) F1

(11)

where a(t) = [a1(t), a2(t), a3(t), ...., aNm
(t)]T . The components of matrices M0, M1, M2,

C0, C1, C2, K0, K1, K2, KT (a), KT1(a) and KT2(a) are respectively M0ij , M1ij , M2ij , C0ij ,

C1ij , C2ij , K0ij , K1ij , K2ij , KT ij , KT1ij and KT2ij:
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M0ij = δij

M1ij = −2
Nm∑

j=1

Nm∑

k=1

(∫ 1
0 φkφjφi dx

)

ak

M2ij =
Nm∑

j=1

Nm∑

k=1

Nm∑

l=1

(∫ 1
0 φlφkφjφi dx

)

alak

C0ij = ci δij
C1ij = cj M1ij

C2ij = cj M2ij

K0ij = δij
K1ij = M1ij

K2ij = M2ij

KT ij =
∫ 1
0 φ′′

jφi dx

KT1ij = −2
Nm∑

k=1

(∫ 1
0 φkφ

′′

jφi dx
)

ak

KT2ij =
Nm∑

k=1

Nm∑

l=1

(∫ 1
0 φlφkφ

′′

jφi dx
)

alak

(12)

The scalar T2(a) and the entries of F1 are

T2(a) =
Nm∑

s=1

Nm∑

p=1

(∫ 1
0 φsφp dx

)

asap

F1i = Fi

∫ 1
0 φi(x) dx

(13)

In the following section, the system of equations (11) is solved numerically in order to obtain

the frequency responses of the nanotube.

4 NUMERICAL SIMULATIONS

In order to compute the periodic solutions of nonlinear differential equations, for nonlinear

oscillators, three major steps are followed: the first one consists in transforming the nonlin-

earities of the original system into quadratic terms. The second one is the decomposition of

the quadratic recast equations into truncated Fourier series by means of the harmonic balance

method (HBM). The third one is the application of the continuation method (ANM) on the

resulting system. At the end, the numerical results are derived. This method [14] is applied

on system (11). Thereafter, a detailed description of the quadratic recast and of the combined

technique HBM+ANM is given.

4.1 Quadratic recast

A periodically forced system has this form:

ẇ = f(t, w,Ω) (14)

where w is a vector of unknowns, f is periodic in t and Ω is a real parameter. To simplify

the application of HBM method, the first step is to transform Equation (14) into a new system

where the nonlinearities are at most quadratic polynomials as

6



S. Souayeh, N. Kacem, F. Najar and E. Foltête

m(Ż) = c(t,Ω) + l(Z) + q(Z,Z) (15)

where c is a constant vector with respect to the unknown Z, l(.) is a linear vector with respect

to the vector entry and q(., .) is a quadratic vector linear with respect to both entries.

The following variables are introduced in order to transform Equation (11) into a quadratic

system, as described previously.

v = ȧ (size Nm)
y = v̇ (size Nm)
x = cos(2 Ω t)(size Nm)
Mtot = M1(a) +M2(a)(size N

2
m)

Ktot = KT1(a) +KT2(a)(size N
2
m)

S = KTtota(size Nm)
T = T2(a) (size 1)
F1 = FF11(a) + FF12(a) (size N

2
m)

(16)

System (11) can be rewritten as

ȧ = 0 + v + 0

v̇ = 0 + y + 0

0 = cos(2 Ω t) + −x + 0

0 = 0 + Mtot −M1(a) + −M2(a)
0 = 0 + Ktot −KT1(a) + −KT2(a)
0 = 0 + S + −KTtot a

0 = 0 + T + −T2(a)
0 = 0 + K0 a +

M0 y + C0 v −
N0 KT a − N0 S-

α2 H(x) FF11(a)

+ −N KTtot a −
α1 T a−α1 T S−
α2 H(x) FF12(a) x

︸ ︷︷ ︸

m(Ż)= c(t,Ω) + l(Z) + q(Z,Z)

(17)

where Z = (a, v, y,Mtot, S, T, F1)T is the unknown vector of size Neq = 4 Nm + 3 N2
m +

1, c is a constant vector with respect to Z, l(.) and m(.) are linear vectors valued operators

with respect to Z, and q(., .) is a quadratic vector. In our case, for two modes, Neq = 21
corresponding to the number of equations of system (17).

4.2 The harmonic balance method (HBM)

The harmonic balance method is now applied to the system of Equations (17). The unkown

vector Z is decomposed into Fourier series with H harmonics

Z(t) = Z0 +
H∑

k=1
Zc,k cos(kωt) +

H∑

k=1
Zs,k sin(kωt) (18)

Then, column vector U , with size (2H + 1) × Neq, where Neq is the number of equations

in Equation (17), collects the components of the Fourier series as

7
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U = [Zt
0 + Zt

c,1 + Zt
s,1 + Zt

c,2 + ...+ Zt
c,H + Zt

s,H ]
t (19)

Substituting Equation (19) into Equation (17), collecting the terms of the same harmonic

index and neglecting the higher order harmonics, we obtain this set of equations

ωM(U) = C + L(U) +Q(U,U) (20)

It contains (2H+1)×Neq equations for the (2H+1)×Neq unknowns U . Operators M(.),
C, L(.), and Q(., .) depend only on the operators m(.), c, l(.) and q(., .) of Equation (17) and

on the number of harmonics H .

4.3 The continuation procedure

From Equation (20), an algebraic system is obtained

R(U) = 0 (21)

where R ∈ RN+1 and U = [U t,Ω, ω] ∈ RN+1. The Asymptotic numerical method (ANM),

which is based on the quadratic recasting, is applied to Equation (20) to obtain

R(U) = L0 + L(U) +Q(U,U) (22)

where L0, L(.) and Q(., .) are respectively constant, linear and bilinear vectors. Then, the

solutions are obtained by considering the branches of solution as power series. Indeed, if U0 is

a point solution, the branch passing by U0 is a power series expansion of the path parameter a =
(U−U0)

tU1, where U1 is the tangent vector at U0 and U(a) = U0+aU1+a2U2+a3U3+...+anUn.

This serie is replaced in Equation (21) where the powers of a are equated to zero providing a

set of linear systems.

5 RESULTS AND DISSCUSSIONS

Due to the symmetry of the problem, the odd modes are retained. Due to the kind of the

dominant nonlinearities, the even harmonics have no influence. In addition and after verifica-

tions, the first harmonic gives the most important informations. So, in our case, we have plotted

the amplitudes Wmax−i, i ∈ {1, 3}, of the first, the third and the fifth modes normalized by the

gap g at x = L and corresponding to the first harmonic.

The frequency responses of the first mode of the carbon nanotube’s configuration of table 1,

without added mass, are represented in Figure 2 when using one or two modes, in order to show

the impact of each mode on the frequency responses and to retain the most appropriate number

of used modes.

The amplitudes of the two frequency responses are remarkably different. Indeed, for a single

mode the amplitude is equal to 0.27% of the gap, however, with two modes the amplitude is

equal to 0.17% of the gap. Hence, we have to use at least two modes in order to obtain the most

accurate results.

Now, we track the frequency response of the first mode when adding a mass at different

positions on the CNT. The two frequencies have a hardening behavior when using a single or

8
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Table 1: Design parameters of investigated carbon nanotube resonator.

Resonator L(µm) R1(nm) R2(nm) g(nm) Vac(V ) Vdc(V ) Q

1 40 350 500 200 3 15 900

1 Mode 

2 Modes 

 dM=0 

Figure 2: Frequency responses of the first mode when using one and two modes without added mass.

several modes. For our case, the positions can be limited between a clamped end and the middle

of the clamped-clamped nanotube because the two halves of the resonator are symmetric as

shown in Figure 1. In Figure 3, we represent the frequency responses of the first mode of the

CNT (table 1) when adding a mass m = 0.02 at two different positions (δx = 0.5 and δx = 0.1)

for several modes.

1 Mode 

2 Modes 

 dM=2%; dX=0.1; 

(b) 

1 Mode 

2 Modes 

 dM=2%; dX=0.5; 

(a) 

Figure 3: Frequency responses of the first mode when using one and two modes with (a) δM = 2%, δx = 0.5 and

(b) δM = 2%, δx = 0.1.

The amplitudes of the two curves increase for the two cases (Figures 3 (a) and (b)). Indeed,

when a particle is placed at a specific position along the neutral axis of the nanotube, the natural

9
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frequencies decrease producing an increase on the amplitudes of the frequency responses.

6 CONCLUSION

In this paper, we modeled the nonlinear dynamics of a clamped-clamped carbon nanotube

excited under parametric resonance and including geometric and electrostatic nonlinearities.

Using the Galerkin discretization method, the Euler-Bernoulli partial differential equation de-

scribing the nonlinear motion of the resonator is transformed into a system of coupled nonlinear

ordinary differential equations.

Firstly, we developed a numerical multimodal approach based on the harmonic balance

method (HBM) and the asymptotic numerical method (ANM). It was demonstrated, for several

design parameters, that the use of a single mode is not sufficient to capture the main nonlinear

phenomena of the considered device and for mass detection, at least two modes are required.

REFERENCES

[1] J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, M. F. Perez, J. Fraxedas, J. Esteve,

N. Barniol, Monolithic mass sensor fabricated using a conventional technology with at-

togram resolution in air conditions, Applied Physics Letters, 91, 013501, 2007.

[2] M. S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz, E. C. Bullard, E. Colinet, L. Du-

raffourg, M. L. Roukes, Single-protein nanomechanical mass spectrometry in real time,

Nature nanotechnology, 2012.

[3] A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, Towards single-

molecule nanomechanical mass spectrometry, Nature nanotechnology, 4, 445–450, 2009.

[4] H. Chiu, P. Hung, H. W. C.Postma, M. Bockrath, Atomic-scale mass sensing using carbon

nanotube resonators, Nano Letters, 8, 533–537, 2008.

[5] K. L. Ekinci, Y. T. Yang, M. L. Roukes, Ultimate limits to inertial mass sensing based

upon nanoelectromechanical systems, Journal of Applied Physics, 95, 2682–2689, 2004.

[6] S. Souayeh, N. Kacem, Computational models for large amplitude nonlinear vibrations of

electrostatically actuated carbon nanotube-based mass sensors, Sensors and Actuators A:

Physical, 208, 10–20, 2014.

[7] N. Kacem, S. Hentz, D. Pinto, B. Reig, V. Nguyen, Nonlinear dynamics of nanomechan-

ical beam resonators: improving the performance of NEMS-based sensors. Nanotechnol-

ogy, 20(27), 275501, 2009.

[8] N. Kacem, S. Hentz, Bifurcation topology tuning of a mixed behavior in nonlinear mi-

cromechanical resonators. Applied Physics Letters, 95(18), 183104, 2009.

[9] N. Kacem, J. Arcamone, F. Perez-Murano, S. Hentz, Dynamic range enhancement of

nonlinear nanomechanical resonant cantilevers for high sensitive NEMS gas/mass sensors

applications. Journal of Micromechanics and Microengineering, 20(4), 045023, 2010.

[10] N. Kacem, S. Baguet, R. Dufour, S. Hentz, Stability control of nonlinear micromechanical

resonators under simultaneous primary and superharmonic resonances. Applied Physics

Letters, 98(19), 193507, 2011.

10



S. Souayeh, N. Kacem, F. Najar and E. Foltête

[11] E. Mile, G. Jourdan, I. Bargatin, C. Marcoux, P. Andreucci, S. Hentz, C. Kharrat, E. Col-

inet, L. Duraffourg, In-plane nanoelectromechanical resonators based on silicon nanowire

piezoresistive detection, Nanotechnology, 21, 165504, 2010.

[12] A. Nayfeh, M. Younis, E. Abdel Rahman, Dynamic pull-in phenomenon in MEMS res-

onators, Nonlinear Dynamics, 48, 153–163, 2007.

[13] H. M. Ouakad, M.I. Younis, Nonlinear dynamics of electrically actuated carbonnanotube

resonators. ASME Journal of Computational and Nonlinear Dynamics, 5, 1–13, 2010.

[14] B. Cochelin, C. Vergez, A high order purely frequency-based harmonic balance formula-

tion for continuation of periodic solutions, Journal of sound and vibration 324, 243–262,

2009.

11

https://www.researchgate.net/publication/277744138

