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Abstract

The soft-output multiple-input multiple-output (MIMO) detection problem has been extensively studied, and a large
number of heuristics and metaheuristics have been proposed to solve it. Unlike classical tree-search based detectors,
geometrical heuristic algorithms involved two consecutive steps: (i) an exploration step based on the geometry of the
channel matrix singular vectors; (ii) a local exploitation step is performed in order to obtain better final solution. In this
paper, new enhancements for geometrical heuristics are introduced to significantly reduce the complexity in quadrature
phase-shift keying (QPSK) and allow 16 quadrature amplitude modulation (QAM) capability through new exploration
techniques. The performance-complexity trade-off between the new detector and two tree-based algorithms is investigated
through Pareto efficiency. The Pareto framework also allows us to select the most efficient tuning parameters based on an
exhaustive search. The proposed detector can be customized on the fly using only one or two parameters to balance the
trade-off between computational complexity and bit error rate performances. Moreover, the Pareto fronts demonstrate
that the new geometrical heuristic is especially efficient with QPSK since it provides a significant reduction in regards to
the computational complexity while preserving good bit error rate (BER) performance and ensuring high flexibility.
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1 Introduction

In the last decades, the increase in the quantity of data sent
over wireless channels has led to a shortage of available fre-
quency bands. This scarcity has driven researchers and oper-
ators to improve the spectrum efficiency of wireless communi-
cations systems and, more recently, seek new frequency bands
with THz technologies. Specifically, spectrum efficiency im-
provement increases the data throughput and the link quality
without using new frequency bands.

In this context, MIMO systems have been widely adopted
for their capability to multiplex transmitted data streams
over time-frequency-space dimensions. The spatial multiplex-
ing MIMO technique is mainly used to increase the data trans-
mission rate or spectral efficiency. The space-division multi-
plexing (SDM) MIMO technology can transmit several data
streams in the same time-frequency slot and separate them
according to spatial considerations. This multiplexing tech-
nique increases the spectrum efficiency through the addition
of antennas. However, the more antennas there are, the more
complex the receiver design is. Therefore, these systems re-
quire new algorithms to exploit the spatial information to
separate data streams efficiently.

WiFi standards like IEEE 802.11n/ac, long-term evolution
(LTE), WiMAX, and 5G, among other modern standards,
rely on MIMO technologies. All of these standards use known
pilot signals in order to estimate the channel state information
(CSI). It is common to assume that the receiver gets a perfect
CSI whereas the transmitter is CSI-agnostic. This operating
regime is easier to set up as it does not require each CSI to
be sent back to each emitting antenna.

The separation of received streams has been widely stud-
ied, and many algorithms have already been proposed in
the literature. This detection problem is known to be NP-
hard [1], which implies that an optimal solution cannot be
computed in polynomial time (unless under the unattainable
assumption of P=NP). Such optimal algorithms include the
naive resolution with the maximum likelihood (ML) detector
or the optimal tree-path search using sphere decoding (SD)
as initiated by [2–4]. However, their exponential complexity
does not make them suitable for hardware implementation,
especially at low signal-to-noise ratio (SNR) regimes. Still, it
should be noted that some SD implementations can compete
with a polynomial algorithm in terms of complexity when the
number of antennas and the constellation size are rather small
and when the SNR is high enough [5].

Several approaches have been considered to offer heuristics
and metaheuristics that provide good performance in polyno-
mial time. Under ideal circumstances where the amount of

information available is significant, linear detectors provide
an acceptable result. In more difficult cases, more advanced
algorithms are necessary. The earliest heuristics are based
on the interference cancellation between the different received
data streams. Two versions of this heuristic coexist. The suc-
cesive interference cancellation (SIC) detection scheme sup-
press the interference by iteratively maximizing the signal-
to-interference-plus-noise ratio (SNR). This approach is well
suited when the received signals present different individual
quality metric corresponding to each of the received data
streams [6, 7]. In the opposite scenario, when data streams
have similar quality parallel interference cancellation (PIC)
detectors are preferred [8, 9].

The detection problem turns out to be a complicated com-
binatorial optimization problem, Thus, to circumvent and
simply solve this problem, tree-based heuristics algorithms
can be used. These algorithms are classified according to the
method of searching the tree: depth-first algorithms look for
the best possible leaf through a descent, prune and backtrack
process; breadth-first algorithms keep only a fixed number of
paths at each step [10–13] ; and best-first algorithms exploit-
ing metrics to determine how to explore the tree [14,15].

Alternative solutions have been proposed thanks to a shift
in the problem perspective. For instance, detectors based on
Markov chain Monte Carlo (MCMC) algorithms have been
developed by addressing the problem through a probabilistic
approach [16,17]. The emergence of deep networks trained to
tackle the detection problem is also studied in recent work [18].
Finally, bio-inspired metaheuristics based on ant colony opti-
mization (ACO) [19] or on the firefly algorithm (FA) [20, 21]
have also been proposed.

We previously investigated the interest of geometrical heuris-
tics to solve the MIMO detection problem [22]. We compared
the geometrical approach and the tree-based one for a bit
interleaved coded modulation (BICM) scheme with QPSK
modulation. The criteria of BER and complexity revealed
that the geometrical method was close but not yet as good as
the state-of-the-art detectors.

The geometrical approach provided in [22] was restricted
to lower-order constellations (i.e. binary phase-shift keying
(QPSK) and QPSK) whereas higher-order modulations were
not investigated at all. Moreover, the geometrical heuristic
was compared with a tree-based reference on both BER per-
formance and complexity but these two criteria were not con-
sidered simultaneously within a trade-off perspective. This
paper presents two new contributions that help to overcome
the highlighted limitations present in [22]:

• Enhancements to improve geometric heuristics on QPSK
and extend its use cases to high-order modulations (e.g.,
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16-QAM)

• Performance-complexity trade-off study using the Pareto
efficiency.

The paper is organized as follows. In Section 2, the MIMO
system model under consideration is presented. In Section 3,
a detailed description of the soft-output computation is given,
while in Section 4, we provide the geometrical-based MIMO
detection framework. The proposed enhanced geometrical-
based detection algorithm is presented in Section 5. A de-
tailed performance-complexity tradeoff analysis of the pro-
posed algorithm through Pareto-front curves is given in Sec-
tion 6 for both QPSK and 16-QAM. Section 7 concludes the
paper.

Notations

In the following, bold uppercases (resp. lowercases) denote
matrices (resp. vectors), whereas the other letters refer to
scalars. All sets are noted with calligraphic uppercases, and
the corresponding lowercase refers to their cardinality. The
vector hj denotes the j th column of matrix H and HT , de-
notes the transpose H. The natural logarithm is denoted by
ln. The real and imaginary part of a complex number a ∈ C
are denoted by <(a) and =(a), respectively. We denote the
l2-norm of vector y as ‖y‖.

2 Transmission Model

Let the N × N Rayleigh-fading MIMO system transmitting
N data streams to N receiving antennas. We assume a per-
fect CSI at the receiver (ideal channel estimator), whereas
the transceiver is CSI-agnostic. From a model perspective,
the receiver knows the channel matrix Hc ∈ CN×N where
hc(i, j) is the complex channel gain from antenna j to an-
tenna i. The MIMO channel is modeled as quasi-static block
fading where the channel path gains can be considered con-
stant during a large block comprising hundreds of transmitted
vectors [23]. The channel gains change according to a sta-
tistical model given by an independent Rayleigh-distributed
envelope. Therefore, the computational complexity of any
pre-processing phases, such as singular value decomposition
(SVD) or QR decomposition, pseudo-inverse calculation, can
be negligible. Indeed, they are performed once for several
transmitted vectors.

LetQc be the set of all constellation symbols from a square
QAM. We denote by yc ∈ CN the signals received on each an-
tenna after the propagation of the symbols xc ∈ QNc through

the channel and after the addition of the complex gaussian
noise wc ∼ CN (0, σ2). With this notations, the system model
is expressed as

yc = Hcxc + wc. (1)

This model can be rewritten as an equivalent real-valued
expression such that

y ,

[
<(yc)
=(yc)

]
(2)

H ,

[
<(Hc) −=(Hc)
=(Hc) <(Hc)

]
(3)

x ,

[
<(xc)
=(xc)

]
(4)

w ,

[
<(wc)
=(wc)

]
(5)

Q , <(Qc) (6)

n , 2N (7)

where the new parameter n defines the size of the real-valued
matrices and vectors. It can be interpreted as the number of
real-valued data streams. Ideed, switching from a complex-
valued to a real-valued perspective is equivalent to process
real and imaginary parts independently. In this real-valued
model, (1) becomes the following equivalent system model:

y = Hx + w. (8)

The BICM transceiver is composed of an encoder, an
assumed-perfect interleaver, and a modulator. The receiver
uses the corresponding components in a reversed order: de-
modulator, deinterleaver, and then decoder.

3 Soft-output Computations

Let bij be the i th bit encoded in the j th symbol of x. Ba-
sic hard-output detectors provide an estimate of the vector
of transmitted symbols. To improve the performance, soft-
output detectors search for the log-likelihood ratio (LLR) for
each bit defined as

Lij = ln
P (bij = 1|(H,y))

P (bij = 0|(H,y))
(9)

with P (bij |(H,y)) the probability mass function of bij given
the channel state and the received vector.
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Expression (9) is not suitable for practical use as it has
been shown that its computations is exponentially complex [24].
A common solution is to use the max-log approximation:

Lij ≈
1

2σ2

(
min
x∈X 0

ij

‖y−Hx‖2 − min
x∈X 1

ij

‖y−Hx‖2
)
, (10)

where X kij = {x ∈ Qn : bij = k} is the set of all symbols with
bij equals to k [25–27].

This new expression (10) is still exponentially complex as
the norm must be computed for each point in the constella-
tion. Indeed, we clearly have X 0

ij ∪ X 1
ij = Qn which contains

2n points. Therefore, we introduce a new subset S ⊂ Qn
with a lower cardinality and approximate (10) on it. The
new expression becomes

Lij ≈
1

2σ2

(
min

x∈S∩X 0
ij

‖y−Hx‖2 − min
x∈S∩X 1

ij

‖y−Hx‖2
)
.

(11)
The reduced subset S may have no points from X kij (i.e.,

S ∩ X kij = ∅). In such a configuration, we assign k to
the bit bi,j by the fact that the probability P (bij = k|(H,y))
is considered equal to one. Therefore, Lij is set to its max-
imum (if bi,j = 1) or minimum (if bi,j = 0) value to reflect
this certainty.

In the remainder of this paper, the objective function de-
notes the squared norm involved in the LLRs, and a point is
considered better than another if it has a smaller objective
function.

4 Geometrical-Based Detection

Soft-output geometrical heuristics are based on three main
steps: exploration, exploitation, and the LLRs computation.
This section reviews the first two-step as the last phase has
already been discussed in the previous section.

Exploration and exploitation steps are both designed to
search for feasible solutions into Qn. They can be viewed
as coarse and fine search methods. Coarse search step (ex-
ploration) is performed over whole solution set Qn in order
to find pertinent solutions, whereas exploitation step (fine
search) step refines the quality of the solutions through local
searches.

4.1 SVD-Based Exploration

The exploration step produces a set P of promising points to
be exploited in the next step. Let H = UΛV be the SVD of

H with (U,V) two orthogonal matrices and Λ a diagonal one
containing the singular values. Without loss of generality, we
assume that the singular values are sorted in ascending order:

λ1 6 λ2 6 · · · 6 λn. (12)

Let x? ∈ Rn be the real vector minimizing the objective
function. This point can be obtained using the Moore-Penrose
inverse H+ through x? = H+y. The regular inverse can
be use if the channel matrix is well conditioned, if not, the
Moore-Penrose invert is required. We can rewrite the objec-
tive function as

‖y−Hx‖2 =‖UΛV(x? − x)‖2 (13)

= (V(x? − x))
T

ΛUTUΛ (V(x? − x)) . (14)

Given that U is orthogonal, the previous equation gives

‖y−Hx‖2 = (V(x? − x))
T

Λ2 (V(x? − x)) . (15)

As V is orthogonal, its columns {vi}i=1...n constitute a
basis and we can introduce αi the coordinates of x?−x on this
basis. The matrix Λ is diagonal, then the objective function
can be expressed as

‖y−Hx‖2 =

n∑
i=1

α2
iλ

2
i (16)

which provides hints on the objective function evolution. The
ascending order of the singular values induces that the first
αi are less impacting than the last ones. Therefore, points
with similar coordinates except for the first ones, can be con-
sidered equivalent with respect to their objective function.
Exploration step aims for building the promising set P from
points as different as possible but with equivalently low objec-
tive function. The promising set P is also used to initialized
S.

4.2 Iterative Local Exploitation

The exploitation step gets the most of the previously selected
points P by exploring each promising feasible solution be-
longing the subset P. For each promising point in the sub-
set, an iterative local search is perform to find better feasible
solutions around the starting points. One iteration can be
decomposed into three steps :

1. Generate at most 2n new points equal to the candidate
but for one coordinate. This modified coordinate is once
the previous and once the next symbol in the real-valued
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constellation. If the coordinate to be modified is already
at an extreme value (ie. the first or last symbol in the
constellation), then a single point is generated.

2. Compute the objective function for each generated fea-
sible solution and add them to S.

3. Select the best feasible solution between the initial can-
didate and the newly generated points. The best point
becomes the new starting candidate for the next itera-
tion. If there is a tie, prefer the initial point.

It is easy to prove that this algorithm reaches a stable
point. First, each iteration decreases the objective function
over the finite set Qn of possibilities. Moreover, oscillations
between two equally good points are prevented by the tie
rule. Therefore, this process ends on a stable point that is
not guaranteed to be the global optimum. The performance-
complexity trade-off can be tuned by stopping the algorithm
after a predefined number of iterations rather than waiting
for a stable point.

5 Enhancements to Geometrical De-
tection

In this section, we present some enhancements to the geometrical-
based detection framework that was presented in the previous
section. Section 5.1 describes the previous exploitation tech-
nique and highlights its limitations, then Section 5.2 provides
the new exploration techniques to build the set of promising
feasible solutions. Section 5.3 introduces a lossless method to
reduce the complexity and Section 5.4 summarizes the pro-
posed geometrical detector and provides the algorithmic com-
putational costs of the detection process.

5.1 Previous Exploration Technique

The SVD-based exploration is the core step of the geometrical
heuristic since it provides a good set P of promising point is
the key to the success of the following steps. In the previous
works, P was build using an intersection-based process [22,
28].

Fig. 1 illustrates this exploration technique with n = 2 and
a 16-QAM modulation scheme. The process starts by com-
puting the line passing through x? and directed by the sin-
gular vector v1. The dashed blue line represents this straight
line. Then, each intersection of this line with the basis axis
is projected on the 16-QAM constellation to build the subset
P. This process is illustrated by the purple arrows. Fig. 1

x1

x2

-1 1 3

3

1

-1

-3

v1x⋆

Figure 1: Previous exploration process with n = 2 and a
16-QAM.

shows the process with one direction for readability’s sake,
but real detectors apply this method for several directions.
As an example, we used 3 directions for a 4x4 channel in [22]
or 4 directions for a 30x30 channel in [28].

The exploration technique is able to find promising points
as the elements of P should have similar objective function
values but it has two major drawbacks. First, the construc-
tion of P implies that it contains only points that are near
the basis hyperplanes. For instance, the point (−3,−3) can-
not be reached by this exploration process, regardless of its
quality, since no intersection could be projected to this point.
That is why, this method performs well with QPSK, where
all points are accessible but that it leads to poor results with
higher-order modulation schemes. Besides, this exploration
technique is very complex, with large channels. Indeed, build-
ing P requires to compute the intersection of several straight
lines with the n basis hyperplanes. Therefore, the more n
growth, the more intersections are needed. That is why the
new exploration technique should rely on steps that do not
increase in complexity with additional antennas.

5.2 Proposed Exploration Techniques

As exposed in the previous section, the exploration technique
presented in [22] has two significant drawbacks. In this sec-
tion, we propose new exploration techniques that solve these
issues. Indeed, the new methods are able to select, with no
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preferences, each point of the constellation so that it could
perform well on higher-order modulation schemes. Moreover,
they are composed of steps that are independent of the num-
ber of transmitted data streams n.

5.2.1 Intersection-Less (IL) Exploration

As stated in Section 4.1, the exploration builds a subset of
promising points P ⊂ Qn as different as possible with equiv-
alently low objective function. On the first hand, (16) shows
that equivalent points differ only on their first coordinates
when expressed on the basis {vi : 1 6 i 6 n}. On the other
hand, x? is obviously a good point since it is the global opti-
mum on Rn. Therefore, the sought equivalently good points
can be constructed by adding to x? some linear combinations
of the first vi. Let nd 6 n be the number of vi used during
this new exploration step.

To have equivalent points, we build them as

x? +

nd∑
i=1

±f
λi

vi (17)

with f some scalar whose value will be discussed later. Ex-
pressed in the V basis and after the translation to x?, these
points’ coordinates are(

± f

λ1
, ± f

λ2
, . . . , ± f

λnd

, 0, . . . , 0

)
(x?,V)

. (18)

Equation (16) highlights that these points have exactly the
same objective function being f2nd. However, these points
do not belong to Qn so that they cannot be used directly to
build the subset P. Therefore, the promising set is built by
taking the nearest value in Q for each coordinates. This last
step is the same used in the zero-forcing (ZF) detector and
will be referred as the “projection on a set” in the remainder
of this paper.

Fig. 2 and 3 provide examples of the intersection-less ex-
ploration process for a 16-QAM, f = 1 and n = 2. The
exploration process starts at its center x?. Blue arrows rep-
resent the addition of the scaled singular vectors that appear
in (17) and purple ones correspond to the projection on the
constellation.

Fig. 2 illustrates the case nd = 1 where two different points
are obtained: (−3,−1) and (−1, 3). Fig. 3 shows the same
scenario with nd = 2. In this situation, three points are
generated: (−3,−1), (−3, 1) and (−1, 3).

The points from (17) can be either within or outside the
constellation regarding the magnitude of each singular value.
That is why the projection can produce either good or bad

x1

x2

-1 1 3

3

1

-1

-3

v1x⋆

Figure 2: Well-conditioned intersection-less exploration with
n = 2, nd = 1 and a 16-QAM.

x1

x2

-1 1 3

3

1

-1

-3

v1

v2

x⋆

Figure 3: Well-conditioned intersection-less exploration with
n = 2, nd = 2 and a 16-QAM.
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Figure 4: Poorly-conditioned intersection-less exploration
with n = 2, nd = 1 and a 16-QAM.

points. Fig. 2 and 3 show an ideal case whereas Fig. 4 presents
a poorly conditioned case with λ1 � λ2. In the latter, the ex-
plored points are not at all promising, which compromises the
construction of P. For this reason, we introduce the scaling
coefficient f in (17) which selects the sampled iso-value. A
large f induces a large iso-value and thus widely spaced points
whereas a small scaling coefficient produces closer points.
Thus, the proposed exploration uses a few different scales
to increase the opportunity that at least one of the iso-values
will generate suitable points.

5.2.2 Sub-Constellation Projection

It is required that S includes the points minimizing each of
the two terms for (11) to be equivalent to reference (10). If
not, the result of (11) is a close but inexact approximation
of (10). The described exploration is not guaranteed to yield
these two minima. Thus, the process can be modified to force
the search for points in each sub-constellations X kij . This goal
is easily achieved by altering the final projection. The point
construction steps from x? and singular vectors can be kept
as it. Subsequently, the projection is no longer performed on
Qn but on every set X kij . The overhead of this method is to
move from 1 projection to a 2nq projections.

5.3 Complexity Reduction

As for the majority of detectors, the overriding computational
cost is the objective function evaluation. Thus, any refine-
ment of this step greatly decreases the complexity. The ef-
forts are focused on the number of products since this type
of operation is considerably more complex than an addition.

The products involved during the objective function eval-
uation are due to the squares in the norm and to the compu-
tation of

Hx =

n∑
j=1

hjxj (19)

with hj the j th column of H. A naive computation of (19)
would require n products for each hjxj and then n2 addi-
tions to add up all the vectors. However, it is noteworthy
that the values xj are in the finite set Q so that there are
only q possibilities for the product hjxj . For instance, with
Q = {−3,−1, 1, 3} (i.e., using a 16-QAM), a product hjxj
can either be −3hj , −hj , hj or 3hj but nothing else. Gener-
ally speaking, there are q different possibilities. Based on this
property and remarking that H is known for a whole block,
we can preprocess and store the q possible products hjxj .
This is equivalent to preprocess and store the matrices −3H,
−H, H and 3H for 16-QAM and in the general case, to store
and compute the set {sH : s ∈ Q}. Then, the computation
of (19) become the sum of n known vectors and does not
require any product at all.

This technique dramatically reduces the amount of prod-
uct required to decode the symbols at the cost of qn2 coeffi-
cients storage. Indeed, one have to store the channel matrix
H multiplied by each possible symbol in Q. This storage
space and the number of precalculations can be halved in or-
dinary situations since the usual constellations allow to obtain
the negative symbols by changing the sign. Continuing the
previous 16-QAM example, storing H and 3H is enough to
compute (19) with only additions since −H and −3H can be
obtained by substracting rather than adding the preprocessed
vectors.

5.4 Summary of the New Detector

Fig. 5 sums up the new geometrical algorithm presented in
this paper. The upper part depicts the block-wise pre-processing.
It includes the computation of the Moore-Penrose inverse H+

as well as the pre-processing introduced in section 5.3. Since
these calculations are only performed once per block of hun-
dreds of symbol vectors, their complexity is negligible com-
pared to the remaining part of the algorithm.
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Table 1: Complexity evaluation for each step of the proposed
geometrical detector.

Step Nb prods Nb adds

Compute x? = H+y n2 (n− 1)n
Add prescaled vi according to (17) 0 pn
Objective function evaluation pn 2pn
One local search iteration 2pn2 3pn
Max-log approximation. n log2(q) n log2(q)

The lower part of the figure illustrates the detection pro-
cess for a symbol from the received vector and the estimated
noise variance. During the exploration step, the optimal vec-
tor is first derived using the pre-calculated H+. It is then
added to the sum

∑nd

i=1
±f
λi

vi that is also precomputed by
the previous preprocessing. These points are then projected
on the constellation and optionally on the sub-constellations,
as described in Section 5.2. All these points are used to ini-
tialize the subset S. During the exploitation step, some local
search iterations are performed to add new promising points
to S (see Section 4.2). Eventually, the LLRs are estimated
using the approximation of (11).

Table 1 details the complexity for each steps of the pro-
posed geometrical detector with p = 2ndnf the number of
promising points in P and nf the number of scaling factor
used. The preprocessed operations computed at a block level
are neglected.

6 Comparisons With Tree-Based Ref-
erences

The proposed algorithm is to be compared with the reference
detectors according to two criteria: BER performance and
computational complexity. Indeed, highly complex detectors
are required to provide the best performance in unfavorable
use cases (low SNR regime). On the contrary, a simpler al-
gorithm is preferable to increase the transmission rate un-
der favorable conditions. Besides, the flexibility of the algo-
rithm is an attractive feature for matching the performance-
complexity trade-off to the use cases.

Section 6.1 described the tree-based reference to be sim-
ulated using the Monte-Carlo setup proposed in Section 6.2.
Section 6.3 introduces the Pareto efficiency and Section 6.4
provides the comparisons using this framework.

Block-wise 
preprocessingBlock-wise inputs

· : channel matrix

SVD

Symbol-wise inputs
· : received vector
· : noise variance

Build

Project on
· constellation
· sub-constellation

Set

Save points to

One iteration of 
local search

Set

New
points Set

LLRs

Exploration

Exploitation

Figure 5: Summary of the proposed new geometrical detector.

8



6.1 Reference Tree-Based Detectors

The tree-based paradigm represents the detection problem as
the search for the best path in a weighted tree. Any path
starting from the root and reaching a leaf represents a de-
coded vector x whose total weight corresponds to the objec-
tive function. Each node has as many children as the number
of symbols in Q. Selecting a node at each level corresponds
to detect the corresponding component of x. In the follow-
ing, we refer to “extend a node” the process of computing the
children’s objective function of a particular node to extend
the current path.

As discussed in the introduction, tree-based detectors can
be classified according to the method of searching into the
tree. In this section, we describe two tree-based references: a
canonical breadth-first K-best with Schnorr-Eurner enumer-
ation [11] and a state-of-the-art best-first detector [15].

6.1.1 Breadth-First Detection: K-Best algorithm

The breadth-first approach builds paths from the root to the
leaf with no backward step. At each level of the tree, each
surviving path is extended. The K best new paths are pre-
served to be expended at the next level while the others are
pruned. The process ends when it reaches the leaf level.

Table 2 details the computational complexity of the K-
best detector as described in [11] with two metrics: the num-
ber of products and the number of additions. The complexity
grows linearly with K and quadratically with n. It is assumed
that the QR decomposition is performed on a block basis and
therefore, can be neglected. Moreover, some preprocessing
can be performed on a block basis to divide by a factor of
about five the required K to reach a specific BER vs. SNR
performance. As in [11], we refer by mode 1 the algorithm
without any preprocessing and by mode 3 the one with the
best preprocessing.

6.1.2 Best-first Detection: Cross-Level Parallel Tree-
Search

We describe in this section the algorithm from [15]. The best-
first approach selects the path to extend based on the partial
cumulative weight of a node rather than exploring straight
to the leaf (as in depth-first paradigm) or rather to keep
a specified amount of paths (as in breadth-first paradigm).
The cross-level variant keeps track of the best nodes at each
level through several stacks of finite length. At each itera-
tion, the best node from each stack is popped out, extended,
and the best siblings and the best child are inserted in the
corresponding stack. If a stack reaches its maximal length,

Table 2: Complexity evaluation of breadth-first K-best detec-
tor. Step numbers refer to the one described in Section III-B
from [11].

Step Nb prods Nb adds

Compute Qty. n2 (n− 1)n

For each level l from n to 1 repeated n times
↪→ Step 2) Compute weight for
each child.

Kq Kq

↪→ Step 2) Update cumultative
weight for each child.

Kq Kq

↪→ Step 4) Update path his-
tory.

K(l − 1). K(l − 1)

Sub-total for the loop K
(

2qn+ (n−1)n
2

)
Max-log approximation. K + n log2(q) n log2(q)

Table 3: Complexity of each step of the cross-level best-first
detector. The second step is performed several times, the
other are only carried out once.

Step Nb prods Nb adds

Compute Qty n2 (n− 1)n
Expand a node at level l (n− l + 1)q 2q
Compute LLRs from metrics nq nq

then the worst path is pruned. The process ends when all the
stacks are empty. Moreover, the algorithm saved the cumula-
tive weights of the best leaves so far and used them to prune
paths that are already worst. This pruning criteria inspired
by SD, avoids the extension of paths that are known to lead
to worst solutions.

Unlike K-best detection, the best-first cross-level algo-
rithm does not expand the same number of nodes at each
run. Indeed, the number of paths pruned due to stack over-
flows or to poor cumulative weights depend on H and y. That
is why it is not possible to find a closed-form for its complex-
ity. Table 3 details the complexity for the three steps and
neglects the QR decomposition for the same reason that for
K-best. Reference [15] reports that the algorithm visits, on
average, hundreds of nodes per detection with n = 4 and a
64-QAM. In the following, we will use the average observed
complexity among all the detections as the complexity of this
algorithm. This metric is computed at run time using the
data from Table 3.
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6.2 Monte-Carlo Simulation Setup

BER performance of the two references and the geometrical
detector are evaluated thanks to Monte-Carlo simulations.
At each iteration, a 1440-bit random message is modulated,
sent through a 4x4 MIMO channel, and received. After the
reception, the number of binary errors is counted. For every
SNRs, the simulation continues until it either gets 200 binary
errors or reaches 5.105 transmitted bits.

The message is encoded in blocks of 720 bits with an irreg-
ular, systematic low-density parity-check (LDPC) code of ra-
tio 1/2. The parity check matrix is designed according to the
WiMAX standard (IEEE 802.16e) [29]. All receivers exploit
the generated LLRs to decode the message with 15 iterations
of a belief-passing min-sum algorithm. All the simulations
are run using the CommPy framework [30].

6.3 Pareto Fronts: a Tool to Study Trade-
Offs

The detectors are compared based on the Pareto efficiency
to study the performance-complexity trade-off objectively. A
detector is said to be Pareto efficient if it is impossible to
find an alternative detector that reduces either the complex-
ity of the BER without losing on the other metric. The
set of all Pareto-efficient detectors, called the Pareto front,
represents the trade-off options. Indeed, switching from a
Pareto-efficient detector to another means to favor complex-
ity or BER in the trade-off. Conversely, a detector that is not
Pareto efficient should not be selected because one can im-
prove at least one of the metrics without losing on the other.

The computational complexicity is assessed as the number
of products alone and the number of operations (products
plus additions). The first situation refers to implementations
on application-specific integrated circuits (ASICs) where the
overriding complexity is the number of products due to its
difficulty. The second comparison is better adapted to field-
programmable gate arrays (FPGAs) since embedded digital
signal processors (DSPs) can compute a free addition when
computing a product.

Table 4 lists all the parameters tested during the described
Monte-Carlo simulations for both QPSK and 16-QAM. All
combinations of the listed parameters are tested for the geo-
metrical detector. To improve the readability of the figures,
only a subset of these parameters are plotted in the following
sections. In any case, all the detectors claimed to be Pareto
efficient are Pareto efficient for all the parameters from Ta-
ble 4.

Table 4: List of detector parameters tested during Monte-
Carlo simulations.

Parameter Values tested

K-best K 2, 4, 8, 12, 16, 24, 32, 48, 64, 128, 192, 256

Best-first
stack lengths

(1, 12, 15), (1, 7, 10), (1, 3, 5)

Sub-
constellation
projection

Yes, No

Number of
iterations for
exploration
step

0, 1, 2, 3, 4, 5, 6, 7, 8

Number of
dimensions
nd

1, 2, 3, 4, 5, 6, 7, 8

Scaling fac-
tors f

From 1 to 5 factors among 0.125, 0.25, 0.5,
1, 2, 4

6.4 Simulation Results

The preprocessing described in Section 5.3 could be adapted
to simplify the tree-based references. The results will be pro-
vided in two scenarios to permit a meaningful comparison.
Firstly with the strict implementation of references and using
preprocessing only for geometric detectors in Section 6.4.1
and 6.4.2. Then by extending the preprocessing to all the
compared algorithms in Section 6.4.3.

6.4.1 Comparisons for QPSK

Fig. 6 and 7 present the Pareto efficient algorithms for a
QPSK. The first one approximates the complexity by the
number of products, whereas the second one estimates it by
the number of operations (products plus additions). Table 5
details the parameters corresponding to the Pareto efficient
detectors for the number of product/BER trade-off.

For readability reasons, only a subset of the geometric de-
tectors tested is shown. The plots are restricted to detectors
using the sub-constellation projection presented in Section
5.2.2 with two scale factors (f = 0.25, f = 4.0) and no itera-
tions. Indeed, these parameters include the geometric Pareto
efficient detectors.

These parameters highlight that for a very small constella-
tion, the geometrical detector should handle the performance-
complexity trade-off using the number of dimensions nd. In-
deed, the receivers can select the number of dimensions based
on the measured SNR, build the promising set P using the
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Figure 6: Pareto front for a QPSK: number of products/BER
trade-off.
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Figure 7: Pareto front for a QPSK: number of opera-
tions/BER trade-off.

sub-constellation variant, and then apply the max-log approx-
imation without further exploitation.

Fig. 6 shows that the proposed algorithm requires ten
times fewer products that the canonical K-best mode 1 at
the cost of 0.7 dB. Moreover, the geometrical allow for an on-
the-fly configuration since changing nd is enough to select the
working point. Fig. 7 shows tighter spreads with the three
detectors being efficient at some SNR range.

6.4.2 Comparisons for 16-QAM

Fig. 8 and 9 provides the same trade-off analysis for a 16-
QAM and Table 6 details the parameters of the Pareto effi-
cient detectors. In this section, we only plot the geometrical
detectors with nd = 2 and no sub-constellation projection.

Table 5: Pareto efficient detectors for number of prod-
ucts/BER trade-off with QPSK. Geometrical detectors re-
ported in this table are all tuned with f ∈ {0.25, 4} and no
iterations at all. The sub-constellation projection is enabled.

Detector log10(prods) log10(ops) SNRs for
1.10−4

K-Best K = 48 3.66 3.94 8.5 dB
K-Best K = 32 3.48 3.77 8.8 dB
K-Best K = 24 3.36 3.64 8.9 dB
Geom nd = 5 2.57 3.73 9.3 dB
Geom nd = 4 2.35 3.46 9.6 dB
Geom nd = 3 2.18 3.20 10.1 dB
Geom nd = 2 2.07 2.98 11.1 dB
Geom nd = 1 2.00 2.79 21 dB
Geom nd = 0 1.90 2.46 22 dB

It is no more efficient to project on each sub-constellation as
the number of projection required grows linearly with the con-
stellation size. Therefore, the overhead is no more neglected
when switching from QPSK to 16-QAM.

Table 6 highlights that the on-the-fly configuration relies
on the number of iterations and the number of scaling fac-
tors when using a 16-QAM. Both Pareto fronts show that the
geometrical detector is efficient at some SNR ranges. How-
ever, the complexity gap between tree-based and geometrical
detectors is not as important as for QPSK.

The hierarchy observed in QPSK remains the same for
16-QAM scheme:

• canonical K-best remains effective for the worst SNRs
with very high K,

• best-first is effective but not flexible,

• the geometrical algorithm provides good results and
adaptability for moderate SNRs.

6.4.3 Comparisons With Equivalent Preprocessing

Fig. 10 and 11 represent the same comparison when all de-
tectors are using the same preprocessing as described in sec-
tion 5.3. For tree-based algorithms, this results in a halving
of the number of products. Indeed, the norm computation
now requires only products for the squaring. In this scenario,
the Pareto efficient detectors were all Pareto efficient in the
previous one, and we refer to the previous table for the pa-
rameters.
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Figure 8: Pareto front for a 16QAM: number of prod-
ucts/BER trade-off.
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Figure 9: Pareto front for a 16QAM: number of opera-
tions/BER trade-off.

Table 6: Pareto efficient detectors for number of prod-
ucts/BER trade-off with 16-QAM. Geometrical detectors re-
ported in this table are all tuned with nd = 2. The sub-
constellation projection is disabled.

Detector log10(prods) log10(ops) SNRs for
1.10−4

K-Best K = 256 4.86 5.16 17.2 dB
K-Best K = 192 4.74 5.03 17.4 dB
K-Best K = 128 4.56 4.86 17.5 dB
K-Best K = 64 4.26 4.56 17.9 dB
Geom 5 its,
f ∈ {0.25, 1, 2} 3.98 4.55 18.5 dB

Geom 4 its,
f ∈ {0.5, 1, 2} 3.86 4.46 18.7 dB

Geom 5 its,
f ∈ {0.5, 2} 3.82 4.40 18.8 dB

Geom 4 its,
f ∈ {0.5, 2} 3.73 4.30 19.4 dB

Best-first (1, 3, 5) 3.67 3.79 19.8 dB
Geom 3 its,
f ∈ {0.5, 2} 3.61 4.19 20 dB

Geom 4 its,
f = 1

3.49 4.05 20.7 dB

Geom 2 its,
f ∈ {0.25, 1} 3.45 4.02 21 dB

Geom 3 its,
f = 1

3.74 3.94 21.9 dB

Geom 2 its,
f = 0.5

3.21 3.78 22.8 dB

K-Best K = 2 2.81 3.11 24.3 dB
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Figure 10: Pareto front for a QPSK: number of prod-
ucts/BER trade-off.

18 20 22 24 26
SNRs required for BER = 1.0e-04

2.5

3.0

3.5

4.0

4.5

lo
g 1

0(
nu

m
be

r o
f p

ro
du

ct
s) Pareto front

Pareto efficient
K-best
IL Geometrical
Best-first

Figure 11: Pareto front for a 16QAM: number of opera-
tions/BER trade-off.

We do not know any tree-based implementation featur-
ing this kind of preprocessing. However, [15] reports in sec-
tion IV-C1 a computation method leading to an equivalent
decrease in complexity. Indeed, the products Hx, are com-
puted only by shifts and additions, which restricts similarly
the number of products required.

Fig. 11 illustrates that although being Pareto efficient, the
geometrical detector is not a wise choice in 16-QAM when
preprocessing is possible for the tree-based detectors. K-best
is preferable to save in SNRs, and best-first provides a signif-
icantly simpler option.

Fig. 10 shows that the proposed geometrical detector is
particularly relevant in QPSK. The complexity gain is con-
siderable, and the trade-off between computational complex-
icity and BER peformance can be easily achieved with few
parameters.

7 Conclusion

In this paper, we proposed an extensive comparison of a
new geometrical detector with tree-based references. The
performance-complexity trade-off is studied using the Pareto
efficiency framework. We presented new exploration tech-
niques to improve the performance-complexity trade-off and
extend the geometrical detectors to higher-order modulation
schemes. Moreover, a preprocessing method is introduced to
reduce further the number of products required.

The Pareto fronts show that K-best is suitable in the worst
SNR regimes, whereas the geometrical detector and best-first
are efficient when SNRs are moderate. Besides, the proposed
detector outperforms the two references in the QPSK sce-
nario by providing a significant gap in complexity and by
allowing a simple on-the-fly configuration. Moreover, the gap
is large enough so that switching from mode 1 to mode 3 is
not enough for K-best to reach the same performance as the
proposed algorithm.
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