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This paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose timeinhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that, for any measurable bounded function f , the time average 1 t t 0 f (Xs)ds converges in L 2 towards a limiting distribution, starting from any initial distribution for the process (Xt) t≥0 . This convergence can be improved to an almost sure convergence under an additional assumption on the initial measure. This result will be then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically periodic moving boundary, satisfying a conditional Doeblin condition.

Notation

Throughout we shall use the following notation:

• N = {1, 2, . . . , } and Z + = {0} ∪ N.

• M 1 (E) denotes the space of the probability measures whose support is included in E.

• B(E) denotes the set of the measurable bounded functions defined on E.

• B 1 (E): denotes the set of the measurable functions f defined on E such that f ∞ ≤ 1.

• For all µ ∈ M 1 (E) and p ∈ N, L p (µ) denotes the set of the measurable functions f : E → R such that

E |f (x)| p µ(dx) < +∞. • For any µ ∈ M 1 (E) and f ∈ L 1 (µ), denote µ(f ) := E f (x)µ(dx).
• For any positive function ψ, M 1 (ψ) := {µ ∈ M 1 (E) : µ(ψ) < +∞}.

• Id denotes the Identity operator.

Introduction

In general, an ergodic theorem for a Markov process (X t ) t≥0 and probability measure π refers to the almost sure convergence 1 t

t 0 f (X s )ds -→ t→∞ π(f ), ∀f ∈ L 1 (π). (1) 
In the time-homogeneous setting, such an ergodic theorem holds for positive Harris recurrent Markov processes with the limiting distribution π corresponding to an invariant measure for the underlying Markov process. For time-inhomogeneous Markov processes, such a result does not hold in general (in particular the notion of invariant measure is in general not well-defined), except for specific types of time-inhomogeneity such as periodic timeinhomogeneous Markov processes, defined as time-inhomogeneous Markov processes for which there exists γ > 0 such that, for any s ≤ t, k ∈ Z + and x,

P[X t ∈ •|X s = x] = P[X t+kγ ∈ •|X s+kγ = x]. (2) 
In other words, a time-inhomogeneous Markov process is periodic when the transition law between any times s and t remains unchanged when the time interval [s, t] is shifted by a multiple of the period γ. In particular, this implies that, for any s ∈ [0, γ), the Markov chain (X s+nγ ) n∈Z+ is time-homogeneous. This fact allowed Höpfner et al. (in [20,[START_REF] Höpfner | Ergodicity and limit theorems for degenerate diffusions with time periodic drift. application to a stochastic hodgkin-huxley model[END_REF][START_REF] Höpfner | Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input[END_REF]) to show that, if the skeleton Markov chain (X nγ ) n∈Z+ is Harris recurrent, then the chains (X s+nγ ) n∈Z+ , for all s ∈ [0, γ), are also Harris recurrent and

1 t t 0 f (X s )ds -→ t→∞ 1 γ γ 0
π s (f )ds, almost surely, from any initial measure, where π s is the invariant measure for (X s+nγ ) n∈Z+ . This paper aims to prove a similar result for time-inhomogeneous Markov processes said to be asymptotically periodic. Roughly speaking (a precise definition of which will be explicitly given later), an asymptotically periodic Markov process is such that, given a time interval T ≥ 0, its transition law on the interval [s, s+T ] is asymptotically "close to" the one, on the same interval, of a periodic time-inhomogeneous Markov process called an auxiliary Markov process, when s → ∞. This definition is very similar to the notion of asymptotic homogeneization, defined as follows in [START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized Doeblin's conditions[END_REF]Subsection 3.3]: a time-inhomogeneous Markov process (X t ) t≥0 is said to be asymptotically homogeneous if there exists a time-homogeneous Markovian semigroup (Q t ) t≥0 such that, for all s ≥ 0,

lim t→∞ sup x P[X t+s ∈ •|X t = x] -δ x Q s T V = 0, (3) 
where, for two positive measures with finite mass µ 1 and µ 2 , µ 1 -µ 2 T V is the total variation distance between µ 1 and µ 2 :

µ 1 -µ 2 T V := sup f ∈B1(E) |µ 1 (f ) -µ 2 (f )|. (4) 
In particular, it is well-known (see [START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized Doeblin's conditions[END_REF]Theorem 3.11]) that, under this suitable additional conditions, an asymptotically homogeneous Markov process converges towards a probability measure which is invariant for (Q t ) t≥0 .

It is similarly expected that an asymptotically periodic process has the same asymptotic properties as a periodic Markov process; in particular an ergodic theorem holds for the asymptotically periodic process.

The main result of this paper provides for an asymptotically periodic Markov process to satisfy

1 t t 0 f (X s )ds L 2 (P0,µ) ------→ t→∞ 1 γ γ 0 β s (f )ds, ∀f ∈ B(E), ∀µ ∈ M 1 (E), (5) 
whereby P 0,µ is a probability measure under which X 0 ∼ µ, and where β s is the limiting distribution of the skeleton Markov chain (X s+nγ ) n∈Z+ , if it satisfies a Lyapunov-type condition, a local Doeblin condition (defined further in Section 2), and is such that its auxiliary process satisfies a Lyapunov/minorization condition. Furthermore, this convergence result holds almost surely if a Lyapunov function of the process (X t ) t≥0 , denoted by ψ, is integrable with respect to the initial measure:

1 t t 0 f (X s )ds P0,µ-almost surely ----------→ t→∞ 1 γ γ 0 β s (f )ds, ∀µ ∈ M 1 (ψ).
This will be more precisely stated and proved in Section 2.

The main motivation of this paper is then to deal with quasi-stationarity with moving boundaries, that is the study of asymptotic properties for the process X, conditioned not to reach some moving subset of the state space.

In particular, such a study is motivated by models such as those presented in [START_REF] Cattiaux | A stochastic model for cytotoxic T lymphocyte interaction with tumor nodules[END_REF], studying Brownian particles absorbed by cells whose volume may vary over time.

Quasi-stationarity with moving boundaries has been studied in particular in [START_REF] Oçafrain | Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically[END_REF][START_REF] Oçafrain | Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries[END_REF], where a "conditional ergodic theorem" (see further the definition of a quasi-ergodic distribution) has been shown when the absorbing boundaries move periodically. In this paper, we show that a similar result holds when the boundary is asymptotically periodic, assuming that the process satisfies a conditional Doeblin condition (see Assumption (A')). This will be dealt with in Section 3.

The paper will be concluded by using these results in two examples: an ergodic theorem for an asymptotically periodic Ornstein-Uhlenbeck process, and the existence of a unique quasi-ergodic distribution for a Brownian motion confined between two symmetric asymptotically periodic functions.

Ergodic theorem for asymptotically periodic time-inhomogeneous semigroup.

Asymptotic periodicity: the definition.

Let (E, E) be a measurable space In particular, associated to {(E t , E t ) t≥0 , (P s,t ) s≤t } is a Markov process (X t ) t≥0 and a family of probability measures (P s,x ) s≥0,x∈Es such that, for any s ≤ t, x ∈ E s and A ∈ E t ,

P s,x [X t ∈ A] = P s,t 1 A (x).
We denote P s,µ := Es P s,x µ(dx) for any probability measure µ supported on E s . We also denote by E s,x and E s,µ the expectations associated to P s,x and P s,µ respectively. Finally, the following notation will be used for

µ ∈ M 1 (E s ), s ≤ t and f ∈ B(E t ), µP s,t f := E s,µ [f (X t )], µP s,t := P s,µ [X t ∈ •].
The periodicity of a time-inhomogeneous semigroup is defined as follows. We say a semigroup

{(F t , F t ) t≥0 , (Q s,t ) s≤t } is γ-periodic (for γ > 0), if, for any s ≤ t, (F t , F t ) = (F t+kγ , F t+kγ ), Q s,t = Q s+kγ,t+kγ , ∀k ∈ Z + .
It is now possible to define an asymptotically periodic semigroup.

Definition 1 (Asymptotically periodic semigroups). A time-inhomogeneous semigroup {(E t , E t ) t≥0 , (P s,t ) s≤t } is said to be asymptotically periodic if (for some γ > 0) there exists a γ-periodic semigroup {(F t , F t ) t≥0 , (Q s,t ) s≤t } and two families of functions (ψ s ) s≥0 and ( ψs ) s≥0 such that ψs+γ = ψs for all s ≥ 0, and for any s ∈ [0, γ):

1.

∞ k=0 l≥k E s+lγ ∩ F s = ∅; 2. there exists x s ∈ ∞ k=0 l≥k E s+lγ ∩ F s such that, for any n ∈ Z + , δ xs P s+kγ,s+(k+n)γ [ψ s+(k+n)γ × •] -δ xs Q s,s+nγ [ ψs × •] T V -→ k→∞ 0. ( 6 
)
The semigroup {(F t , F t ) t≥0 , (Q s,t ) s≤t } is then called the auxiliary semigroup of (P s,t ) s≤t .

When ψ s = ψs = 1 for all s ≥ 0, we say that the semigroup (P s,t ) s≤t is asymptotically periodic in total variation. By extension, we will say that the process (X t ) t≥0 is asymptotically periodic (in total variation) if the associated semigroup {(E t , E t ) t≥0 , (P s,t ) s≤t } is asymptotically periodic (in total variation).

In what follows, the functions (ψ s ) s≥0 and ( ψs ) s∈[0,γ) will play the role of Lyapunov functions (that is to say satisfying Assumption 1 (ii) below) for the semigroups (P s,t ) s≤t and (Q s,t ) s≤t respectively. The introduction of these functions in the definition of asymptotically periodic semigroups will allow us to establish an ergodic theorem for processes satisfying the Lyapunov/minorization conditions written below.

Lyapunov/minorization conditions.

The main assumption of Theorem 1, which will be provided later, will be that the asymptotically periodic Markov process satisfies the following assumption. Assumption 1. There exist t 1 ≥ 0, n 0 ∈ N, c > 0, θ ∈ (0, 1), a family of measurable sets (K t ) t≥0 such that K t ⊂ E t for all t ≥ 0, a family of probability measures (ν s ) s≥0 on (K s ) s≥0 , and a family of functions (ψ s ) s≥0 , all lower-bounded by 1, such that: (i) For any s ≥ 0, x ∈ K s and n ≥ n 0 , δ x P s,s+nt1 ≥ cν s+nt1 .

(ii) For any s ≥ 0, P s,s+t1 ψ s+t1 ≤ θψ s + C1 Ks .

(iii) For any s ≥ 0 and t ∈ [0, t 1 ), P s,s+t ψ s+t ≤ Cψ s .

When a semigroup (P s,t ) s≤t satisfies Assumption 1 as stated above, we will say that the family of functions (ψ s ) s≥0 are Lyapunov functions for the semigroup (P s,t ) s≤t . In particular, under (ii) and (iii), it is easy to prove that for any s ≤ t,

P s,t ψ t ≤ C 1 + C 1 -θ ψ s . ( 7 
)
We remark in particular that Assumption 1 implies an exponential weak ergodicity in ψ t -distance, that is we have the existence of two constants C > 0 and κ > 0 such that, for all s ≤ t and for all probability measures

µ 1 , µ 2 ∈ M 1 (E s ), µ 1 P s,t -µ 2 P s,t ψt ≤ C [µ 1 (ψ s ) + µ 2 (ψ s )]e -κ(t-s) , (8) 
whereby, for a given function ψ, µ -ν ψ is the ψ-distance defined to be

µ -ν ψ := sup |f |≤ψ |µ(f ) -ν(f )| , ∀µ, ν ∈ M 1 (ψ).
In particular, when ψ = 1 for all t ≥ 0, the ψ-distance is the total variation distance. If we have weak ergodicity [START_REF] Champagnat | Uniform convergence to the Q-process[END_REF] in the time-homogeneous setting (see in particular [START_REF] Hairer | Yet another look at Harris' ergodic theorem for markov chains[END_REF]), the proof of [15, Theorem 1.3.] can be adapted to a general time-inhomogeneous framework (see for example [6, Subsection 9.5] ).

The main theorem and proof.

The main result of this paper is the following. Then, for any µ ∈ M 1 (E 0 ) such that µ(ψ 0 ) < +∞,

1 t t 0 µP 0,s [ψ s × •]ds - 1 γ γ 0 β γ Q 0,s [ ψs × •]ds T V -→ t→∞ 0, (9) 
whereby β γ ∈ M 1 (F 0 ) is the unique invariant probability measure of the skeleton semigroup (Q 0,nγ ) n∈Z+ satisfying β γ ( ψ0 ) < +∞. Moreover, for any f ∈ B(E) we have:

1. For any µ ∈ M 1 (E 0 ), E 0,µ 1 t t 0 f (X s )ds - 1 γ γ 0 β γ Q 0,s f ds 2 -→ t→∞ 0. ( 10 
)
2. If moreover µ(ψ 0 ) < +∞, then

1 t t 0 f (X s )ds -→ t→∞ 1 γ γ 0 β γ Q 0,s f ds, P 0,µ -almost surely. ( 11 
)
Remark 1. When Assumption 1 hold for K s = E s for any s, then the condition (i) in Assumption 1 implies Doeblin condition.

Doeblin condition.

There exists t 0 ≥ 0, c > 0 and a family of probability measure (ν t ) t≥0 on (E t ) t≥0 such that, for any s ≥ 0 and x ∈ E s ,

δ x P s,s+t0 ≥ cν s+t0 . ( 12 
)
In fact, if we assume that Assumption 1 (i) holds for K s = E s , Doeblin condition holds by setting t 0 := n 0 t 1 .

Conversely, the Doeblin condition implies the conditions (i)-(ii)-(iii) with K s = E s and ψ s = 1 Es for all s ≥ 0, so that these conditions are equivalent. In fact, (ii) and (iii) straightforwardly hold true for (K s ) s≥0 = (E s ) s≥0 , (ψ s ) s≥0 = (1 Es ) s≥0 , C = 1, any θ ∈ (0, 1) and any t 1 ≥ 0. Setting t 1 = t 0 and n 0 = 1, the Doeblin condition entails that, for any s ∈ [0, t 1 ),

δ x P s,s+t1 ≥ cν s+t1 , ∀x ∈ E s .
Integrating this inequality over µ ∈ M 1 (E s ), one obtains

µP s,s+t1 ≥ cν s+t1 , ∀s ∈ [0, t 1 ), ∀µ ∈ M 1 (E s ).
Then, by the Markov property, for all s ∈ [0, t 1 ), x ∈ E s and n ∈ N, we have

δ x P s,s+nt1 = (δ x P s,s+(n-1)t1 )P s+(n-1)t1,s+nt1 ≥ cν s+nt1 ,
which is (i). Theorem 1 then entails the following corollary.

Corollary 1. Let (X t ) t≥0 be asymptotically γ-periodic in total variation distance. If (X t ) t≥0 and its auxiliary semigroup satisfy a Doeblin condition, then the convergence (10) is improved to

sup µ∈M1(E0) sup f ∈B1(E) E 0,µ 1 t t 0 f (X s )ds - 1 γ γ 0 β γ Q 0,s f ds 2 -→ t→∞ 0.
Moreover, the almost sure convergence [START_REF] Collet | Quasi-stationary distributions[END_REF] holds for any initial measure µ.

Remark 2. We also note that, if the convergence (6) holds for all x ∈ ∞ k=0 l≥k E s+lγ ∩ F s , then this implies (6) and therefore the pointwise convergence of (ψ s+nγ ) n∈Z+ to ψs (by taking n = 0 in (6)).

Proof of Theorem 1. The proof is divided into five steps.

First step. Since the auxiliary semigroup (Q s,t ) s≤t satisfies Assumption 1 with ( ψs ) s≥0 as Lyapunov functions, the time-homogeneous semigroup (Q 0,nγ ) n∈Z+ satisfies assumptions 1 and 2 of [START_REF] Hairer | Yet another look at Harris' ergodic theorem for markov chains[END_REF], which we now recall (using our notation).

Assumption 2 (Assumption 1, [15]

). There exists V :

F 0 → [0, +∞), n 1 ∈ N and constants K ≥ 0 and κ ∈ (0, 1) such that Q 0,n1γ V ≤ κV + K.

Assumption 3 (Assumption 2, [15]

). There exists a constant α ∈ (0, 1) and a probability measure ν such that

inf x∈C R δ x Q 0,n1γ ≥ αν(•), with C R := {x ∈ F 0 : V (x) ≤ R} for some R > 2K/(1 -κ),
whereby n 1 , K and κ are the constants from Assumption 2.

In fact, since (Q s,t ) s≤t satisfies (ii) and (iii) of Assumption 1, there exists C > 0, θ ∈ (0, 1),

t 1 ≥ 0 and (K s ) s≥0 such that Q s,s+t1 ψs+t1 ≤ θ ψs + C1 Ks , ∀s ≥ 0, (13) 
and

Q s,s+t ψs+t ≤ C ψs , ∀s ≥ 0, ∀t ∈ [0, t 1 ).
We let n 2 ∈ N be such that

θ n2 C(1 + C 1-θ ) < 1.
By [START_REF] Darroch | On quasi-stationary distributions in absorbing discrete-time finite Markov chains[END_REF] and recalling that ψt = ψt+γ for all t ≥ 0, one has for any s ≥ 0 and n ∈ N,

Q s,s+nt1 ψs+nt1 ≤ θ n ψs + C 1 -θ . ( 14 
)
Thus, for all

n 1 ≥ n2t1 γ , Q 0,n1γ ψ0 = Q 0,n1γ-n2t1 Q n1γ-n2t1,n1γ ψn1γ ≤ θ n2 Q 0,n1γ-n2t1 ψn1γ-n2t1 + C 1 -θ ≤ θ n2 C(1 + C 1 -θ ) ψ0 + C 1 -θ ,
where we successively used the property of semigroup of (Q s,t ) s≤t , ( 14) and ( 7) applied to (Q s,t ) s≤t . Hence one has Assumption 2 by setting V = ψ0 , κ := θ n2 C(1 + C 1-θ ) and K := C 1-θ . We now prove Assumption 3. To this end, we introduce a Markov process (Y t ) t≥0 and a family of probability measures ( Ps,x ) s≥0,x∈Fs such that

Ps,x (Y t ∈ A) = Q s,t 1 A (x), ∀s ≤ t, x ∈ F s , A ∈ F t .
In what follows, for all s ≥ 0 and x ∈ F s , we will use the notation Ês,x for the expectation associated to Ps,x . Moreover, we define

T K := inf{n ∈ Z + : Y nt1 ∈ K nt1 }.
Then, using [START_REF] Darroch | On quasi-stationary distributions in absorbing discrete-time finite Markov chains[END_REF] recursively, for all k ∈ N, R > 0 and x ∈ C R (recalling that C R is defined in the statement of Assumption 3) we have

Ê0,x [ ψkt1 (Y kt1 )1 T K >k ] = Ê0,x [1 T K >k-1 Ê(k-1)t1,Y (k-1)t 1 ( ψkt1 (Y kt1 )1 T K >k )] ≤ θ Ê0,x [ ψ(k-1)t1 (Y (k-1)t1 )1 T K >k-1 ] ≤ θ k ψ0 (x) ≤ Rθ k . Since ψkt1 ≥ 1 for all k ∈ Z + , then for all x ∈ C R , for all k ∈ Z + , P0,x (T k > k) ≤ Rθ k .
In particular, there exists

k 0 ≥ n 0 such that, for all k ≥ k 0 -n 0 , P0,x (T K > k) ≤ 1 2 .
Hence, for all x ∈ C R ,

δ x Q 0,k0t1 = P0,x (Y k0t1 ∈ •) ≥ k0-n0 i=0 Ê0,x (1 T k =i Pit1,Xit 1 (Y k0t1 ∈ •)) ≥ c k0-n0 i=0 Ê0,x (1 T K =i ) × ν k0t1 = c P0,x (T K ≤ k 0 -n 0 )ν k0t1 ≥ c 2 ν k0t1 .
Hence, for all

n 1 ≥ k0t1 γ , for all x ∈ C R , δ x Q 0,k0t1 Q k0t1,n1γ ≥ c 2 ν k0t1 Q k0t1,n1γ .
Thus, Assumption 3 is satisfied taking

n 1 := n2t1 γ ∨ k0t1 γ , α := c 2 and ν(•) := ν k0t1 Q k0t1,n1γ
. Then, by [15, Theorem 1.2], Assumptions 2 and 3 imply that Q 0,n1γ admits a unique invariant probability measure β γ . Furthermore, there exists constants C > 0 and δ ∈ (0, 1) such that, for all µ ∈ M 1 (F 0 ),

µQ 0,nn1γ -β γ ψ0 ≤ Cµ( ψ0 )δ n . ( 15 
)
Since β γ is the unique invariant probability measure of Q 0,n1γ and noting that β γ Q 0,γ is invariant for Q 0,n1γ , we deduce that β γ is the unique invariant probability measure for Q 0,γ and, by [START_REF] Hairer | Yet another look at Harris' ergodic theorem for markov chains[END_REF], for all µ such that µ( ψ0 ) < +∞,

µQ 0,nγ -β γ ψ0 -→ n→∞ 0.
Now, for any s ≥ 0, note that δ x Q s, s γ γ ψ0 < +∞ for all x ∈ F s (this is a consequence of (7) applied to the semigroup (Q s,t ) s≤t ), and therefore, taking µ = δ x Q s, s γ γ in the above convergence, [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed onedimensional diffusions[END_REF], we conclude from the above convergence that

δ x Q s,nγ -β γ ψ0 -→ n→∞ 0 for all x ∈ F s . Hence, since Q nγ,nγ+s ψs ≤ C(1 + C 1-θ ) ψnγ by
δ x Q s,s+nγ -β γ Q 0,s ψs ≤ C(1 + C 1 -θ ) δ x Q s,nγ -β γ ψ0 -→ n→∞ 0. (16) 
Moreover, β γ ( ψ0 ) < +∞.

Second step. The first part of this step (until the equality ( 20)) is inspired by the proof of [START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized Doeblin's conditions[END_REF]Theorem 3.11].

We fix s ∈ [0, γ]. Without loss of generality, we assume that l≥0 E s+lγ ∩ F s = ∅. Then, by Definition 1, there exists x s ∈ l≥0 E s+lγ ∩ F s such that for any n ≥ 0,

δ xs P s+kγ,s+(k+n)γ [ψ s+(k+n)γ × •] -δ xs Q s,s+nγ [ ψs × •] T V -→ k→∞ 0, which implies by (16) that lim n→∞ lim k→∞ δ xs P s+kγ,s+(k+n)γ [ψ s+(k+n)γ × •] -β γ Q 0,s [ ψs × •] T V = 0. ( 17 
)
Then, by the Markov property, [START_REF] Champagnat | Uniform convergence to the Q-process[END_REF], and ( 7), one obtains that, for any k, n ∈ N and x ∈ l≥0 E s+lγ ,

δ x P s,s+(k+n)γ -δ x P s+kγ,s+(k+n)γ ψ s+(k+n)γ = (δ x P s,s+kγ ) P s+kγ,s+(k+n)γ -δ x P s+kγ,s+(k+n)γ ψ s+(k+n)γ ≤ C [P s,s+kγ ψ s+kγ (x) + ψ s+kγ (x)]e -κγn ≤ C [ψ s (x) + ψ s+kγ (x)]e -κγn , (18) 
whereby

C := C C 1 + C 1-θ ∨ 1 .
Then, for any k, n ∈ N,

δ xs P s,s+(k+n)γ [ψ s+(k+n)γ × •] -β γ Q 0,s [ ψs × •] T V ≤ C [ψ s (x) + ψ s+kγ (x)]e -κγn + δ xs P s+kγ,s+(k+n)γ [ψ s+(k+n)γ × •] -β γ Q 0,s [ ψs × •] T V , ( 19 
)
which by [START_REF] He | Some conditional limiting theorems for symmetric Markov processes with tightness property[END_REF] and the pointwise convergence of (ψ s+kγ ) k∈Z+ implies that lim n→∞

δ xs P s,s+nγ [ψ s+nγ ו]-β γ Q 0,s [ ψs ו] T V = lim n→∞ lim sup k→∞ δ xs P s,s+(k+n)γ [ψ s+(k+n)γ ו]-β γ Q 0,s [ ψs ו] T V = 0.
(20) The weak ergodicity [START_REF] Champagnat | Uniform convergence to the Q-process[END_REF] implies therefore that the previous convergence actually holds for any initial distribution 21) and Lebesgue's dominated convergence theorem implies that

µ ∈ M 1 (E 0 ) satisfying µ(ψ 0 ) < +∞, so that µP 0,s+nγ [ψ s+nγ × •] -β γ Q 0,s [ ψs × •] T V -→ n→∞ 0. ( 21 
) Since µP 0,s+nγ [ψ s+nγ × •] -β γ Q 0,s [ ψs × •] T V ≤ 2 for all µ ∈ M 1 (E 0 ), s ≥ 0 and n ∈ Z + , (
1 γ γ 0 µP 0,s+nγ [ψ s+nγ × •] -β γ Q 0,s [ ψs × •] T V ds -→ n→∞ 0, which implies that 1 γ γ 0 µP 0,s+nγ [ψ s+nγ × •]ds - 1 γ γ 0 β γ Q 0,s [ ψs × •]ds T V -→ n→∞ 0.
By Cesaro's lemma, this allows us to conclude that, for any µ ∈ M 1 (E 0 ) such that µ(ψ 0 ) < +∞,

1 t t 0 µP 0,s [ψ s × •]ds - 1 γ γ 0 β γ Q 0,s [ ψs × •]ds T V ≤ 1 t γ t γ k=0 1 γ γ 0 µP 0,s+kγ [ψ s+kγ × •]ds - 1 γ γ 0 β γ Q 0,s [ ψs × •]ds T V + 1 t t t γ γ µP 0,s [ψ s × •]ds T V -→ t→∞ 0,
which concludes the proof of (9).

Third step. In the same manner, we now prove that, for any µ ∈ M 1 (E 0 ) such that µ(ψ 0 ) < +∞,

1 t t 0 µP 0,s ds - 1 γ γ 0 β γ Q 0,s ds T V -→ t→∞ 0. ( 22 
)
In fact, for any function f bounded by 1 and

µ ∈ M 1 (E 0 ) such that µ(ψ 0 ) < +∞, µP 0,s+nγ ψ s+nγ × f ψ s+nγ -β γ Q 0,s ψs × f ψs ≤ µP 0,s+nγ ψ s+nγ × f ψ s+nγ -β γ Q 0,s ψs × f ψ s+nγ + β γ Q 0,s ψs × f ψ s+nγ -β γ Q 0,s ψs × f ψs ≤ µP 0,s+nγ [ψ s+nγ × •] -β γ Q 0,s [ ψs × •] T V + β γ Q 0,s ψs × f ψ s+nγ -β γ Q 0,s ψs × f ψs .
We now remark that, since ψ s+nγ ≥ 1 for any s and n ∈ Z + , one has that ψs

ψ s+nγ -1 ≤ 1 + ψs .
Since (ψ s+nγ ) n∈Z+ converges pointwisely towards ψs and β γ Q 0,s ψs < +∞, Lebesgue's dominated convergence theorem implies sup f ∈B1(E)

β γ Q 0,s ψs × f ψ s+nγ -β γ Q 0,s ψs × f ψs -→ n→∞ 0.
Then, using [START_REF] Höpfner | Ergodicity and limit theorems for degenerate diffusions with time periodic drift. application to a stochastic hodgkin-huxley model[END_REF], one has µP 0,s+nγ -

β γ Q 0,s T V -→ n→∞ 0,
which allows us to conclude [START_REF] Höpfner | Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input[END_REF], using the same argument as in the first step.

Fourth step. In order to show the L 2 -ergodic theorem, we let f ∈ B(E). For any x ∈ E 0 and t ≥ 0,

E 0,x 1 t t 0 f (X s )ds -E 0,x 1 t t 0 f (X s )ds 2 = 2 t 2 t 0 t s (E 0,x [f (X s )f (X u )] -E 0,x [f (X s )]E 0,x [f (X u )]) duds = 2 t 2 t 0 t s E 0,x [f (X s ) (f (X u ) -E 0,x [f (X u )])] duds = 2 t 2 t 0 t s E 0,x f (X s ) E s,Xs [f (X u )] -E s,δxP0,s [f (X u )] duds,
whereby the Markov property was used on the last line. By (8) (weak ergodicity) and ( 7), one obtains for any s ≤ t,

E s,Xs [f (X t )] -E s,δxP0,s [f (X t )] ≤ C f ∞ [ψ s (X s ) + ψ 0 (x)]e -κ(t-s) , P 0,x -almost surely, (23) 
whereby C was defined in the first part. As a result, for any x ∈ E 0 and t ≥ 0,

E 0,x 1 t t 0 f (X s )ds -E 0,x 1 t t 0 f (X s )ds 2 ≤ 2C f ∞ t 2 t 0 t s E 0,x [|f (X s )|(ψ s (X s )+ψ 0 (x))]e -κ(u-s) duds = 2C f ∞ t 2 t 0 E 0,x [|f (X s )|(ψ s (X s ) + ψ 0 (x))]
e κs e -κs -e -κt κ ds

= 2C f ∞ κt ×E 0,x 1 t t 0 |f (X s )|(ψ s (X s ) + ψ 0 (x))ds - 2C f ∞ e -κt κt 2 t 0 e κs E 0,x [|f (X s )|(ψ s (X s )+ψ 0 (x))]ds.
Then, by [START_REF] Champagnat | Uniform convergence of penalized time-inhomogeneous Markov processes[END_REF], there exists a constant C > 0 such that, for any x ∈ E 0 , when t → ∞,

E 0,x 1 t t 0 f (X s )ds -E 0,x 1 t t 0 f (X s )ds 2 ≤ C f ∞ ψ 0 (x) t × 1 γ γ 0 β γ Q 0,s [|f | ψs ]ds + o 1 t . ( 24 
)
Since f ∈ B(E) and by definition of the total variation distance, [START_REF] Höpfner | Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input[END_REF] implies that, for all x ∈ E 0 ,

1 t t 0 P 0,s f (x) - 1 γ γ 0 β γ Q 0,s f ds ≤ f ∞ 1 t t 0 δ x P 0,s ds - 1 γ γ 0 β γ Q 0,s ds T V -→ t→∞ 0.
Then, using [START_REF] Höpfner | Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input[END_REF], one deduces that, for any x ∈ E 0 and bounded function f ,

E 0,x 1 t t 0 f (X s )ds - 1 γ γ 0 β γ Q 0,s f ds 2 ≤ 2 E 0,x 1 t t 0 f (X s )ds - 1 t t 0 P 0,s f (x) 2 + 1 t t 0 P 0,s f (x) - 1 γ γ 0 β γ Q 0,s f ds 2 -→ t→∞ 0.
The convergence for any probability measure µ ∈ M 1 (E 0 ) comes from Lebesgue's dominated convergence theorem.

Fifth step. We now fix non-negative f ∈ B(E), and µ ∈ M 1 (E 0 ) satisfying µ(ψ 0 ) < +∞. The following proof is inspired by the proof of [START_REF] Vassiliou | Laws of large numbers for non-homogeneous Markov systems[END_REF]Theorem 12].

Since µ(ψ 0 ) < +∞, the inequality [START_REF] Oçafrain | Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically[END_REF] entails that there exists a finite constant C f,µ ∈ (0, ∞) such that, for t large enough,

E 0,µ 1 t t 0 f (X s )ds -E 0,µ 1 t t 0 f (X s )ds 2 ≤ C f,µ t .
Then, for n large enough,

E 0,µ   1 n 2 n 2 0 f (X s )ds -E 0,µ 1 n 2 n 2 0 f (X s )ds 2   ≤ C f,µ n 2 .
Then, by Chebyshev's inequality and the Borel-Cantelli lemma, this last inequality implies that

1 n 2 n 2 0 f (X s )ds -E 0,µ 1 n 2 n 2 0 f (X s )ds -→ n→∞ 0, P 0,µ -almost surely.
One thereby obtains by the convergence ( 22) that

1 n 2 n 2 0 f (X s )ds -→ n→∞ 1 γ γ 0 β γ Q 0,s f ds, P 0,µ -almost surely. ( 25 
)
Since the nonnegativity of f is assumed, this implies that for any t > 0 we have

√ t 2 0 f (X s )ds ≤ t 0 f (X s )ds ≤ √ t 2 0 f (X s )ds.
These inequalities and (25) then give that

1 t t 0 f (X s )ds -→ t→∞ 1 γ γ 0 β γ Q 0,s f ds, P 0,µ -almost surely.
In order to conclude that the result holds for any bounded measurable function f , it is enough to decompose f = f + -f -with f + := f ∨ 0 and f -= (-f ) ∨ 0 and apply the above convergence to f + and f -. This concludes the proof of Theorem 1.

Proof of Corollary 1. We remark as in the previous proof that, if f ∞ ≤ 1 and ψ s = 1, an upper-bound for the inequality (24) can be obtained, which does not depend on f and x. Likewise, the convergence (21) holds uniformly in the initial measure due to [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF].

Remark 3. The proof of Theorem 1, as written above, does not allow to deal with semigroups satisfying a Doeblin condition with time-dependent constant c s , that is such that there exists t 0 ≥ 0 and a family of probability measure (ν t ) t≥0 on (E t ) t≥0 such that, for all s ≥ 0 and x ∈ E s ,

δ x P s,s+t0 ≥ c s+t0 ν s+t0 .
In fact, under the condition written above, we can show (see for example the proof of the formula (2.7) of [9, Theorem 2.1]) that, for all s ≤ t and µ 1 , µ 2 ∈ M 1 (E s ),

µ 1 P s,t -µ 2 P s,t T V ≤ 2 t-s t 0 k=1 (1 -c t-kt0 ).
Hence, by this last inequality with µ 1 = δ x P s,s+kγ , µ 2 = δ x , replacing s by s + kγ and t by s + (k + n)γ, one obtains

δ x P s,s+(k+n)γ -δ x P s+kγ,s+(k+n)γ T V ≤ 2 nγ t 0 l=1 (1 -c s+(k+n)γ-lt0 ),
replacing therefore the inequality [START_REF] He | On the quasi-ergodic distribution of absorbing Markov processes[END_REF] in the proof of Theorem 1. Plugging therefore this last inequality into the formula [START_REF] Hening | Stochastic Lotka-Volterra food chains[END_REF], one obtains

δ x P s,s+(k+n)γ -β γ Q 0,s T V ≤ 2 nγ t 0 l=1 (1 -c s+(k+n)γ-lt0 ) + δ x P s+kγ,s+(k+n)γ -β γ Q 0,s T V .
Hence, we see that we cannot conclude a similar result when c s -→ 0, as s → +∞ since, for n fixed, lim sup

k→∞ nγ t 0 l=1 (1 -c s+(k+n)γ-lt0 ) = 1.

Application to quasi-stationarity with moving boundaries

In this section, (X t ) t≥0 is assumed as being a time-homogeneous Markov process. We consider a family of measurable subsets (A t ) t≥0 of E, and denote the hitting time

τ A := inf{t ≥ 0 : X t ∈ A t }.
For all s ≤ t, denote by F s,t the σ-field generated by the family (X u ) s≤u≤t and F t := F 0,t . Assume that τ A is a stopping time with respect to the filtration (F t ) t≥0 . Assume also that for any x ∈ A 0 ,

P 0,x [τ A < +∞] = 1 and P 0,x [τ A > t] > 0, ∀t ≥ 0.
We will be interested in a notion of quasi-stationarity with moving boundaries, which studies the asymptotic behavior of the Markov process (X t ) t≥0 conditioned not to hit (A t ) t≥0 up to the time t. For non-moving boundaries (A t = A 0 for any t ≥ 0), the quasi-limiting distribution is defined as a probability measure α such that, for at least one initial measure µ and for all measurable subsets A ⊂ E,

P 0,µ [X t ∈ A|τ A > t] -→ t→∞ α(A).
Such a definition is equivalent (still in the non-moving framework) to the notion of quasi-stationary distribution defined as a probability measure α such that, for any t ≥ 0,

P 0,α [X t ∈ •|τ A > t] = α. ( 26 
)
If quasi-limiting and quasi-stationary distributions are in general well-defined for time-homogeneous Markov processes and non-moving boundaries (see [START_REF] Collet | Quasi-stationary distributions[END_REF][START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF] for a general overview on the theory of quasi-stationarity), these notions could be not well-defined for time-inhomogeneous Markov processes or moving boundaries and are not equivalent anymore. In particular, under reasonable assumptions on irreducibility, it was shown in [START_REF] Oçafrain | Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically[END_REF] that the notion of quasi-stationary distribution as defined by ( 26) is not well-defined for time-homogeneous Markov processes absorbed by moving boundaries.

Another asymptotic notion to study is the quasi-ergodic distribution, related to a conditional version of the ergodic theorem and usually defined as follows.

Definition 2. A probability measure β is a quasi-ergodic distribution if, for some initial measure µ ∈ M 1 (E \ A 0 ) and for any bounded continuous function f ,

E 0,µ 1 t t 0 f (X s )ds τ A > t -→ t→∞ β(f ).
In the time-homogeneous setting (in particular for non-moving boundaries), this notion has been extensively studied (see for example [START_REF] Breyer | A quasi-ergodic theorem for evanescent processes[END_REF][START_REF] Champagnat | Uniform convergence to the Q-process[END_REF][START_REF] Chen | A deviation inequality and quasi-ergodicity for absorbing Markov processes[END_REF][START_REF] Colonius | Quasi-ergodic limits for finite absorbing Markov chains[END_REF][START_REF] Darroch | On quasi-stationary distributions in absorbing discrete-time finite Markov chains[END_REF][START_REF] He | A note on the quasi-ergodic distribution of one-dimensional diffusions[END_REF][START_REF] He | Some conditional limiting theorems for symmetric Markov processes with tightness property[END_REF][START_REF] He | On the quasi-ergodic distribution of absorbing Markov processes[END_REF][START_REF] Oçafrain | Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically[END_REF]). In the "moving boundaries" framework, the existence of quasi-ergodic distributions has been dealt with in [START_REF] Oçafrain | Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically[END_REF] for Markov chains on finite state spaces absorbed by periodic boundaries, and in [START_REF] Oçafrain | Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries[END_REF] for processes satisfying a Champagnat-Villemonais condition (see Assumption (A') set later) absorbed by converging or periodic boundaries. In this last paper, the existence of the quasi-ergodic distribution is dealt with through the following inequality (see [START_REF] Oçafrain | Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries[END_REF]Theorem 1]), holding for any initial state x, s ≤ t and for some constant C, γ > 0 independent of x, s and t:

P 0,x (X s ∈ •|τ A > t) -Q 0,x (X s ∈ •) T V ≤ Ce -γ(t-s) ,
where the family of probability measure (Q s,x ) s≥0,x∈Es is defined by

Q s,x [Γ] := lim T →∞ P s,x [Γ|τ A > T ], ∀s ≤ t, x ∈ E \ A s , Γ ∈ F s,t .
Moreover, [9, Proposition 3.1], there exists a family of positive bounded functions (η t ) t≥0 defined in such that, for all s ≤ t and x ∈ E s , E s,x (η t (X t )1 τ A >t ) = η s (x). Then, we can show (this is actually shown in [START_REF] Champagnat | Uniform convergence of penalized time-inhomogeneous Markov processes[END_REF]) that

Q s,x (Γ) = E s,x (1 Γ,τ A >t η t (X t ) η s (x) )
and that, for all µ ∈ M 1 (E 0 ),

P 0,µ (X s ∈ •|τ A > t) -Q 0,η0 * µ (X s ∈ •) T V ≤ Ce -γ(t-s) .
where η 0 * µ(dx) := η0(x)µ(dx) µ(η0)

. By triangular inequality, one has

1 t t 0 P 0,µ [X s ∈ •|τ A > t]ds - 1 t t 0 Q 0,η0 * µ [X s ∈ •]ds T V ≤ C γt , ∀t > 0, (27) 
In particular, the inequality (27) implies that there exists a quasi-ergodic distribution β for the process (X t ) t≥0 absorbed by (A t ) t≥0 if and only if there exist some probability measures µ ∈ M 1 (E 0 ) such that 1 t t 0 Q 0,η0 * µ [X s ∈ •]ds converges weakly to β, when t goes to infinity. In other terms, under Assumption (A'), the existence of a quasi-ergodic distribution for the absorbed process is equivalent to the law of large number for its Q-process.

Assumption (A') is now set.

Assumption (A').

There exists a family of probability measures (ν t ) t≥0 , defined on E \ A t for each t, such that:

(A'1) There exists t 0 ≥ 0 and c 1 > 0 such that

P s,x [X s+t0 ∈ •|τ A > s + t 0 ] ≥ c 1 ν s+t0 , ∀s ≥ 0, ∀x ∈ E \ A s .
(A'2) There exists c 2 > 0 such that

P s,νs [τ A > t] ≥ c 2 P s,x [τ A > t], ∀s ≤ t, ∀x ∈ E \ A s .
In what follows, we say that the couple {(X t ) t≥0 , (A t ) t≥0 } satisfies Assumption (A') when it holds for the Markov process (X t ) t≥0 considered as absorbed by the moving boundary (A t ) t≥0 .

The condition (A'1) is a conditional version of the Doeblin condition ( 12) and (A'2) is a Harnack-like inequality on the probabilities of surviving, necessary to deal with the conditioning. They are equivalent to the set of conditions presented in [1, Definition 2.2], when the non-conservative semigroup is sub-Markovian. In the timehomogeneous framework, we obtain the Champagnat-Villemonais condition defined in [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF] (see Assumption (A)), shown as being equivalent to the exponential uniform convergence to quasi-stationarity in total variation.

In [START_REF] Oçafrain | Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries[END_REF], the existence of a unique quasi-ergodic distribution has been only proved for converging or periodic boundaries. However, we can expect such a result of existence (and uniqueness) for other kinds of movement for the boundary. Hence, the aim of this section is to extend the results on the existence of quasi-ergodic distributions obtained in [START_REF] Oçafrain | Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries[END_REF] for Markov processes absorbed by asymptotically periodic moving boundaries. Now, let us state the following theorem.

Theorem 2. Assume that there exists a γ-periodic sequence of subsets (B t ) t≥0 such that, for any s ∈ [0, γ),

E s := E \ k∈Z+ l≥k A s+lγ ∪ B s = ∅
and there exists x s ∈ E s such that, for any n ≤ N ,

P s+kγ,xs [X s+(k+n)γ ∈ •, τ A > s + (k + N )γ] -P s,xs [X s+nγ ∈ •, τ B > s + N γ] T V -→ k→∞ 0. ( 28 
)
Assume also that Assumption (A') is satisfied by the couples {(X t ) t≥0 , (A t ) t≥0 } and {(X t ) t≥0 , (B t ) t≥0 }.

Then there exists a probability measure

β ∈ M 1 (E) such that sup µ∈M1(E\A0) sup f ∈B1(E) E 0,µ 1 t t 0 f (X s )ds -β(f ) 2 τ A > t -→ t→∞ 0. ( 29 
)
Remark 4. Remark that the condition (28) implies that, for any n ∈ Z + ,

P s+kγ,xs [τ A > s + (k + n)γ] -→ k→∞ P s,xs [τ B > s + nγ].
Under the additional condition B t ⊂ A t for all t ≥ 0, these two conditions are equivalent, since for all n ≤ N ,

P s+kγ,xs [X s+(k+n)γ ∈ •, τ A > s + (k + N )γ] -P s,xs [X s+nγ ∈ •, τ B > s + N γ] T V = P s+kγ,xs [X s+(k+n)γ ∈ •, τ B ≤ s + (k + N )γ < τ A ] T V ≤ P s+kγ,xs [τ B ≤ s + (k + N )γ < τ A ] = |P s+kγ,xs [τ A > s + (k + N )γ] -P s,xs [τ B > s + N γ]|,
where we used the periodicity of (B t ) t≥0 , writing that P The main idea of this proof is to apply Corollary 1. Since {(X t ) t≥0 , (A t ) t≥0 } and {(X t ) t≥0 , (B t ) t≥0 } satisfy Assumption (A'), [START_REF] Oçafrain | Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries[END_REF]Theorem 1] implies that there exist two families of probability measures (Q A s,x ) s≥0,x∈E\As and (Q B s,x ) s≥0,x∈E\Bs such that, for any

s ≤ t, x ∈ E \ A s , y ∈ E \ B s and Γ ∈ F s,t , Q A s,x [Γ] = lim T →∞ P s,x [Γ|τ A > T ], and Q B s,y [Γ] = lim T →∞ P s,y [Γ|τ B > T ].
In particular, the quasi-ergodic distribution β is the limit of t → 1

t t 0 Q B 0,µ [X s ∈ •]
ds, when t goes to infinity (see [START_REF] Oçafrain | Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries[END_REF]Theorem 5]). Also, by [START_REF] Oçafrain | Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries[END_REF]Theorem 1], there exists a constant C > 0 and κ > 0 such that, for any s ≤ t ≤ T , for any

x ∈ E \ A s , Q A s,x [X t ∈ •] -P s,x [X t ∈ •|τ A > T ] T V ≤ Ce -κ(T -t) , and for any x ∈ E \ B s , Q B s,x [X t ∈ •] -P s,x [X t ∈ •|τ B > T ] T V ≤ Ce -κ(T -t) .
Moreover, for any s ≤ t ≤ T and x ∈ E s ,

P s,x [X t ∈ •|τ A > T ] -P s,x [X t ∈ •|τ B > T ] T V = P s,x [X t ∈ •, τ A > T ] P s,x [τ A > T ] - P s,x [X t ∈ •, τ B > T ] P s,x [τ B > T ] T V = P s,x (τ B > T ) P s,x (τ A > T ) P s,x [X t ∈ •, τ A > T ] P s,x [τ B > T ] - P s,x [X t ∈ •, τ B > T ] P s,x [τ B > T ] T V ≤ P s,x (τ B > T ) P s,x (τ A > T ) P s,x [X t ∈ •, τ A > T ] P s,x [τ B > T ] - P s,x [X t ∈ •, τ A > T ] P s,x [τ B > T ] T V + P s,x [X t ∈ •, τ A > T ] P s,x [τ B > T ] - P s,x [X t ∈ •, τ B > T ] P s,x [τ B > T ] T V ≤ |P s,x (τ B > T ) -P s,x (τ A > T )| P s,x (τ B > T ) + P s,x [X t ∈ •, τ A > T ] -P s,x [X t ∈ •, τ B > T ] T V P s,x [τ B > T ] ≤ 2 P s,x [X t ∈ •, τ A > T ] -P s,x [X t ∈ •, τ B > T ] T V P s,x [τ B > T ] , ( 30 
) since |P s,x (τ B > T ) -P s,x (τ A > T )| ≤ P s,x [X t ∈ •, τ A > T ] -P s,x [X t ∈ •, τ B > T ] T V .
Then, we obtain for any s ≤ t ≤ T and x ∈ E s ,

Q A s,x [X t ∈ •] -Q B s,x [X t ∈ •] T V ≤ 2Ce -κ(T -t) + 2 P s,x [X t ∈ •, τ A > T ] -P s,x [X t ∈ •, τ B > T ] T V P s,x [τ B > T ] . ( 31 
)
The condition (28) implies the existence of x s ∈ E s such that, for any n ≤ N , for all k ∈ Z + ,

lim k→∞ P s+kγ,xs [X s+(k+n)γ ∈ •, τ A > s + (k + N )γ] -P s,xs [X s+nγ ∈ •, τ B > s + N γ] T V = 0,
which implies by (31) that, for any n ≤ N , lim sup

k→∞ Q A s+kγ,xs [X s+(k+n)γ ∈ •] -Q B s+kγ,xs [X s+(k+n)γ ∈ •] T V ≤ 2Ce -κγ(N -n) . Now, letting N → ∞, for any n ∈ Z + lim k→∞ Q A s+kγ,xs [X s+(k+n)γ ∈ •]-Q B s+kγ,xs [X s+(k+n)γ ∈ •] T V = lim k→∞ Q A s+kγ,xs (X s+(k+n)γ ∈ •)-Q B s,xs (X s+nγ ∈ •) T V = 0.
In other words, the semigroup (Q A s,t ) s≤t defined by

Q A s,t f (x) := E Q A s,x (f (X t )), ∀s ≤ t, ∀f ∈ B(E \ A t ), ∀x ∈ E \ A s ,
is asymptotically periodic (according to the Definition 1, with ψ s = ψs = 1 for all s ≥ 0), associated to the auxiliary semigroup (Q B s,t ) s≤t defined by

Q B s,t f (x) := E Q B s,x (f (X t )), ∀s ≤ t, ∀f ∈ B(E \ B t ), ∀x ∈ E \ B s .
Moreover, assumptions (A') satisfied for {(X t ) t≥0 , (A t ) t≥0 } and {(X t ) t≥0 , (B t ) t≥0 } imply that Doeblin condition holds for these two Q-processes. As a matter of fact, by the Markov property, for all s ≤ t ≤ T and x ∈ E \ A s ,

P s,x (X t ∈ •|τ A > T ) = E s,x 1 Xt∈•,τ A >t P t,Xt (τ A > T ) P s,µ (τ A > T ) = E s,x 1 Xt∈•,τ A >t P s,x (τ A > t) P t,Xt (τ A > T ) P t,φt,s(µ) (τ A > T ) = E s,x 1 Xt∈• P t,Xt (τ A > T ) P t,φt,s(δx) (τ A > T ) τ A > t . ( 32 
)
By (A 1 ), for all s ≥ 0, T ≥ s + t 0 and x ∈ E \ A s ,

E s,x 1 Xs+t 0 ∈• P s+t0,Xs+t 0 (τ A > T ) P s+t0,φs+t 0 ,s(δx ) (τ A > T ) τ A > s + t 0 ≥ c 1 • ν s+t0 (dy) P s+t0,y (τ A > T ) P s+t0,φs+t 0 ,s (δx) (τ A > T )
, that is to say by (32) that

P s,x (X s+t0 ∈ •|τ A > T ) ≥ c 1 • ν s+t0 (dy) P s+t0,y (τ A > T ) P s+t0,φs+t 0 ,s (δx) (τ A > T ) .
Letting T → ∞ in this last inequality and using [9, Proposition 3.1], for all s ≥ 0 and x ∈ E \ A s ,

Q A s,x (X s+t0 ∈ •) ≥ c 1 • ν s+t0 (dy) η s+t0 (y) φ s+t0,s (δ x )(η s+t0 )
.

The measure • ν s+t0 (dy) ηs+t 0 (y) φs+t 0 ,s(δx )(ηs+t 0 ) is then a positive measure whose the mass is lower-bounded by c 2 by (A 2 ), since for all s ≥ 0 and T ≥ s + t 0 ,

E\As+t 0 ν s+t0 P t,x (τ A > T ) P t,φt,s(δx) (τ A > T ) ≥ c 2 .
This proves therefore a Doeblin condition for the semigroup (Q A s,t ) s≤t . The same reasoning applies to show also a Doeblin condition for the semigroup (Q B s,t ) s≤t . Then, using (27) then Corollary 1, lim t→∞

1 t t 0 P 0,µ [X s ∈ •|τ A > t]ds = lim t→∞ 1 t t 0 Q A 0,η0 * µ (X s ∈ •)ds = lim t→∞ 1 t t 0 Q B 0,η0 * µ [X s ∈ •]ds = β,
where the limits refer to the convergence in total variation and hold uniformly in the initial measure.

For

any µ ∈ M 1 (E \ A 0 ), f ∈ B 1 (E) and t ≥ 0, E 0,µ 1 t t 0 f (X s )ds 2 τ A > t = 2 t 2 t 0 t s E 0,µ [f (X s )f (X u )|τ A > t]duds.
Then, by [25, Theorem 1], for any s ≤ u ≤ t, for any µ ∈ M 1 (E \ A 0 ) and f ∈ B(E),

E 0,µ [f (X s )f (X u )|τ A > t] -E Q A 0,η0 * µ [f (X s )f (X u )] ≤ C f ∞ e -κ(t-u) ,
where the expectation

E Q A 0,η0 * µ is associated to the probability measure Q A 0,η0 * µ . Hence, for any µ ∈ M 1 (E \ A 0 ), f ∈ B 1 (E) and t > 0, E 0,µ 1 t t 0 f (X s )ds -β(f ) 2 τ A > t -E Q A 0,η0 * µ 1 t t 0 f (X s )ds -β(f ) 2 ≤ 4C t 2 t 0 t s e -κ(t-u) duds ≤ 4C κt - 4C(1 -e -κt ) κ 2 t 2 .
Moreover, since (Q A s,t ) s≤t is asymptotically periodic in total variation and satisfies the Doeblin condition, like

(Q B s,t ) s≤t , Corollary 1 implies that sup µ∈M1(E\A0) sup f ∈B1(E) E Q A 0,η0 * µ 1 t t 0 f (X s )ds -β(f ) 2 -→ t→∞ 0. Then sup µ∈M1(E\A0) sup f ∈B1(E) E 0,µ 1 t t 0 f (X s )ds -β(f ) 2 τ A > t -→ t→∞ 0.
Remark 5. It seems that Assumption (A') can be weaken by a conditional version of Assumption 1. In particular, such conditions can be derived from the Assumption (F) presented in [START_REF] Champagnat | General criteria for the study of quasi-stationarity[END_REF], as it will be shown later by the preprint [START_REF] Champagnat | Quasi-stationarity for time-(in)homogeneous Markov processes absorbed by moving boundaries through Lyapunov criteria[END_REF] in preparation.

Examples

Asymptotically periodic Ornstein-Uhlenbeck processes

Let (X t ) t≥0 be a time-inhomogeneous diffusion process on R satisfying the following stochastic differential equation

dX t = dW t -λ(t)X t dt,
where (W t ) t≥0 is a one-dimensional Brownian motion and λ By Itô's lemma, for any s ≤ t,

: [0, ∞) → [0, ∞) is
X t = e - t s λ(u)du X s + t s e u s λ(v)dv dW u .
In particular, denoting (P s,t ) s≤t the semigroup associated to (X t ) t≥0 , for any f ∈ B(R), t ≥ 0 and x ∈ R,

P s,t f (x) = E   f   e - t s λ(u)du x + e - t s λ(u)du t s e 2 u s λ(v)dv du × N (0, 1)     ,
where N (0, 1) denotes a standard Gaussian variable.

Theorem 3. Assume that there exists a γ-periodic function g, bounded on R, such that λ ∼ t→∞ g. Then the assumptions of Theorem 1 hold.

Proof. In our case, the auxiliary semigroup (Q s,t ) s≤t of Definition 1 will be defined as follows: for any f ∈ B(R), t ≥ 0 and x ∈ R,

Q s,t f (x) = E   f   e - t s g(u)du x + e - t s g(u)du t s e 2 u s g(v)dv du × N (0, 1)     .
In particular, the semigroup (Q s,t ) s≤t is associated to the process (Y t ) t≥0 following

dY t = dW t -g(t)Y t dt.
We first remark that the function ψ : x → 1 + x 2 is a Lyapunov function for (P s,t ) s≤t and (Q s,t ) s≤t . In fact, for any s ≥ 0 and x ∈ R, λ(u)du > 0. Taking θ ∈ (e -2γc inf , 1), there exists a compact set K such that, for any s ≥ 0, P s,s+γ ψ(x) ≤ θψ(x) + C1 K (x).

P s,s+γ ψ(x) = 1 + e -2 s+γ s λ(u)du x 2 + e
Moreover, for any s ≥ 0 and t ∈ [0, γ), the function P s,s+t ψ/ψ is upper-bounded uniformly in s and t. It remains therefore to prove Assumption 1 (i) for (P s,t ) s≤t , which is a consequence of the following lemma. The proof of this lemma is postponed after the end of this proof. Since λ ∼ t→∞ g and these two functions are bounded on R + , Lebesgue's dominated convergence theorem implies that, for all s ≤ t, Using [14, Theorem 1.3.], for any x ∈ R,

δ x P s+kγ,t+kγ -δ x Q s+kγ,t+kγ T V -→ k→∞ 0. ( 33 
)
To deduce the convergence in ψ-distance, we will inspire from the proof of [START_REF] Hening | Stochastic Lotka-Volterra food chains[END_REF]Lemma 3.1]. Since the variances are uniformly bounded in k (for s ≤ t fixed), there exists H > 0 such that, for any k ∈ N and s ≤ t,

δ x P s+kγ,t+kγ [ψ 2 ] ≤ H and δ x Q s,t [ψ 2 ] ≤ H. ( 34 
)
Since lim |x|→∞ ψ(x) ψ 2 (x) = 0, for any > 0, there exists l > 0 such that, for any function f such that |f | ≤ ψ and for any |x| ≥ l ,

|f (x)| ≤ ψ(x) 2 H .
This implies with (34) that, denoting K := [-l , l ], for any k ∈ Z + , f such that |f | ≤ ψ and x ∈ R,

δ x P s+kγ,t+kγ [f 1 K c ] ≤ and δ x Q s,t [f 1 K c ] ≤ .
Then, for any k ∈ Z + and f such that |f | ≤ ψ,

|δ x P s+kγ,t+kγ f -δ x Q s,t f | ≤ 2 + |δ x P s+kγ,t+kγ [f 1 K ] -δ x Q s,t [f 1 K ]| (35) ≤ 2 + (1 + l 2 ) δ x P s+kγ,t+kγ -δ x Q s,t T V (36)
Hence, (33) implies that, for k large enough, for any f bounded by ψ,

|δ x P s+kγ,t+kγ f -δ x Q s,t f | ≤ 3 , ( 37 
)
implying that

δ x P s+kγ,t+kγ -δ x Q s,t ψ -→ k→∞ 0.
We now prove Lemma 1.

Proof of Lemma 1. Defining

f ν (x) := e - (x-a) 2 2b - 2 ∧ e - (x+a) 2 2b - 2 ,
we conclude easily that, for any m ∈ [-a, a] and σ ≥ b -, for any x ∈ R,

e -(x-m) 2 2σ 2 ≥ f ν (x).
Imposing moreover that σ ≤ b + , one has

1 √ 2πσ e -(x-m) 2 2σ 2 ≥ 1 √ 2πb + f ν (x),
which concludes the proof.

Quasi-ergodic distribution for Brownian motion absorbed by an asymptotically periodic moving boundary

Let (W t ) t≥0 be a one-dimensional Brownian motion and h be a C 1 -function such that

h min := inf t≥0 h(t) > 0, and 
h max := sup t≥0 h(t) < +∞.
We assume also that

-∞ < inf t≥0 h (t) ≤ sup t≥0 h (t) < +∞.
Denote by

τ h := inf{t ≥ 0 : |W t | ≥ h(t)}.
Since h is continuous, the hitting time τ h is a stopping time with respect to the natural filtration of (W t ) t≥0 . Moreover, since sup t≥0 h(t) < +∞ and inf t≥0 h(t) > 0,

P s,x [τ h < +∞] = 1 and P s,x [τ h > t] > 0, ∀s ≤ t, ∀x ∈ [-h(s), h(s)].
The main assumption on the function h is the existence of a γ-periodic function g such that h(t) ≤ g(t), for any t ≥ 0, and such that h ∼ t→∞ g, and h ∼ t→∞ g .

Similarly to τ h , denote

τ g := inf{t ≥ 0 : |W t | = g(t)}.
Finally, let us assume that there exists n 0 ∈ N such that, for any s ≥ 0,

inf{u ≥ s : h(u) = inf t≥s h(t)} -s ≤ n 0 γ. ( 38 
)
This condition says that there exists n 0 ∈ N such that, for any time s ≥ 0, the infimum of the function h on the domain [s, +∞) is reached on the subset [s, s + n 0 γ].

We first show the following proposition.

Proposition 1. The Markov process (W t ) t≥0 , considered as absorbed by h or by g, satisfies Assumption (A').

Proof. In what follows, Assumption (A') w.r.t. the absorbing function h will be shown. The following proof could easily be adapted for the function g.

• Proof of (A'1). Denote T := {s ≥ 0 : h(s) = inf t≥s h(t)}. The condition (38) implies that this set contains an infinity of times.

In what follows, the following notation is needed: for any z ∈ R, define τ z as

τ z := inf{t ≥ 0 : |W t | = z}.
Also, let us state that, since the Brownian motion absorbed at {-1, 1} satisfies Assumption (A) of [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF] at any time (see [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed onedimensional diffusions[END_REF]), it follows that, for a given t 0 > 0, there exists c > 0 and ν ∈ M 1 ((-1, 1)) such that, for any x ∈ (-1, 1),

P 0,x W t 0 h 2 max ∧t0 ∈ • τ 1 > t 0 h 2 max ∧ t 0 ≥ cν. ( 39 
)
Moreover, regarding the proof of [7, Section 5.1], the probability measure can be expressed as

ν = 1 2 (P 0,1-[W t2 ∈ •|τ 1 > t 2 ] + P 0,-1+ [W t2 ∈ •|τ 1 > t 2 ]) , ( 40 
)
for some 0 < t 2 < t0 h 2 max ∧ t 0 and ∈ (0, 1).

The following lemma is very important for the following.

Lemma 2. For all z ∈ [h min , h max ],

P 0,x [W u ∈ •|τ z > u] ≥ cν z , ∀x ∈ (-z, z), ∀u ≥ t 0 ,
where t 0 was evoked before, c > 0 is the same constant as in (39) and

ν z (f ) = (-1,1) f (zx)ν(dx),
with ν ∈ M 1 ((-1, 1)) defined in (40).

The proof of this lemma is postponed after the current proof.

Let s ∈ T . Then, for all x ∈ (-h(s), h(s)) and t ≥ 0,

P s,x [W s+t ∈ •|τ h > s + t] ≥ P s,x [τ h(s) > s + t] P s,x [τ h > s + t] P s,x [W s+t ∈ •|τ h(s) > s + t],
By Lemma 2, for all x ∈ (-h(s), h(s)) and t ≥ t 0 ,

P s,x [W s+t ∈ •|τ h(s) > s + t] ≥ cν h(s) ,
which implies therefore that, for any t ∈ [t 0 , t 0 + n 0 γ],

P s,x [W s+t ∈ •|τ h > s + t] ≥ P s,x [τ h(s) > s + t] P s,x [τ h > s + t] cν h(s) ≥ P s,x [τ h(s) > s + t 0 + n 0 γ] P s,x [τ h > s + t 0 ] cν h(s) . ( 41 
)
Let us introduce the process X h defined by, for all t ≥ 0,

X h t := W t h(t) .
By Itô's formula, for any t ≥ 0, 

X h t = X h 0 + t 0 dW s h(s) - t 0 h (s) h(s) X h s ds.

Denote by (M

= h(t) h(s) exp - 1 2 h (t)h(t)w 2 I h (t) -h (s)h(s)w 2 I h (s) + t s w 2 I h (u) [(h (u)) 2 -[h(u)h (u)] ]du , (42) 
Girsanov theorem implies that, for all x ∈ (-h(s), h(s)),

P s,x [τ h > s + t 0 ] = E I h (s), x h(s) E h s,s+t0 (W )1 τ1> s+t 0 0 1 h 2 (u) du . ( 43 
)
On the event {τ 1 > s+t0 0 1 h 2 (u) du}, and since h and h are bounded on R + , the random variable E h s,s+t0 (W ) is almost surely bounded by a constant C > 0, uniformly in s, such that for all x ∈ (-h(s), h(s)),

E I h (s), x h(s) E h s,s+t0 (W )1 τ1> s+t 0 0 1 h 2 (u) du ≤ CP 0, x h(s) τ 1 > s+t0 s 1 h 2 (u) du . ( 44 
) Since h(t) ≥ h(s) for all t ≥ s (since s ∈ T ), I h (s + t 0 ) -I h (s) ≤ t0 h(s) 2 .
By the scaling property of the Brownian motion and by Markov property, one has for all x ∈ (-h(s), h(s)),

P s,x [τ h(s) > s + t 0 ] = P 0,x [τ h(s) > t 0 ] = P 0, x h(s) τ 1 > t 0 h 2 (s) = E 0, x h(s) 1 τ1> s+t 0 s 1 h 2 (u) du P 0,W s+t 0 s 1 h 2 (u) du τ 1 > t 0 h 2 (s) - s+t0 s 1 h 2 (s) ds = P 0, x h(s) τ 1 > s+t0 s 1 h 2 (u) du P 0,φ I h (s+t 0 )-I h (s) (δx) τ 1 > t 0 h 2 (s) - s+t0 s 1 h 2 (u) du ,
where, for any initial distribution µ and any t ≥ 0,

φ t (µ) := P 0,µ [W t ∈ •|τ 1 > t].
The family (φ t ) t≥0 satisfies the equality φ t • φ s = φ t+s for all s, t ≥ 0. By this property, and using that

I h (s + t 0 ) -I h (s) ≥ t0 h 2 max
for any s ≥ 0, the minorization (39) implies that, for all s ≥ 0 and x ∈ (-1, 1),

φ I h (s+t0)-I h (s) (δ x ) ≥ cν.
Hence, by this minorization, and using that h is upper-bounded and lower-bounded positively on R + , one has for all x ∈ (-1, 1),

P 0,φ I h (s+t 0 )-I h (s) (δx) τ 1 > t 0 h 2 (s) - s+t0 s 1 h 2 (u) du ≥ cP 0,ν τ 1 > inf s≥0 t 0 h 2 (s) - s+t0 s 1 h 2 (u) du ,
that is to say,

P s,x [τ h(s) > s + t 0 ] P 0, x h(s) τ 1 > s+t0 s 1 h 2 (u) du ≥ cP 0,ν τ 1 > inf s≥0 γ h 2 (s) - s+t0 s 1 h 2 (u)
du .

In other words, we just showed that, for all x ∈ (-h(s), h(s)), This concludes the proof of (A'1).

P
• Proof of (A'2 This concludes the proof since, using (40), one has ν([-a, a]) > 0.

We now prove Lemma 2.

Proof of Lemma 2. This result comes from the scaling property of a Brownian motion. In fact, for any z ∈ [h min , h max ], x ∈ (-z, z) and t ≥ 0, and for any measurable bounded function f ,

E 0,x [f (W t )|τ z > t] = E 0,x f z × 1 z W z 2 t z 2 τ z > t = E 0, x z f z × W t z 2 τ 1 > t z 2 .
Then, the minorization (39) implies that, for any x ∈ (-1, 1),

P 0,x W t 0 h 2 max ∈ • τ 1 > t 0 h 2 max ≥ cν.
This inequality holds for any time greater than t0 h 2 max . In particular, for any z ∈ [h min , h max ] and x ∈ (-1, 1),

P 0,x W t 0 z 2 ∈ • τ 1 > t 0 z 2 ≥ cν.
Then, for any z ∈ [a, b], f positive and measurable, and x ∈ (-z, z),

E 0,x [f (W t0 )|τ z > t 0 ] ≥ cν z (f ) ,
where ν z (f ) := E f (z × x)ν(dx). This completes the proof of Lemma 2.

The section is now concluded by stating and proving the following result. which concludes the proof.

  du ≤ e -2γc inf ψ(x) + C, where C ∈ (0, +∞) and c inf := inf t≥0 1 γ t+γ t

Lemma 1 .

 1 For any a, b -, b + > 0, define the subset C(a, b -, b + ) ⊂ M 1 (R) as C(a, b -, b + ) := {N (m, σ) : m ∈ [-a, a], σ ∈ [b -, b + ]}.Then, for any a, b -, b + > 0, there exists a probability measure ν and a constant c > 0 such that, for any µ ∈ C(a, b -, b + ), µ ≥ cν.

  way, for all s ≤ t, )dv du.Hence, for any s ≤ t, e -

  s,x [τ h(s) > s + t 0 ] P s,x [τ h > s + t 0 ]Moreover, by Lemma 2 and the scaling property of the Brownian motion, for all x ∈ (-h(s), h(s)),P s,x [τ h(s) > s + t 0 + n 0 γ] P s,x [τ h(s) > s + t 0 ] = P 0,P0,x[Wt 0 ∈•|τ h(s) >t0] [τ h(s) > n 0 γ] ≥ cP 0,ν h(s) [τ h(s) > n 0 γ]Thus, gathering (41), (45) and (46), for any x ∈ (-h(s), h(s)) and any t ∈ [t 0 , t 0 + n 0 γ],P s,x [W s+t ∈ •|τ h > s + t] ≥ c 1 ν h(s) ,

			≥	c C	P 0,ν τ 1 > inf s≥0	t 0 h 2 (s)	-	s	s+t0	1 h 2 (u)	du	> 0.	(45)
							= c		ν(dy)P h(s)y [τ h(s) > n 0 γ]
							(-1,1)				
							≥ cP 0,ν τ 1 >	n 0 γ min h 2		> 0.	(46)
													(47)
	where	c 1 := cP 0,ν τ 1 >	n 0 γ h 2 max	×	c C	P 0,ν τ 1 > inf s≥0	γ h 2 (s)	-	s	s+γ	1 h 2 (u)	du c.

We recall that the Doeblin condition (47) is, for now, only obtained for s ∈ T . Consider now s ∈ T . Then, by the condition (38), there exists s 1 ∈ T such that s < s 1 ≤ s + n 0 γ. Markov property and (47) implies therefore that, for any x ∈ (-h(s), h(s)),

P s,x [W s+t0+n0γ ∈ •|τ h > s + t 0 + n 0 γ] = P s1,φs 1 ,s [W s+t0+n0γ ∈ •|τ h > s + t 0 + n 0 γ] ≥ c 1 ν h(s1) ,

where, for all s ≤ t and µ ∈ M 1 ((-h(s), h(s))), φ t,s (µ) := P s,µ [W t ∈ •|τ h > t].

  ). Since (W t ) t≥0 is a Brownian motion, note that, for any s ≤ t, Thus, by Markov property, and using that the function s → P s,0 [τ g > t] is non-decreasing on [0, t] (for all t ≥ 0), one has for any s ≤ t,P s,a [τ h > t] ≥ E s,a [1 τ0<s+γ<τ h P τ0,0 [τ h > t]] ≥ P s,a [τ 0 < s + γ < τ h ]P s,0 [τ h > t]. (48)Denoting a := hmin hmax , by Lemma 2 and taking s 1 := inf{u ≥ s : u ∈ T }, one obtains that, for all s ≤ t, P s,ν h(s 1 ) [τ h > t] =

	sup
	x∈(-1,1)
	ν(dx)P s,h(s1)x [τ h > t]
	(-1,1)

P s,x [τ h > t] = P s,0 [τ h > t].

Also, for any a ∈ (0, h(s)), inf

[-a,a] P s,x [τ h > t] = P s,a [τ h > t]. ≥ ν([-a, a])P s,h(s1)a [τ h > t] ≥ ν([-a, a])P 0,hmin [τ 0 < γ < τ h ] sup x∈(-h(s),h(s)) P s,x [τ h > t].

  (W ) 1 τ1>I h (t+kγ)-I h (s+kγ) ,where, for any trajectory w = (w u ) u≥0 ,A h s,t,k (w) = h (t + kγ)h(t + kγ)w 2 I h (t+kγ)-I h (s+kγ) -h (s + kγ)h(s + kγ)w 2Moreover, since h ∼ t→∞ g and h ∼ t→∞ g , one has for all trajectories w = (w u ) u≥0 ands ≤ t ∈ [0, γ], I g (u) [(g (u)) 2 -[g(u)g (u)] ]du.Since the random variable exp -1 2 A h s,t,k (W ) 1 τ1>I h (t+kγ)-I h (s+kγ) is bounded almost surely, Lebesgue's dominated convergence theorem implies that P s+kγ,x [τ h > t + kγ] -→

					t
	A h s,t,k (w) -→ k→∞	g (t)g(t)w 2 I g (t)-I g (s) -g (s)g(s)w 2 0 +	s	w 2
		h(t + kγ) h(s + kγ)	E 0,x exp -	1 2	A h s,t,k 0
		t-s		
	+ I Since h ∼ t→∞ g, one has for any s, t ∈ [0, γ] 0 w 2		
		h(t + kγ) h(s + kγ)	-→ k→∞	g(t) g(s)	.

Theorem 4. For any s ≤ t, n ∈ N and any x ∈ R,

P s+kγ,x [τ h ≤ t + kγ < τ g ] -→ k→∞ 0.

In particular, Corollary 2 holds for (W t ) t≥0 absorbed by h.

Proof. Reminding (42), by Markov property for the Brownian motion, one has for any k, n ∈ N and any x ∈ R,

P s+kγ,x [τ h > t + kγ] = h (u+s+kγ)-I h (s+kγ) [(h (u + s + kγ)) 2 -[h(u + s + kγ)h (u + s + kγ)] ]du.

For the same reasons, and using that the function h is bounded on [s + kγ, t + kγ] for all s ≤ t, Lebesgue's dominated convergence theorem implies that

I h (t + kγ) -I h (s + kγ) -→ k→∞ I g (t) -I g (s)

for all s ≤ t ∈ [0, γ]. k→∞ P s,x [τ g > t],
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