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Ergodic theorem for asymptotically periodic time-inhomogeneous

Markov processes, with application to quasi-stationarity with moving

boundaries.

William Oçafrain1

12th October 2020

Abstract

This paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose the
time-inhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that,

for any measurable bounded function f , the time average 1

t

∫

t

0
f(Xs)ds converges in L2 towards a limiting

distribution, starting from any initial distribution for the process (Xt)t≥0. This convergence can be improved
to an almost sure convergence under an additional assumption on the initial measure. This result will be
then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically
periodic moving boundary, satisfying a conditional Doeblin’s condition.

Key words: ergodic theorem; law of large numbers; time-inhomogeneous Markov processes; quasi-stationarity;
quasi-ergodic distribution; moving boundaries.

Notation

• N = {1, 2, . . . , } and Z+ = {0} ∪ N.

• M1(E): Space of the probability measures whose the support is included in E.

• B(E): Set of the measurable bounded functions defined on E.

• B1(E): Set of the measurable functions f defined on E such that ‖f‖∞ ≤ 1.

• Lp(µ): Set of the measurable functions f such that
∫

|f |pdµ < +∞ (p ∈ N).

• For any µ ∈ M1(E) and f ∈ L1(µ), denote

µ(f) :=

∫

E

f(x)µ(dx).

• Id: Identity operator.

1 Introduction

In a general way, the ergodic theorem (for Markov processes) refers to the almost sure convergence

1

t

∫ t

0

f(Xs)ds −→
t→∞

π(f), ∀f ∈ L1(π), (1)
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(Xt)t≥0 being a Markov process and π being a probability measure. In the time-homogeneous setting, the
ergodic theorem holds for positive Harris recurrent Markov processes and the limiting distribution π corresponds
to an invariant measure for the underlying Markov process. For time-inhomogeneous Markov processes, such
a result does not hold in general (in particular the notion of invariant measure is not generally well-defined),
except for specific time-inhomogeneity such as for periodic time-inhomogeneous Markov processes, defined as
time-inhomogeneous Markov processes for which there exists γ > 0 such that, for any s ≤ t, k ∈ Z+ and x,

P[Xt ∈ ·|Xs = x] = P[Xt+kγ ∈ ·|Xs+kγ = x]. (2)

In other words, a time-inhomogeneous Markov process is periodic when the transition law between any times
s and t remains unchanged when the time interval [s, t] is shifted by a multiple of the period γ. In particular,
this implies that, for any s ∈ [0, γ), the Markov chain (Xs+nγ)n∈Z+ is time-homogeneous. This fact allowed to
Höpfner et al. (in [20, 21, 22]) to show that, if the skeleton Markov chain (Xnγ)n∈Z+ is Harris recurrent, then
the chains (Xs+nγ)n∈Z+ , for all s ∈ [0, γ), are also Harris recurrent and

1

t

∫ t

0

f(Xs)ds −→
t→∞

1

γ

∫ γ

0

πs(f)ds, almost surely, from any initial measure,

where πs is the invariant measure for (Xs+nγ)n∈Z+ .
This paper aims to prove a similar result for time-inhomogeneous Markov processes said to be asymptotically

periodic. Roughly speaking (the definition will be explicitly given further), an asymptotically periodic Markov
process is such that, given a duration T ≥ 0, its transition law on the interval [s, s+ T ] is asymptotically "close
to" the one, on the same interval, of a periodic time-inhomogeneous Markov process called auxiliary Markov
process, when s → ∞. This definition is very similar to the notion of asymptotic homogeneization (when the
approximating semi-group is time-homogeneous), or the notion of asymptotic pseudotrajectories as introduced
in [2]. In particular, it is known that these rapprochements entail that, under suitable additional conditions,
an asymptotically homogeneous Markov process converges towards a probability measure, which is invariant for
the approximating semi-group. In the same way, it is expected that an asymptotically periodic process gets the
same asymptotic properties as a periodic Markov process; in particular that an ergodic theorem holds for the
asymptotically periodic process.

Main result. The main result of this paper states that an asymptotically periodic Markov process satisfying a
Lyapunov-type condition and a local Doeblin’s condition (defined further in Section 2), and such that its auxiliary
process also satisfies a Lyapunov/minorization condition, satisfies

1

t

∫ t

0

f(Xs)ds
L2(P0,µ)

−−−−−−→
t→∞

1

γ

∫ γ

0

βs(f)ds, ∀f measurable bounded, ∀µ initial distribution, (3)

where P0,µ is a probability measure under which X0 ∼ µ, and where βs is the limiting distribution of the skeleton
Markov chain (Xs+nγ)n∈Z+ . Furthermore, the convergence 3 holds almost surely if the initial measure integrates
the Lyapunov function of the process (Xt)t≥0:

1

t

∫ t

0

f(Xs)ds
P0,µ−almost surely

−−−−−−−−−−→
t→∞

1

γ

∫ γ

0

βs(f)ds, ∀µ integrating the Lyapunov function.

This will be more precisely stated and proved in Section 2.
Quasi-stationarity with moving boundaries. One point of interest in this paper is to apply the main

result (3) to the theory of quasi-stationarity with moving boundaries, which refers to the study of asymptotical
behaviors for Markov processes conditioned not to reach a moving subset of the state space. See in particular
[24, 25], where a "conditional ergodic theorem" (see further the definition of a quasi-ergodic distribution) has been
shown when the absorbing boundaries move periodically. In this paper, one shows that a similar result holds when
the boundary is asymptotically periodic, assuming that the process satisfies a conditional Doeblin’s condition (see
Assumption (A’)). This part will be dealt with in Section 3.

The paper will be concluded by using these results in two examples: an ergodic theorem for an asymptotically
periodic Ornstein-Uhlenbeck process, and the existence of a unique quasi-ergodic distribution for a Brownian
motion confined between two symmetric asymptotically periodic functions.
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2 Ergodic theorem for asymptotically periodic time-inhomogeneous

semi-group.

Asymptotic periodicity: the definition.

Let (E, E) be a measurable space. Consider {(Et, Et)t≥0, (Ps,t)s≤t} a Markovian time-inhomogeneous semi-group,
giving a family of measurable subspaces of (E, E), denoted by (Et, Et)t≥0, and a family of linear operator (Ps,t)s≤t,
with Ps,t : B(Et) → B(Es), satisfying for any r ≤ s ≤ t,

Ps,s = Id, Ps,t1Et
= 1Es

, Pr,sPs,t = Pr,t.

In particular, it is associated to {(Et, Et)t≥0, (Ps,t)s≤t} a Markov process (Xt)t≥0 and a family of probability
measure (Ps,x)s≥0,x∈Es

such that, for any s ≤ t, x ∈ Es and A ∈ Et,

Ps,x[Xt ∈ A] = Ps,t1A(x).

For any probability measure µ supported on Es, denote Ps,µ :=
∫

Es
Ps,xµ(dx). Also, denote by Es,x and Es,µ the

expectations associated to Ps,x and Ps,µ, respectively. Finally, the following notation will be used for µ ∈ M1(Es),
s ≤ t and f ∈ B(Et):

µPs,tf := Es,µ[f(Xt)], µPs,t := Ps,µ[Xt ∈ ·].
Respectively to the definition (2), the periodicity of a time-inhomogeneous semi-group can be defined as follows:
a semi-group {(Ft,Ft)t≥0, (Qs,t)s≤t} is said to be γ-periodic, with γ > 0, if, for any s ≤ t,

(Ft,Ft) = (Ft+kγ ,Ft+kγ), Qs,t = Qs+kγ,t+kγ , ∀k ∈ Z+.

Following to this last definition, it is now possible to define an asymptotically periodic semi-group:

Definition 1 (Asymptotical periodicity for semi-groups). A time-inhomogeneous semi-group {(Et, Et)t≥0, (Ps,t)s≤t}
is said to be asymptotically periodic if there exists a γ-periodic semi-group {(Ft,Ft)t≥0, (Qs,t)s≤t} and two families
of functions (ψs)s≥0 and (ψ̃s)s∈[0,γ) such that, for any s ∈ [0, γ),

• ⋃∞
k=0

⋂

l≥k Es+lγ ∩ Fs 6= ∅

• and there exists xs ∈ ⋃∞
k=0

⋂

l≥k Es+lγ ∩ Fs such that, for any n ∈ Z+,

‖δxs
Ps+kγ,s+(k+n)γ [ψs+(k+n)γ × ·] − δxs

Qs,s+nγ [ψ̃s × ·]‖TV −→
k→∞

0, (4)

where, for two positive measures with finite mass µ1 and µ2, ‖µ1 − µ2‖TV is the total variation distance between
µ1 and µ2:

‖µ1 − µ2‖TV := sup
f∈B1(E)

|µ1(f) − µ2(f)|.

Lyapunov/minorization conditions.

The main assumption of the theorem will be the satisfaction of the following assumptions by the asymptotically
periodic Markov process:

Lyapunov/minorization conditions. There exists t1 ≥ 0, n0 ∈ N, c > 0, θ ∈ (0, 1), a family of subsets
(Kt)t≥0, a family of probability measure (νs,n)

s∈[0,t1),n∈N
on (Ks+nt1 )s∈[0,t1),n∈N, and a family of Lyapunov func-

tions (ψs)s≥0, all lower-bounded by 1, such that

(i) For any s ∈ [0, t1), x ∈ Ks and n ≥ n0,
δxPs,s+nt1 ≥ cνs,n,

(ii) For any s ≥ 0,
Ps,s+t1ψs+t1 ≤ θψs + C1Ks

,
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(iii) For any s ≥ 0, for any t ∈ [0, t1),
Ps,s+tψs+t ≤ Cψs.

In particular, under (ii) and (iii), it is easy to prove that, for any s ≤ t,

Ps,tψt ≤ C

(

1 +
C

1 − θ

)

ψs. (5)

An important remark is that the Lyapunov/minorisation condition implies an exponential uniform-in-law weak
ergodicity in ψt-distance, i.e. the existence of two constants C′ > 0 and κ > 0 such that, for all s ≤ t and for all
probability measures µ1, µ2 ∈ M1(Es),

‖µ1Ps,t − µ2Ps,t‖ψt
≤ C′[µ1(ψs) + µ2(ψs)]e

−κ(t−s), (6)

where, for a given function ψ, ‖µ− ν‖ψ is the ψ-distance and is defined as

‖µ− ν‖ψ := sup
|f |≤ψ

|µ(f) − ν(f)| , ∀µ, ν such that µ(ψ) < +∞ and ν(ψ) < +∞.

In particular, when ψt = 1 for all t ≥ 0, the ψt-distance is total variation distance. If the weak ergodicity (6)
is well-known in the time-homogeneous setting (see in particular [15]), the proof of [15, Theorem 1.3.] can be
adapted in a general time-inhomogeneous framework (see for example [6, Subsection 9.5] ).

The main theorem and proof.

The main result is then the following:

Theorem 1. Let {(Et, Et)t≥0, (Ps,t)s≤t, (Xt)t≥0, (Ps,x)s≥0,x∈Es
} be an asymptotically γ-periodic time-inhomogeneous

Markov process, with γ > 0, and denote by {(Ft,Ft)t≥0, (Qs,t)s≤t} its periodic auxiliary semi-group. Also, denote
by (ψs)s≥0 and (ψ̃s)s∈[0,γ) the two families of functions as defined in Definition 1. Assume moreover that

• the semi-groups (Ps,t)s≤t and (Qs,t)s≤t satisfy a Lyapunov/minorisation condition, with (ψs)s≥0 and (ψ̃s)s∈[0,γ)

as Lyapunov functions respectively,

• and, for any s ∈ [0, γ), (ψs+nγ)n∈Z+ converges pointwisely to ψ̃s.

Then, for any µ ∈ M1(E0) such that µ(ψ0) < +∞,

∥

∥

∥

∥

1

t

∫ t

0

µP0,s[ψs × ·]ds− 1

γ

∫ γ

0

βγQ0,s[ψ̃s × ·]ds
∥

∥

∥

∥

TV

−→
t→∞

0, (7)

where βγ ∈ M1(F0) is the unique invariant of the skeleton semi-group (Q0,nγ)n∈Z+ satisfying βγ(ψ̃0) < +∞.
Moreover, for any f ∈ B(E),

• for any µ ∈ M1(E0),

E0,µ

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− 1

γ

∫ γ

0

βγQ0,sfds

∣

∣

∣

∣

2
]

−→
t→∞

0. (8)

• If moreover µ(ψ0) < +∞, then

1

t

∫ t

0

f(Xs)ds −→
t→∞

1

γ

∫ γ

0

βγQ0,sfds, P0,µ − almost surely. (9)

Remark 1. Also note that, if the Lyapunov/minorization conditions hold for ψs = 1 and Ks = Es for any s, then
these conditions are boiled down to the Doeblin’s condition:
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Doeblin’s condition. there exists t0 ≥ 0, c > 0 and a family of probability measure (νt)t≥0 on (Et)t≥0 such
that, for any s ≥ 0 and x ∈ Es,

δxPs,s+t0 ≥ cνs+t0 . (10)

Then, Theorem 1 entails the following corollary:

Corollary 1. Let (Xt)t≥0 be asymptotically γ-periodic in total variation distance (i.e. ψs = ψ̃s = 1 in the
Definition 1, for all s ≥ 0). If (Xt)t≥0 and its auxiliary semi-group satisfy a Doeblin’s condition, then the
convergence (8) is improved to

sup
µ∈M1(E0)

sup
f∈B1(E)

E0,µ

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− 1

γ

∫ γ

0

βγQ0,sfds

∣

∣

∣

∣

2
]

−→
t→∞

0.

Moreover, the almost sure convergence (9) holds for all initial measure µ.

Remark 2. Note also that, if the convergence (4) holds actually for all x ∈ ⋃∞
k=0

⋂

l≥k Es+lγ ∩Fs, then this implies

(4), obviously, and the pointwise convergence of (ψs+nγ)n∈Z+ to ψ̃s (taking n = 0 in (4)).

Proof of Theorem 1. The proof is divided into four steps.

First step. For the first part of this step (until the equality (14)), we will inspire from the proof of [1, Theorem
3.11]. Fix s ∈ [0, γ]. Since the auxiliary semi-group (Qs,t)s≤t satisfies a Lyapunov/minorization condition with
(ψ̃)s≥0 as Lyapunov functions, this entails that, for any x ∈ Fs,

‖δxQs,s+nγ − βγQ0,s‖ψ̃s
−→
n→∞

0, (11)

recalling that βγ is the unique invariant measure of (Q0,nγ)n∈Z+ satisfying βγ(ψ̃0) < +∞.
Without loss of generality, let us assume that

⋂

l≥0 Es+lγ ∩ Fs 6= ∅. Then, by Definition 1, for any n ≥ 0,

‖δxs
Ps+kγ,s+(k+n)γ [ψs+(k+n)γ × ·] − δxs

Qs,s+nγ [ψ̃s × ·]‖TV −→
k→∞

0.,

which entails using (11) that

lim
n→∞

lim sup
k→∞

‖δxs
Ps+kγ,s+(k+n)γ [ψs+(k+n)γ × ·] − βγQ0,s[ψ̃s × ·]‖TV = 0. (12)

Now, by Markov property, (6), and using (5), one obtains that, for any k, n ∈ N and x ∈ ⋂

l≥0 Es+lγ ,

‖δxPs,s+(k+n)γ − δxPs+kγ,s+(k+n)γ‖ψs+(k+n)γ
= ‖ (δxPs,s+kγ)Ps+kγ,s+(k+n)γ − δxPs+kγ,s+(k+n)γ‖ψs+(k+n)γ

≤ C′[Ps,s+kγψs+kγ(x) + ψs+kγ(x)]e−κγn

≤ C′′[ψs(x) + ψs+kγ(x)]e−κγn,

where C′′ := C′
(

C
(

1 + C
1−θ

)

∧ 1
)

. Then, for any k, n ∈ N,

‖δxs
Ps,s+(k+n)γ [ψs+(k+n)γ × ·] − βγQ0,s[ψ̃s × ·]‖TV

≤ C′′[ψs(x) + ψs+kγ(x)]e−κγn + ‖δxs
Ps+kγ,s+(k+n)γ [ψs+(k+n)γ × ·] − βγQ0,s[ψ̃s × ·]‖TV , (13)

which entails, by (12) and the pointwise convergence of (ψs+kγ)k∈Z+ , that

lim
n→∞

‖δxs
Ps,s+nγ [ψs+nγ×·]−βγQ0,s[ψ̃s×·]‖TV = lim

n→∞
lim sup
k→∞

‖δxs
Ps,s+(k+n)γ [ψs+(k+n)γ×·]−βγQ0,s[ψ̃s×·]‖TV = 0.

(14)
The weak ergodicity (6) implies therefore that the following convergence actually holds for any initial distribution
µ ∈ M1(E0) satisfying µ(ψ0) < +∞, so that

∥

∥µP0,s+nγ [ψs+nγ × ·] − βγQ0,s[ψ̃s × ·]
∥

∥

TV
−→
n→∞

0. (15)
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In particular, by Lebesgue’s dominated convergence theorem, for any µ satisfying µ(ψ0) < +∞,
∥

∥

∥

∥

1

γ

∫ γ

0

µP0,s+nγ [ψs+nγ × ·]ds− 1

γ

∫ γ

0

βγQ0,s[ψ̃s × ·]ds
∥

∥

∥

∥

TV

−→
n→∞

0.

By Cesaro’s lemma, this allows to conclude that, for any µ ∈ M1(E0) such that µ(ψ0) < +∞,

∥

∥

∥

∥

1

t

∫ t

0

µP0,s[ψs × ·]ds− 1

γ

∫ γ

0

βγQ0,s[ψ̃s × ·]ds
∥

∥

∥

∥

TV

≤ 1

⌊ t
γ

⌋

⌊ t
γ

⌋
∑

k=0

∥

∥

∥

∥

1

γ

∫ γ

0

µP0,s+nγ [ψs+nγ × ·]ds− 1

γ

∫ γ

0

βγQ0,s[ψ̃s × ·]ds
∥

∥

∥

∥

TV

+

∥

∥

∥

∥

∥

1

t

∫ t

⌊ t
γ

⌋γ
µP0,s[ψs × ·]ds

∥

∥

∥

∥

∥

TV

−→
t→∞

0,

which concludes the proof of (7).

Second step. In the same way, one can show that, for any µ ∈ M1(E0) such that µ(ψ0) < +∞,
∥

∥

∥

∥

1

t

∫ t

0

µP0,sds− 1

γ

∫ γ

0

βγQ0,sds

∥

∥

∥

∥

TV

−→
t→∞

0. (16)

As a matter of fact, for any function f bounded by 1 and µ ∈ M1(E0) such that µ(ψ0) < +∞,

∣

∣

∣

∣

µP0,s+nγ

[

ψs+nγ × f

ψs+nγ

]

− βγQ0,s

[

ψ̃s × f

ψ̃s

]∣

∣

∣

∣

≤
∣

∣

∣

∣

µP0,s+nγ

[

ψs+nγ × f

ψs+nγ

]

− βγQ0,s

[

ψ̃s × f

ψs+nγ

]∣

∣

∣

∣

+

∣

∣

∣

∣

βγQ0,s

[

ψ̃s × f

ψs+nγ

]

− βγQ0,s

[

ψ̃s × f

ψ̃s

]∣

∣

∣

∣

≤
∥

∥µP0,s+nγ [ψs+nγ × ·] − βγQ0,s[ψ̃s × ·]
∥

∥

TV
+

∣

∣

∣

∣

βγQ0,s

[

ψ̃s × f

ψs+nγ

]

− βγQ0,s

[

ψ̃s × f

ψ̃s

]∣

∣

∣

∣

.

Now, remark that, since ψs+nγ ≥ 1 for any s and n ∈ Z+, one obtains that

∣

∣

∣

∣

ψ̃s
ψs+nγ

− 1

∣

∣

∣

∣

≤ 1 + ψ̃s.

Then, since (ψs+nγ)n∈Z+ converges pointwisely towards ψ̃s and βγQ0,sψ̃s < +∞, Lebesgue’s dominated conver-
gence theorem entails that

sup
f∈B1(E)

∣

∣

∣

∣

βγQ0,s

[

ψ̃s × f

ψs+nγ

]

− βγQ0,s

[

ψ̃s × f

ψ̃s

]∣

∣

∣

∣

−→
n→∞

0.

Then, using now (15), one has
‖µP0,s+nγ − βγQ0,s‖TV −→

n→∞
0,

which allows to conclude in (16), using the same argument as in the first step.

Third step. In order to show the L2-ergodic theorem, let f ∈ B(E). For any x ∈ E0 and t ≥ 0,

E0,x

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− E0,x

[

1

t

∫ t

0

f(Xs)ds

]∣

∣

∣

∣

2
]

=
2

t2

∫ t

0

∫ t

s

(E0,x[f(Xs)f(Xu)] − E0,x[f(Xs)]E0,x[f(Xu)]) duds

=
2

t2

∫ t

0

∫ t

s

E0,x [f(Xs) (f(Xu) − E0,x[f(Xu)])] duds

=
2

t2

∫ t

0

∫ t

s

E0,x

[

f(Xs)
(

Es,Xs
[f(Xu)] − Es,δxP0,s

[f(Xu)]
)]

duds,

6



where Markov property was used at the last line. By the weak ergodicity (6) and (5), one obtains for any s ≤ t,
∣

∣Es,Xs
[f(Xt)] − Es,δxP0,s

[f(Xt)]
∣

∣ ≤ C′′‖f‖∞[ψs(Xs) + ψ0(x)]e−κ(t−s), P0,x − almost surely, (17)

where C′′ was defined in the first part. As a result, for any x ∈ E0 and t ≥ 0,

E0,x

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− E0,x

[

1

t

∫ t

0

f(Xs)ds

]∣

∣

∣

∣

2
]

≤ 2C′′‖f‖∞
t2

∫ t

0

∫ t

s

E0,x[|f(Xs)|(ψs(Xs)+ψ0(x))]e−κ(u−s)duds

=
2C′′‖f‖∞

t2

∫ t

0

E0,x[|f(Xs)|(ψs(Xs) + ψ0(x))]eκs
e−κs − e−κt

κ
ds

=
2C′′‖f‖∞

κt
×E0,x

[

1

t

∫ t

0

|f(Xs)|(ψs(Xs) + ψ0(x))ds

]

− 2C′′‖f‖∞e−κt

κt2

∫ t

0

eκsE0,x[|f(Xs)|(ψs(Xs)+ψ0(x))]ds.

Then, by (7) and (16), there exists a constant C̃ > 0 such that, for any x ∈ E0, when t → ∞,

E0,x

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− E0,x

[

1

t

∫ t

0

f(Xs)ds

]∣

∣

∣

∣

2
]

≤ 2C̃‖f‖∞
κt

×
(

1

γ

∫ γ

0

βγQ0,s[|f |ψs]ds+
ψ0(x)

γ

∫ γ

0

βγQ0,s[|f |]ds
)

+ o

(

1

t

)

. (18)

Then, using (16), one deduces that, for any x ∈ E0 and bounded function f ,

E0,x

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− 1

γ

∫ γ

0

βγQ0,sfds

∣

∣

∣

∣

2
]

−→
t→∞

0.

The convergence for any probability measure µ ∈ M1(E0) comes from Lebesgue’s dominated convergence theorem.

Fourth step. Now, let us fix f ∈ B(E), assumed nonnegative on E, and µ ∈ M1(E0) satisfying µ(ψ0) < +∞.
The following proof is inspired from the proof of [26, Theorem 12].

Since µ(ψ0) < +∞, the inequality (18) entails that there exists a finite constant Cf,µ ∈ (0,∞) such that, for
any t > 0,

E0,µ

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− E0,µ

[

1

t

∫ t

0

f(Xs)ds

]∣

∣

∣

∣

2
]

≤ Cf,µ
t
.

Then, for any n ∈ N,

E0,µ





∣

∣

∣

∣

∣

1

n2

∫ n2

0

f(Xs)ds− E0,µ

[

1

n2

∫ n2

0

f(Xs)ds

]∣

∣

∣

∣

∣

2


 ≤ Cf,µ
n2

.

Then, by Bienayme-Tchebychev’s inequality and Borel-Cantelli’s lemma, this last inequality entails that
∣

∣

∣

∣

∣

1

n2

∫ n2

0

f(Xs)ds− E0,µ

[

1

n2

∫ n2

0

f(Xs)ds

]∣

∣

∣

∣

∣

−→
n→∞

0, , P0,µ − almost surely,

and, by the convergence (16), one obtains

1

n2

∫ n2

0

f(Xs)ds −→
n→∞

1

γ

∫ γ

0

βγQ0,sfds, P0,µ − almost surely. (19)

Since the nonnegativity of f is assumed, this entails that, for any t > 0,

∫ ⌊
√
t⌋2

0

f(Xs)ds ≤
∫ t

0

f(Xs)ds ≤
∫ ⌈

√
t⌉2

0

f(Xs)ds.

7



Then, these inequalities and (19) show that

1

t

∫ t

0

f(Xs)ds −→
t→∞

1

γ

∫ γ

0

βγQ0,sfds, P0,µ − almost surely.

Then, in order to conclude that the following result holds actually for any bounded measurable function f , it is
enough to say that, for such a function, one has the decomposition f = f+−f−, with f+ := f∨0 and f− = (−f)∨0
which are positive bounded, and to apply the previous convergence to f+ and f−. This concludes the proof of
Theorem 1.

Proof of Corollary 1. Just remark in the previous proof that, if ‖f‖∞ ≤ 1 and ψs = 1, an upper-bound for
the inequality (18), which does not depend on f and x, can be obtained. Likewise, the convergence (15) holds
uniformly in the initial measure due to weak ergodicity (17), which becomes uniform-in-law when ψ = 1.

Remark 3. It seems that the theorem does not hold if the Doeblin’s constant c depends on the starting time s.
As proof, considering a Markov process satisfying the Doeblin’s condition with time-dependant constants cs, the
weak ergodicity holds as soon as, for any s ≥ 0,

⌊

t−s
t0

⌋

∏

k=1

(1 − ct−kt0 ) −→
t→∞

0,

since one has

‖µ1Ps,t − µ2Ps,t‖TV ≤ 2

⌊

t−s
t0

⌋

∏

k=1

(1 − ct−kt0 ).

Then the line (13) has to be replaced by

‖δxPs,s+(k+n)γ − βγQ0,s‖TV ≤ 2

⌊

nγ
t0

⌋

∏

l=1

(1 − cs+(k+n)γ−lt0 ) + ‖δxPs+kγ,s+(k+n)γ − βγQ0,s‖TV .

This does not allows to conclude in the interesting cases (cs −→
s→∞

0), since

lim
n→∞

lim sup
k→∞

⌊

nγ
t0

⌋

∏

l=1

(1 − cs+(k+n)γ−lt0 ) = 1.

In the same way, it seems that the constants θ and C defined in the Lyapunov/minorization condition have also
to be independent on the starting times.

3 Application to quasi-stationarity with moving boundaries

In this section, consider a family of measurable subsets (At)t≥0 of E, and denote the hitting time

τA := inf{t ≥ 0 : Xt ∈ At}.

Assume that τA is a stopping time with respect to the natural filtration of the Markov process, denoted by
(Fs,t)s≤t. Assume also that for any x 6∈ A0,

P0,x[τA < +∞] = 1 and P0,x[τA > t] > 0, ∀t ≥ 0.

We will be interested in a notion of quasi-stationarity with moving boundaries, which studies the asymptotic
behavior of the Markov process (Xt)t≥0 conditioned not to hit (At)t≥0 up to the time t. For non-moving boundaries

8



(At = A0 for any t ≥ 0) and time-homogeneous processes, the quasi-limiting distribution is defined as a probability
measure α such that, for at least one initial measure µ,

P0,µ[Xt ∈ ·|τA > t]
L−→

t→∞
α.

Such a definition is actually equivalent (still in the non-moving framework) to the notion of the quasi-stationary
distribution defined as a probability measure α such that, for any t ≥ 0,

P0,α[Xt ∈ ·|τA > t] = α. (20)

If quasi-limiting and quasi-stationary distributions are generally well-defined for time-homogeneous Markov pro-
cess and non-moving boundaries (see [11, 23] for a general overview on the topic), these notions could be not
well-defined for time-inhomogeneous Markov processes or moving boundaries and are not equivalent anymore. In
particular, under reasonable assumptions on irreducibility, it was shown in [24] that the notion of quasi-stationary
distribution as defined by (20) is not well-defined for time-homogeneous Markov processes absorbed by moving
boundaries.

In the theory of quasi-stationarity with moving boundaries, another asymptotic notion to study is the quasi-
ergodic distribution, related to a conditional version of the ergodic theorem and usually defined as follows:

Definition 2. A probability measure β is a quasi-ergodic distribution if, for some initial measure µ ∈ M1(E \A0)
and for any bounded continuous function f ,

E0,µ

[

1

t

∫ t

0

f(Xs)ds

∣

∣

∣

∣

τA > t

]

−→
t→∞

β(f).

In the time-homogeneous setting (in particular for non-moving boundaries), this notion has been extensively
studied (see for example [3, 8, 10, 12, 13, 16, 17, 18, 24]). In the "moving boundaries" framework, the existence
of quasi-ergodic distributions has been dealt with in [24] for Markov chains on finite state spaces, and in [25] for
processes satisfying a Champagnat-Villemonais condition (see Assumption (A’) set further). In this last paper,
the existence of the quasi-ergodic distribution is actually obtained through the following inequality holding for
any initial distribution µ and for some constant C > 0 independant on µ:

∥

∥

∥

∥

1

t

∫ t

0

P0,µ[Xs ∈ ·|τA > t]ds− 1

t

∫ t

0

Q0,η0∗µ[Xs ∈ ·]ds
∥

∥

∥

∥

TV

≤ C

t
, ∀t > 0, (21)

where

• the family of probability measure (Qs,x)s≥0,x∈Es
is defined as follows:

Qs,x[Γ] := lim
T→∞

Ps,x[Γ|τA > T ], ∀s ≥ 0, x 6∈ As,Γ ∈ Fs,t,

• η0 is a function on E0

• and η0 ∗ µ(dx) := η0(x)µ(dx)
µ(η0) .

In particular, the law of (Xt)t≥0 under (Qs,x)s≥0,x∈Es
, called Q-process, is a time-inhomogeneous Markov process

and there exists a unique quasi-ergodic distribution for the process (Xt)t≥0 absorbed by (At)t≥0 if and only if

the probability measures 1
t

∫ t

0 Q0,η0∗µ[Xs ∈ ·]ds converge weakly, when t goes to infinity. Hence, if one shows
that the Q-process is asymptotically periodic, according to Definition 1, then Theorem 1 entails the existence of
a quasi-ergodic distribution.

For the following statement, the following assumption is needed:

Assumption (A’). there exists a family of probability measures (νt)t≥0, defined on E \At for each t, such that

(A’1) there exists t0 ≥ 0 and c1 > 0 such that

Ps,x[Xs+t0 ∈ ·|τA > s+ t0] ≥ c1νs+t0 , ∀s ≥ 0, ∀x 6∈ As,
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(A’2) and there exists c2 > 0 such that

Ps,νs
[τA > t] ≥ c2Ps,x[τA > t], ∀s ≤ t, ∀x 6∈ As.

These assumptions are the main assumptions on which relies the results of [25] and are an analogous version
of the Doeblin’s condition (10). When these assumptions are written in the time-homogeneous framework, one
obtains the Champagnat-Villemonais condition defined in [5] (see Assumption (A)), shown as being equivalent to
the exponential uniform-in-law convergence to quasi-stationarity in total variation.

Now, let us state the following theorem:

Theorem 2. Assume that there exists a γ-periodic sequence of subsets (Bt)t≥0 such that, for any s ∈ [0, γ),

E′
s := E \

⋂

k∈Z+

⋃

l≥k
As+lγ ∪Bs 6= ∅

and there exists xs ∈ Es such that, for any n ≤ N ,

‖Ps+kγ,xs
[Xs+(k+n)γ ∈ ·, τA > s+ (k +N)γ] − Ps,xs

[Xs+nγ ∈ ·, τB > s+Nγ]‖TV −→
k→∞

0. (22)

Assume also that Assumption (A’) are satisfied for the Markov process (Xt)t≥0 considered as absorbed either by
(At)t≥0 or by (Bt)t≥0.

Then there exists a probability measure β ∈ M1(E) such that

sup
µ∈M1(E\A0)

sup
f∈B1(E)

E0,µ

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− β(f)

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

τA > t

]

−→
t→∞

0. (23)

Remark 4. Remark that the condition (22) implies that, for any n ∈ Z+,

Ps+kγ,xs
[τA > s+ (k + n)γ] −→

k→∞
Ps,xs

[τB > s+ nγ].

However, under the additional condition Bt ⊂ At for all t ≥ 0, these two conditions are actually equivalent, since
forall n ≤ N ,

‖Ps+kγ,xs
[Xs+(k+n)γ ∈ ·, τA > s+ (k +N)γ] − Ps,xs

[Xs+nγ ∈ ·, τB > s+Nγ]‖TV
≤ |Ps+kγ,xs

[τA > s+ (k +N)γ] − Ps,xs
[τB > s+Nγ]|.

This entails the following corollary:

Corollary 2. Assume that there exists a γ-periodic sequence of subsets (Bt)t≥0, with Bt ⊂ At for all t ≥ 0, such
that, for any s ∈ [0, γ), there exists xs ∈ E′

s such that, for any n ≤ N ,

Ps+kγ,xs
[τA > s+ (k + n)γ] −→

k→∞
Ps,xs

[τB > s+ nγ].

Assume also that Assumption (A’) are satisfied for the Markov process (Xt)t≥0 considered as absorbed either by
(At)t≥0 or by (Bt)t≥0.

Then there exists β ∈ M1(E) such that (23) holds.

Proof of Theorem 2. Since (Xt)t≥0 absorbed by (Bt)t≥0 satisfies Assumption (A’), we already know by [25] that,

for any initial distribution µ, t 7→ 1
t

∫ t

0
P0,µ[Xs ∈ ·|τB > t]ds converges in total variation to a quasi-ergodic

distribution β.
The main idea of this proof is to apply Corollary 1. Since (Xt)t≥0, absorbed by A or B, satisfies Assumption

(A’), then [9, Theorem 3.3.] entails that there exist two families of probability measures (QAs,x)s≥0,x 6∈As
and

(QBs,x)s≥0,x 6∈Bs
such that, for any s ≤ t, x 6∈ As, y 6∈ Bs and Γ ∈ Fs,t,

QAs,x[Γ] = lim
T→∞

Ps,x[Γ|τA > T ], and QBs,y[Γ] = lim
T→∞

Ps,y[Γ|τB > T ].
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In particular, the quasi-ergodic distribution β is actually the limit of t 7→ 1
t

∫ t

0
QB0,µ[Xs ∈ ·]ds, when t goes to

infinity. Also, by [25, Theorem 1], there exists a constant C > 0 and κ > 0 such that, for any s ≤ t ≤ T , for any
x 6∈ As,

‖QAs,x[Xt ∈ ·] − Ps,x[Xt ∈ ·|τA > T ]‖TV ≤ Ce−κ(T−t),

and for any x 6∈ Bs,
‖QBs,x[Xt ∈ ·] − Ps,x[Xt ∈ ·|τB > T ]‖TV ≤ Ce−κ(T−t).

Moreover, for any s ≤ t ≤ T and x ∈ E′
s,

‖Ps,x[Xt ∈ ·|τA > T ] − Ps,x[Xt ∈ ·|τB > T ]‖TV

=

∣

∣

∣

∣

∣

∣

∣

∣

Ps,x[Xt ∈ ·, τA > T ]

Ps,x[τA > T ]
− Ps,x[Xt ∈ ·, τB > T ]

Ps,x[τB > T ]

∣

∣

∣

∣

∣

∣

∣

∣

TV

=

∣

∣

∣

∣

∣

∣

∣

∣

Ps,x(τB > T )

Ps,x(τA > T )

Ps,x[Xt ∈ ·, τA > T ]

Ps,x[τB > T ]
− Ps,x[Xt ∈ ·, τB > T ]

Ps,x[τB > T ]

∣

∣

∣

∣

∣

∣

∣

∣

TV

≤
∣

∣

∣

∣

∣

∣

∣

∣

Ps,x(τB > T )

Ps,x(τA > T )

Ps,x[Xt ∈ ·, τA > T ]

Ps,x[τB > T ]
− Ps,x[Xt ∈ ·, τA > T ]

Ps,x[τB > T ]

∣

∣

∣

∣

∣

∣

∣

∣

TV

+

∣

∣

∣

∣

∣

∣

∣

∣

Ps,x[Xt ∈ ·, τA > T ]

Ps,x[τB > T ]
− Ps,x[Xt ∈ ·, τB > T ]

Ps,x[τB > T ]

∣

∣

∣

∣

∣

∣

∣

∣

TV

≤
∣

∣

∣

∣

Ps,x(τB > T )

Ps,x(τA > T )
− 1

∣

∣

∣

∣

Ps,x(τA > T )

Ps,x(τB > T )
+

‖Ps,x[Xt ∈ ·, τA > T ] − Ps,x[Xt ∈ ·, τB > T ]‖TV
Ps,x[τB > T ]

.

(24)

Then, one obtains, for any s ≤ t ≤ T and x ∈ E′
s,

‖QAs,x[Xt ∈ ·] − QBs,x[Xt ∈ ·]‖TV

≤ 2Ce−κ(T−t) +

∣

∣

∣

∣

Ps,x(τB > T )

Ps,x(τA > T )
− 1

∣

∣

∣

∣

Ps,x(τA > T )

Ps,x(τB > T )
+

‖Ps,x[Xt ∈ ·, τA > T ] − Ps,x[Xt ∈ ·, τB > T ]‖TV
Ps,x[τB > T ]

.

The condition (22) implies that, for any n ≤ N ,

∣

∣

∣

∣

Ps+kγ,xs
(τB > s+ (k +N)γ)

Ps+kγ,xs
(τA > s+ (k +N)γ)

− 1

∣

∣

∣

∣

Ps+kγ,xs
(τA > s+ (k +N)γ)

Ps+kγ,xs
(τB > s+ (k +N)γ)

+
‖Ps+kγ,xs

[Xs+(k+n)γ ∈ ·, τA > s+ (k +N)γ] − Ps,xs
[Xs+nγ ∈ ·, τB > s+Nγ]‖TV

Ps,xs
[τB > s+Nγ]

−→
k→∞

0,

which implies that, for any n ≤ N ,

lim sup
k→∞

‖QAs+kγ,xs
[Xs+(k+n)γ ∈ ·] − QBs+kγ,xs

[Xs+(k+n)γ ∈ ·]‖TV ≤ 2Ce−κγ(N−n).

Now, letting N → ∞, one has for any n ∈ Z+

lim sup
k→∞

‖QAs+kγ,xs
[Xs+(k+n)γ ∈ ·] − QBs+kγ,xs

[Xs+(k+n)γ ∈ ·]‖TV = 0.

In other words, the Markov process {(Xt)t≥0, (Q
A
s,x)s≥0,x 6∈As

} is asymptotically periodic in total variation distance,

with {(Xt)t≥0, (Q
B
s,x)s≥0,x 6∈Bs

} as auxiliary Markov process. Moreover, Assumptions (A’) satisfied for (At)t≥0 and
(Bt)t≥0 entail that Doeblin’s conditions hold for these two Q-processes. Then, by Corollary 1 and using (21), one
obtains that

lim
t→∞

1

t

∫ t

0

P0,µ[Xs ∈ ·|τA > t]ds = lim
t→∞

∫ t

0

QB0,η0∗µ[Xs ∈ ·]ds = β,
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where the limits refer to the convergence in total variation and hold uniformly in the initial measure. Now, for
any µ ∈ M1(E \A0), f ∈ B1(E) and t ≥ 0,

E0,µ

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

τA > t

]

=
2

t2

∫ t

0

∫ t

s

E0,µ[f(Xs)f(Xu)|τA > t]duds.

Then, by [25, Theorem 1], for any s ≤ u ≤ t, for any µ ∈ M1(E \A0) and f ∈ B(E),
∣

∣

∣E0,µ[f(Xs)f(Xu)|τA > t] − E
QA

0,η0∗µ[f(Xs)f(Xu)]
∣

∣

∣ ≤ C‖f‖∞e
−κ(t−u),

where the expectation E
Q

A

0,η0∗µ is associated to the probability measure QA0,η0∗µ. Hence, for any µ ∈ M1(E \A0),
f ∈ B1(E) and t > 0,

∣

∣

∣

∣

∣

E0,µ

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− β(f)

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

τA > t

]

− E
Q

A

0,η0∗µ

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− β(f)

∣

∣

∣

∣

2
]∣

∣

∣

∣

∣

≤ 4C

t2

∫ t

0

∫ t

s

e−κ(t−u)duds

≤ 4C

κt
− 4C(1 − e−κt)

κ2t2
.

Moreover, Corollary 1 entails that, for any µ ∈ M1(E \A0),

sup
µ∈M1(E\A0)

sup
f∈B1(E)

E
QA

0,η0∗µ

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− β(f)

∣

∣

∣

∣

2
]

−→
t→∞

0.

Then, this implies that

sup
µ∈M1(E\A0)

sup
f∈B1(E)

E0,µ

[

∣

∣

∣

∣

1

t

∫ t

0

f(Xs)ds− β(f)

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

τA > t

]

−→
t→∞

0.

Remark 5. It seems that Assumption (A’) can be weaken by a conditional version of the Lyapunov/minorization
conditions. In particular, such conditions can be derived from the Assumption (F) presented in [6], as it will be
shown later by the preprint [4] in preparation.

4 Examples

4.1 Asymptotical periodic Ornstein-Uhlenbeck processes

Let (Xt)t≥0 be a time-inhomogeneous diffusion process on R satisfying the following stochastic differential equation

dXt = dWt − λ(t)Xtdt,

where (Wt)t≥0 is a one-dimensional Brownian motion and λ : [0,∞) → [0,∞) is a function such that

0 < inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) < +∞.

By Itô’s formula, one obtains for any s ≤ t,

Xt = e
−

∫

t

s
λ(u)du

[

Xs +

∫ t

s

e

∫

u

s
λ(v)dv

dWu

]

.

In particular, denoting (Ps,t)s≤t the semi-group associated to (Xt)t≥0, for any f ∈ B(R), t ≥ 0 and x ∈ R,

Ps,tf(x) = E



f



e
−

∫

t

s
λ(u)du

x+ e
−

∫

t

s
λ(u)du

√

∫ t

s

e
2
∫

u

s
λ(v)dv

du× N (0, 1)







 ,

where N (0, 1) denotes a standard Gaussian variable.
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Theorem 3. Assume that there exists a γ-periodic function g, positive and bounded on R, such that λ ∼t→∞ g.
Then the assumptions of Theorem 1 hold.

Proof. In our case, the auxiliary semi-group (Qs,t)s≤t of Definition 1 will be defined as follows: for any f ∈ B(R),
t ≥ 0 and x ∈ R,

Qs,tf(x) = E



f



e
−

∫

t

s
g(u)du

x+ e
−

∫

t

s
g(u)du

√

∫ t

s

e
2
∫

u

s
g(v)dv

du× N (0, 1)







 .

In particular, the semi-group (Qs,t)s≤t is associated to the process (Yt)t≥0 defined as following

dYt = dWt − g(t)Ytdt.

First of all, one remarks that the function ψ : x 7→ 1 + x2 is a Lyapunov function for (Ps,t)s≤t and (Qs,t)s≤t. As
a matter of fact, for any s ≥ 0 and x ∈ R,

Ps,s+γψ(x) = 1 + e
−2

∫

s+γ

s
λ(u)du

x2 + e
−2

∫

s+γ

s
λ(u)du

∫ s+γ

s

e
2
∫

u

s
λ(v)dv

du

= e
−2

∫

s+γ

s
λ(u)du

ψ(x) + 1 − e
−2

∫

s+γ

s
λ(u)du

+ e
−2

∫

s+γ

s
λ(u)du

∫ s+γ

s

e
2
∫

u

s
λ(v)dv

du

≤ e−2γcinfψ(x) + C,

for some constant C > 0, and where cinf := inft≥0 λ(t) > 0. Taking θ ∈ (e−2γcinf , 1), there exists a compact set K
such that, for any s ≥ 0,

Ps,s+γψ(x) ≤ θψ(x) + C1K .

Also, it is simple to check that, for any s ≥ 0 and t ∈ [0, γ), the function Ps,s+tψ/ψ is upper-bounded uniformly
in s and t. Now, the local Doeblin’s condition for (Ps,t)s≤t is actually a consequence of the following lemma:

Lemma 1. For any a, b−, b+ > 0, define the subset C(a, b−, b+) ⊂ M1(R) as

C(a, b−, b+) := {N (m,σ) : m ∈ [−a, a], σ ∈ [b−, b+]}.

Then, for any a, b−, b+ > 0, there exists a probability measure ν and a constant c > 0 such that, for any
µ ∈ C(a, b−, b+),

µ ≥ cν.

The proof of this lemma is postponed after the end of this proof. Note that the condition λ ∼t→∞ g and the
fact that λ is bounded on R entails by Lebesgue’s dominated convergence theorem that, for all s ≤ t,

∣

∣

∣

∣

∣

∫ t+kγ

s+kγ

λ(u)du −
∫ t

s

g(u)du

∣

∣

∣

∣

∣

−→
k→∞

0,

and, in the same way,
∫ t+kγ

s+kγ

e
2
∫

u

s+kγ
λ(v)dv

du −→
k→∞

∫ t

s

e
2
∫

u

s
g(v)dv

du.

Then, for any s ≤ t,

e
−

∫

t+kγ

s+kγ
λ(u)du −→

k→∞
e

−
∫

t

s
g(u)du

,

and

e
−

∫

t+kγ

s+kγ
λ(u)du

√

∫ t+kγ

s+kγ

e
2
∫

u

s+kγ
λ(v)dv

du −→
k→∞

e
−

∫

t

s
g(u)du

√

∫ t

s

e
2
∫

u

s
g(v)dv

du.
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Using [14, Theorem 1.3.], one obtains, for any x ∈ R,

‖δxPs+kγ,t+kγ − δxQs+kγ,t+kγ‖TV −→
k→∞

0. (25)

To deduce the convergence in ψ-distance, we will inspire from the proof of [19, Lemma 3.1]. The variances being
bounded uniformly in k (for s ≤ t fixed), then there exists H > 0 such that, for any k ∈ N,

δxPs+kγ,t+kγ [ψ2] ≤ H, δxQs,t[ψ
2] ≤ H. (26)

Then, since lim|x|→∞
ψ(x)
ψ2(x) = 0, for any ǫ > 0, there exists lǫ > 0 such that, for any function f such that |f | ≤ ψ

and for any |x| ≥ lǫ,

|f(x)| ≤ ǫψ(x)2

H
.

This implies with (26) that, denoting Kǫ := [−lǫ, lǫ], for any k ∈ Z+, f such that |f | ≤ ψ and x ∈ R,

δxPs+kγ,t+kγ [f1Kc
ǫ
] ≤ ǫ, δxQs,t[f1Kc

ǫ
] ≤ ǫ.

Then, for any k ∈ Z+ and f such that |f | ≤ ψ,

|δxPs+kγ,t+kγf − δxQs,tf | ≤ 2ǫ+ |δxPs+kγ,t+kγ [f1Kǫ
] − δxQs,t[f1Kǫ

]| (27)

≤ 2ǫ+ (1 + l2ǫ )‖δxPs+kγ,t+kγ − δxQs,t‖TV (28)

Hence, (25) entails that, for k large enough, for any f bounded by ψ,

|δxPs+kγ,t+kγf − δxQs,tf | ≤ 3ǫ, (29)

which entails that
‖δxPs+kγ,t+kγ − δxQs,t‖ψ −→

k→∞
0.

Now, let us prove Lemma 1.

Proof of Lemma 1. Defining

fν(x) := e
− (x−a)2

2b
−

2 ∧ e
− (x+a)2

2b
−

2 ,

one concludes easily that, for any m ∈ [−a, a] and σ ≥ b−, for any x ∈ R,

e− (x−m)2

2σ2 ≥ fν(x).

Imposing moreover that σ ≤ b+, one has

1√
2πσ

e− (x−m)2

2σ2 ≥ 1√
2πb+

fν(x),

which concludes the proof.

4.2 Quasi-ergodic distribution for Brownian motion absorbed by an asymptotically

periodic moving boundary

Let (Wt)t≥0 be a one-dimensional Brownian motion and h be a C1-function such that

hmin := inf
t≥0

h(t) > 0, and sup
t≥0

h(t) < +∞.

14



Assume also that
0 < inf

t≥0
h′(t) ≤ sup

t≥0
h′(t) < +∞.

Denote by
τh := inf{t ≥ 0 : |Wt| ≥ h(t)}.

Since h is continuous, the hitting time τh is a stopping time with respect to the natural filtration of (Wt)t≥0.
Moreover, since supt≥0 h(t) < +∞ and inft≥0 h(t) > 0,

Ps,x[τh < +∞] = 1 and Ps,x[τh > t] > 0, ∀s ≤ t, ∀x ∈ [−h(s), h(s)].

The main assumption on the function h is the existence of a γ-periodic function g such that h(t) ≤ g(t), for any
t ≥ 0, and such that

h ∼t→∞ g, and h′ ∼t→∞ g′.

Similarly to τh, denote
τg := inf{t ≥ 0 : |Wt| = g(t)}.

Finally, let us assume that there exists n0 ∈ N such that, for any s ≥ 0,

inf{u ≥ s : h(u) = inf
t≥s

h(t)} − h(s) ≤ n0γ. (30)

Then, first of all, let us show the following proposition:

Proposition 1. The Markov process (Wt)t≥0, considered as absorbed by h or by g, follows the condition (A’1)-
(A’2).

Proof. In what follows, Assumption (A’) w.r.t. the absorbing function h will be shown. The following proof could
be easily adapt for the function g.

• Proof of (A’1). Denote T := {s ≥ 0 : h(s) = inft≥s h(t)}. The condition (30) entails that this set contains
an infinity of times.

In what follows, the following notation is needed: for any z ∈ R, define τz as

τz := inf{t ≥ 0 : |Wt| = z}.

Also, let us state that, since the Brownian motion absorbed at {−1, 1} satisfies the Champagnat-Villemonais
condition at any time (see [7]), it follows that, for a given t0 > 0, there exists c > 0 and ν ∈ M1((−1, 1))
such that, for any x ∈ (−1, 1),

P0,x

[

W t0
h2

max
∧t0 ∈ ·

∣

∣

∣

∣

τ1 >
t0
h2

max

∧ t0

]

≥ cν. (31)

Moreover, regarding the proof of [7, Thereom 3.1.], the probability measure ν can be expressed as

ν =
1

2
(P0,1−ǫ[Wt2 ∈ ·|τ1 > t2] + P0,−1+ǫ[Wt2 ∈ ·|τ1 > t2]) , (32)

for some 0 < t2 <
t0

h2
max

∧ t0 and ǫ ∈ (0, 1).

The following lemma is very important for the following:

Lemma 2. For all z ∈ [hmin, hmax],

P0,x[Wu ∈ ·|τz > u] ≥ cνz, ∀x ∈ (−z, z), ∀u ≥ t0,

where t0 was evoked before, c > 0 is the same constant as in (31) and

νz(f) =

∫

(−1,1)

f(zx)ν(dx),

with ν ∈ M1((−1, 1)) defined in (32).
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The proof of this lemma is postponed after the current proof.

At first, let s ∈ T . Then, for any x ∈ (−h(s), h(s)), for any t ≥ 0,

Ps,x[Ws+t ∈ ·|τh > s+ t] ≥ Ps,x[τh(s) > s+ t]

Ps,x[τh > s+ t]
Ps,x[Ws+t ∈ ·|τh(s) > s+ t],

By Lemma 2, for any x ∈ (−h(s), h(s)) and t ≥ t0,

Ps,x[Ws+t ∈ ·|τh(s) > s+ t] ≥ cνh(s),

which entails that, for any t ∈ [t0, t0 + n0γ],

Ps,x[Ws+t ∈ ·|τh > s+ t] ≥ Ps,x[τh(s) > s+ t]

Ps,x[τh > s+ t]
cνh(s)

≥ Ps,x[τh(s) > s+ t0 + n0γ]

Ps,x[τh > s+ t0]
cνh(s). (33)

Let us introduce the process Xh defined by, for any t ≥ 0,

Xh
t :=

Wt

h(t)
.

By Itô’s formula, one has for any t,

Xh
t = Xh

0 +

∫ t

0

dWs

h(s)
−

∫ t

0

h′(s)

h(s)
Xh
s ds.

Denote by (Mh
t )t≥0 :=

(

∫ t

0
1

h(s)dWs

)

t≥0
. By Dubin-Schwartz’s theorem, it is well known that the process

Mh has the same law as

(

W∫

t

0

1
h2(s)

ds

)

t≥0

. Then, denoting Ih(s) :=
∫ s

0
1

h2(u)du and, for any s ≤ t and for

any trajectory w,

Ehs,t(w) :=

√

h(t)

h(s)
exp

(

−1

2

[

h′(t)h(t)w2
Ih(t) − h′(s)h(s)w2

Ih(s) +

∫ t

s

w2
Ih(u)[(h

′(u))2 − [h(u)h′(u)]′]du

])

,

(34)

Girsanov’s theorem entails therefore that, for any x ∈ (−h(s), h(s)),

Ps,x[τh > s+ t0] = EIh(s), x
h(s)

[

Ehs,s+t0 (W )1
τ1>

∫

s+t0

0

1
h2(u)

du

]

.

On the event {τ1 >
∫ s+t0

0
1

h2(u)du}, and since h and h′ are bounded on R+, the random variable Ehs,s+t0(W )

is almost surely bounded by a constant C > 0, uniformly in s, so that for any x ∈ (−h(s), h(s)),

Es, x
h(s)

[

Ehs,s+t0 (W )1
τ1>

∫

s+t0

0

1
h2(u)

du

]

≤ CP0, x
h(s)

[

τ1 >

∫ s+t0

s

1

h2(u)
du

]

.

Since h(t) ≥ h(s) for any t ≥ s (recalling that s ∈ T ), Ih(s + t0) − Ih(s) ≤ t0
h(s)2 . Then, by the scaling

property of the Brownian motion and by Markov property, for any x ∈ (−h(s), h(s)),

Ps,x[τh(s) > s+ t0] = P0,x[τh(s) > t0]

= P0, x
h(s)

[

τ1 >
t0

h2(s)

]

= E0, x
h(s)

[

1

τ1>
∫

s+t0

s

1
h2(u)

du
P0,W∫

s+t0

s

1
h2(u)

du

[

τ1 >
t0

h2(s)
−

∫ s+t0

s

1

h2(s)
ds

]

]

= P0, x
h(s)

[

τ1 >

∫ s+t0

s

1

h2(u)
du

]

P0,φ
Ih(s+t0)−Ih(s)

(δx)

[

τ1 >
t0

h2(s)
−

∫ s+t0

s

1

h2(u)
du

]

,
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where, for any initial distribution µ and any t ≥ 0,

φt(µ) := P0,µ[Wt ∈ ·|τ1 > t].

In particular, the family (φt)t≥0 is a semi-flow, i.e. φt ◦ φs = φt+s for all s, t. Hence, by this property of
semi-flow and using that Ih(s+ t0) − Ih(s) ≥ t0

h2
max

for any s ≥ 0, the minorization (31) entails that, for all

s ≥ 0 and x ∈ (−1, 1),
φIh(s+t0)−Ih(s)(δx) ≥ cν.

Then, by this minorization and using that h is upper-bounded and lower-bounded positively on R+, one
has, for any x ∈ (−1, 1),

P0,φ
Ih(s+t0)−Ih(s)

(δx)

[

τ1 >
t0

h2(s)
−

∫ s+t0

s

1

h2(u)
du

]

≥ cP0,ν

[

τ1 > inf
s≥0

{

t0
h2(s)

−
∫ s+t0

s

1

h2(u)
du

}]

,

that is to say,

Ps,x[τh(s) > s+ t0]

P0, x
h(s)

[

τ1 >
∫ s+t0
s

1
h2(u)du

] ≥ cP0,ν

[

τ1 > inf
s≥0

{

γ

h2(s)
−

∫ s+t0

s

1

h2(u)
du

}]

.

In other words, we just showed that, for any x ∈ (−h(s), h(s)),

Ps,x[τh(s) > s+ t0]

Ps,x[τh > s+ t0]
≥ c

C
P0,ν

[

τ1 > inf
s≥0

{

t0
h2(s)

−
∫ s+t0

s

1

h2(u)
du

}]

> 0. (35)

Moreover, by Lemma 2 and the scaling property of the Brownian motion, for any x ∈ (−h(s), h(s)),

Ps,x[τh(s) > s+ t0 + n0γ]

Ps,x[τh(s) > s+ t0]
= P0,P0,x[Wt0 ∈·|τh(s)>t0][τh(s) > n0γ]

≥ cP0,νh(s)
[τh(s) > n0γ]

= c

∫

(−1,1)

ν(dy)Ph(s)y[τh(s) > n0γ]

≥ cP0,ν

[

τ1 >
n0γ

h2
min

]

> 0. (36)

To sum up, gathering (33), (35) and (36), for any x ∈ (−h(s), h(s)), for any t ∈ [t0, t0 + n0γ],

Ps,x[Ws+t ∈ ·|τh > s+ t] ≥ c1νh(s),

where c1 := cP0,ν

[

τ1 >
n0γ
h2

max

]

× c
C
P0,ν

[

τ1 > infs≥0

{

γ
h2(s) −

∫ s+γ

s
1

h2(u)du
}]

c.

Now, consider s ≥ 0. If s 6∈ T , there exists s1 ∈ T such that s < s1 ≤ s + n0γ. Then, Markov property
entails that, for any x ∈ (−h(s), h(s)),

Ps,x[Ws+t0+n0γ ∈ ·|τh > s+ t0 + n0γ] = Ps1,φs1,s
[Ws+t0+n0γ ∈ ·|τh > s+ t0 + n0γ] ≥ c1νh(s1),

where, for any s ≤ t and µ ∈ M1((−h(s), h(s))), φt,s(µ) := Ps,µ[Wt ∈ ·|τh > t]. This concludes the proof of
(A’1).

• Proof of (A’2). Since (Wt)t≥0 is a Brownian motion, note that, for any s ≤ t,

sup
x∈(−1,1)

Ps,x[τh > t] = Ps,0[τh > t],

and that, for any a ∈ (0, h(s)),
inf

[−a,a]
Ps,x[τh > t] = Ps,a[τh > t].
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Then, by Markov property, and using that the function s 7→ Ps,0[τg > t] is non-decreasing on [0, t] (for all
t ≥ 0), then one has for any s ≤ t,

Ps,a[τh > t] ≥ Es,a[1τ0<s+γ<τh
Pτ0,0[τh > t]] ≥ Ps,a[τ0 < s+ γ < τh]Ps,0[τh > t]. (37)

Then, denoting a := hmin

hmax
, by Lemma 2 and taking s1 := inf{u ≥ s : u ∈ T }, one obtains for any s ≤ t,

Ps,νh(s1)
[τh > t] =

∫

(−1,1)

ν(dx)Ps,h(s1)x[τh > t]

≥ ν([−a, a])Ps,h(s1)a[τh > t]

≥ ν([−a, a])P0,hmin [τ0 < γ < τh] sup
x∈(−h(s),h(s))

Ps,x[τh > t].

This concludes the proof since, using (32), one has ν([−a, a]) > 0.

Proof of Lemma 2. This result comes from the scaling property of a Brownian motion: as a matter of fact, for
any z ∈ [hmin, hmax], x ∈ (−z, z) and t ≥ 0, and for any measurable bounded function f ,

E0,x[f(Wt)|τz > t] = E0,x

[

f

(

z × 1

z
Wz2 t

z2

)∣

∣

∣

∣

τz > t

]

= E0, x
z

[

f
(

z ×W t

z2

)

∣

∣

∣

∣

τ1 >
t

z2

]

.

Then, the minorization (31) entails that, for any x ∈ (−1, 1),

P0,x

[

W t0
h2

max

∈ ·
∣

∣

∣

∣

τ1 >
t0
h2

max

]

≥ cν.

This inequality actually hold for any time greater than t0
h2

max
. In particular, for any z ∈ [hmin, hmax], x ∈ (−1, 1),

P0,x

[

W t0
z2

∈ ·
∣

∣

∣

∣

τ1 >
t0
z2

]

≥ cν.

Then, for any z ∈ [a, b], f positive measurable and x ∈ (−z, z),

E0,x[f(Wt0 )|τz > t0] ≥ cνz (f) ,

where νz(f) =
∫

E
f(z × x)ν(dx).

Now, the section is concluded by stating and proving the following result:

Theorem 4. For any s ≤ t, n ∈ N and any x ∈ R,

Ps+kγ,x[τh ≤ t+ kγ < τg] −→
k→∞

0.

In particular, Corollary 2 holds for (Wt)t≥0 absorbed by h.

Proof. Reminding (34) and by Markov property for the Brownian motion, one obtains that, for any k, n ∈ N, for
any x ∈ R,

Ps+kγ,x[τh > t+ kγ] =

√

h(t+ kγ)

h(s+ kγ)
E0,x

[

exp

(

−1

2
Ah
s,t,k(W )

)

1τ1>Ih(t+kγ)−Ih(s+kγ)

]

,
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where, for any trajectory w,

Ah
s,t,k(w) = h′(t+ kγ)h(t+ kγ)w2

Ih(t+kγ)−Ih(s+kγ) − h′(s+ kγ)h(s+ kγ)w2
0

+

∫ t−s

0

w2
Ih(u+s+kγ)−Ih(s+kγ)[(h

′(u+ s+ kγ))2 − [h(u+ s+ kγ)h′(u + s+ kγ)]′]du.

First, since h ∼t→∞ g, for any s ∈ [0, γ] and n ∈ N,

√

h(t+ kγ)

h(s+ kγ)
−→
k→∞

√

g(t)

g(s)
.

Then, for the same reasons and using that the function h is bounded on [s+ kγ, t+ kγ] for any s ≤ t, Lebesgue’s
theorem entails that

Ih(t+ kγ) − Ih(s+ kγ) −→
k→∞

Ig(t) − Ig(s).

Moreover, since h ∼t→∞ g and h′ ∼t→∞ g′, one has the following convergence for any trajectory w:

Ah
s,t,k(w) −→

k→∞
g′(t)g(t)w2

Ig(t)−Ig(s) − g′(s)g(s)w2
0 +

∫ t

s

w2
Ig(u)[(g

′(u))2 − [g(u)g′(u)]′]du.

Then, since the random variable exp
(

− 1
2 Ah

s,t,k(W )
)

1τ1>Ih(t+kγ)−Ih(s+kγ) is bounded almost surely, by Le-

besgue’s theorem,
Ps+kγ,x[τh > t+ kγ] −→

k→∞
Ps,x[τg > t],

which concludes the proof.
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