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Abstract

An innovative numerical procedure for solving the viscoelastic column
problem based on fractional rheological models, directly in the time domain,
is investigated. Firstly, the governing equation is established according
to the fractional constitutive relation. Secondly, the resulting equation
is transformed into algebraic equation and solved by using the shifted
Chebyshev wavelet function. Furthermore, the convergence analysis and the
retained numerical benchmarks are carried out to validate the performance
of the proposed method. A small value of the absolute error between
numerical and accurate solution is obtained. Finally, the dynamic analysis
of viscoelastic beam-column problems is investigated with different cross-
section shape (circular and square) under various loading conditions (axial
compressive force and harmonic load). The displacement, strain and stress
of the viscoelastic column at different time and position are determined. The
deformation and stress of the viscoelastic column of different materials under
the same loading condition are compared. The results in the paper show the
highly accuracy and efficiency of the proposed numerical algorithm in the
dynamical stability analysis of the viscoelastic column.
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1. Introduction

Non-integer or fractional viscoelastic constitutive models attract more
and more attention [1]. These models are widely used to describe the
viscoelastic behaviour of materials with the development of fractional order
differential operators. The memory properties of viscoelastic materials are
described better with these operators. Xu et al. [2] used the wave method to
analyze the structure of fractional-order viscoelastic beams, and discussed the
effect of fractional order on the structure during the analysis. Mendiguren
et al. [3] proposed a one-dimensional fractional-order elastoplastic model.
They analyzed the special cases of first, second, and third terms, which
fitted with experimental data, and compared with the classic Hollomon and
Ramberg-Osgood models. Sherief et al. [4] studied the variable thermal
conductivity of material with half-space method in the context of fractional-
order thermoelasticity theory. The effect of fractional derivative parameters
on the behaviour of the solution was also investigated. Therefore, fractional
order is more suitable than integer order for solving problems in real life.
Liaskos et al. [5] derived the implicit analytical solutions for a nonlinear
fractional governing equation of viscoelastic Euler-Bernoulli beam. Lin et al.
[6] established the governing equations related to the left and right Riemann-
Liouville fractional derivatives. A comprehensive study was effectuated
on the flow and heat transfer of the space fractional boundary layer with
a variable thickness stretching sheet. Their results showed considerable
importance of fractional calculus in the numerical modelling of viscoelastic
behaviour of materials.

The column structure may exhibit complex dynamic behaviour due to
different dynamic loads and working environments in building structures
and aircraft interior products. The study focus on the dynamic stability of
viscoelastic column is paid much attention [7]. In recent years, the analysis
of the stability of this structure using Lyapunov functions is well developed
[8,9].

Viscoelastic materials are of great significance in vibration system design
[10]. Viscoelastic damping exhibited in glassy materials. Yang et al. [11]
proposed an adaptive segmentation algorithm for time to describe the static
and dynamic stability of the viscoelastic column. Deng et al. [12] used
the stochastic averaging method to investigate the stability of viscoelastic
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beam-column under random axial loading. A new set of mean variables
was proposed to approximate the response of the dynamical system. The
Lyapunov exponent was retained to resolve the eigenvalue problem. A high-
order stochastic averaging method was applied to investigate the stochastic
stability of a fractional order viscoelastic column with axially random force
loading [13]. Amit et al. [14] studied the non-linear flexural-torsional
vibration and instability analysis of the thin-walled column with different
cross-sections under cyclic axial loading. The effect of eccentricity, cross-
sectional shape and boundary condition on the response of the frequency
amplitude and instability region was analysed. Floris et al. [15] examined
the stability of a hinged-hinged viscoelastic column under random axial
forces of Gaussian white noise. The response of the differential equation
was obtained by using Itô’s differential law. The necessary and sufficient
numerical conditions for stability of the viscoelastic column were that the
coefficient matrix were negative real eigenvalues and complex eigenvalues
with negative real part. Leung et al. [16] used the Runge-Kutta method
to research the bifurcation behaviour of viscoelastic column at different
fractional orders and material properties. The stability of viscoelastic column
was illustrated by the curves of amplitude and frequency response. Zhang et
al. [17] developed a fractional nonlinear viscoelastic model to describe the
large deformation of biomaterials. The fractional viscoelastic constitutive
model was integrated in a finite element framework. The proposed method
showed high computational efficiency and better convergence rate.

The dynamic analysis of viscoelastic column is not limited to the
establishment of the material behaviour equations, but also to solving the
fractional differential equations with an efficient numerical algorithm. The
conventional approaches are based on the multi-scale [18], galerkin method
[19], finite element method [20]. Betancur-Herrera and Munoz-Galeano [21]
proposed an innovative numerical method to solve the fractional derivative
equations with Riemann-Liouville’s or Caputo’s form. The main contribution
of the method was transforming the fractional derivatives to recurrence
equations, which allowed to solve the fractional equations as a system of
algebraic equations. Chen et al. [22] proposed a correction method to
obtain the numerical solutions of the fractional differential equations. The
improved Lubich’s method with few correction terms demonstrated high
accuracy compared with other presented methods. Many time domain
problems are converted into frequency-domain by using Laplace transform.
The solution in the time domain is determined by using the inverse of Laplace

4



transform in the frequency-domain. The inconvenient of this method is the
complexity of Laplace transform and its inverse transform. Qi and Guo
[23] applied the fractional calculus approach to find the numerical solutions
of an initial-boundary value problem. The Laplace transform was used
to present the solution under series forms of H-function to facilitate the
numerical computation. The wavelet basis function is proposed to solve
fractional differential equations directly in time domain. Its advantages are
high-accuracy, fewer iterations and less computation time [24]. Legendre [25],
Bernstein [26,27] and Chebyshev polynomials [28-30] are often employed to
construct wavelet algorithms. Chen et al. [31] employed wavelet method for
solving the non-linear fractional differential equations. The absolute error
between the numerical and the algebraic solution was estimated. The shifted
Chebyshev polynomials with variable coefficients was proposed to solve the
generalized fractional pantograph equations by Wang et al. [32]. Yu et
al. [33] applied Quasi-Legendre polynomials to solve the governing equation
of the viscoelastic Euler-Bernoulli beam. Hassani et al. [34] used a novel
class of basis functions based on the shifted Chebyshev polynomials to solve
the nonlinear variable order fractional derivative equations. The accuracy
and efficiency of the method was confirmed by the convergence analysis and
several numerical examples.

Although many researches on the stability of viscoelastic column in
various aspects were effectuated, less method has been proposed to solve
directly the displacement, stress and strain of viscoelastic column with
different materials in the time domain. In this paper, the shifted Chebyshev
wavelet function is proposed to perform the dynamic analysis of viscoelastic
column directly in the time domain. The material properties are described
with a fractional viscoelastic model. The governing equation of column
with this fractional viscoelastic model is established. An efficient numerical
algorithm based on the shifted Chebyshev wavelet functions is proposed
to solve the governing equations. The performance and efficiency of the
developed algorithm are investigated. The numerical solutions concerning the
displacement, stress and strain of the column have been obtained under axial
compressive force and harmonic load conditions. The displacement solutions
of viscoelastic columns with different cross-sections and materials under the
same load are compared. It provides theoretical basis and numerical approach
for the application of viscoelastic materials in engineering.

This paper is structured as follows, section 2 is the introduction of
fractional order and viscoelastic material parameters. Section 3 shows
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the governing equation of the viscoelastic column. Section 4 presents
the proposed algorithm. The convergence of the algorithm is analyzed in
section 5. The displacement, strain and stress of the viscoelastic column
with different materials under different loading conditions are obtained and
compared in section 6. The research work is concluded in section 7.

2. Preliminary

2.1. Definition of fractional derivative

In fractional calculus, the different operators called Riemann-Liouville,
Caputo and Grünwald-Letnikov operators are respectively defined in [35],
[36] and [37]. The definition and properties of the fractional derivatives of
Caputo are introduced as follows.

Definition 1 Fractional Caputo derivative

cDα
t f (t) =

{
dmf(t)
dtm

, α = m ∈ N+

1
Γ(m−α)

∫ t
a

f (m)(τ)

(t−τ)α−m+1dτ, 0 ≤ m− 1 < α < m
(1)

where 0 < α < 1 is fractional derivative order, cDα
t is Caputo fractional

derivative operator, f(t) is a continuous function, m is positive integer, Γ (·)
is Gamma function, and Γ (z) =

∫∞
0
e−ttz−1dt.

Based on the above definition, the following equations are obtained

cDα
t t

m =

{
0 ,m ∈ N0 and m < α

Γ(m+1)
Γ(m+1−α)

tm−α , m ∈ N0 andm ≥ α or m /∈ N0 and m > α
(2)

The Caputo fractional derivative of constant is zero.

cDα
t C = 0 (3)

where C is constant.
The Caputo fractional derivative is a linear operator.

cDα
t (C(f(x))) = CcDα

t f(x) (4)
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2.2. Constitutive equation of linear viscoelasticity

Many materials used in mechanical engineering exhibit elastic and viscous
behaviours simultaneously. Lots of physical models have been proposed
to describe their viscoelastic characteristic. This viscoelastic relationship
between stress and strain could be described more completely and accurately
by the fractional order constitutive equation compared to integer order
constitutive equation.

The linear viscoelastic properties of the materials can be modelled by
different combinations of elastic and viscous elements. The fractional
constitutive viscoelastic models, such as Four-parameter Zener model (FZM)
[38], Poynting-Thomson model (PTM) [39], Fractional Maxwell model
(FMM) [40] and Fractional Kelvin-Voigt model (FKVM) [41] have been
used to describe the viscoelasticity of the materials. Liu et al. [42]
employed the time fractional Maxwell constitutive equation to investigate
the boundary layer flow. The fractional order operator exhibits better
memory characteristic in describing the flow in a highly non-homogeneous
transport process. The classical Kelvin-Voigt model is represented by a
purely viscous dashpot and a purely elastic string connected in parallel.
In fractional Kelvin-Voigt model, the purely viscous dashpot is replaced by
a fractional element, as shown in Eq. (5). When the fractional order α
is equal to 1, the model reduces to the classical Kelvin-Voigt model. The
FKVM requires fewer parameters to be identified by the experimental tests.
Farno et al. [43] showed that FKVM can better explain the performance
of viscoelastic materials than classic Kelvin-Voigt model. In this paper,
FKVM is retained to describe the constitutive relationship between stress
and strain of viscoelastic material. FKVM is represented in Figure. 1 and
its constitutive equation is as follows:

σ (x, t) = [E0 + η · cDα
t ] ε (x, t) (5)

where E0 is elastic modulus, η is viscosity, σ (x, t) is stress, ε (x, t) is strain.

2.3. FKVM parameters

The material physical properties can be characterized by the dynamic
mechanical analysis. The viscoelastic parameters in the fractional behaviour
law, such as fractional order, elastic modulus, can be identified according to
the regression analysis. Leung et al. [16] found that the stability domain of
the viscoelastic column increases with time-delays when α = 0.8, η = 0.05
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Figure 1: Schematic representation of FKVM.

by comparing the results with different values of α and η. The numerical
results obtained by the direct integration based on the Runge-Kutta 4th

order method are approximately equivalent to the analytical solution. The
description of geometrical and material properties [44,45] are shown in Table.
1.

Table 1: Description of geometrical and material properties of the viscoelastic column.

l(m) ρ(kg/m3) β0(1) E0(MPa)
Metal 5 7750 600 21

Concrete 5 4000 600 22680
Polymer 5 1300 600 3162.4

3. Development of fractional governing equation of viscoelastic
column

When the axial compressive load F (t) is applied on the viscoelastic
column, the transverse displacement appears, as shown in Figure. 2, where
the transverse displacement is noted as v (x, t), x and z are axial and
transverse coordinate respectively.

The fractional dynamic equation of the column [13] is given as

∂2M (x, t)

∂x2
= ρA

∂2v (x, t)

∂t2
+ β0

∂v (x, t)

∂t
+ F (t)

∂2v (x, t)

∂x2
, (6)

where density is ρ, damping coefficient is β0, cross-sectional area is A, and
the bending moment is M (x, t).
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Figure 2: The displacement of viscoelastic column.

The bending moment is

M (x, t) =

∫

A

σ (x, t)zdA. (7)

When the column exhibits the small deformation, the strain of the column
is expressed as

ε (x, t) = −∂
2v (x, t)

∂x2
z (8)

Substituting Eq. (5) into Eq. (7), it can get

M (x, t) =

∫

A

[E0 + η·cDα
t ]ε (x, t) zdA (9)

Based on Eq. (8) and (9), the bending moment of viscoelastic column is

M (x, t) = −E0I
∂2v (x, t)

∂x2
− ηIcDα

t

∂2v (x, t)

∂x2
, (10)

where I =
∫
A
z2dA is the moment of inertia.

Then
∂2M (x, t)

∂x2
= −E0I

∂4v (x, t)

∂x4
− ηIcDα

t

∂4v (x, t)

∂x4
(11)

Therefore, the fractional governing equation of viscoelastic column is
obtained as

ρA
∂2v (x, t)

∂t2
+β0

∂v (x, t)

∂t
+E0I

∂4v (x, t)

∂x4
+ηIcDα

t

∂4v (x, t)

∂x4
+F (t)

∂2v (x, t)

∂x2
= 0.

(12)
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4. Shifted Chebyshev wavelet function algorithm

A numerical algorithm is proposed to obtain the solutions of the fractional
governing equations. The operator matrices of integer and fractional order
are deduced according to the shifted Chebyshev wavelet function.

4.1. Shifted Chebyshev wavelet function

The Chebyshev polynomials defined above [-1, 1] are derived. The
expression of Chebyshev polynomials is obtained by the following recursive
formula

Ti+1 (z) = 2zTi (z)− Ti−1 (z) , i = 1, 2 · · · (13)

where T is a function expression and T0 (z) = 1, T1 (z) = z.
The conversion variable z = 2x

L
− 1 is introduced to obtain the shifted

Chebyshev wavelet function in the interval of [0, L].

Ti+1

(
2x

L
− 1

)
= 2

(
2x

L
− 1

)
Ti

(
2x

L
− 1

)
− Ti−1

(
2x

L
− 1

)
, i = 1, 2 · · ·

(14)

Let Ti
(

2x
L
− 1
)

= Gi (x), the shifted Chebyshev wavelet function becomes:

Gi+1 (x) = 2

(
2x

L
− 1

)
Gi (x)−Gi−1 (x) , i = 1, 2 · · · (15)

where G0 (x) = 1, G1 (x) = 2x
L
− 1.

The specific expression of the shifted Chebyshev wavelet function of order
i is

Gi (x) = i
i∑

k=0

(−1)i−k
(i+ k − 1)!22k

(i− k)! (2k)!Lk
xk, i = 1, 2 · · · (16)

where Gi (0) = (−1)i, Gi (L) = 1.
The shifted Chebyshev wavelet function satisfies the following orthogonality

relation

L∫

0

Gj (x)Gk (x) vL (x)dx = hk (17)

where vL (x) = 1√
Lx−x2 , hk =

{
bk
2
π, k = j

0, k 6= j
, b0 = 2, bk = 1, k ≥ 1.
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Then a series of shifted Chebyshev wavelet function matrix Φ (x) can be
written as

Φ (x) = [G0 (x) , G1 (x) , · · · , Gn (x)]T = AnZ (x) (18)

where Z (x) = [1, x, · · · , xn]T ,

An = [pij]
n
i,j=0 , pij =





1, i = 0, j = 0
0, i < j
2
(

2
L
pi−1,j−1 − pi−1,j

)
− pi−2,j, i ≥ j, i, j 6= 0

where An is full rank and invertible.

4.2. Approximation of unknown function

For any continuous function of one variable v (x) ∈ L2 ([0, L]), it can be
approximated by the shifted Chebyshev wavelet function.

v (x) =
∞∑

i=0

ciGi (x) (19)

where ci is the coefficient of shifted Chebyshev wavelet function. The
orthogonality of the shifted Chebyshev wavelet function is used to get

ci =
1

hi

∫ L

0

v (x)Gi (x) vL (x)dx, i = 0, 1, 2, · · ·

A finite number of terms are truncated, the function could be written as

v (x) ≈
n∑

i=0

ciGi (x) = CTΦ (x) , (20)

where n is the number of terms of the Chebyshev wavelet function, CT =
[ci]

n
i=0 ,Φ (x) = [G0 (x) , G1 (x) , · · · , Gn (x)]T .
Any continuous function of two variables v (x, t) ∈ L2 ([0, L]× [0, T ])

based on the shifted Chebyshev wavelet function can be approximated

v (x, t) =
∝∑

i=0

∝∑

j=0

vijGi (x)Gj (t) , (21)

where vij = 1
hihj

∫ L
0

∫ T
0
v (x, t)Gi (x)Gj (t)vL (x) vT (t) dtdx, i, j = 0, 1, 2 · · · .

11



A finite number of terms are truncated, the function could be obtained

v (x, t) ≈
n∑

i=0

n∑

j=0

vijGi (x)Gj (t) = ΦT (x)V Φ (t) (22)

where Φ (x) = [G0 (x) , G1 (x) , · · · , Gn (x)]T ; Φ (t) = [G0 (t) , G1 (t) , · · · , Gn (t)]T ,
V = [vij]

n
i,j=0 is the coefficient matrix.

If v (x, t) /∈ L2 ([0, L]× [0, T ]) but belongs to the continuous function
space, according to the function approximation theory, the effect of the
function approximation will be better. Therefore, the shifted Chebyshev
wavelet function may be applied in multivariate fractional calculus.

4.3. Determination of operator matrix

4.3.1. Integer order operator matrix

Definition 2 If there is a matrix Px such that Φ′ (x) = PxΦ (x), then Px is
called the first order operator matrix of shifted Chebyshev wavelet function.

Φ′ (x) = (AXZ (x))′ = AXZ
′ (x)

= AX




1′

x′

...
(xn)′


 = AX




0
1
...
nxn−1


 = AXMZ (x) (23)

where AX is obtained by replacing n by X in Eq. (18),
and

M = [mij]
n
i,j=0 ,mij =

{
0, i 6= j + 1
i, i = j + 1

Because of Z (x) = A−1
X Φ (x), then the Eq. (23) can be written as

Φ′(x) = AXMA−1
X Φ (x) = PxΦ (x) (24)

where Px = AXMA−1
X is a matrix of first order differential operator for shifted

Chebyshev wavelet function.

Definition 3 If there is a matrix Gx such that Φ′′ (x) = GxΦ (x), then Gx is
called the second order operator matrix of shifted Chebyshev wavelet function.
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Φ′′ (x) = (Φ′ (x))
′
=
(
AXMA−1

X Φ (x)
)′

= AXMA−1
X Φ′ (x)

=
(
AXMA−1

X

) (
AXMA−1

X

)
Φ (x) = (Px)

2Φ (x) = GxΦ (x) (25)

where Gx = (Px)
2 =

(
AXMA−1

X

)2
is a matrix of second order differential

operator for shifted Chebyshev wavelet function.
Based on the derivative of first and second order differential operator

matrices, the integer order differential operator matrix of the shifted
Chebyshev wavelet function can be expressed as

Pm
x =

(
AXMA−1

X

)m
(26)

where m ∈ Z.
The integer order differential of Φ (x) can be expressed as

dmΦ (x)

dxm
= Pm

x Φ (x) =
(
AXMA−1

X

)m
Φ (x) (27)

The partial differential equation terms in Eq. (12) could be obtained:

∂2v (x, t)

∂x2
≈ ∂2

(
ΦT (x)V Φ (t)

)

∂x2
=
∂2ΦT (x)

∂x2
V Φ (t)

= ΦT (x)
(
Px

T
)2
V Φ (t) = ΦT (x)

(
AXMA−1

X

)2
V Φ (t) (28)

∂4v (x, t)

∂x4
≈ ∂4

(
ΦT (x)V Φ (t)

)

∂x4
=
∂4ΦT (x)

∂x4
V Φ (t)

= ΦT (x)
(
Px

T
)4
V Φ (t) = ΦT (x)

(
AXMA−1

X

)4
V Φ (t) (29)

∂v (x, t)

∂t
≈ ∂

(
ΦT (x)V Φ (t)

)

∂t
= Φ (x)V

∂Φ (t)

∂t
= ΦT (x)V PtΦ (t) = ΦT (x)V

(
ATMA−1

T

)
Φ (t) (30)

∂2v (x, t)

∂t2
≈ ∂2

(
ΦT (x)V Φ (t)

)

∂t2
= Φ (x)V

∂2Φ (t)

∂t2

= ΦT (x)V (Pt)
2Φ (t) = ΦT (x)V

(
ATMA−1

T

)2
Φ (t) (31)
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4.3.2. Fractional order operator matrix

Definition 4 If there is a matrix Qt, such that cDα
t Φ (t) = QtΦ (t), then

Qt is called the fractional order operator matrix of shifted Chebyshev wavelet
function.

Based on the definition of the Caputo fractional derivative

cDα
t t
n =

Γ (n+ 1)

Γ (n+ 1− α)
tn−α

so fractional derivative of Φ (t) can be written as

cDα
t Φ (t) = cDα

t (ATZ (t)) = AT
cDα

t Z (t) = AT
cDα

t




1
t
...
tn




= AT




0
Γ(2)

Γ(2−α)
t1−α

...
Γ(n+1)

Γ(n+1−α)
tn−α


 = ATEZ (t) (32)

where AT is obtained by replacing n by T in Eq. (18), and

E = [eij]
n
i,j=0 , eij =

{
Γ(i)

Γ(i+1)
t−α, i = j, i 6= 1

0, otherwise

Because of Z (t) = A−1
T Φ (t), then the Eq. (32) can be written as

cDα
t Φ (t) = ATEA

−1
T Φ (t) = QtΦ (t) (33)

where Qt = ATEA
−1
T is the fractional differential operator matrix of shifted

Chebyshev wavelet function.
The fractional partial differential equation term in Eq. (12) could be

obtained:

cDα
t

∂4v (x, t)

∂x4
≈ cDα

t ΦT (x)
(
AXMA−1

X

)4
V Φ (t)

= ΦT (x)
(
AXMA−1

X

)4
V cDα

t Φ (t)

= ΦT (x)
(
AXMA−1

X

)4
V ATEA

−1
T Φ (t) (34)
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4.4. Discretisation of the governing equation of viscoelastic column

Eq. (12) could be converted into the following form:

ρAΦT (x)V
(
ATMA−1

T

)2
Φ (t) + β0ΦT (x)V

(
ATMA−1

T

)
Φ (t)

+E0IΦT (x)
(
AXMA−1

X

)4
V Φ (t) + IηΦT (x)

(
AXMA−1

X

)4
V ATEA

−1
T Φ (t)

+F (t) ΦT (x)
(
AXMA−1

X

)2
V Φ (t) = 0

(35)
Based on the collection method, the reasonable match points xi =

2i−1
2(n+1)

L, i = 1, 2, · · · , n, tj = 2j−1
2(n+1)

T, j = 1, 2, · · · , n are used to discretize

the variable (x, t) to (xi, tj). Eq. (35) is transformed into a set of algebraic
equations.

The coefficient vij (i = 0, 1, 2, · · · , n; j = 0, 1, 2, · · · , n) is determined by
using Matlab platform and least square method. The numerical solution of
the fractional derivative equation can be obtained.

The proposed algorithm can be summarized as shown in Table. 2.

Table 2: Numerical algorithm to resolve the fractional governing equation.

Input: n, α,E0, β0, η, l, ρ, A, I, F (t)
Output:
1. Function approximation v (x, t) ≈ ΦT (x)V Φ (t)
2. Derive the operator matrix of Φ(x) and Φ(t) in Eq. 24 and 33.
3. Substitute Eq. 28 - 31 and Eq. 34 into Eq. 12.
4. Eq. 12 could be converted into Eq. 35

5. Let xi = 2i−1
2(n+1)L, i = 1, 2, · · · , n, tj = 2j−1

2(n+1)T, j = 1, 2, · · · , n
6. Solve algebraic equations with MATLAB mathematical software
7. Obtain the solution of the initial equation v (x, t)

5. Convergence analysis and validation

In this section, the convergence analysis and numerical example are given
to prove the validity and accuracy of the proposed algorithm in solving
fractional order equations. The fractional equation solved in section 5.2
is a mathematical example with known algebraic solution. The obtained
numerical solutions are compared with the algebraic solution to confirm the
efficiency of the proposed algorithm.
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5.1. Convergence analysis

In the domain Λ = [0, L] × [0,T], the norm of any continuous function
v (x, t) is

‖v (x, t)‖ = sup
(x,t)∈Λ

|v (x, t)| (36)

The absolute error is defined as

|en (x, t) | = |v (x, t)− vn (x, t) | (37)

where v (x, t) and vn (x, t) are the algebraic and numerical solutions of
fractional governing equation of viscoelastic column.

Theorem 1 If v (x, t) ∈ C3 (Λ), the absolute error bound is

‖en (x, t)‖ = ‖v (x, t)− vn (x, t)‖ ≤ Nh3 = O
(
h3
)

(38)

Proof 1 Let

en,ij (x, t) =

{
v (x, t)− vn (x, t) , (x, t) ∈ Λn

0, (x, t) ∈ Λ− Λn
(39)

where Λn = {(x, t) |ih ≤ x < (i+ 2)h, jh ≤ t < (j + 2)h, i, j = 0, 2, · · · , n− 2},
vn (x, t) is the quadratic polynomials interpolation function of v (x, t) on Λn,
then

en,ij (x, t) =
1

6

∂3v (ξ1,i, t)

∂x3

i+2∏

i′=i

(x− xi′) +
1

6

∂3v (x, ζ1,j)

∂t3

j+2∏

j′=j

(t− tj′)

− 1

36

∂6v (ξ2,i, ζ2,j)

∂x3t3

i+2∏

i′=i

(x− xi′)
j+2∏

j′=j

(t− tj′) (40)

where x, ξ1,i, ξ2,i ∈ [xi, xi+2) , t, ζ1,j, ζ2,j ∈ [tj, tj+2) , i, j = 0, 2, · · · , n− 2.
Thus the expression can get

‖en,ij (x, t)‖ ≤ 1

6

∥∥∥∥
∂3v (ξ1,i, t)

∂x3

∥∥∥∥

∥∥∥∥∥
i+2∏

i′=i

(x− xi′)
∥∥∥∥∥

+
1

6

∥∥∥∥
∂3v (x, ζ1,j)

∂t3

∥∥∥∥

∥∥∥∥∥

j+2∏

j′=j

(t− tj′)
∥∥∥∥∥

+
1

36

∥∥∥∥
∂6v (ξ2,i, ζ2,j)

∂x3t3

∥∥∥∥

∥∥∥∥∥
i+2∏

i′=i

(x− xi′)
∥∥∥∥∥

∥∥∥∥∥

j+2∏

j′=j

(t− tj′)
∥∥∥∥∥ (41)
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where

∥∥∥∥
i+2∏
i′=i

(x− xi′)
∥∥∥∥ = sup

x∈[xi,xi+2)

∣∣∣∣
i+2∏
i′=i

(x− xi′)
∣∣∣∣.

Based on the maximum value of

∣∣∣∣
i+2∏
i′=i

(x− xi′)
∣∣∣∣ in x =

(
i+ 1−

√
3

3

)
h, the

following expression could be obtained

∥∥∥∥∥
i+2∏

i′=i

(x− xi′)
∥∥∥∥∥ ≤

2
√

3h3

9
,∀x ∈ [xi, xi+2) (42)

∥∥∥∥∥

j+2∏

j′=j

(t− tj′)
∥∥∥∥∥ ≤

2
√

3h3

9
,∀t ∈ [tj, tj+2) (43)

Substituting Eq. (42) and (43) into the Eq. (41) to obtain:

‖en (x, t)‖ ≤
√

3h3

27

(∥∥∥∥
∂3v (x, t)

∂x3

∥∥∥∥+

∥∥∥∥
∂3v (x, t)

∂t3

∥∥∥∥+

√
3h3

27

∥∥∥∥
∂6v (x, t)

∂x3∂t3

∥∥∥∥

)

= Nh3 = O(h3) (44)

As conclusion, the theorem is proved.
Based on the proof of the theorem, the accuracy of the proposed algorithm

is confirmed and it can used to solve the fractional order equations effectively.

5.2. Application of developed algorithm for solving mathematical problem

The objective of this section is to investigate the accuracy of the proposed
numerical algorithm.

The order of convergence is calculated to describe the effectiveness of the
proposed numerical algorithm. The order of convergence q is expressed as
follows:

q =
log
(
enmax

en−1
max

)

log
(

hn
hn−1

) (45)

where enmax and en−1
max are the maximum absolute error, hn = π

2n
, hn−1 =

π
2(n−1)

.
The following equation is considered as a numerical example:
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50
∂2v (x, t)

∂t2
+ 1.6

∂v (x, t)

∂t
+ 0.15

∂4v (x, t)

∂x4
+ 0.15Dα

t

∂4v (x, t)

∂x4

+0.1F (x, t)
∂2v (x, t)

∂x2
= 0 (46)

The boundary and initial conditions are:




v (0, t) = v (5, t) = 0
v′ (0, t) = v′ (5, t) = 0
v (x, 0) = v′ (x, 0) = 0

(47)

where α = 0.89, F (x, t) =
x2(5−x)2(100+3.2t)+3.6(t2+

Γ(3)
Γ(2.11)

t1.11)
(6x−1.2x2−5)t2

.

The algebraic solution of the Eq. (46) is v (x, t) = x2(5−x)2t2

145
.
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Figure 3: The comparison of the numerical and algebraic solutions at different matching
point when n = 5.

The numerical solution of the equation is obtained with different number
of terms of the shifted Chebyshev wavelet function (n = 4, n = 5 and n = 6)
based on the proposed algorithm at (xi, tj) ∈ [0, 5] × [0, 1]. The numerical
solution is highly consistent with the algebraic solution, as shown in Figure.
3 (n = 5). The absolute error values between the numerical and algebraic
solutions at different matching points are listed in Table. 3. The maximum
absolute error value and order of convergence of different n are shown in
Table. 4.

The absolute error, defined in Eq. (37), between the numerical and
algebraic solutions decreases gradually with the number of terms of shifted
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Table 3: Evolution of absolute error using the developed method in function of several
values of n.

(x, t) Algebraic solution
Absolute error value

n = 4 n = 5 n = 6
(0, 0) 0 1.182× 10−8 7.567× 10−10 1.284× 10−11

(0, 0.5) 0 3.966× 10−9 2.259× 10−10 1.19× 10−12

(0, 1) 0 1.02× 10−8 6.515× 10−10 1.988× 10−11

(2.5, 0) 0 3.766× 10−9 5.163× 10−10 1.258× 10−11

(2.5, 0.5) 0.06735 5.856× 10−6 3.29× 10−7 5.841× 10−9

(2.5, 1) 0.2694 1.168× 10−5 6.557× 10−7 1.162× 10−8

(4, 0) 0 4.726× 10−9 6.988× 10−10 1.872× 10−11

(4, 0.5) 0.02759 2.236× 10−6 1.251× 10−7 2.225× 10−9

(4, 1) 0.1103 4.462× 10−6 2.498× 10−7 4.436× 10−9

Table 4: The maximum absolute error value and order of convergence for different n.

n enmax q
3 1.196× 10−4 −
4 1.168× 10−5 71.9530
5 6.557× 10−7 136.6654
6 1.162× 10−8 199.0116

Chebyshev wavelet functions. The order of convergence is improved with the
increase of the number of terms. The efficiency and accuracy of the proposed
algorithm based on the shifted Chebyshev wavelet function is demonstrated.
Therefore, n = 6 is retained in the numerical algorithm for the following
solutions. It is proved as a highly useful method to solve the fractional
governing equation of the viscoelastic column under various load conditions.

6. Results and discussions

The actual fractional governing equation of the viscoelastic column is
solved by using the proposed algorithm.

The displacement, stress and strain of the viscoelastic columns with
different cross-section shape and materials under various load conditions are
investigated in this section. The square and circular cross-section parameters
are shown in Table. 5.

The boundary and initial conditions are as following:

v (0, t) = v (l, t) = 0,
∂v (0, t)

∂x
=
∂v (l, t)

∂x
= 0 (48)
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Table 5: Square and circular cross-section parameters of viscoelastic column.

d(m) A(m2) I(m4)
square cross-section 0.1 0.01 8.3× 10−6

circular cross-section 0.1128 0.01 8.03× 10−6

v (x, 0) =
∂v (x, 0)

∂t
= 0. (49)

6.1. Effect of the load condition on the numerical solution of governing
equation

6.1.1. Axial compressive force

The column with the square cross-section is selected in this study. The
metal material parameters of the viscoelastic properties are defined in Table.
1. When the axial compression force 1000 N is applied on the column and
the numerical solutions of the displacement of the column at various position
and time are shown in Figure. 4.
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Figure 4: The displacement solution of viscoelastic column under axial compressive force:
(a) F = 1000 N, (b) at different times.

The displacement of the two ends of a viscoelastic column is always zero
and is not affected by time, which is coherent with the boundary conditions.
In other locations, the displacement of the viscoelastic column gradually
increases with time and the maximum value is obtained at t = 1 s. The
maximum transverse displacement of the viscoelastic column is obtained at
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Figure 5: Evolution of (a) stress (Pa) and (b) strain of viscoelastic column under the axial
compressive force.

the middle of the column x = 2.5 m. The displacement of the column is
symmetrical to the middle of the column.

Based on the constitutive relation of the viscoelastic material, the
distribution of stress and strain of the viscoelastic column under axial
compressive force are shown in Figure. 5. The stress curves and strain
curves of the column exhibit the same trend in function of time and position.
The stress and strain values at both ends of the column are zero during the
whole loading process. The stress and strain values at t = 0 s are zero, which
is coherent with the initial conditions. The strain value at x = 2.5 m is zero
because no deformation occurs at the midpoint of the column, which results
in the zero stress at the same position. The strain curves are symmetrical to
the midpoint of the column and the maximum absolute value of the strain is
obtained at x = 1.25 m and x = 3.75 m.

The numerical solutions of the transverse displacement of the viscoelastic
column under different loads conditions are obtained in the time domain,
which are shown in Figure. 6. The displacement of the viscoelastic column
increases gradually with time. The maximum transverse displacement is
approximately 2×10−12 m under the applied compressive force of 1000 N, as
shown in Figure. 4(a). It becomes 1× 10−6 m under 1500 N and 2× 10−6 m
under 2000 N. The transverse displacement increases with the applied axial
compressive force.
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Figure 6: The numerical solution of displacement under different load conditions: (a) F =
1500 N, (b) F = 2000 N.

6.1.2. Harmonic load

A harmonic load F = B cos (ωπt) is applied on the viscoelastic column.
The transverse displacement of the viscoelastic column is obtained with
different value of B and ω, as shown in Figure. 7. The transverse
displacement of the column is affected by the value of B and ω have effects
on the transverse displacement of the column. The transverse displacement
of the column decreases with the value of ω, as shown in Figures. 7(a),
7(b), 7(c). The transverse displacement of the viscoelastic column decreases
gradually when the period of the applied harmonic load becomes smaller.
The transverse displacement of the column increases with the value of B, as
shown in Figures. 7(a), 7(d).

The displacement of the fractional viscoelastic column under the periodic
load was analyzed by Li et al. [46]. Therefore, the proposed algorithm was
limited to a specific displacement solution. The algorithm used in this paper
exhibits wider application and higher efficiency.

6.2. Effect of the column cross-section on the numerical solution of governing
equation

The effect of cross-section parameters on the transverse displacement
of the viscoelastic column is investigated in this section. Two viscoelastic
columns with different cross-section shape (square and circular) are retained
in this study. Their cross-sectional areas are the same and the cross-section
parameters are summarized in Table. 5. The transverse displacement of
the viscoelastic column with circular cross-section shape under the axial
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Figure 7: Transverse displacement of viscoelastic column under different harmonic loads:
(a) F = 1000 cos (0.05πt), (b) F = 1000 cos (0.1πt), (c) F = 1000 cos (0.15πt), (d) F =
1500 cos (0.05πt)

compressive force of 1000 N is shown in Figure. 8.
Based on the comparison between Figures. 4 and 8, the evolution of

the transverse displacement of the column with square and circular cross-
section is similar. However, the transverse displacement of the column with
circular cross-section is smaller than that with square cross-section, when the
columns exhibit the same cross-sectional area and are under the same axial
compressive load condition.

6.3. Effect of material property on the numerical solution of governing
equation

The deformation of the viscoelastic columns with two different materials
(concrete and polymer) are compared in this part. The material parameters
are summarized in Table. 1. The viscoelastic columns exhibit the same
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Figure 8: Displacement of a viscoelastic column with circular cross-section at different
times.

square cross-section and subjected the same applied compressive force 1000
N. The proposed algorithm based on the shifted Chebyshev wavelet function
is used to calculate the transverse displacement of the viscoelastic column.
The maximum value of the transverse displacement of concrete column is
approximately 1.913×10−10 m, however, the maximum value of the transverse
displacement of polymer column is approximately 8.352 × 10−4 m. The
maximum value of transverse displacement of polymer column is larger than
that of the concrete column.

The stress and strain curves of the viscoelastic columns with polymer and
concrete material in function of position and time are shown in Figures. 9
and 10. The stress and strain are calculated according to Eqs. (5) and (8).
The trend of the stress and strain curves is similar with different materials.
Therefore, the values of stress and strain of polymer column are extremely
larger than those of the concrete column. The maximum value of the strain in
polymer column is approximately 5× 10−4, when the maximum value of the
strain in concrete column is approximately 1×10−10. The maximum value of
the stress in polymer column is approximately 1900 Pa, when the maximum
value of the stress in concrete column is approximately 2.5×10−3 Pa. This is
mainly due to the smaller value of elastic modulus of the polymeric material.

7. Conclusions

In this paper, a numerical algorithm based on the shifted Chebyshev
wavelet function is developed to solve the fractional governing equation
of the viscoelastic column directly in the time domain. The fractional
derivative model is used to describe the viscoelastic behaviour of the column
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Figure 9: Stress and strain of concrete viscoelastic column.
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Figure 10: Stress and strain of polymer viscoelastic column.

with different materials. The transverse displacement, stress and strain of
the viscoelastic column are obtained under various load conditions: axial
compressive force and harmonic load.

1. Base on the analysis of the mathematical example, it is proved that
the proposed algorithm exhibits high accuracy in solving the fractional order
equations. The accuracy of the algorithm improves with the number of terms
retained in the shifted Chebyshev wavelet function.

2. The transverse displacement of viscoelastic column under axial
compressive force and harmonic load are obtained. The displacement
increases with the applied axial compression force. The magnitude and
period of the harmonic load affects the deformation of the viscoelastic
column.

3. The transverse displacement of the viscoelastic column with circular
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cross-section shape is smaller than that with square cross-section, when the
columns exhibit the same cross-sectional area and are under the same axial
compressive force.

4. The polymer column exhibits the larger displacement than the
concrete column, due to its lower elastic modulus. The proposed algorithm
demonstrates good sensitivity of material in the numerical simulation of the
deformation of the viscoelastic column.
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Symbol description

symbol explanation
α fractional order

cDα
t Caputo fractional derivative operator

f(t) continuous function
Γ (·) Gamma function
C constant

FZM Four-parameter Zener model
PTM Poynting-Thomson model
FMM Fractional Maxwell model

FKVM Fractional Kelvin-Voigt model
x, z coordinates
t time in s
l height of viscoelastic column in m

σ(x, t) stress in Pa
ε(x, t) strain
v(x, t) transverse displacement in m
E0 elastic modulus in MPa
ρ density in kg/m3

β0 damping coefficient
η viscosity
A cross-sectional area in m2
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d diameter in m
I moment of inertia in m4

M(x, t) bending moment
F (t) axial compressive load in N

Ti, Ti+1, Ti−1 Chebyshev polynomials
Gi, Gi+1, Gi−1 shifted Chebyshev wavelet function

Φ(x),Φ(t) shifted Chebyshev wavelet function matrix
n number of terms of shifted Chebyshev wavelet function

Z(x), Z(t) basis function
An, AX , AT coefficients of Chebyshev wavelet function matrix

Px first order differential operator matrix for x
Gx second order differential operator matrix for x
Pm
x mth order differential operator matrix for x
Qt fractional differential operator matrix for t
vn numerical solution
en error

‖en (x, t)‖ absolute error
enmax maximum absolute error
q order of convergence
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