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Abstract： 

In this paper, an effective numerical algorithm based on shifted Chebyshev polynomials is 

proposed to solve the fractional partial differential equations applied to polymeric visco-elastic 

problems in the time-space domain under quasi-static loads. The governing equations using local 

fractional rheological models based on visco-elastic properties with fractional derivatives are 

established. The integer and fractional differential operator matrices of polynomials are derived 

according to the properties of shifted Chebyshev polynomials. The fractional order governing 

equation is rewritten into the form of matrix product by using the polynomial to approximate the 

unknown function. The collocation method is used to discretize the variables and transform the 

original problem into an algebraic equation system. The numerical solutions of the governing 

equations are obtained directly in the time-domain. In addition, an error analysis including the 

correction method is performed. The numerical examples have been performed to identify the 

sensibility of the proposed governing equations and to evaluate the efficiency and accuracy of the 

proposed algorithm.  

 

Keywords：Fractional calculus, Fractional partial differential equation, Fractional rheological 

models, Visco-elastic properties, Euler-Bernoulli beam, Shifted Chebyshev polynomials. 

 

 

1. Introduction  

The polymeric material has gradually received the researchers’ attentions due to its elastic 

and viscous behavior and high-efficiency vibration damping effect. As a vibration attenuating 

material, the polymer absorbs the vibration energy during mechanical vibration and converts it 

into heat, electric, magnetic energy to be consumed, thereby effectively reducing the structural 

vibration and noise. Nowadays, the polymeric material has been widely used in the fields of 

aerospace, construction and mechanical engineering.  

Poly (ether ether ketone) (PEEK), a special engineering polymeric material, is a semi-

crystalline thermoplastic polymer with excellent mechanical properties including high-temperature 

resistance, high-rigidity, high fracture toughness, dimensional stability and stable chemical 
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properties. It plays an increasingly important role in electronics, aerospace, automotive and 

manufacturing field. The visco-elastic effects in PEEK and its composites have been specifically 

studied by D’Amore et al. [1].  

High-density polyethylene (HDPE) is a highly crystalline and non-polar thermoplastic 

polymer with high-strength to weight ratio and excellent properties such as water resistance and 

dielectric strength. It is widely used as the basic material in the packaging, piping and other fields. 

The visco-elastic behavior of HDPE has been intensively investigated in the long-term loading 

(tensile and compressive creep tests) by Elleuch and Taktak [2]. Lai and Bakker [3] effectuated the 

tensile creep tests at different stress levels from 2 to 6 MPa and physical aging from 100 to 104 s. 

The long-term creep behavior was predicted by using a non-linear creep model including the 

physical aging effects. Guo and Bradshaw [4] studied the effect of transient creep and stress-

relaxation of PEEK. Based on the HDPE and PEEK creep experimental data, Xu et al. [5] proposed 

finite element, fractional Maxwell, fractional Kelvin-Voight and fractional Poynting-Thomson 

models to describe their visco-elastic behavior.  

Fractional order has better memory than integer order, which permits to describe the 

polymeric material’s visco-elastic behavior more accurately. Gement [6] firstly established a visco-

elastic constitutive model using fractional derivatives. This rheological model can be used to well 

describe the mechanical properties with fewer experimental parameters.  

A significant amount of work was effectuated to investigate the visco-elastic properties of the 

polymeric materials by using constitutive rheological models containing fractional derivatives [7]. 

For example, Leung et al. [8] studied the non-linear steady-state vibrations of visco-elastic 

polymeric arches with fractional derivatives control. Lewandowski et al. [9] explored the dynamics 

of polymeric damper frames based on the fractional derivative rheological model. Kang et al. [10] 

established a fractional non-linear model to describe the creep behavior by taking into account the 

visco-elastic-plastic characteristics and damage effects. Gioacchino et al. [11] used a fractional-

order state-variable expansion to establish a constitutive equation, and implement a numerical 

method to calculate the random response of a non-local fractional model under Gaussian white 

noise. 

The visco-elastic behavior of polymeric materials and their constitutive rheological behavior 

modelling have gradually received the researchers’ attention. A large number of fractional models 

have been intensively investigated to describe their visco-elastic properties. Lewandowski et al. 

[12] used a fractional Zener model to describe the non-linear vibration of a visco-elastic composite 

beam composed by the elastic and visco-elastic layers. The effect of harmonic force on non-linear 

vibration was investigated. Baum et al. [13] applied a four-parameter rheological model with 

fractional derivatives to describe the mechanical properties of the multi-layer composite beam. 

This innovative method was validated in order to determine the dynamic properties of the 

composite beam. Cortes et al. [14] used a five-parameter fractional derivative model to study the 

transient dynamics of a cantilever beam with different damping values under various loading 

conditions. Bahraini et al. [15] established the fractional four-parameter derivative model to 

calculate the large deflection of the visco-elastic beams and the corresponding non-linear analysis 

was realized by finite element method. Paola et al. [16] examined the response of fractional visco-

elastic Euler-Bernoulli beam under quasi-static and dynamic loads. He et al. [17] used a fractional-

order time derivative damping model to study the large-scale free and forced vibration response of 

the carbon nanotubes/polymer laminated multi-scale composite beams. 



The numerical algorithm to solve the vibration analysis equations based on these fractional 

rheological models with visco-elastic properties are well documented in the literature reviews. The 

determination of the numerical solution of the governing equations is more intractable, due to the 

complexity of the fractional derivatives. Laplace or Fourier transforms have been widely used to 

convert the time-domain problem into frequency-domain problem. For example, Lewandowski et 

al. [13] used the virtual work principle and the Laplace transform to derive the frequency-domain 

motion equation for the dynamic analysis on the polymeric multi-layer beam. The other 

operational methods in fractional calculus including the finite element method, multi-scale 

method, Galerkin method and the variational iteration method are also found from the recent 

literature. Chang et al. [18] used the variable-domain finite element method to derive the motion 

equation to study the vibration and stability of the axial moving beam. Friswell et al. [19] used the 

finite element method to analyze the dynamic characteristics of polymeric beams under different 

boundary conditions. Demir et al. [20] established a general model in the dynamics of beams with 

fractional derivatives and solved the motion equation by multi-scale method. The conclusion is 

that the coefficient of the fractional derivative affects the stability of natural frequencies and 

vibration amplitudes. Permoon et al. [21] used the Galerkin method to discretize the motion 

equation into a set of linear ordinary differential equations and then studied the forced vibration of 

beams. Martinez-Agirre et al. [22] studied the harmonic response of the constrained layer damped 

cantilever beam and analyzed the damping structure system by using the complex modal 

superposition method. Based on the constitutive relation in the form of genetic integral algorithm, 

Martin [23] established the mathematical model for the dynamic analysis of beams with visco-

elastic properties by using Galerkin and variational iteration methods for both quasi-static and 

dynamic analysis. 

The polynomial algorithm is quite suitable for solving the fractional equation because of its 

rapidity, high-efficiency and high-accuracy. The polynomial approximation method, such as 

Legendre polynomial method [24,25], Chebyshev wavelet method [26,27], Bernoulli wavelet method 

[28], Bernstein polynomial method [29,30] and shifted Chebyshev polynomials (SCPs) method [31] are 

usually used to find the numerical solutions of the fractional equations. The SCPs method can be 

used to approximate the unknown function on the extended interval, which makes it easier to solve 

the fractional differential equations with different physical mechanisms governing and historical 

background. The SCPs is used as a basis to derive its integer order and fractional order differential 

operator matrices. The governing equations are transformed into a system of algebraic equations, 

which can be solved easily. 

In this paper, the different fractional constitutive rheological models of the polymeric visco-

elastic Euler-Bernoulli beam based on the fractional derivative element (FDE) model and the 

fractional derivative Kelvin-Voigt (FDKV) model have been established. These models have been 

implemented in the vibration governing equations of the visco-elastic beam, which are solved 

using specific fractional derivatives and especially SCPs approximation method. The numerical 

solutions are calculated directly form the governing equation in the time-space domain. The error 

analysis is effectuated and a correction method is proposed to obtain a high-resolution numerical 

solution. Euler-Bernoulli beams with different material properties for two specific thermoplastic 

polymers (PEEK and HDPE) have been studied as benchmark numerical examples. The numerical 

solutions concerning the displacement, the deformation and the stress of the beams have been 

obtained under quasi-static load and various boundary conditions.  



This paper is structured as follows, in Section 2, some preliminaries including the basic 

definition of fractional differential operators, the fractional rheological constitutive equations and 

the properties of SCPs are described. In Section 3, FDE and FDKV models have been used to 

establish the governing equation for different polymeric beam under different load and boundary 

conditions. In Section 4, the SCPs solving algorithm is described. An error analysis with the 

correction method is performed in Section 5. In Section 6, the numerical results of the 

displacement, the deformation and the stress of the Euler-Bernoulli beams are obtained and 

discussed to show the advantage of the proposed approach. The research work is concluded in 

Section 7. 

2. Preliminaries and notations 

2.1 The basic definition of fractional differential operator 

Definition1. The Riemann-Liouville fractional differential operator � ���� ��  of order  α  is 

defined by [32]: 

� �� ��� ���
 = � ������
 ����� � ���
����
����� ��, α > 0, # − 1 ≤ α < #,�( �����
��� , ) = #.    (1) 

where # ∈ ,, ���
 is continuous over interval �0, +∞
 and is integrable over any subinterval [0, +∞
,
 
α is fractional derivative order, � > 0, α and � are real.  

The gamma function, denoted by Γ�. 
  is defined as Γ�1
 = � 2���3����4(  for complex 

arguments with positive real part. 

Definition2. The Caputo definition of fractional differential operator � ��5 �� of order α is given 

by [33]: 

� ��5 ����
 = � ������
 � ���
�6
���6
����� �7, α > 0, # − 1 ≤ α < #,�( �����
��� , ) = #.     (2) 

The Caputo fractional derivative of distributed order is defined as: 

��5 �8 = 9 0, �:; < ∈ ,( =>� < < ?)@,A�8B�
A�8B���
 �8�� , �:; < ∈ ,( =>� < ≥ ?)@ :; < ∉ ,( =>� < > E)F.  (3) 

2.2 Properties of the SCPs 

SCPs are considered as useful tools to solve the fractional equation in the physical problems. 

The well-known Chebyshev polynomials satisfy the following three-term recurrence relation: GHB��I
 = 2IGH�I
 − GH���I
, K = 1, 2, ⋯      (4) 

where G(�I
 = 1 and G��I
 = I. I is defined on the interval [−1, 1M and K = 1, 2, ⋯ 

On the interval  # ∈ [0, NM, where N is a non-negative real number, the SCPs are defined by 

the change of variable I = O�P − 1. Let the SCPs GH QO�P − 1R denote by SH�#
, which can be 

obtained as follows: SHB��#
 = 2 QO�P − 1R SH�#
 − SH���#
, K = 1, 2, ⋯     (5) 

where S(�#
 = 1, S��#
 = O�P − 1.  

The analytic form of SH�#
 of i-degree is given by: 

SH�#
 = K ∑ �−1
H�U �HBU��
!OWX�H�U
!�OU
!PXHUY( #U , K = 1, 2, ⋯      (6) 



where SH�0
 = �−1
H
 
and SH�N
 = 1.  

The orthogonally condition is 

� SZ�#
P( SU�#
[P�#
�# = ℎU       (7) 

where [P�#
 = �√P���W and ℎU = ^_XO `, a = b,0, a ≠ b,  d( = 2, dU = 1, a ≥ 1.  
The operational matrix is defined by: Φf�#
 = [S(�#
, S��#
, … , Sf�#
Mh 

The following equation can be obtained: Φf�#
 = ifjf�#
         (8) 

where jf�#
 = [1, #, … , #fMh, and if is the SCPs coefficient matrix given as follows: 

if = kll
mn(,( 0 ⋯ 0n�,( n�,� ⋯ 0⋮ ⋮ ⋱ ⋮nf,( nf,� ⋯ nf,fqrr

s
        (9) 

where t n(,( = 1,nH,Z = 2 QOP nH��,Z�� − nH��,ZR − nH�O,ZnH,Z = 0, �:; K < b :; K < 0 :; b < 0. , 
Obviously, if is full rank and reversible. 

2.3 Definition of the visco-elastic constitutive relations based on fractional derivative models 

The general form of a one-dimensional generalized fractional constitutive equation 

describing the stress-strain relationship of a visco-elastic material is [34]: 

∑ uv �wxy�zwxfvY( = ∑ {v �|x}�z|xfvY(         (10) 

where �v �~v⁄  uses the Caputo type fractional differential definition, ~ is the time, � is the 

stress, � is the strain, and uv , {v are the material constants. � is a positive integer. �v , �v are real 

numbers corresponding to fractional order of the time derivative. 

Du et al. [35] proved that the physical meaning of fractional order is an indicator of memory, 

which is suitable to describe the memory phenomena in different disciplines. It is more accurately 

to describe the visco-elastic behavior of the polymeric material by using the fractional derivative 

constitutive equations.  

When �v, �v = 0, the constitutive equation becomes ideal elastic behavior law or Hooke’s 

law. When �v = 0, �v = 1 , the constitutive equation becomes ideal viscous behavior law or 

Newton’s law. When 0 < �v < 1, the constitutive equation could be used to describe the physical 

behavior of a viscoelastic material. 

In the current visco-elastic constitutive fractional derivative models, the first order 

derivatives � �~⁄  are replaced by the fractional derivatives ��x �~�x⁄  with 0 < �v < 1.  



       

(a)      (b) 

FIGURE 1 Schematic representation of visco-elastic model: (a) FDE model and (b) FDKV 

model. 

 

The simplest visco-elastic fractional derivative model is the FDE model [5] as shown in 

Fig. 1(a). The stress-strain relationship could be presented by the following equation: 

σ = { ��}�z�          (11) 

where  {, ) represent the material constants, ) is a real number within �0, 1
. Here, 
���z�  is the 

Riemann-Liouville fractional differential operator of order ). 

The two-dimensional FDE model can be expressed as: ���, ~
 = { ��5 ���, ~
         (12) 

where � is the position and ��5  is Caputo fractional differential operator, defined in Eq. (2). 

When two fractional derivative elements are arranged in parallel, as shown in Fig. 1(b), it is 

the FDKV model[5], in which the constitutive equation is defined as follows: 

σ = {� ��}�z� + {O ��}�z�         (13) 

where {�, {O, �, � are the material constants, and �, � are the real number within �0, 1
. 

The two-dimensional FDKV model can be expressed as: 

���, ~
 = {� ��5 ���, ~
 + {O ��5 ���, ~
       (14) 

where ��5 ,  ��5  is Caputo fractional differential operator. 

3. The governing equations of the visco-elastic Euler-Bernoulli beam 

3.1 Beam governing equation with the FDKV model  

A visco-elastic Euler-Bernoulli beam, fixed at both ends, is considered in this study. A 

distributed load is applied on the vertical direction of the beam. The beam is treated as a visco-

elastic material. The bending deformation occurs on the beam in the vertical direction, as shown in 

Fig. 2, in which  ���, ~
 is the beam deflection, ���, ~
 is the distributed load, � is the length of the 

beam,  d is the width of a rectangular cross section and ℎ is the height of a rectangular cross 

section. 



 

FIGURE 2 The bending deformation of the visco-elastic Euler-Bernoulli beam under the 

distributed load.  

 

Based on Fig. 2, the most important displacement of the beam is the deflection. The beam 

deflection varies in function of � and ~. The differential equation of the transverse oscillation has 

been studied by Martin [36] and the integral differential equation of the beam is given by: 

�i �W���,z
�zW + �W���,z
��W = ���, ~
        (15) 

where  �  is the density of the material and i is the square cross-sectional area. The bending 

moment ���, ~
 of the beam is written as: 

���, ~
 = � 1� ���, ~
�i        (16) 

where  ���, ~
 is the normal stress on the cross-section and z  represent the transverse 

coordinate. 

Based on the Euler-Bernoulli beam theory, the relation between strain and displacement can 

be expressed as: 

���, ~
 = 1 �W���,z
��W          (17) 

When the FDKV model is used to describe the visco-elastic behavior of the beam, the 

stress of the beam can be obtained by using Eqs. (14) and (17):  

���, ~
 = {� ��5 1 �W���,z
��W + {O ��5 1 �W���,z
��W       (18) 

Based on Eqs (16) and (18), the beam bending moment  ���, ~
 is equal to: 

���, ~
 = {�� ��5 �W���,z
��W + {O� ��5 �W���,z
��W       (19) 

where the moment inertia is  � = � 1O� �i = _���O .  

Based on Eqs. (15) and (19), the bending vibration equation of the visco-elastic Euler-

Bernoulli beam with FDKV model is obtained:  

�i �W���,z
�zW + {�� ��5 �����,z
��� + {O� ��5 �����,z
��� = ���, ~
    (20) 

3.2 Beam governing equation under the FDE model 

When the FDE model is used to describe the visco-elastic behavior of the beam, the stress of 

the beam is proposed:  



���, ~
 = { ��5 1 �W���,z
��W         (21) 

where ) ∈ �0,1
.  

Based on Eqs. (16) and (21), the beam bending moment ���, ~
 can be rewritten as: 

���, ~
 = {� ��5 �W���,z
��W         (22) 

The bending vibration equation of the visco-elastic Euler-Bernoulli beam with FDE model is 

obtained as follows: 

�i �W���,z
�zW + {� ��5 �����,z
��� = ���, ~
       (23) 

4. Numerical algorithm  

The approximation function based on the families of SCPs of � and ~ was applied to replace 

the real displacement function. The collocation method was used to discretize the variables � and ~ to transform the fractional beam governing equations into a set of algebraic equations. An error 

analysis was preformed to estimate the calculation accuracy.  

The most important contribution of this numerical algorithm is that the numerical solution of 

the beam governing equation is successfully obtained with high accuracy and the obtained 

displacement and stress of beam is directly in time domain. The numerical algorithm is 

summarized in Fig. 3:  

 

FIGURE 3 A schematic illustration of the proposed numerical algorithm. 

4.1 Approximation of the beam deflection function 

The beam deflection function  ���, ~
 ∈ �O�[0, NM � [0, �M
 can be expanded as the following 

formula: ���, ~
 = ∑ ∑ �HZSH��
SZ�~
4ZY(4HY(        (24) 

where �HZ = ����� � � ���, ~
SH��
SZ�~
�P��
�h�~
���~,  K, bh(P( = 0, 1, 2, ⋯. 

If the truncated series are considered in Eq. (24), then it can be rewritten as: ���, ~
   ∑ ∑ �HZSH��
SZ�~
fZY(fHY( = Φfh��
¡Φf�~
     (25) 

where Φf��
 = [S(��
, S���
, … , Sf��
Mh, Φf�~
 = [S(�~
,  S��~
,  … ,  Sf�~
Mh, ¡ = ¢£HZ¤H,ZY(f,f
.  

4.2 SCPs differential operator matrix of displacement function 

4.2.1 First order differential operator matrix of SCPs 

The first order derivative of Φf��
 for � can be expressed as follows by using Eq. (8): 



��� Φf��
 = �i¥jf��
�¦ = i¥jf¦ ��
 = i¥ § 1¦�¦⋮��f
¦¨ = i¥ § 01⋮>�f��¨ = i¥©�fB�
��fB�
jf��
 (26) 

where i¥ is obtained by replacing > by ª in Eq. (9), and ©�fB�
��fB�
 =
kll
llm
0 0 0 ⋯ 0 01 0 0 ⋯ 0 00 2 0 ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 ⋯ 0 00 0 0 ⋯ > 0qrr

rrs 
jf��
 is obtained by using Eq. (8): jf��
 = i¥��Φf��
         (27) 

Based on Eqs. (26) and (27), the first order derivative of Φf��
 for � can be rewritten as: ��� Φf��
 = i¥©�fB�
��fB�
i¥��Φf��
 = n��Φf��
     (28) 

where n�� = i¥©�fB�
��fB�
i¥�� is called the first order differential operator matrix of the 

SCPs for �. 

Based on Eqs. (25) and (28), the following equations could be obtained: 

����,z
��   �Q«¬­��
®«¬�z
R�� = Φfh��
�n��
h¡Φf�~
 = Φfh��
�i¥©�fB�
��fB�
i¥���h¡Φf�~
 (29) 

�����,z
���   ��Q«¬­��
®«¬�z
R��� = Φfh��
��n��
h
¯¡Φf�~
 =
Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡Φf�~
      (30) 

�W���,z
�zW   �WQ«¬­��
®«¬�z
R�zW = Φfh��
¡�nz�
OΦf�~
 = Φfh��
¡�ih©�fB�
��fB�
ih���OΦf�~
 (31) 

where ih is obtained by replacing > by � in Eq. (9), and nz� = ih©�fB�
��fB�
ih�� is the first 

order differential operator matrix of the SCPs for ~.  

4.2.2 Fractional order differential operator matrix of the SCPs 

The fractional derivative of Φf�~
 for ~  could be calculated by the following equation 

according to Eq. (25): 

��5 Φf�~
 = ��5 �ihjf�~
� = ih �� jf�~
 =5 ih
kll
lm 0��O
��O��
 ~���⋮��fB�
��fB���
 ~f��qrr

rs =
ih©�fB�
��fB�
� ih��Φf�~
 = nz�Φf�~
       (32) 

where nz� = ih©�fB�
��fB�
� ih�� is called the fractional order differential operator matrix of 

the SCPs for ~ and  

V�±B�
��±B�
² =
kll
lm0 0 ⋯ 00 ��O
��O�²
 t�² ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ ��±B�
��±B��²
 t�²qrr

rs
     (33) 

Based on Eq. (32), the following equations could be found: 



��5 �����,z
���   ��5 Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡Φf�~
 =
Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡ ��5 Φf�~
 =
Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡ih©�fB�
��fB�
� ih��Φf�~
    (34) 

where ©�fB�
��fB�
�
 is obtained by replacing ) by � in Eq. (33) 

Similarly, 

��5 �����,z
���   ��5 Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡Φf�~
 =
Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡ ��5 Φf�~
 =
Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡ih©�fB�
��fB�
� ih��Φf�~
    (35) 

where ©�fB�
��fB�
�
 is obtained by replacing ) by � in Eq. (33). 

The bending vibration equation of the visco-elastic Euler-Bernoulli beam with FDKV model, 

Eq. (20), could be transformed into the following form: 

�iΦfh��
¡�ih©�fB�
��fB�
ih���OΦf�~
 + {��Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡ih©�fB�
��fB�
�  

� ih��Φf�~
 + {O�Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡ih©�fB�
��fB�
� ih��Φf�~
 = ���, ~
 (36) 

Similarly, the bending vibration equation of the visco-elastic Euler-Bernoulli beam with FDE 

model, Eq. (23), could be transformed into the following form: 

�iΦfh��
¡�ih©�fB�
��fB�
ih���OΦf�~
 + {�Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡ih©�fB�
��fB�
�  

� ih��Φf�~
 = ���, ~
         (37) 

Based on the collocation method, the reasonable match points  �H = OH��O�fB�
 N,  K =0, 1, 2, ⋯ , >,   ~Z = OZ��O�fB�
 �,  b = 0, 1, 2, ⋯ , >. have been used to discretize the variable ��, ~
  to ��H , ~Z�. Eqs. (36) and (37) are transformed into a set of algebraic equations. The coefficient �HZ� K = 0, 1, 2, ⋯ , >;  b = 0, 1, 2, ⋯ , >
 is determinate by using Matlab platform and least square 

method. The numerical solution of the fractional derivative equations can be obtained. 

5. Error Analysis 

5.1 Error correction 

The equation to be solved is defined as the operator �[∗M:  �[���, ~
M = 0          (38) 

where  ���, ~
 is the exact solution of the beam deflection. 

The numerical solution of the beam deflection is �f��, ~
. If �f��, ~
 is brought into Eq. (38) 

there must be a residual term called the residual function µf��, ~
:  �[�f��, ~
M = µf��, ~
         (39) 

So:  �[���, ~
M − �[�f��, ~
M = −µf��, ~
       (40) 



then, �f��, ~
 can be expressed as: 

 �[�f��, ~
M = �W�¬��,z
�zW + �� ���¬��,z
���5 + �� ���¬��,z
���5 − ���, ~
 = µf��, ~
  (41) 

The absolute error function is defined as 2f��, ~
, which satisfies: 2f��, ~
 = ���, ~
 − �f��, ~
        (42) 

Based on the definition of �[∗M:  �[2f��, ~
M = �[���, ~
M − �[�f��, ~
M = −µf��, ~
     (43) 

Hence, Eq. (43) is rewritten as: 

�[2f��, ~
M = �W¶¬��,z
�zW + �� ��¶¬��,z
���5 + �� ��¶¬��,z
���5 − ���, ~
 = −µf��, ~
  (44) 

where 2f��, ~
  can be approximated by 2∗��, ~
 , which is calculated by using the algorithm 

proposed in the previous section. �[2f��, ~
M is the approximate error function in Eq. (44). 

Therefore, the corrected solution �∗��, ~
 can be obtained as follows: �∗��, ~
 = �f��, ~
 + 2∗��, ~
        (45) 

Furthermore, correction error function  ·��, ~
 can be expressed as:  ·��, ~
 = 2f��, ~
 − 2∗��, ~
 = ���, ~
 − �f��, ~
 − 2∗��, ~
    (46) 

5.2 Absolute error bound of correction solution method 

Theorem1.  Let  ���, ~
 and �∗��, ~
 are the exact and correction solutions of the governing 

equations Eq. (20). If the continuous function  ���, ~
  has ¸  order partial derivative on the 

interval Λ ∈ [0, ªM � [0, �M, where ¸ = 0, 1, ⋯ , �, then: |���, ~
 − �∗��, ~
| ≤ |µ�| + »�h,���, ~
 − �∗��, ~
»     (47) 

where �h,���, ~
 is �z� order Taylor series expansion of ���, ~
 in the neighborhood of ��(, ~(
, 

and µ� represents the remainder of the Taylor series expansion.  

Proof: If the function ���, ~
 is continuous in a neighborhood around ��(, ~(
, and ��( + ℎ, ~( +a
 is any point in the neighborhood. Since ���, ~
 has an � + 1 order differential, ���, ~
 can be 

expressed as a Taylor series expansion: 

���, ~
 = ∑ Qℎ ��� + a ��zR�f
 ���(, ~(
�fY( + µ�      (48) 

where µ� is the remainder of the Taylor series expansion: 

µ� = ���B�
! Qℎ ��� + a ��zR�B� ���( + ¼ℎ, ~( + ¼a
,  0 < θ < 1    (49) 

Furthermore, the �z� Taylor series expansion �h,���, ~
 of ���, ~
 in the neighborhood of ��(, ~(
 is obtained: ���, ~
 − �h,���, ~
 = µ�        (50) 

Based on Eq. (50) and the triangle inequality, the absolute error bound of the corrected 

solution could be obtained: |���, ~
 − �∗��, ~
| = »���, ~
 − �∗��, ~
 + �h,���, ~
 − �h,���, ~
»  ≤ »���, ~
 −
�h,���, ~
» + »�h,���, ~
 − �∗��, ~
» = |µ�| + »�h,���, ~
 − �∗��, ~
»   (51) 

 



6. Numerical analysis 

6.1 Mathematical example  

A general mathematical example is proposed, associated with its exact solution. The general 

mathematical example is solved by the proposed SCPs numerical algorithm. The numerical 

solution is compared with the exact solution to verify the accuracy and efficiency of the proposed 

algorithm. The general mathematical example is similar with the governing equation with FDE 

model, therefore the parameters in the example are arbitrary values and have no physical 

meanings. The general mathematical example is given by: 

50 �W���,z
�zW + ��5 �����,z
��� = ���, ~
       (52) 

where ) = 0.5,  ���, ~
 = 100�O�2 − �
O + 24 A�À
A�O.Á
 ~�.Á. 

The boundary and initial conditions are: 

� ��0, ~
 = ��2, ~
 = 0�¦�0, ~
 = �¦�2, ~
 = 0���, 0
 = �¦��, 0
 = 0        (53) 

The exact solution of the Eq. (52) is ���, ~
 = �O�2 − �
O~O.  

Based on the SCPs algorithm in Section 4, the equation (52) is transformed into the following 

matrix form: 

50Φfh��
¡�ih©�fB�
��fB�
ih���OΦf�~
 + Φfh��
 Q�i¥©�fB�
��fB�
i¥���hR¯ ¡ih©�fB�
��fB�
�  

� ih��Φf�~
 = ���, ~
         (54) 

By using the collocation method, the variables are discretized, and then the matrix form of the 

square is transformed into algebraic equations. Through the MATLAB software and the least 

square method, the coefficient matrix U can be obtained as follows: 

U=

kll
lm£��  £�O £�À £�¯ £�Á£O� £OO £OÀ £O¯ £OÁ£À� £ÀO £ÀÀ £À¯ £ÀÁ£¯� £¯O £¯À £¯¯ £¯Á£Á� £ÁO £ÁÀ £Á¯ £ÁÁqrr

rs
                                                                                             (55) 

where £�� = 0.140625000000007, £�O = 0.187500000000017, £�À =0.0468750000000064,  £�¯ = −4.02766416350686e − 16, £�Á = 2.36054784644246e −16,    £O� = 2.45752190233397e − 16, £OO =  −1.27968731819555e − 15,  £OÀ =−2.93215171889535e − 16, £O¯ = −1.13086243822289e − 16,  £OÁ = −9.57933713723775e − 17, £À� = −0.187500000000003,  £ÀO = −0.250000000000000, £ÀÀ = −0.0624999999999987, £À¯ =−1.18053054442575e − 15, £ÀÁ = 4.83433281445094e − 16,  £¯� = −7.81117159281965e − 16, £¯O = −2.59342907822039e − 15, £¯À = −2.03364034427167e − 16, £¯¯ = 9.82413826167261e − 17,  £¯Á =  −1.66240142066007e − 18,  £Á� = 0.0468750000000009,  £ÁO = 0.0468750000000009,  £ÁÀ = 0.0156250000000014,  £Á¯ = −1.09690902988797e − 15, £ÁÁ = 2.88041818902505e − 16.   

The preceding proposed method, was applied to find the solution of Eq. (52). The SCPs 

numerical algorithm with the number of terms equal to 4 �> = 4
 was used to calculate the 



numerical solution �f��, ~
 of Eq. (52). The comparison between its numerical solution and its 

exact solution for different ~  and �  are shown in Fig. 4. The numerical results seem to be 

consistent with the exact solutions, which proves a high accuracy of the proposed algorithm in the 

approximation of the numerical solution of the fractional derivative equations. 

 

  

(a)       (b) 

FIGURE 4 Comparison of exact and numerical solutions of  ���, ~
 in the equation for different 

values: (a) ~; (b) �. 

 

The absolute error function, defined in Eq. (42), is used to calculate the difference between 

the numerical and exact solutions. The absolute error at different t: t = 0,  t = 0.2,  t = 0.4,   t =0.6,   ~ = 0.8,   ~ = 1 are shown in Fig. 5. The absolute errors are around 10��¯, which confirm 

that a high-precision has been achieved by using the proposed algorithm. The algorithm can 

effectively solve the fractional partial differential equations. 

 

 

(a)                                                (b)                                               (c) 

 

 

(d)                                                 (e)                                               (f) 

FIGURE 5 The evolution of absolute error between the numerical solution of the equation when  ~ takes different values: (a) ~ = 0; (b) ~ = 0.2; (c) ~ = 0.4; (d) ~ = 0.6; (e) ~ = 0.8; (f) ~ = 1. 

 

 



Since the relative error can better explain the validity of the method, the relative error 2̂��, ~
 

of the equation is introduced when solving the example equation. The relative error 2̂��, ~
 can be 

expressed as: 

2̂��, ~
 = É�¬��,z
����,z
���,z
 É         (56) 

The number of terms of the SCPs may affect the calculate accuracy during the approximation 

of the exact solution of the fractional partial differential equations. Different number of terms of 

the SCPs  > = 4,  > = 5,  > = 6 has been proposed to solve the fractional equations to investigate 

its influence on the numerical calculation efficiency. The absolute and relative errors of the 

numerical and exact solutions at same ��, ~
 with the terms of the SCPs equal to 4, 5 and 6 are 

summarized in Table 1. It shows that a high-precision of numerical calculation is obtained even 

with a small number of terms of SCPs. The absolute error between the numerical and the exact 

solutions decreases when the number of terms of the SCPs increases. When > = 6, the absolute 

error can reach 10��Ê . The concept of relative error is introduced to describe the precision 

between the numerical and the exact solutions, the accuracy performance of the algorithm is 

shown in this numerical example. 

 

TABLE 1 Absolute and relative errors of the equation with different values of >. 

 

t  

 

x  
4n =  5n =  6n =  

absolute 

error 

relative 

error 

absolute 

error 

relative 

error 

absolute 

error 

relative 

error 

 

0.2 

0.4 2.44�10-15 1.49�10-13 4.68�10-16 2.86�10-14 3.12�10-17 1.91�10-15 

1.0 5.93�10-15 1.48�10-13 3.05�10-15 7.63�10-14 1.58�10-15 3.96�10-14 

1.6 3.89�10-15 2.37�10-13 3.28�10-15 2.00�10-13 1.89�10-15 1.15�10-13 

 

0.6 

0.4 2.46�10-15 1.67�10-14 1.88�10-15 1.28�10-14 1.76�10-15 1.19�10-14 

1.0 1.95�10-14 5.43�10-14 2.22�10-15 6.17�10-15 2.11�10-15 5.86�10-15 

1.6 3.71�10-14 2.51�10-13 1.33�10-15 9.03�10-15 8.88�10-16 6.02�10-15 

 

1.0 

0.4 1.44�10-14 3.53�10-14 1.23�10-16 2.99�10-16 7.47�10-16 1.82�10-15 

1.0 5.08�10-15 5.08�10-15 1.78�10-15 1.78�10-15 5.21�10-16 5.21�10-16 

1.6 1.08�10-14 2.63�10-14 1.66�10-15 4.06�10-15 1.64�10-15 4.00�10-15 

 

 

(a)                                                                       (b) 

FIGURE 6 When > = 4, the absolute and correction errors between the numerical solution and 

the exact solution of the equation solved by SCPs method are compared: (a) Absolute error 2f��, ~
; (b) Correction error 2∗��, ~
. 

 

 



Based on the Section 5, the correction error between the corrected solution and the exact 

solution can be obtained. Fig. 6 shows the correction error is smaller than the absolute error 

between the numerical solution and the exact solution. That is, the correction solution is closer to 

the exact solution. When the number of terms of the SCPs > = 4, the error precision can be 

improved from 10��¯ to 10��Ë. The proposed correction solution improves the accuracy of the 

algorithm. 

 

FIGURE 7 The CPU time of the numerical solution of the equation is obtained by the SCPs 

method when  > takes a different number. 

 

The calculate time with different number of terms of the SCPs is shown in Fig. 7. An i5-

8250U processor with the ram of 8GB has been used to effectuate these calculates. Fig 7 shows 

that the calculate time increase with the increase of the number of terms of SCPs. Therefore, the 

numerical solution can be efficiently approximated in a relatively short time. The proposed 

numerical algorithm shows excellent calculating efficiency and could solve the fractional partial 

differential equations quickly. 

 

6.2 Numerical solution of the deformation of visco-elastic beam 

The material parameters in FDE model for two visco-elastic polymeric materials (HDPE and 

PEEK) are defined in Table 2 and 3 [5]:  

TABLE 2 The simulation parameters of HDPE and PEEK in FDE constitutive model. 

 

Material � �kg #À⁄ 
 ) {  

HDPE 960 0.1603 3.341�105 

PEEK 1290 0.2341 5.50�106 

 

TABLE 3 The simulation parameters of HDPE in FDKV constitutive model. 

 

Material �  �  {� {O 
HDPE 0.3320 0.1088 2.874�105 1.558�105 

 

The length of the beam is � = 5 m and its cross-section area is i = 0.04 mO. The moment of 

inertia of the beam is � = �(.O
��O  m¯.  



The beam is fixed at both ends, so the boundary conditions are as follows: 

 ���, ~
 = 0,  ����,z
�� = 0,  � = 0, �       (57) 

The initial conditions of the system are:  

 ���, 0
 = 0,  ����,z
�z = 0        (58) 

 

6.2.1 HDPE beam with FDKV model 

In this section, the governing equation with FDKV model was used to describe the visco-

elastic behavior of the HDPE beam. The deflections, strain and stress of HDPE beam are obtained 

by using the proposed SCPs algorithm. The deflections of the beam under different load 

conditions (Heaviside in cases (a) and (b), harmonics in case (c) and linear values in case (d)) are 

shown in Fig. 8.  

 

   

(a)                                                                      (b) 

   

(c)                                                                       (d) 

FIGURE 8 Numerical solutions of deflection of the HDPE beam under different load conditions: 

(a)  ���, ~
 = 10N2=ÏK�K�2�~
 ; (b) ���, ~
 = 30N2=ÏK�K�2�~
 ; (c) ���, ~
 = 10` sin ~ ; (d) ���, ~
 = 10 + 2�. 

 

The beam deflection curves in function of � at different loading time are shown in Fig. 8. The 

deflection of the beam increases with �  and arrives the maximum value at � = 2.5 m . The 

displacement of the beam is symmetric with respect to the axis � = 2.5 m. The deflection curves 



of the beam at different loading time are shown in Fig. 8. These curves follow the same tendency 

under the different load conditions. The deflection of the beam increases with the applied load 

according to the comparison between the case (a) and (b). The similar results have been observed 

in case (c) and (d), the displacement of the beam increases with the loading time and the most 

important value of the deflection is obtained in the middle of the beam. In reference [36], the 

mechanical properties of Euler Bernoulli beams are described by integral order control equations. 

The simulated displacement images of beams are shown in Figures 4 and 5 in the reference.            

The trend of the image is consistent with that of the displacement image. Compared with the 

reference [36], the validity and accuracy of the proposed algorithm are further verified. 

 

 

(a)                                                                          (b) 

 

(c)                                                                            (d) 

FIGURE 9 The stress of HDPE beams under different external loads: (a)  ���, ~
 =10N2=ÏK�K�2�~
; (b) ���, ~
 = 30N2=ÏK�K�2�~
; (c)���, ~
 = 10` sin ~; (d) ���, ~
 = 10 + 2�. 

 

Based on Eq. (18), the stress of the beam under different load conditions (Heaviside, 

harmonics and linear loads) is illustrated in Fig. 9. The stress increases with the loading time for 

all kinds of load conditions. At the same loading time, the value of the stress is minimum when 

near � = 2.5 m, and the force resisting external load is the weakest, and the displacement is the 

smallest. The value of the stress increase when the position is close to the fixed end of the beam, 

and the greater the force against external load, the smaller the displacement. The deformation of 

the beam is symmetric with respect to the axis � = 2.5 m, which is similar with the observation in 



the deflection. It can be seen that the values of deflection and stress are successfully obtained by 

using the proposed numerical algorithm. The numerical results are consistent with the 

experimental investigations of the beam vibration deformation [37,38]. 

6.2.2 Comparison of HDPE and PEEK beams 

In this section, the governing equation with FDE model was used to describe the visco-elastic 

behavior of the HDPE and PEEK beam. The material parameters of the polymers in the FDE 

model were put into the Eq. (23), which is solved by using the proposed numerical algorithm. The 

deflection of the HDPE and PEEK beam in function of  � under different load conditions is shown 

in Fig. 10.  

 

                                (a)                                                                          (b) 

 

(c)                                                                        (d) 

FIGURE 10 Comparison of the deflection of the HDPE and PEEK beams under different load 

conditions: (a)  ���, ~
 = 10N2=ÏK�K�2�~
 ; (b) ���, ~
 = 30N2=ÏK�K�2�~
 ; (c) ���, ~
 =10` sin ~; (d) ���, ~
 = 10 + 2�. 

 

Based on Fig. 10, the deflection of the PEEK beam is less than that of the HDPE beam under 

the same load condition. The difference of the deflection of these two polymers becomes more 

important with the loading time. One can conclude that the PEEK exhibits better bending 

resistance than the HDPE due to its smaller deflection under the same load conditions. This is 

consistent with the material properties, because the elastic modulus of PEEK is more important 

than that of HDPE in the same thermal and mechanical conditions. The proposed numerical 

algorithm seems to be efficient to predict the vibration deformation of the visco-elastic polymers 

under various load conditions.  

6.2.3 Comparison of FDE and FDKV models 



In this section, the governing equations with FDE and FDKV model were used to describe 

the visco-elastic behavior of the HDPE beam. The objective of this work is to investigate the 

sensibility of the visco-elastic models in the prediction of beam deflection under different load 

conditions. The deflection of the HDPE beam, which is calculated by the governing equation 

based on FDE model and FDKV model is shown in Fig. 11.  

 

(a)                                                                        (b) 

 

(c)                                                                         (d) 

FIGURE 11 Comparison of the deflection of the HDPE beam with FE and FDKV models under 

different load conditions: (a)  ���, ~
 = 10N2=ÏK�K�2�~
 ; (b) ���, ~
 = 30N2=ÏK�K�2�~
 ; (c) ���, ~
 = 10` sin ~; (d) ���, ~
 = 10 + 2�. 

 

Based on Fig. 11, the deflection of the HDPE beam with the FDE model is slightly more 

important than that with the FDKV model under the same load, especially in the positions far from 

the fixed ends. But the difference between the values of defection with these two models is quite 

small relative to the length of the beam. One can conclude that the displacements of the beam 

calculated by using the governing equations with FDE and FDKV models are approximately 

coincide under the same load, which confirms the efficiency and accuracy of the proposed SCPs 

method in the numerical solution of the fractional partial differential equations.  

7. Conclusion 

In this paper, the governing equations of visco-elastic Euler-Bernoulli beams have been 

created by using the fractional rheological constitutive models. An effective numerical algorithm 

for solving the governing equations is proposed in the time-domain. The fractional rheological 

model containing the fractional derivatives is used to analyze the inherent laws of the dynamic 

performance of visco-elastic damping materials, which can provide a theoretical basis for the 

research, development and performance prediction of vibration damping materials. Based on the 

visco-elasticity of the FDE and FDKV constitutive models, the SCPs operator matrix is deduced 



and the numerical solution of the governing equations of the visco-elastic beam under different 

loads is obtained. The displacement solutions of the HDPE beam based on two constitutive 

models are compared. Different visco-elastic beams have been studied to verify the calculation 

accuracy and efficiency of the algorithm. 

1) Two governing equations based on the FDE and FDKV models are established to analyze 

the deformation of the visco-elastic Euler-Bernoulli beam. The stress and strain of the 

beam are obtained by using the proposed algorithm.  

2) The proposed method has been validated by the numerical solution of the governing 

equation. Based on the comparison of the numerical solutions with the FDKV and FDE 

model, the deflections of the beam are almost completely coincident at different loading 

time, which permits to verify the accuracy of the algorithm. 

3) The displacement solutions of the visco-elastic beam of HDPE and PEEK under uniform 

load, harmonic load and linear load are compared to investigate the material sensibility 

of the proposed algorithm. The conclusion is that the displacement of PEEK beam is 

smaller than that of HDPE beam, when the beam is under the same load condition. The 

greater the damping of the corresponding visco-elastic material and the better the 

bending resistance. 
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TABLE 4 Nomenclature 

 

Symbol Explanation 

PEEK Poly (ether ether ketone) 



HDPE High density polyethylene 

SCPs Shifted Chebyshev polynomials 

FDE model Fractional derivative element model 

FDKV model Fractional derivative Kelvin-Voigt model ), �, �, �v , �v Fractional derivative order � Normal stress on the cross section � Strain {, {�, {O Material constants in FDE and FDKV models ��5 , ��5 , ��5  Fractional order differential operator Φf��
, Φf�~
 Family of shifted Chebyshev polynomials GH��
, SH��
, SU��
, SZ��
, SZ�~
  Shifted Chebyshev polynomials if, i¥, ih , ¡ Coefficient matrix n��, nz� First order differential operator matrix nz� Fractional order differential operator matrix jf��
 Family of basical polynomials  uv , {v Material constants in one-dimensional visco-elastic model =, �, #, N, �, � Non-negative real number I Real number on the interval [−1, 1M d Width of a rectangular cross section ℎ Height of a rectangular cross section � Position ~ Time ���, ~
 Load � Length of beam i Cross-sectional area � Moment of inertia � Density of material ���, ~
 Beam bending moment �[∗M Operator for error correction µf��, ~
 Residual function ·��, ~
 Correction error function ���, ~
 Exact solution of displacement �f��, ~
 Numerical solution of displacement �∗��, ~
 Correction solution of displacement µ� Taylor series remainder �h,���, ~
 �z� Taylor series expansion of ω��, ~
 2f��, ~
 Absolute error function 2∗��, ~
 Correction error function 2̂��, ~
 Relative error function 

 

 




