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This paper is an extension to a previous work concerning the study of a regulated oxygen mask which distributes oxygen in response to an inhalation demand and shows a vibratory behaviour after a certain constant flow demand value. It was shown that it was a chattering effect due to the appearance of an unstability of the model equilibrium trajectory. After a brief summary of the previous results, a focus is made on the physiological parameters of the regulated mask which limit any modification of the mask.

Introduction

The regulated oxygen mask is a purely mechanical device which distributes oxygen in response to an inhalation demand. During an inhalation, the mask volume is depleted, its pressure decreases and an oxygen distribution circuit is activated to compensate this demand. Over a certain demand flow value, the system starts chattering.

There is a classical methodology for studying pneumatic chattering systems. It consists of performing a linear stability analysis to infer the stability of the system equilibrium trajectories and a nonlinear stability analysis (with the use of normal form reductions, center manifold reductions and Lyapunov exponents) to study the trajectories of the system before a collision happens. This event is called a grazing bifurcation. Examples for classical pneumatic components like pressure-relief valves can be found in [START_REF] Macleod | Safety valve dynamic instability: an analysis of chatter[END_REF] [START_REF] Maeda | Studies on the dynamic characteristic of a poppet valve: 1st report, theoretical analysis[END_REF][3] [START_REF] Licsko | Nonlinear Analysis of a Single Stage Pressure Relief Valve[END_REF].

In [START_REF] Battiston | Stability analysis of a regulated oxygen mask[END_REF], only the linear stability analysis was performed. First, a physical model for the regulated oxygen mask was proposed. Then, the equilibria of this nonlinear model were found. Since the mask vibratory behaviour appears after a certain demand flow value, it was chosen to analyse the evolution of the eigenvalues of the linearized varying model to check if some of them were positive after this threshold. It was indeed the case. Simulation showed a valve diverging and striking its seat, which is the chattering effect. The application of the Routh criterion allowed to find inequalities on physical parameters to ensure the stability of the regulated oxygen mask. Among various strategies, it appeared that the increase of the value of a spring stiffness was sufficient to satisfy the Routh criterion. This increase was tested experimentally and it appeared that the trajectory of the regulator was sufficiently stabilized to avoid the chattering. Consequences of this increase like the decrease in the mask pressure, the increase of the amplitude of transient oscillations were observed and partly explained.

One conclusion of the previous work showed the improvement of the mask had to be made with attention to the respect of the physiological confort of the inhalating person. In this paper, we start by quoting the useful results from [START_REF] Battiston | Stability analysis of a regulated oxygen mask[END_REF] in section 2, and study this confort matter in section 3, by analysing the important physiological parameters of the mask. The principles of an optimisation programming to improve the stability of the mask and its physiological performances are quickly presented in section 4.

Conclusions from previous work

This section quickly summarizes the results from [START_REF] Battiston | Stability analysis of a regulated oxygen mask[END_REF]. It first focuses on the physical model of the mask in subsection 2.1. Then, it deals with the equilibrium trajectory of the mask in subsection 2.2 and the Routh conditions to have it stable in subsection 2.3. 

Physical model of the mask

Ṗ m = rT V m (W i + W p ) ( 1 
)
where T is the temperature of the oxygen, which is considered constant in every subsequent volume, and r is the oxygen gas constant (for simplicity, it is supposed that there is only oxygen in the mask volume, which is not true in practice because of the exhalation of carbon dioxide from the equipped person).

The comparator is a rigid disk of section S m , mass m, tied to a k-stiffness spring and a viscous damper f . It can close a tube of internal section S s from which oxygen can evacuate. The distance between the orifice of this tube and the comparator is x, and equals zero when the tube is closed. ẋ is the comparator speed. Exterior pressure P e and pressure P m apply on the surface S m . On surface S s are applied pressure P p and pressure P m . It can be shown (see [START_REF] Battiston | Stability analysis of a regulated oxygen mask[END_REF] for the details) that the equation of the comparator can be written as:

mẍ + f ẋ + kx = S m (P e -P m -dP 0 ) + S s (P p -P s ) (2)
where dP 0 is the comparator opening threshold. Its role will be studied later.

The evolution of the pilot chamber pressure P p depends on the mass conservation equation:

Ṗp = rT V p (W c -W s ) (3) 
where V p is the pilot chamber volume. W s is the mass flow exiting this chamber through the comparator orifice:

W s = k s xP p (4) 
where k s is the tube flow constant for a critical compressible flow. W c is the mass flow going through an isothermal Hagen-Poiseuille restriction of coefficient k c :

W c = k c (P 2 s -P 2 p ) (5) 
The regulating actuator takes a measurement of P p and sends a mass flow W i proportionnal to it:

W i =
k i (P s -P t -P p ) , P p ≤ P s -P t 0 , P p > P s -P t

where P t is the threshold for P s -P p to start delivering a mass flow.

Equilibrium trajectory of the mask

We use equations (1-6) to write the state equations:

Ẋ =     ẋ -k m x -f m ẋ -Sm m P m + Ss m P p + H -k i rT Vm P p + rT Vm W p + rT Vm k i (P s -P t ) rT Vp (-k c P 2 p -k s xP p ) + rT Vp k c P 2 s     (7)
in which the state vector is defined by:

X =     x ẋ P m P p     (8)
and H is given by:

S m (P e -dP 0 )/m -S s P s /m (9) 
Equilibrium state variables are written with a bar:

Pm = S m (P e -dP 0 ) + S s ( Pp -P s ) -kx /S m (10) Pp = W p /k i + P s -P t (11) x = k c /k s (P 2 s / Pp -Pp ) (12) 
It was shown in [START_REF] Battiston | Stability analysis of a regulated oxygen mask[END_REF] that two eigenvalues of the 4-dimension evolution matrix of the model linearized around equilibrium state variables were having a positive real part value, which was coincident with the diverging position of the comparator. This one was then colliding with its seat. The time of the first strike was the same as the time of the beginning of chattering. An example is shown in Fig. 234. 

Results from the appplication of the Routh criterion

After linearizing the state equations around the equilibrium trajectory and considering the characteristic polynomial of the obtained evolution matrix, it is possible to apply the Routh criterion to find inequalities on the physical parameters to make the mask stable during an inhalation. The first inequality was:

kf m 2 - rT k s S s V p m Pp > 0 (13)
The second inequality was obtained after some complementary assumptions which will not be described here:

rT k i S m V p m 2 f m + 10rT k c P s 3V p 2 < R (14) 
with:

R = rT P s (4k c + k s S p ) V p m 2 + rT P s (2k c + k s S p ) V p m . k m + rT f V p m k c 2P s . f m + rT V p k c 2P s (15) 
A sufficient condition to ensure these inequalities was to increase the spring stiffness k. This suggestion was tested experimentally, and made the mask stable in simulations and less vibrating in experiments, at the cost of degraded physiological performances [START_REF] Battiston | Stability analysis of a regulated oxygen mask[END_REF].

Study of the mask physiological parameters

Paper [START_REF] Battiston | Stability analysis of a regulated oxygen mask[END_REF] was more focused on the linear stability analysis of the regulated oxygen mask. Presently, we will study the mask physiological parameters, a short name to call physical quantities of the mask which have a physiological influence on a breathing person. There are 4 in total: the opening time t op (section 3.1), the closing time t cl (section 3.2), the equilibrium mask pressure values Pm (section 3.3), the mask pressure overshoot P * m in response to a step-demand (section 3.4). Some of them cannot be derived analitically, so we will sometimes have resort to numerical approximations.

Opening time

The opening time t op is defined as the time between the beginning of an inhalation and the beginning of the oxygen distribution. It must not be too large for the inhalating person to receive oxygen as soon as possible. This value is difficult to obtain analytically. It is estimated through some assumptions which will be presented later. At t = 0, P m = P e , and for the very beginning of an inhalation, the demand is approximated with a ramp function:

W p = -wt (16) 
with w the positive slope coefficient of the ramp. The comparator is closed as long as P m > P e -dP 0 . The only working equation is [START_REF] Macleod | Safety valve dynamic instability: an analysis of chatter[END_REF]. Its solution is:

P m (t) = P e - wrT 2V m t 2 (17) 
The comparator opens at time t co :

t co = 2V m dP 0 wrT (18) 
The next time that is needed is the time t ac between the opening of the comparator and the one of the actuator activation. It is needed to solve (2) and ( 3) at the same time, which is difficult and may lead to a transcandental equation in t ac . Simulations of P m , x and P p are shown in Fig. 567. It can be observed in Fig. 8 that for the actual mask parameter settings, the dynamics of the comparator can be neglected. Then, equation ( 2) can be simplified: Since the actuator is still not sending oxygen, equation ( 17) is used in (19), yielding to:

x = S m k (P e -dP 0 -P m ) + S s k (P p -P s ) (19) Ṗp = rT V p (k c (P 2 s -P 2 p ) -k s xP p ) (20 
Ṗp = rT V p k c (P 2 s -P 2 p ) -k s P p S m k ( wrT V m t 2 -dP 0 ) + S s k (P p -P s ) (21) 
We change the time origin by writting t = t + t co . The mask pressure can be rewritten:

P m = P e - wrT 2V m (t + t co ) 2 (22) 
This is reinserted in (21):

Ṗp = rT V p k c (P 2 s -P 2 p ) -k s P p S m k ( wrT V m (t + t co ) 2 -dP 0 ) + S s k (P p -P s ) (23) 
Which we write for simplicity: 2 and where in e the factor P p has been approximated with P s . This approximation is linked to the fact that in practice P s -P p < 0.1P s .

Ṗp -bP 2 p + cP p + d -e(t + t co ) 2 (24) with b = rT Vp (k c + ksSs k ), c = rT ks kVp (S m dP 0 + S s P s ), d = rT Vp k c P 2 s , e = -rT Vp ksPsSm k wrT 2Vm (t +t co )
Solving this Riccati equation is very difficult. This difficulty can be overcome with numerical approximations. The pilot pressure P p will be visible on Fig. 9. P p seems to be quadratic from t co . We want P p to approximate the following time equation:

P p = P s -at 2 (25) 
This approximation is inserted in the differential equation ( 24).

-2at -bP

2 s + cP s + d -et 2 co -2et co t + (2bP s a -ca -e)t 2 (26) 
where t 4 has been neglected. After a short calculus, it can be shown that the constant term -bP 2 s + cP s + d -et 2 co is equal to 0. a is a constant, so we need to get rid of t from a = (2et co + et )/((2bP s -c)t + 2). In the first case (low t ):

a 1 = et co (27) 
In the second one (high t ):

a 2 = e 2bP s -c (28) 
These two approximations of P p are plotted in Fig. 9. It appears the first approximation is better that the second one. From there, we seek for the time t ac at which the actuator opens, that is when P p = P s -P t : P s -P t = P s -a 1 t 2 ac (29) which gives:

t ac = P t a 1 (30) 
ie:

t ac = kP t V p √ 2V m k s S m P s rT √ rT wdP 0 (31)
It appears that t ac doesn't take into account S s and k c . In fact, it can be checked that their influence is indeed not very remarkable during the fall of P p , see Fig. unchanged. In order to be able to use t ac for an eventual optimisation of the mask parameters, we use a rule of thumb by rewritting it:

t ac = α kP t V p √ 2V m k s S m P s rT √ rT wdP 0 ( 32 
)
where α is a correcting factor to make correspond the real t ac and the approximated one in the case of the original parameter settings. This incidently supposes that the variations of the real t ac are followed by its approximating formula.

Deduction of the opening time:

The opening time can finally be written:

t op = t co + t ac (33) 
In order to decrease t co , one can decrease V m and dP 0 . To decrease t ac , one can decrease k and P t for instance, and increase dP 0 and S m .

Closing time

The closing time t cl is the duration between the closing of the comparator and the end of oxygen distribution. If it is too high, oxygen still flows after the end of an inhalation and the beginning of the exhalation, which is disturbing for one who breathes in the mask. If the comparator closes its seat, the working equations for the mask are:

Ṗp = rT V p W c = rT k c V p (P 2 s -P 2 p ) ( 34 
)
The analytical solution of this differential equation exists. It can be found using the separation of variables:

2P s rT k c V p dt = 2P s dP p (P s -P p )(P s + P p ) = dP p P s -P p + dP p P s + P p ( 35 
)
This equation is then integrated between t = 0 and t, P p0 and P p :

P p = P s exp 2P s rT kc Vp t - Ps-Pp0 Ps+Pp0 exp 2P s rT kc Vp t + Ps-Pp0 Ps+Pp0 (36) 
for a starting pilot pressure P p (t = 0) = P p0 . The mask stop sending oxygen at the moment the actuator is desactivated, that is to say for P p = P s -P t . We write t cl = {t, P p (t) = P s -P t }, the closing time. Solving (36) for t cl yields:

t cl = V p 2P s rT k c ln 2P s -P t P s + P p0 P s -P p0 P t (37) 
The closing time increases with V p and P t and decreases with k c . However, one must not conclude making k c very large is a good idea: if the restriction is small, the opening of the comparator may not be sufficient enough to empty the pilot volume and then send oxygen: someone inhalating could suffocate. A compromise shall be found.

Mask pressure value

For the mask to be easy to breathe in, the equilibrium mask pressure Pm , needs to be as high as possible (high pressure gas flow more easily in lower pressure areas such as the lungs during inhalation). Using (10), ( 11) and (12), the expression of Pm is:

Pm = (P e -dP 0 ) + S s S m W p k i -P t - kk c k s S m P 2 s Wp ki + P s -P t -( W p k i + P s -P t ) (38) 
It obviously depends of the demand flow W p . The derivative along W p is:

∂ Pm ∂W p = S s S m k i + kk c k s S m P 2 s k i Wp ki + P s -P t 2 + 1 k i (39) 
It is always positive. Nevertheless, one must remember that the convention for W p is a flow entering the mask. Then, it is negative for an inhalation, which also means that Pm decreases with the increase of the demand. If Pm must not decrease too much with W p , one can decrease much as possible this derivative, that is to say increase k i , S m , or decrease S s , k or k c .

Mask pressure overshoot

The last physiological parameter is the mask pressure overshoot P * m . In this case, the demand is not set as a ramp, but a step W p,0 . In Fig. 11, we plot W i and -W p to see at which moment they cross each other, and observe this time t * coincides with the one at which P m reaches its overshoot. In fact, P m reaches its overshoot value P * m when Ṗ m = 0, that is to say W i = -W p,0 (if the demand was not a ramp, we woud not know exactly at which flow value the derivative of P m would be zero). According to (11), we can approximate:

P * p = P s -P t + W p,0 k i (40)
At this point, the mask dynamics is (stars refer to the value at t * ):

Ṗp * = rT V p k c (P 2 s -P * 2 p ) -k s x * P * p (41) mẍ * + f ẋ * + kx * = S m (P e -dP 0 -P * m ) + S s -P t + W p,0 k i (42)
That is:

P * m = P e -dP 0 + S s S m -P t + W p,0 k i - 1 S m (mẍ * + f ẋ * + kx * ) (43) 
In order to get * m , the values of x * , ẋ * and ẍ * are needed. It seems difficult to get a sufficiently satisfactory analytical approximation for these derivatives. Nevertheless, the same approximation as (19) can be made. We finally get an approximation for the overshot P * m :

P * m = P e -dP 0 + S s S m (-P t + W p,0 k i ) - k k s S m P * p (k c (P 2 s -P 2 p ) - V p Ṗ * p rT ) (44) 
We suppose |rT k c (P Fig. 12: Comparison between the first and second term of the last parenthesis of (44).

The last remaining problem is to get the value of Ṗp * . The same approximation as in (25) for P p is made:

P p = P s -at 2 (45) 
where t + t 1 = t and t 1 is the time at which the comparator opens. We give it another name than t co to avoid confusion: these two times are not the same because the demand is a step and not a ramp anymore. This time, the coefficient a is directly set with the activation time t ac :

P p (t = t ac ) = s -P t = P s -at 2 ac (46) ie: a = P t t 2 ac ( 47 
)
The time at which P p = P * p is defined by (approx. 40):

P s -at * 2 = P s -P t + W p,0 k i (48) so: t * = 1 a (P t - W p,0 k i ) (49) 
This gives the last wanted term as a better approximation:

Ṗp * = -2 P t t 2 ac t * (50) 
Equation ( 44) can finally be fully written:

P * m = P e -dP 0 + S s S m (-P t + W p,0 k i ) -2 k k s S m P * p V p rT P t t ac 1 - W p,0 k i P t (51) 
Obviously, the time t ac is not the same for a step demand flow as the one for a ramp demand flow. Nevertheless, it is possible to get an approximation of it in the same way as for the previous case. One would have to use (24) and replace t co and e with their new values.

In order to decrease the overshoot, ie increase P * m (because P m decreases with a inhalation and the overshoot is bottom-oriented), one must decrease dP 0 , S s , P t , k or increase S m , k i , k s . These tendencies were confirmed with multiple simulations for different parameter settings.

Improvement of the mask behaviour

As a summary of this work, in order to improve the mask behaviour, it is needed to satisfy conditions (13) and (14) while decreasing the opening time (33), the closing time (37), the mask pressure overshoot (51) and increasing the equilibrium mask pressure (38). As it was already stated in a different way, modifying one parameter may not be sufficient and it is needed to solve an optimisation problem.

This matter was not yet tackled with. Nevertheless, it is possible to precise how it is going to be dealt with. Obviously, one point will concern the choose of the cost function which will at least take into the physiological parameters. Another element must be taken into consideration even if it is not obvious: the cost function must also integrate the size of the region of stability around the position of the minimum. As a matter of fact, the physical of the mask components are not mastered with full accuracy. If the stability-physiologically optimized region is narrow, we may end up with leaving it easily due to experimental settings inaccuracy. There also are uncertainties in the model (one about S s was explained in [START_REF] Battiston | Stability analysis of a regulated oxygen mask[END_REF]). We may find a less physiologically performant region but with more room for parameters settings. At last, one point concerns the geometry limitations for the mask which must be added as additional constraints to the stability conditions.

Conclusion

The stability analysis of the studied regulated oxygen mask performed in [START_REF] Battiston | Stability analysis of a regulated oxygen mask[END_REF] gave stability regions which needed to be refined to take into account physiological performance. The physiological parameters of the mask were given thanks to multiple assumptions in this paper. Future works will be devoted to an optimisation programming in order to find parameters configurations for which both performance and stability are reached.
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 1 Fig. 1: Definition sketch of the mathematical model (taken from [5]). Mass flows are drawn in red, the future state variables are written in green. The dashed line represents a pressure measurement.
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 1 Fig.1 represents a simplified diagram of the regulated oxygen mask to construct its mathematical model. The oxygen suppy is made at the opening with pressure P s . The flow demand from the inhalating person is W p . The flow distributed by
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 23 Fig. 2: Wp as a ramp demand.
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 4 Fig. 4: Mask pressure Pm vs time. Near 17s, after a flat transition, it starts chattering.
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 5 Fig. 5: Pm at the beginning of a ramp demand. At tco, Pm = Pe -dP0.
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 8 Fig. 8: Comparison between kx, f v = f ẋ and ma = mẍ at the beginning of a ramp demand.
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 9 Fig. 9: Comparison of Pp and its two approximations 1 and 2 with respective coefficients a1 and a2.
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 510 Fig. 10: Fall of Pp for different kc.
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 0211 Fig. 11: Plot of normalized Pm and Wi in response to a step demand -Wp. t * is more on the left that it appears.

  ) Pp at the beginning of a ramp demand. At tco, the pressure starts decreasing and at tac it reaches Ps -Pt which is the time at which the actuator is activated.
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0 x Fig. 6: x at the beginning of a ramp demand. At tco, the comparator opens.