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Abstract. This paper is an extension to a previous work concerning the
study of a regulated oxygen mask which distributes oxygen in response
to an inhalation demand and shows a vibratory behaviour after a cer-
tain constant flow demand value. It was shown that it was a chattering
effect due to the appearance of an unstability of the model equilibrium
trajectory. After a brief summary of the previous results, a focus is made
on the physiological parameters of the regulated mask which limit any
modification of the mask.
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1 Introduction

The regulated oxygen mask is a purely mechanical device which distributes oxy-
gen in response to an inhalation demand. During an inhalation, the mask volume
is depleted, its pressure decreases and an oxygen distribution circuit is activated
to compensate this demand. Over a certain demand flow value, the system starts
chattering.

There is a classical methodology for studying pneumatic chattering systems.
It consists of performing a linear stability analysis to infer the stability of the
system equilibrium trajectories and a nonlinear stability analysis (with the use
of normal form reductions, center manifold reductions and Lyapunov exponents)
to study the trajectories of the system before a collision happens. This event is
called a grazing bifurcation. Examples for classical pneumatic components like
pressure-relief valves can be found in [1][2][3][4].

In [5], only the linear stability analysis was performed. First, a physical model
for the regulated oxygen mask was proposed. Then, the equilibria of this non-
linear model were found. Since the mask vibratory behaviour appears after a
certain demand flow value, it was chosen to analyse the evolution of the eigen-
values of the linearized varying model to check if some of them were positive
after this threshold. It was indeed the case. Simulation showed a valve diverg-
ing and striking its seat, which is the chattering effect. The application of the
Routh criterion allowed to find inequalities on physical parameters to ensure the
stability of the regulated oxygen mask. Among various strategies, it appeared
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that the increase of the value of a spring stiffness was sufficient to satisfy the
Routh criterion. This increase was tested experimentally and it appeared that
the trajectory of the regulator was sufficiently stabilized to avoid the chattering.
Consequences of this increase like the decrease in the mask pressure, the increase
of the amplitude of transient oscillations were observed and partly explained.

One conclusion of the previous work showed the improvement of the mask
had to be made with attention to the respect of the physiological confort of
the inhalating person. In this paper, we start by quoting the useful results from
[5] in section 2, and study this confort matter in section 3, by analysing the
important physiological parameters of the mask. The principles of an optimi-
sation programming to improve the stability of the mask and its physiological
performances are quickly presented in section 4.

2 Conclusions from previous work

This section quickly summarizes the results from [5]. It first focuses on the
physical model of the mask in subsection 2.1. Then, it deals with the equilibrium
trajectory of the mask in subsection 2.2 and the Routh conditions to have it
stable in subsection 2.3.

2.1 Physical model of the mask

Fig. 1: Definition sketch of the mathematical model (taken from [5]). Mass flows are
drawn in red, the future state variables are written in green. The dashed line represents
a pressure measurement.

Fig.1 represents a simplified diagram of the regulated oxygen mask to construct
its mathematical model. The oxygen suppy is made at the opening with pressure
Ps. The flow demand from the inhalating person is Wp. The flow distributed by
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the mask is Wi. The pressure in the mask is Pm. The mass conservation in the
mask volume Vm is:

˙Pm =
rT

Vm
(Wi +Wp) (1)

where T is the temperature of the oxygen, which is considered constant in every
subsequent volume, and r is the oxygen gas constant (for simplicity, it is supposed
that there is only oxygen in the mask volume, which is not true in practice
because of the exhalation of carbon dioxide from the equipped person).

The comparator is a rigid disk of section Sm, mass m, tied to a k-stiffness
spring and a viscous damper f . It can close a tube of internal section Ss from
which oxygen can evacuate. The distance between the orifice of this tube and the
comparator is x, and equals zero when the tube is closed. ẋ is the comparator
speed. Exterior pressure Pe and pressure Pm apply on the surface Sm. On surface
Ss are applied pressure Pp and pressure Pm. It can be shown (see [5] for the
details) that the equation of the comparator can be written as:

mẍ+ fẋ+ kx = Sm(Pe − Pm − dP0) + Ss(Pp − Ps) (2)

where dP0 is the comparator opening threshold. Its role will be studied later.
The evolution of the pilot chamber pressure Pp depends on the mass conser-

vation equation:

Ṗp =
rT

Vp
(Wc −Ws) (3)

where Vp is the pilot chamber volume.
Ws is the mass flow exiting this chamber through the comparator orifice:

Ws = ksxPp (4)

where ks is the tube flow constant for a critical compressible flow.
Wc is the mass flow going through an isothermal Hagen-Poiseuille restriction

of coefficient kc:
Wc = kc(P

2
s − P 2

p ) (5)

The regulating actuator takes a measurement of Pp and sends a mass flow
Wi proportionnal to it:

Wi =

{
ki(Ps − Pt − Pp) , Pp ≤ Ps − Pt

0 , Pp > Ps − Pt
(6)

where Pt is the threshold for Ps − Pp to start delivering a mass flow.

2.2 Equilibrium trajectory of the mask

We use equations (1-6) to write the state equations:

Ẋ =


ẋ

− k
mx−

f
m ẋ−

Sm

m Pm + Ss

m Pp +H
−ki rT

Vm
Pp + rT

Vm
Wp + rT

Vm
ki(Ps − Pt)

rT
Vp

(−kcP 2
p − ksxPp) + rT

Vp
kcP

2
s

 (7)
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in which the state vector is defined by:

X =


x
ẋ
Pm

Pp

 (8)

and H is given by:

Sm(Pe − dP0)/m− SsPs/m (9)

Equilibrium state variables are written with a bar:

P̄m =
(
Sm(Pe − dP0) + Ss(P̄p − Ps)− kx̄

)
/Sm (10)

P̄p = Wp/ki + Ps − Pt (11)

x̄ = kc/ks(P
2
s /P̄p − P̄p) (12)

It was shown in [5] that two eigenvalues of the 4-dimension evolution matrix of
the model linearized around equilibrium state variables were having a positive
real part value, which was coincident with the diverging position of the com-
parator. This one was then colliding with its seat. The time of the first strike
was the same as the time of the beginning of chattering. An example is shown
in Fig.2-4.

0 5 10 15 20 25

Time (s)

0

W
p

Fig. 2: Wp as a ramp demand.



Study of the physiological parameters of a regulated oxygen mask 5
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Fig. 3: Opening x of the comparator vs time. Near 17s, it goes back to zero. This is the
start of chattering.
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Fig. 4: Mask pressure Pm vs time. Near 17s, after a flat transition, it starts chattering.
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2.3 Results from the appplication of the Routh criterion

After linearizing the state equations around the equilibrium trajectory and con-
sidering the characteristic polynomial of the obtained evolution matrix, it is
possible to apply the Routh criterion to find inequalities on the physical param-
eters to make the mask stable during an inhalation. The first inequality was:

kf

m2
− rTksSs

Vpm
P̄p > 0 (13)

The second inequality was obtained after some complementary assumptions
which will not be described here:

rTkiSm

Vpm2

(
f

m
+

10rTkcPs

3Vp

)2

< R (14)

with:

R =

(
rTPs(4kc + ksSp)

Vpm

)2

+(
rTPs(2kc + ksSp)

Vpm

)
.

(
k

m
+
rTf

Vpm
kc2Ps

)
.

(
f

m
+
rT

Vp
kc2Ps

)
(15)

A sufficient condition to ensure these inequalities was to increase the spring
stiffness k. This suggestion was tested experimentally, and made the mask sta-
ble in simulations and less vibrating in experiments, at the cost of degraded
physiological performances [5].

3 Study of the mask physiological parameters

Paper [5] was more focused on the linear stability analysis of the regulated oxygen
mask. Presently, we will study the mask physiological parameters, a short name
to call physical quantities of the mask which have a physiological influence on
a breathing person. There are 4 in total: the opening time top (section 3.1), the
closing time tcl (section 3.2), the equilibrium mask pressure values P̄m (section
3.3), the mask pressure overshoot P ∗m in response to a step-demand (section 3.4).

3.1 Opening time

The opening time top is defined as the time between the beginning of an inhala-
tion and the beginning of the oxygen distribution. It must not be too large for
the inhalating person to receive oxygen as soon as possible. This value is difficult
to obtain analytically. It is estimated through some assumptions which will be
presented later.

At t = 0, Pm = Pe, and for the very beginning of an inhalation, the demand
is approximated with a ramp function:

Wp = −wt (16)
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with w the positive slope coefficient of the ramp. The comparator is closed as
long as Pm > Pe − dP0. The only working equation is (1). Its solution is:

Pm(t) = Pe −
wrT

2Vm
t2 (17)

The comparator opens at time tco:

tco =

√
2VmdP0

wrT
(18)

The next time that is needed is the time tac between the opening of the com-
parator and the one of the actuator activation. It is needed to solve (2) and (3)
at the same time, which is difficult and may lead to a transcandental equation
in tac. Simulations of Pm, x and Pp are shown in Fig.5-7.

0 t
co

t
ac

0.1 0.15 0.2 0.25 0.3
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P
e
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0

P
e

P
m

Fig. 5: Pm at the beginning of a ramp demand. At tco, Pm = Pe − dP0.

It can be observed in Fig.8 that for the actual mask parameter settings,
the dynamics of the comparator can be neglected. Then, equation (2) can be
simplified:

x =
Sm

k
(Pe − dP0 − Pm) +

Ss

k
(Pp − Ps) (19)

Ṗp =
rT

Vp
(kc(P

2
s − P 2

p )− ksxPp) (20)
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Fig. 6: x at the beginning of a ramp demand. At tco, the comparator opens.
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Fig. 7: Pp at the beginning of a ramp demand. At tco, the pressure starts decreasing
and at tac it reaches Ps − Pt which is the time at which the actuator is activated.
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Fig. 8: Comparison between kx, fv = fẋ and ma = mẍ at the beginning of a ramp
demand.

Since the actuator is still not sending oxygen, equation (17) is used in (19),
yielding to:

Ṗp =
rT

Vp

(
kc(P

2
s − P 2

p )− ksPp

(Sm

k
(
wrT

Vm
t2 − dP0) +

Ss

k
(Pp − Ps)

))
(21)

We change the time origin by writting t = t′ + tco. The mask pressure can be
rewritten:

Pm = Pe −
wrT

2Vm
(t′ + tco)2 (22)

This is reinserted in (21):

Ṗp =
rT

Vp

(
kc(P

2
s −P 2

p )−ksPp

(Sm

k
(
wrT

Vm
(t′+ tco)2−dP0)+

Ss

k
(Pp−Ps)

))
(23)

Which we write for simplicity:

Ṗp = −bP 2
p + cPp + d− e(t′ + tco)2 (24)

with b = rT
Vp

(kc + ksSs

k ), c = rTks

kVp
(SmdP0 + SsPs), d = rT

Vp
kcP

2
s ,

e = − rT
Vp

ksPsSm

k
wrT
2Vm

(t′+tco)2 and where in e the factor Pp has been approximated

with Ps. This approximation is linked to the fact that in practice Ps−Ps < 0.1Ps.
Solving this Riccati equation is very difficult. This difficulty can be overcome

with numerical approximations. The pilot pressure Pp will be visible on Fig.9.
Pp seems to be quadratic from tco. It is approximated with:

Pp = Ps − at′2 (25)
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This approximation is inserted in the differential equation (24).

−2at′ ' −bP 2
s + cPs + d− et2comp − 2etcot

′ + (2bPsa− ca− e)t′2 (26)

where t′4 has been neglected. After a short calculus, it can be shown that the
constant term of the polynom in t′ in the right-hand side is equal to 0. From
here, in order to simplify the resolution of the equation, we can see if considering
that the term in t′ or the term in t′2 being 0 is a valid approximation. In the
first case:

a1 = etco (27)

In the second one:

a2 =
e

2bPs − c
(28)

These two approximations of Pp are plotted in Fig.9: It appears the first approx-

0 t
ac

-t
co

       0.05 0.1 0.15 0.2 0.25 0.3

Time t' (s)

P
s
-P

t

P
s

P
p

P
p

approx. 1

approx. 2

Fig. 9: Comparison of Pp and its two approximations 1 and 2 with respective coefficients
a1 and a2.

imation is better that the second one.

From there, we seek for the time tac at which the actuator opens, that is
when Pp = Ps − Pt:

Ps − Pt = Ps − a1t2ac (29)

which gives:

tac =

√
Pt

a1
(30)
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ie:

tac =

√
2kPtVp

√
Vm

ksSmPsrT
√
rTwdP0

(31)

It appears that tac doesn’t take into account Ss and kc. In fact, it can be checked
that their influence is indeed not very remarkable during the fall of Pp, see Fig.10.
Simulation also shows that multiplying or dividing Ss by 5 leaves Pp almost

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

P
s

P
p

original

k
c
*5

k
c
/5

Fig. 10: Fall of Pp for different kc.

unchanged. In order to be able to use tac for an eventual optimisation of the
mask parameters, we use a rule of thumb by rewritting it:

tac = α

√
2kPtVp

√
Vm

ksSmPsrT
√
rTwdP0

(32)

where α is a correcting factor to make correspond the real tac and the approxi-
mated one in the case of the original parameter settings. This incidently supposes
that the variations of the real tac are followed by its approximating formula.

Deduction of the opening time: The opening time can finally be written:

top = tco + tac (33)

In order to decrease tco, one can decrease Vm and dP0. To decrease tac, one
can decrease k and Pt for instance, and increase dP0 and Sm.
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3.2 Closing time

The closing time tcl is the duration between the closing of the comparator and
the end of oxygen distribution. If it is too high, oxygen still flows after the end
of an inhalation and the beginning of the exhalation, which is disturbing for
one who breathes in the mask. If the comparator closes its seat, the working
equations for the mask are:

Ṗp =
rT

Vp
Wc =

rTkc
Vp

(P 2
s − P 2

p ) (34)

The analytical solution of this differential equation exists. It can be found using
the separation of variables:

2Ps
rTkc
Vp

dt =
2PsdPp

(Ps − Pp)(Ps + Pp)
=

dPp

Ps − Pp
+

dPp

Ps + Pp
(35)

This equation is then integrated between t = 0 and t, Pp0 and Pp:

Pp = Ps

exp
(
2Ps

rTkc

Vp
t
)
− Ps−Pp0

Ps+Pp0

exp
(
2Ps

rTkc

Vp
t
)

+
Ps−Pp0

Ps+Pp0

(36)

for a starting pilot pressure Pp(t = 0) = Pp0. The mask stop sending oxygen at
the moment the actuator is desactivated, that is to say for Pp = Ps − Pt. We
write tcl = {t, Pp(t) = Ps − Pt}, the closing time. Solving (36) for tcl yields:

tcl =
Vp

2PsrTkc
ln

(
2Ps − Pt

Ps + Pp0

Ps − Pp0

Pt

)
(37)

The closing time increases with Vp and Pt and decreases with kc. However, one
must not conclude that making kc very large is a good idea: if the restriction
is small, the opening of the comparator may not be sufficient enough to empty
the pilot volume and then send oxygen: someone inhalating could suffocate. A
compromise shall be found.

3.3 Mask pressure value

For the mask to be easy to breathe in, the equilibrium mask pressure P̄m, needs to
be as high as possible (high pressure gas flow more easily in lower pressure areas
such as the lungs during inhalation). Using (10), (11) and (12), the expression
of P̄m is:

P̄m = (Pe − dP0) +
Ss

Sm

(
Wp

ki
−Pt

)
− kkc
ksSm

(
P 2
s

Wp

ki
+ Ps − Pt

− (
Wp

ki
+Ps −Pt)

)
(38)

It obviously depends of the demand flow Wp. The derivative along Wp is:

∂P̄m

∂Wp
=

Ss

Smki
+

kkc
ksSm

(
P 2
s

ki
(Wp

ki
+ Ps − Pt

)2 +
1

ki

)
(39)
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It is always positive. Nevertheless, one must remember that the convention for
Wp is a flow entering the mask. Then, it is negative for an inhalation, which
also means that P̄m decreases with the increase of the demand. If P̄m must not
decrease too much with Wp, one can decrease as much as possible this derivative,
that is to say increase ki, Sm, or decrease Ss, k or kc.

3.4 Mask pressure overshoot

The last physiological parameter is the mask pressure overshoot P ∗m. In this case,
the demand is not set as a ramp, but a step Wp,0. In Fig.11, we plot Wi and
−Wp to see at which moment they cross each other, and observe this time t∗

coincides with the one at which Pm reaches its overshoot.

0 0.02          t*  0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time (s)

0

P
h
y
s
ic

a
l 
q
u
a
n
ti
ti
e
s

-W
p

W
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normalized -P
m

Fig. 11: Plot of normalized Pm and Wi in response to a step demand −Wp.

In fact, Pm reaches its overshoot value Pm∗ when ˙Pm = 0, that is to say
Wi = −Wp,0 (if the demand was not a ramp, we woud not know exactly at
which flow value the derivative of Pm would be zero). According to (11), we can
write:

Pp = Ps − Pt +
Wp,0

ki
(40)

At this point, the mask dynamics is (stars refer to the value at t∗):

Ṗp
∗

=
rT

Vp

(
kc(P

2
s − P ∗2p )− ksx∗P ∗p

)
(41)

mẍ∗ + fẋ∗ + kx∗ = Sm(Pe − dP0 − P ∗m) + Ss

(
−Pt +

Wp,0

ki

)
(42)
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That is:

P ∗m = Pe − dP0 +
Ss

Sm

(
−Pt +

Wp,0

ki

)
− 1

Sm
(mẍ∗ + fẋ∗ + kx∗) (43)

In order to get P ∗m, the values of x∗, ẋ∗ and ẍ∗ are needed. It seems difficult
to get a sufficiently satisfactory analytical approximation for these derivatives.
Nevertheless, the same approximation as (19) can be made. We finally get an
approximation for the overshot P ∗m:

P ∗m = Pe − dP0 +
Ss

Sm
(−Pt +

Wp,0

ki
)− k

ksSmP ∗p
(kc(P

2
s − P 2

p )−
V pṖ ∗p
rT

) (44)

We suppose rTkc(P
2
s − P 2

p ) � −V pṖ ∗p , which comes from a simulation ob-
servation, see Fig.12.
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Fig. 12: Comparison between the first and second term of the last parenthesis of (44).

The last remaining problem is to get the value of Ṗp
∗
. The same approxima-

tion as in (25) for Pp is made:

Pp = Ps − at′2 (45)

where t′ + t1 = t and t1 is the time at which the comparator opens. This time,
the coefficient a is directly set with the activation time tac:

Pp(t′ = tac) = Ps − Pt = Ps − at2ac (46)
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ie:

a =
Pt

t2ac
(47)

The time at which Pp = P ∗p is defined by:

Ps − at∗2 = Ps − Pt +
Wp,0

ki
(48)

so:

t∗ =

√
1

a
(Pt −

Wp,0

ki
) (49)

This gives the last wanted term:

Ṗp
∗

= −2
Pt

t2ac
t∗ (50)

Equation (44) can finally be fully written:

P ∗m = Pe − dP0 +
Ss

Sm
(−Pt +

Wp,0

ki
)− 2

k

ksSmP ∗p

Vp
rT

1

tac

√
1− Wp,0

kiPt
(51)

Obviously, the time tac is not the same for a step demand flow as the one for
a ramp demand flow. Nevertheless, it is possible to get an approximation of it in
the same way as for the previous case. One would have to use (24) and replace
tco and e with their new values.

In order to decrease the overshoot, ie increase P ∗m (because Pm decreases
with a inhalation and the overshoot is bottom-oriented), one must decrease dP0,
Ss, Pt, k or increase Sm, ki, ks. These tendencies were confirmed with multiple
simulations for different parameter settings.

4 Improvement of the mask behaviour

As a summary of this work, in order to improve the mask behaviour, it is needed
to satisfy conditions (13) and (14) while decreasing the opening time (33), the
closing time (37), the mask pressure overshoot (51) and increasing the equilib-
rium mask pressure (38). As it was already stated in a different way, modifying
one parameter may not be sufficient and it is needed to solve an optimisation
problem.

This matter was not yet tackled with. Nevertheless, it is possible to precise
how it is going to be dealt with. Obviously, one point will concern the choose
of the cost function which will at least take into the physiological parameters.
Another element must be taken into consideration even if it is not obvious: the
cost function must also integrate the size of the region of stability around the
position of the minimum. As a matter of fact, the physical values of the mask
components are not mastered with full accuracy. If the stability-physiologically
optimized region is narrow, we may end up with leaving it easily due to experi-
mental settings inaccuracy. There also are uncertainties in the model (one about
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Ss was explained in [5]). We may find a less physiologically performant region
but with more room for parameters settings. At last, one point concerns the ge-
ometry limitations for the mask which must be added as additional constraints
to the stability conditions.

5 Conclusion

The stability analysis of the studied regulated oxygen mask performed in [5] gave
stability regions which needed to be refined to take into account physiological
performance. The physiological parameters of the mask were given thanks to
multiple assumptions in this paper. Future works will be devoted to an optimi-
sation programming in order to find parameters configurations for which both
performance and stability are reached.

References

1. MacLeod, G (1985) Safety valve dynamic instability: an analysis of chatter. J. Pres-
sure Vessel Technol 107(2), pp 172-177 .

2. Maeda, T (1970) Studies on the dynamic characteristic of a poppet valve: 1st report,
theoretical analysis. Bulletin of JSME, 13(56), pp 281-289.

3. Hayashi, S, Hayase, T, Kurahashi, T (1997) Chaos in a hydraulic control valve.
Journal of fluids and structures, 11(6), pp 693-716.

4. Licsko, G, Champneys, A, Hos, C (2009) Nonlinear Analysis of a Single Stage Pres-
sure Relief Valve. International journal of applied mathematics, 39(4).

5. Battiston, G, Beauvois, D, Duc, G, Godoy, E (2018) Stability analysis of a reg-
ulated oxygen mask. Proceedings of the 15th International Conference on In-
formatics in Control, Automation and Robotics - Volume 1: ICINCO (2018).
doi:10.5220/0006848203270334


	Study of the physiological parameters of a regulated oxygen mask



