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Abstract

In order to simulate some accidental scenarii which might affect a pressurized water re-

actor, a homogeneous two-phase water-vapor flow model taking into account noncon-

densable gas is considered. The liquid phase and the gaseous phase are assumed to be

immiscible, but the gaseous phase is composed of two miscible components. Due to these

hybrid hypotheses of miscibility, the configurations with at least one missing field are

carefully examined. A semi-analytical equation of state is chosen for the liquid water,

which is an extension of the Noble-Able stiffened gas equation of state. Its accuracy is

assessed with respect to the reference equation of state IAPWS. The homogeneous model

is first verified thanks to Riemann problems. Then, some simulations aiming at repro-

ducing SUPERCANON experiment are presented. The amount of air dissolved in liquid

water is shown to have a strong influence on numerical results, in particular on the sound

speed. Some out of thermodynamical equilibrium simulations are also presented, using

two time scales describing the return towards equilibrium.
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Introduction

In the framework of nuclear safety demonstration for pressurized water reactors, some

accidental scenarii are studied (see IRSN website (1)). For instance, in case of loss of

coolant accident (LOCA), pressurized water may undergo a brutal depressurization, lead-

ing to a rapid mass transfer. Such scenarii involve complex compressible two-phase flow

mixtures, undergoing fast transient situations with phase transition. In addition to liquid

and vapor water, other gases may be present: indeed, ambiant air may be mixed with

vapor through the free surface of water, or hydrogen might appear under accidental con-

ditions because of fuel oxydation. The proportion of non-condensable gas compared with

water vapor is a parameter of importance, appearing to limit the steam condensation, as

it has been beared out by experimental studies (2) as well as numerical studies (3). Non-

condensable gas is classically taken into account in the reference industrial codes used to

simulate a vapor explosion (4; 5).

The flows of interest in this work are thus mixtures of the two following components:

• a liquid and its associated vapor (water is considered in the following), with phase

transition which may occur between both phases;

• non-condensable gas, such as air.

Many models have been proposed since decades to simulate two-phase flow mixtures of

liquid and vapor water. One may distinguish two main types of models:

• the so-called two-fluid model as those proposed in (6; 7; 8; 9; 10), where each phase

is described by its own velocity and where the full thermodynamical disequilibrium

is accounted for, in terms of pressure, temperature and chemical potential;

• the so-called homogeneous models, where all the fields have the same velocity; of-

ten, at least one additional equilibrium assumption is made (in terms of pressure,

temperature...), as in (11; 12; 13; 14; 15; 16; 17)) , whereas there is no other equilib-

rium assumption in the model proposed in (18).
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Both strategies are of interest and the choice between one or the other type of model

should be made depending on the targeted applications. For instance, when dealing with

accidental scenarii such as vapor explosion, evaluating the velocity gaps between phases

is very important to correctly take into account the interfacial transfers due to the dis-

location of droplets, driving the heat transfer between phases (see (19; 4)). However, in

terms of numerical costs, the two-velocity assumption imposes more constraints on mesh

cell size, compared with an homogeneous approach, which may be restrictive for some

industrial simulations.

Less references exist for two-phase flow mixtures involving an additional inert gas.

Still, the same classification arises, and two-fluid-type models dealing with liquid water

and miscible mixtures of steam water and gas have been proposed in (20) or (21). Here,

we choose to work on a direct extension of the homogeneous two-phase flow model pro-

posed in (18) and studied for instance in (22; 23). Note that a homogeneous three-phase

flow model, also based on (18), has been built in (24), to deal with immiscible mixtures

of three fields: we need in our present case a model tackling both miscible and immisci-

ble phases. The main difficulty when dealing with such homogeneous models is to build

consistent thermodynamical quantities as well as a mixture equation of state complying

with the second law of thermodynamics.

Such a work has been already done in (25) for a homogeneous model with non-

condensable gas. In this reference, the associated HEM model is first studied; then, two

HRM models are proposed: a model without phase transition with an equilibrium in

terms of chemical potential as well as a HRM model with no further equilibrium assump-

tion than the kinematic equilibrium. The associated HEM model had been already sim-

ulated in (3), by taking advantage of some particular properties of the model equipped

with stiffened gas phasic equations of state (EOS): with this particular choice for phasic

EOS, the obtained mixture EOS is indeed very simple since it can be written itself as a
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stiffened gas EOS with coefficients depending on the non-condensable gas fraction.

In this work, we first detail in section 1 the modelling approach leading to the second

HRM model introduced in (25). This model copes with full disequilibrium mixtures in

terms of pressure, temperature and chemical potentials: the only equilibrium assumption

is the kinematic equilibrium. The main contribution of the present work is then to pro-

pose some numerical simulations based on this model, using a realistic EOS for the liquid

water : a Noble-Able Stiffened Gas (NASG) EOS (26), modified with the Chemkin EOS

(27), as proposed in (28), called NASG-CK EOS in the sequel and described in section 2.

Our numerical method, briefly recalled in section 3, relies on finite volumes convective

schemes and has already been implemented in similar contexts for instance in (22; 23): we

insist here above all on the thermodynamical equilibrium computation, somehow tricky

due to the presence of the non-condensable gas. Note that another numerical work based

on the same model has been proposed in (29) using stiffened gas EOS, but dealing with

Lattice-Boltzmann method. Last, numerical results are presented: first, the code is as-

sessed by convergence studies on several Riemann problems in section 4; then, some

validation cases are presented in section 5.

1 Homogeneous two-phase flow model with non-condensable gas

In this section, the homogeneous model used in this work is presented. It has been

built following a similar approach as the one depicted for instance in (18; 23; 24). That is

why only the main features of the model are recalled here. In particular, we insist on the

miscibility assumptions as well as on the thermodynamical building, which are the less

classical parts of the modelling.

For sake of readibility, a field will be designated by a subscript k ∈ K = {l, v, a}, with

l refering to liquid water, v to water vapor and a to non-condensable gas.

4



1.1 Kinematic equilibrium and general assumptions

Hypothesis 1 —

Kinematic equilibrium is assumed in the model for all fields. As a consequence, there is

only one velocity U (m.s−1) in the model, so that:

U = Ul = Uv = Ua. (1)

It implies that the derivative of a given quantity Φ along a streamline does not depend on

the subscript k ∈ K:

dkΦ = (∂tΦ + Uk∂xΦ) dt

= (∂tΦ + U∂xΦ) dt = dΦ.
(2)

Note that only the kinematic equilibrium is assumed: all the other quantities (such pres-

sures or temperatures) may be different for each field.

Moreover, the following simplifying assumptions are made:

Hypothesis 2 —

The exact geometric repartition of each field in a given amount of mixture is not known

and the surface tension is neglected.

Hypothesis 3 —

Vaccuum occurence is not considered.

1.2 Extensive description of the considered flows

Each field k ∈ K can be described thanks to three extensive variables, like for instance

in (30): its volume Vk ≥ 0 (in m3), its massMk ≥ 0 (in kg) and its internal energy Ek (in J).

Similarly, the entire mixture can be depicted by its volume V > 0 (in m3), its massM > 0

(in kg) and its internal energy E 6= 0 (in J). In the following, we note:

Ωk = {Wk = (Vk,Mk, Ek) / Vk ≥ 0,Mk ≥ 0}; ;
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Ω = {W = (V ,M, E) / V > 0,M > 0},

Ω̃lva = {Wlva = (Wl, Wv, Wa) / ∀k ∈ K, Wk ∈ Ωk}.

Remark 1 — Hypothesis 3 implies that there exists at least one subscript k ∈ K so that :

Ωk = {Wk = (Vk,Mk, Ek) / Vk > 0 andMk > 0}.

1.2.1 Hybrid miscibility conditions

Hypothesis 4 (Miscibility constraints) —

Considering a given amount of fluid characterized by W = (V ,M, E) ∈ Ω, it can be

depicted as a mixture of two immiscible phases:

• a liquid phase with only liquid water;

• a gaseous phase (designated by the subscript g), which is a miscible mixture of

water vapor and non-condensable gas.

Thanks to hypothesis 2, ideal miscibility and immiscibility conditions can be written, as

proposed for instance in (31). The miscibility condition for the gaseous phase leads to:
Vg = Vv = Va;

Mg =Mv +Ma;

Eg = Ev + Ea,

(3)

whereas the immiscibility condition for the liquid-gas mixture leads to:
V = Vl + Vg;

M =Ml +Mg;

E = El + Eg,

(4)

Relations (3) and (4) can be rewritten with only subscripts in K as:
V = Vl + Vv = Vl + Va;

M =Ml +Mv +Ma;

E = El + Ev + Ea.

(5)
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Then, considering W = (V ,M, E) ∈ Ω, we note Ωlva(W) the subset of all the mixtures

characterized by W verifying the miscibility conditions (5), i.e.:

Ωlva(W) = {Wlva ∈ Ω̃lva/

V = Vl + Vv = Vl + Va,

M =Ml +Mv +Ma,

E = El + Ev + Ea.}.

Moreover, since a is a non-condensable gas, the following hypothesis holds:

Hypothesis 5 —

A mass of non-condensable gasMa is only convected within the flow. Then, when con-

sidering a fixed mass of mixtureM =Ml +Mv +Ma (i.e. a closed system), the mass of

non-condensable gasMa insideM remains constant within time:

dM = 0 =⇒ dMa = 0 & dMl = −dMv.

Remark 2 — Note that conditions (4) are exactly those considered when building the

model (18) from extensive variables in (23), except that the gaseous phase is now a misci-

ble mixture of vapor and non-condensable gas, instead of pure vapor.

Last, we introduce the phasic fractions, which will be very useful in the following.

For any k ∈ K, we note αk the volume fraction of the field k within the flow, yk the mass

fraction and zk the energy fraction, defined as follows:

αk =
Vk
V ; yk =

Mk
M ; zk =

Ek
E . (6)

Relation (5) can be rewritten as:
1 = αl + αv and αv = αa;

1 = yl + yv + ya;

1 = zl + zv + za.

(7)
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Thanks to the miscibility constraints (7), only one volume fraction, two mass fractions and

two energy fractions are required to completely describe the system. In the following, we

arbitrarily choose αv, yv, ya, zv and za. The liquid fractions are then deduced from the

gaseous fractions and from (7).

Hypothesis 6 (Monophasic cases) —

One phase or one field may be absent:

• if water vapor v (respectively non-condensable gas a) is absent, thenMv = 0, Vv =

0 and Ev = 0 (resp. Ma = 0, Va = 0 and Ea = 0), so that conditions (5) and (7)

become for all k ∈ {v, a}: 
V = Vl + Vk;

M =Ml +Mk;

E = El + Ek;

(8)

and 
1 = αl + αk;

1 = yl + yk;

1 = zl + zk.

(9)

• if liquid water is absent, thenMl = 0, Vl = 0 and El 6= 0, so that conditions (5) and

(7) become: 
V = Vv = Va;

M =Mv +Ma;

E = Ev + Ea;

(10)

and 
1 = αv = αa;

1 = yv + ya;

1 = zv + za.

(11)

• pure monophasic cases l, v or a are also possible:

∃k ∈ {l, v, a}, αk = yk = zk = 1. (12)
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The states with only l and a or the states with only v and a lead to degenerate equilibrium

hypotheses that will be described in property 4.

1.2.2 Chosen approach in order to derive the equations

The same approach as (24; 23) (among other references) is used to derive the model

equations. A given amount of fluid characterized by the mixture quantities W = (V ,M, E) ∈

Ω is considered. By adopting a Lagrangian point of view, the modelling is proceeded in

two steps:

1. first, the fluid element is considered as fixed, closed and isolated from the rest of the

flow: its evolution should comply with the second law of thermodynamics;

2. then, the interaction with the surrounding fluid is considered: the fluid element

should evolve within time in accordance with Newton laws and the first law of

thermodynamics.

The second step is exactly the same as the one used for instance in (24; 23): the ap-

proach leads to depict the mixture by Euler-type equations for the mixture quantities, i.e.

density, momentum and total energy. The reader can refer to the previous references or

to (18; 32; 33; 34; 35; 30; 22; 24) to have more details. We only highlight that hypothesis 1

and operator (2) are the key ingredients to derive the equations.

The first step allows to properly define the mixture thermodynamical quantities such

as pressure and to build equations and source terms enabling to return towards the ther-

modynamical equilibrium within time. The thermodynamical behavior of the considered

mixtures of l, v and a with hybrid miscibility constraints has already been studied in (25).

In the sequel of the section, we will derive a similar approach, adapted to our model

framework.
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1.2.3 Equation of state (EOS) for each field

In order to close the system, a complete equation of state (EOS) is required for each

field k ∈ K. As in (22; 24; 23), a natural way to define such an EOS is to consider an

extensive entropy Wk ∈ Ωk 7→ Sk(Wk) (in J.K−1) as thermodynamical potential for each

field k ∈ K, with Wk = (Vk,Mk, Ek).

In order to ensure the hyperbolicity of the final model, some properties are required

for each k-field EOS Wk ∈ Ωk 7→ Sk(Wk) (see section 1.4).

Property 1 (Required properties for Sk)

A k-field EOS Wk ∈ Ωk 7→ Sk(Wk) is an admissible EOS ensuring the hyperbolicity of the

final model (see (24; 23) and section 1.4) if the following properties hold:

(I) Wk ∈ Ωk 7→ Sk(Wk) is C2.

(I I) Wk ∈ Ωk 7→ Sk(Wk) is concave.

(I I I) ∀a ∈ R+, ∀Wk ∈ Ωk, Sk(aWk) = aSk(Wk).

(IV) ∀Wk ∈ Ωk,
∂Sk
∂Ek

∣∣∣∣
Vk,Ek

> 0.

In agreement with the Classical Irreversible Thermodynamics (CIT) theory, the classical

Gibbs relation holds for each field k ∈ K:

TkdkSk = dkEk + PkdkVk − µkdkMk, (13)

which can be rewritten thanks to (2) as:

TkdSk = dEk + PkdVk − µkdMk. (14)

Since Sk(Vk,Mk, Ek) is a complete EOS for field k, all the thermodynamical quantitites

can be computed thanks to the derivatives of Sk.
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Definition 1 (Phasic quantities for a k-field)

Considering a field k ∈ K, its pressure Pk (in Pa), its temperature Tk (in K) and its Gibbs

free enthalpy µk (in J.kg−1) can be derived in accordance with the chosen complete EOS

Wk ∈ Ωk 7→ Sk(Wk), thanks to the Gibbs relation (14):

Pk
Tk

=
∂Sk
∂Vk

∣∣∣∣
Mk,Ek

, (15)

1
Tk

=
∂Sk
∂Ek

∣∣∣∣
Vk,Mk

> 0, (16)

µk
Tk

= − ∂Sk
∂Mk

∣∣∣∣
Vk,Ek

. (17)

1.2.4 Defining the thermodynamical quantities for the mixture

Definition 2 (Mixture entropy S)

Recalling that Wk = (Vk,Mk, Ek) ∈ Ωk, we consider Wlva = (Wl, Wv, Wa) and W =

(V ,M, E) ∈ Ω so that Wlva ∈ Ωlva(W). As in (25), we define the entropy of the mixture S

as:

W ∈ Ω 7→ S(W) = Sl(Wl) + Sv(Wv) + Sa(Wa). (18)

Note that the previous definition of the mixture entropy (18) is in accordance with the

ideal miscibility conditions (5) that we have previously assumed. However, it should be

modified if surface tension (or other effects, see (10)) had to be accounted for.

From (18) and (14) and using operator (2), a Gibbs relation for the mixture entropy S

can be derived after simple computations using the relation dΦk = Φd
(

Φk
Φ

)
+

Φk
Φ

dΦ

and the definition of the fractions (6).
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Definition 3 (Mixture quantities)

A mixture pressure P (Pa), a mixture temperature T (in K) and a mixture Gibbs enthalpy

µ (in J.kg−1) can be exhibited by identifying them in the following mixture Gibbs relation:

dS =
1
T
(PdV − µdM+ dE)

+ V ∑
k∈K

Pk
Tk

dαk

− M ∑
k∈K

µk
Tk

dyk

+ E ∑
k∈K

1
Tk

dzk.

(19)

They read:
P
T
= ∑

k∈K
αk

Pk
Tk

, (20)

µ

T
= ∑

k∈K
yk

µk
Tk

, (21)

1
T
= ∑

k∈K
zk

1
Tk

. (22)

We interpret Gibbs relation (19) as follows:

• the first part
1
T
(PdV − µdM+ dE) gathers terms due to the mixture itself; they

vanish when the flow element is considered as fixed (dV = 0), closed (dM = 0) and

isolated (dE = 0) from the rest of the flows, as it will be studied in section 1.2.5.

• the second part V ∑
k∈K

Pk
Tk

dαk −M ∑
k∈K

µk
Tk

dyk + E ∑
k∈K

1
Tk

dzk gather exchange terms

between the three fields within the mixture.

1.2.5 Second law of thermodynamics and thermodynamical equilibrium

In this section we consider a closed system isolated from the rest of the flow : a fixed

amount of mixture characterized by W = (V ,M, E) ∈ Ω. It implies now:

dV = 0 ; dM = 0 ; dE = 0.

More precisely, we consider all the physical states Wlva = (Wl, Wv, Wa) ∈ Ωlva(W).
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Recalling the hypothesis 5 due to the non-condensable gas, we have dMa = 0 and

dMl = −dMv, i.e.:

dya = 0 and dyl = −dyv.

Moreover, thanks to the miscibility conditions (5), Gibbs relation can be rewritten as a

function of αv, yv, ya, zv and za, since:

αl = 1− αv and αv = αa;

yl = 1− yv − ya;

zl = 1− zv − za.

Then, for the considered isolated system, Gibbs relation (19) can be simplified as follows:

dS = V
((

Pv

Tv
+

Pa

Ta

)
− Pl

Tl

)
dαv

+ M
(

µl
Tl
− µv

Tv

)
dyv

+ E
(

1
Tv
− 1

Tl

)
dzv + E

(
1
Ta
− 1

Tl

)
dza,

(23)

and relations (20) and (22) becomes:

P(Y, τ, e) =
(1− αv)

Pl
Tl
+ αv(

Pv
Tv

+ Pa
Ta
)

1−zv−za
Tl

+ zv
Tv

+ za
Ta

; (24)

1
T
(Y, τ, e) =

1− zv − za

Tl
+

zv

Tv
+

za

Ta
. (25)

In order to comply with the second law of thermodynamics, we have to postulate

some form for dαk, dyk and dzk, ensuring that the mixture entropy will increase for the

considered isolated system, i.e. so that dS ≥ 0, with dS defined through the Gibbs relation

(23).

13



Hypothesis 7 —

As initially proposed in (18), we assume the following time evolution for the fractions:
∀k ∈ K, dαk =

ᾱk − αk
λ

∀k ∈ {l, v}, dyk =
ȳk − yk

λ
and dya = 0,

∀k ∈ K, dzk =
z̄k − zk

λ
,

(26)

where λ > 0 and for all k ∈ K, ᾱk =
V̄k
V

, ȳk =
M̄k
M

and z̄k =
Ēk
E

, with W̄lva =

(W̄l, W̄v, W̄a) ∈ Ωlva(W) the state that the system will asymptotically reach within time.

Note that λ may be defined as a function of time, of space, of W... The only constraint on

λ is its positivity:

λ > 0.

Property 2 (Concavity of S)

S is strictly concave on Ωlva(W). More details are given in appendix 6.

Property 3

If W̄lva is defined as the maximum of the mixture entropy S (which exists and is unique

thanks to the strict concavity of S), then the second law is ensured. If the equilibrium state

W̄lva is not reached on a border of Ωlva(W) (that is to say, if W̄lva is a two-phase mixture

with all the three fields l, v and a), W̄lva can be characterized by the first order conditions

for the existence of extremums, that give here:
Tl(V̄l,M̄l, Ēl) = Tv(V̄v,M̄v, Ēv) = Ta(V̄a,M̄a, Ēa)

Pl(V̄l,M̄l, Ēl) = Pv(V̄v,M̄v, Ēv) + Pa(V̄a,M̄a, Ēa)

µl(V̄l,M̄l, Ēl) = µv(V̄v,M̄v, Ēv).

(27)

The second equilibrium condition (i.e. for the pressures) coincides with the Dalton law.
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Property 4 (Equilibrium states & missing fields)

The thermodynamical equilibrium may be reached on a border of Ωlva(W) and then, con-

ditions (27) are no longer relevant. Depending on the present components, the following

conditions should be used to determine the thermodynamical equilibrium:

• with a two-phase mixture of liquid and steam water: the same conditions as for

instance (22; 23) hold: 
Tl(V̄l,M̄l, Ēl) = Tv(V̄v,M̄v, Ēv)

Pl(V̄l,M̄l, Ēl) = Pv(V̄v,M̄v, Ēv)

µl(V̄l,M̄l, Ēl) = µv(V̄v,M̄v, Ēv).

(28)

• with a non-miscible two-phase mixture of liquid water and non-condensable gas (l

and a), the following conditions hold, since no phase transition occurs: Tl(V̄l,M̄l, Ēl) = Ta(V̄a,M̄a, Ēa)

Pl(V̄l,M̄l, Ēl) = Pa(V̄a,M̄a, Ēa).
(29)

• with a miscible monophasic gaseous mixture of water vapor and non-condensable

gas (v and a), only one condition remains:

Tv(V̄v,M̄v, Ēv) = Ta(V̄a,M̄a, Ēa). (30)

1.3 Final system of equations

1.3.1 Intensive quantities

We introduce some notations for the intensive quantities:

- ρ = M
V stands for the density (in kg.m−3);

- τ = 1
ρ = V

M for the specific volume;

- e = E
M stands for the specific internal energy (in J.kg−1), E = e + 1

2 |U|2 for the total

specific energy;
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- s = S
M stands for the specific entropy (in J.K−1.kg−1).

A quantity Φ without a subscript designates a mixture quantity, whereas a quantity Φk

refers to field k ∈ K.

1.3.2 Final system of partial differential equations (PDE)

Eventually, the model can be written with the intensive variables, by applying New-

ton laws and first law of thermodynamics (see (23)) and by using the source terms (26)

exhibited in the previous section:



∂

∂t
(ραv) +

∂

∂x
(ρUαv) = ρ

(ᾱv − αv)

λ
,

∂

∂t
(ρyv) +

∂

∂x
(ρUyv) = ρ

(ȳv − yv)

λ
,

∂

∂t
(ρya) +

∂

∂x
(ρUya) = 0,

∂

∂t
(ρzv) +

∂

∂x
(ρUzv) = ρ

(z̄v − zv)

λ
,

∂

∂t
(ρza) +

∂

∂x
(ρUza) = ρ

(z̄a − za)

λ
,

∂

∂t
(ρ) +

∂

∂x
(ρU) = 0,

∂

∂t
(ρU) +

∂

∂x
(ρU2 + P) = 0,

∂

∂t
(ρE) +

∂

∂x
(U(ρE + P)) = 0.

(31)

We note Y = (αv, yv, ya, zv, za) and we recall the constraints that give αl, yl and zl from Y:
1 = αl + αv & αv = αa;

1 = yl + yv + ya;

1 = zl + zv + za.

Some useful relations between mixture and phasic quantities can be written:

∀k ∈ K, τk =
αk
yk

τ ; ek =
zk
yk

e. (32)

In order to close system (31), the user must specify one equation of state for each field

k (see section 2) and a time-scale λ > 0 describing the return to the thermodynamical
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equilibrium. For the latter, few references exist in the litterature to estimate λ based on

physical considerations. For instance, in (23), a proposition has been made, by consider-

ing time scales from nucleation theory.

The definitions of the thermodynamical quantities introduced in the previous section

are rewritten with intensive variables. First, Gibbs relation for a field k ∈ K reads:

Tkdsk = dek + Pkdτk, (33)

where
1
Tk

=
∂sk
∂ek

∣∣∣∣
τk

;
Pk
Tk

=
∂sk
∂τk

∣∣∣∣
ek

. (34)

Moreover, we recall the definition of the chemical potential µk:

µk = ek − Tksk + Pkτk. (35)

The mixture entropy definition (18) becomes:

s(Y, τ, e) = (1− yv − ya)sl(τl, el) + yvsv(τv, ev) + yasa(τa, ea), (36)

so that the mixture Gibbs relation (19) gives, since dM = 0:

ds =
1
T
(Pdτ + de) + τ

(
(

Pv

Tv
+

Pa

Ta
)− Pl

Tl

)
dαv

+

(
µl
Tl
− µv

Tv

)
dyv

+ e
(

1
Tv
− 1

Tl

)
dzv + e

(
1
Ta
− 1

Tl

)
dza,

(37)

where:

P(Y, τ, e) =
(1− αv)

Pl
Tl
+ αv(

Pv
Tv

+ Pa
Ta
)

1−zv−za
Tl

+ zv
Tv

+ za
Ta

; (38)

1
T
(Y, τ, e) =

1− zv − za

Tl
+

zv

Tv
+

za

Ta
. (39)

Some concavity properties can be exhibited for the entropy: s is strictly concave relatively

to Y for a given (τ, e) and s is strictly concave relatively to (τ, e) for a given Y (see ap-

pendix 6).
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1.4 Main properties of the model

The present model possesses interesting mathetical properties. They are only summa-

rized here but the reader can refer to (18; 32; 33; 34; 35; 30; 22; 24) for more details about

models with a similar convective structure and to (25) for details about a homogeneous

model with the same thermodynamical building.

Property 5 (Maximum principle on fractions)

If:

(I) : initial and boundary conditions on fractions are so that Y0 ∈ [0, 1]5;

(II) : equilibrium fractions Ȳ are so that Ȳ ∈ [0, 1]5;

then the fractions remain in [0, 1]5. This property can be proved thanks to the classical

lemma recalled in (36).

Let us recall the definition of the mixture sound speed c (m.s−1), which is a useful

quantity playing a role in the following properties:

Definition 4 (Mixture sound speed c)

c2 = −τ2 ∂P
∂τ

∣∣∣∣
s,Y

= −τ2 ∂P
∂τ

∣∣∣∣
e,Y

+ τ2P
∂P
∂e

∣∣∣∣
τ,Y

= −τ2T

(
∂2s
∂τ2

∣∣∣∣
e,Y

+ P2 ∂2s
∂e2

∣∣∣∣
τ,Y
− 2P

∂2s
∂τ∂e

∣∣∣∣
Y

)
,

(40)

which can be rewritten thanks to the partial derivatives of the phasic intensive entropies

sk, since:
∂2s
∂τ2

∣∣∣∣
e,Y

= ∑
k∈K

α2
k

yk

∂2sk

∂τ2
k

;

∂2s
∂e2

∣∣∣∣
τ,Y

= ∑
k∈K

z2
k

yk

∂2sk

∂e2
k

;

∂2s
∂τ∂e

∣∣∣∣
Y
= ∑

k∈K

αkzk
yk

∂2sk
∂τk∂ek

.

(41)
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The sound speed c can also be written from second derivatives of chemical potential µ in

(P, T)-plane (see (37)):

c2 = −τ2/

( ∂τ

∂P

)∣∣∣∣
T
−
(

∂τ

∂T

)∣∣∣∣
P

(
∂s
∂P

)∣∣∣
T(

∂s
∂T

)∣∣∣
P


=

(
χT

τ
−

Tα2
P

Cp

)−1

,

(42)

where αP =
1
τ

∂2µ

∂P∂T

∣∣∣∣
T,P

is the thermal expansion coefficient at constant pressure (K−1)

and χT = −1
τ

∂2µ

∂P2

∣∣∣∣
T

is the compressibility coefficient at constant temperature (Pa−1).

Property 6 (Structure of the waves)

Since system (31) is an Euler-type system, the eigenstructure of the model is composed of:

• two genuinely non-linear waves associated with the eigenvalues U ± c;

• one linearly degenerate wave associated with the eigenvalue U.

Property 7 (Hyperbolicity)

Hyperbolicity is ensured if and only if c is real. From equation (40), the two following

conditions are thus sufficient conditions ensuring the hyperbolicity of the model:

(I) : the mixture entropy (τ, e) 7→ s(τ, e) is concave;

(II) : the mixture temperature T is non-negative.

Thanks to (41), (25) and concavity properties of the entropies (see appendix 6 and (24; 23)),

the previous conditions can be rewritten as sufficient conditions on phasic Equations Of

State (EOS):
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Property 8 (Required properties for sk)

Assuming that ek > 0 (see remark 3), a k-field EOS (τk, ek) 7→ sk(τk, ek) is an admissible

EOS ensuring the hyperbolicity of the final model if the following sufficient properties

hold:
(I) (τk, ek) 7→ sk(τk, ek) is C2.

(I I) (τk, ek) 7→ sk(τk, ek) is concave.

(I I I) ∀(τk, ek),
∂sk
∂ek

∣∣∣∣
τk

> 0.

Remark 3 — Energy fractions zk might not satisfy assumptions (I) and (II) in property 5

for some phasic EOS (see remark 4). With zk < 0, we might have a mixture temperature

T < 0 (and thus a loss of hyperbolicity), even with a phasic EOS satisfying property 8.

Property 9 (Jump conditions)

Shocks are defined in a unique manner through the Rankine-Hugoniot relations:

J[Y] = 0;

[J] = 0;

J2[τ] + [P] = 0;

J
(
[e] + [τ]

PL + PR

2

)
= 0,

(43)

where J = ρ(U − σ) with σ the speed of the shock (σ = U − c or σ = U + c) and where

[Φ] = ΦR − ΦL denotes the difference of the value of the quantity Φ on the right of the

discontinuity ΦR and on the left of the discontinuity ΦL.

Moreover, for a contact wave, the jump conditions are the following: [U] = 0;

[P] = 0.
(44)
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2 Equations of state (EOS)

The model presented in section 1 requires some thermodynamical closures i.e. one

complete phasic EOS for each field l, v and a, verifying the conditions (I)-(III) from prop-

erty 8. The phasic EOS used in this work are presented here.

We recall that a thermodynamical plane is made up of two intensive physical quan-

tities φ1 and φ2, varying in a domain dom(φ1, φ2). An EOS is a function describing a

thermodynamical potential Ψ in a thermodynamical plane (φ1, φ2) and an EOS (φ1, φ2) 7→

Ψ(φ1, φ2) is a complete EOS when all the thermodynamical quantities can be defined from

the successive derivatives of Ψ with respect to φ1 and φ2. A very comprehensive list of

possible thermodynamical potentials can be found in appendix A of (32) and Chapter 2 of

(13). In practice, the model of section 1 requires at least one thermodynamical potential

(described in its natural thermodynamical plane in table 1) and a compatible change of

variables towards another thermodynamical plane, as it will be explained in more de-

tails in section 3. In this work, we need indeed to use the following two thermodynamical

planes:

• the specific entropy s in (τ, e)-plane: indeed, most classical numerical methods

(see section 3.1) require the mixture pressure P, computed with (38) using the pha-

sic pressures and temperatures, themselves obtained from τk and ek (easily deduced

from the conservative variables ρ, ρE, ραk, ρyk, ρzk). Furthermore, this choice allows

to handle shock waves with quite simple numerical schemes from conservative vari-

ables;

• the Gibbs potential µ = e − Ts + Pτ in (P, T)-plane, since the thermodynamical

equilibrium is computed in (P, T)-plane with an algorithm adapted from (14) (see

section 3.3).

Some quantities can also be computed with the second derivative of a thermodynamical
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potential, for instance, the heat capacity at constant pressure Cp:

Cp = −T
∂2µ

∂T2

∣∣∣∣
P

. (45)

Notice that, thanks to assumption (III) of property 8, there is a bijective change of vari-

ables to switch from s(τ, e) towards e(τ, s) (38; 35).

Potential Entry plane "Gibbs relation" Conjugate variables

µ (P, T) dµ = −sdT + τdP τ =
∂µ

∂P

∣∣∣∣
T

; s = − ∂µ

∂T

∣∣∣∣
P

s (τ, e) ds =
P
T

dτ +
1
T

de
P
T
=

∂s
∂τ

∣∣∣∣
e

;
1
T
=

∂s
∂e

∣∣∣∣
τ

e (τ, s) de = Tds− Pdτ P = − ∂e
∂τ

∣∣∣∣
s

; T =
∂e
∂s

∣∣∣∣
τ

Table 1: Potentials defining a complete EOS in a given thermodynamical plane.

The stiffened gas (SG) EOS is often used, as in (39; 22), because of its simplicity and

its analytical form enabling to easily change of thermodynamical plane. In the following,

SG EOS will be used for water vapor v and non-condensable gas a (see section 2.1).

In (23), a more realistic EOS has been tested: it consists in a look-up table based on

IAPWS-97 formulation (40), one industrial reference EOS dedicated to water. Here, we

aim to propose a compromise between the simplicity of a SG and the numerical costs and

difficulties of a IAPWS look-up table (see (23)), by choosing a semi-analytical EOS for the

liquid l: a Noble-Able stiffened gas EOS (26; 28) modified with the Chemkin EOS (27),

called NASG-CK EOS in the following (see section 2.2).

2.1 Stiffened gas EOS for the gaseous fields v and a

We recall the stiffened gas EOS in (τ, e)-plane for k ∈ {v, a}:

sk(τk, ek) = Cv,kln
(
(ek −Qk − πkτk)τ

γk−1
k

)
+ s0k. (46)

The stiffened gas parameters are the following, for k ∈ {v, a}:
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• Cv,k (J.K−1.kg−1) is the calorific capacity at constant volume,

• γk is the adiabatic index, a non-dimensional coefficient greater than 1,

• −Πk (Pa) is the minimal admissible pressure (which can be negative),

• Qk (J.kg−1) is a reference enthalpy,

• s0k (J.K−1.kg−1) is a reference entropy.

The coefficients, given in appendix 7, are evaluated with an optimization method, as de-

scribed in chapter 2 of (37), based on a minimization of the relative errors (on chemical

potential µ, specific volume τ and heat capacity Cp) between the SG EOS and IAPWS EOS

on a large liquid domain.

This EOS can be explicitely written in (P, T)-plane using the definition µ = e− Ts +

Pτ:
∀k ∈ {v, a},

µk(Pk, Tk) = γkCv,kTk + Qk − Tk(γkCv,kln(Tk)

−(γk − 1)Cv,kln(Pk + Πk) + kk),

(47)

with a constant kk (in J.K−1.kg−1), defined in accordance with (46) and (49):

kk = Cv,k(ln(Cv,k) + (γk − 1) ln(Cv,k(γk − 1))) + s0k. (48)

Other quantities can be deduced using table 1:

∀k ∈ {v, a}, τk(Pk, Tk) =
Cv,k(γk − 1)Tk

Pk + Πk
;

sk(Pk, Tk) = γkCv,k ln(Tk)

−(γk − 1)Cv,k ln(Pk + Πk) + kk;

ek(Pk, Tk) = Cv,kTk + Qk + Cv,k(γk − 1)Tk
Πk

Pk + Πk
;

Cpk(Pk, Tk) = Cpk = γkCv,k.

(49)
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Remark 4 — It can be easily checked that property 8 is verified for a SG EOS. However,

as noted in remark 3, T might be negative if zk < 0, which might happen with the stiff-

ened gas EOS. Indeed, it can be proved from system (31) that ek −Qk − τkΠk, (k = v, a),

remains positive within time: in fact, some thermodynamical states might lead to an in-

ternal energy ek < 0, depending on the chosen values for Qk and Πk. In our numerical

tests, we observed such negative zk only in very rare situations, when taking some λ > 0

leading to a too delayed return towards thermodynamical equilibrium.

2.2 Noble-Able-Chemkin stiffened gas EOS for the liquid l

In (28), the authors proved that Noble-Able Stiffened gas (NASG) EOS can be extended

to cope with a variable heat capacity at constant pressure Cp (in J.K−1.kg−1) depending on

the temperature: in particular, they recommend to define Cp with the NASA polynomials,

used in the Chemkin EOS (27).

2.2.1 Definition in (P, T)-plane

Thus, we propose the following EOS, by gathering the main features of NASG EOS

and Chemkin EOS i.e. the introduction of a specific volume bl > 0 (m3.kg−1) and a vari-

able Cpl defined as a polynomial of Tl:

µl(Pl, Tl) = µ0
l (Tl) + blPl + Cl(T) ln(Pl + Πl),

with: µ0
l (Tl) = RTl

(
Al(1− ln(Tl))−

Bl
2

Tl

−Cl
6

T2
l −

Dl
12

T3
l −

El
20

T4
l +

Fl
Tl
− Gl

)
,

Cl(Tl) = Cv,l(γl − 1)Tl,

R =
r
M

the perfect gas constant,

with r = 8.31446261815324 J.kg−1.mol−1

and M = 18.01528 g.mol−1.

(50)
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Other quantities can be deduced from (50) using table 1:

τl(Pl, Tl) = bl +
Cv,l(γl − 1)Tl

Pl + Πl
;

sl(Pl, Tl) = R
(

Al ln(Tl) + BlTl +
Cl
2

T2
l +

Dl
3

T3
l +

E
4

T4
l + Gl

)
−Cv,l(γ− 1) ln(Pl + Πl);

Cpl(Tl) = R(Al + BlTl + ClT2
l + DlT3

l + ElT4
l );

αPl(Pl, Tl) =
1
τl

∂2µl
∂Pl∂Tl

∣∣∣∣
Tl ,Pl

=
Cv(γ− 1)

Cv(γ− 1)T + b(P + Π)
.

(51)

2.2.2 Definition in (τ, e)-plane

Inverting the NASG-CK EOS from the (τl, el)-plane towards the (Pl, Tl)-plane requires

an implicit resolution. Supposing that τl and el are known as functions of (Pl, Tl), we aim

to get sl(τl, el), using the two following equations:

Pl(Tl, τl) =
Cv,l(γl − 1)Tl

τl − bl
−Πl = Pl(τl, Tl); (52)

el(Tl, τl) = RTl(Al +
Bl
2

Tl +
Cl
3

T2
l +

Dl
4

T3
l

+
El
5

T4
l +

Fl
Tl
)− Cv,l(γl − 1)Tl + Πl(τl − bl).

(53)

More precisely:

1. Tl is obtained by implicitely solving equation (53), since el and τl are known;

2. Pl can then be explicitely computing from Tl and τl using equation (52).

At the end of day, we speak about "semi-analytical" EOS for NASG-CK because, up to

an implicit resolution of el(τl, Tl) to find Tl, the complete EOS in (τl, el)-plane sl(τ(Pl, Tl), el(τl, Tl))

can be obtained from µl(Pl, Tl).
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2.2.3 Admissibility condition of NASG-CK EOS

Property 10

The Noble-Able Chemkin EOS (50) is an admissible EOS ensuring property 8 when:

Cpl(Tl)− Cv,l(γl − 1) ≥ 0 (54)

It has been numerically checked that (54) holds for the coefficients used in this work

(given in appendix 7).

Proof :

Here we focus on the concavity of (τl, el) 7→ sl(τl, el) because all the other requirements

from property 8 can be easily proved. Recalling from table 1:

dsl
dτl

∣∣∣∣
el

=
Pl
Tl

;
dsl
del

∣∣∣∣
τl

=
1
Tl

,

one needs now to evaluate the second derivatives of (τl, el) 7→ sl(τl, el). Using (53), we

can deduce an implicit relation Tl = Tl(τl, el) and we get:

del = (Cpl(Tl)− Cv,l(γl − 1))dTl + Πldτl, (55)

so that:
∂Tl
∂τl

∣∣∣∣
el

= −Πl(Cpl(Tl)− Cv,l(γl − 1))−1, (56)

and
∂Tl
∂el

∣∣∣∣
τl

= (Cpl(Tl)− Cv,l(γl − 1))−1. (57)

Moreover, using (52), we get also:

Pl =
Cv,l(γl − 1)Tl(τl, el)

τl − bl
−Πl, (58)

so that:
∂Pl
∂τl

∣∣∣∣
el

= −Cv,l(γl − 1)Tl

(τl − bl)2 +
Cv,l(γl − 1)
(τl − bl)

∂Tl
∂τl

∣∣∣∣
el

. (59)
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It reads then:
∂2sl

∂τl∂el
=

∂

∂τl

(
1
Tl

)∣∣∣∣
el

= − 1
T2

l

∂Tl
∂τl

∣∣∣∣
el

=
Πl

T2
l
(Cpl(Tl)− Cv,l(γl − 1))−1;

(60)

∂2sl

∂e2
l

∣∣∣∣∣
τl

=
∂

∂el

(
1
Tl

)∣∣∣∣
τl

= − 1
T2

l

∂Tl
∂el

∣∣∣∣
τl

= − 1
T2

l

(
Cpl(Tl)− Cv,l(γl − 1)

)−1 ;
(61)

∂2sl

∂τ2
l

∣∣∣∣∣
el

=
∂

∂τl

(
Pl
Tl

)∣∣∣∣
τl

=
1
Tl

∂Pl
∂τl

∣∣∣∣
el

− Pl

T2
l

∂Tl
∂τl

∣∣∣∣
el

=
∂Tl
∂τl

∣∣∣∣
el

(
Cv,l(γl − 1)
Tl(τl − bl)

− (
Cv,l(γl − 1)
Tl(τl − bl)

− Πl

T2
l
)

)
−Cv,l(γl − 1)

(τl − bl)2

= −
Π2

l
T2

l
(Cpl(Tl)− Cv,l(γl − 1))−1 − Cv,l(γl − 1)

(τl − bl)2

= −Πl
∂2sl

∂τl∂el
− Cv,l(γl − 1)

(τl − bl)2 .

(62)

Since Cpl(Tl)− Cv,l(γl − 1) ≥ 0, we get:

∂2sl

∂τ2
l

∣∣∣∣∣
el

≤ 0 ;
∂2sl

∂e2
l

∣∣∣∣∣
τl

≤ 0

∂2sl

∂τ2
l

∣∣∣∣∣
el

∂2sl

∂e2
l

∣∣∣∣∣
τl

−
(

∂2sl
∂τl∂el

)2

=

(
∂2sl

∂τl∂el

)2

(1− 1) +
∂2sl

∂τl∂el

Cv,l(γl − 1)
(τl − bl)2Πl

=
Cv,l(γl − 1)
(τl − bl)2T2

l

(
Cpl(Tl)− Cv,l(γl − 1)

)−1 ≥ 0,

(63)

which proves that (τl, el) 7→ sl(τl, el) is indeed concave as required by property 8.

2.2.4 Evaluation of NASG-CK EOS coefficients

The procedure is the following:
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• EOS coefficients Al, Bl, Cl, Dl and El have been evaluated by fitting the specific

volume τl and the heat capacity Cp,l to data obtained with IAPWS EOS (see chapter

2 of (37)).

• γl, Cv,l, Πl and bl have been defined by extending the empirical method proposed

in (41) for the stiffened gas EOS, by imposing the specific volume τl(P0, P0), the ther-

mal expansion coefficient αP,l(P0, T0), the specific heat capacity at constant volume

Cv,l(P0, T0) as well as the sound speed cl(P0, T0) at a reference point (P0, T0) (see

appendix 11).

• The remaining coefficients Fl and Gl have been defined by fitting (µl−µv)(Tsat
IAPWS(P))

to zero (see appendix 11).

Resulting coefficients are given in appendix 7.

2.2.5 Accuracy of NASG-CK EOS

We compared NASG-CK EOS with a liquid SG EOS, obtained with the minimization

procedure from (37). All EOS coefficients are given in appendix 7. Recalling the definition

of the relative error errφ for a quantity φ:

errφ =

∣∣∣∣φEOS − φIAPWS

φIAPWS

∣∣∣∣ ,

we chose the following (subjective) indicators, gathered in table 2:

• the mean, minimal and maximal relative error for each quantity;

• the percentage of the physical domain in (P, T)-plane where the relative error is

smaller than 5% for each quantity;

• the percentage of the physical domain in (P, T)-plane where the relative error is

smaller than 5% for the three quantities τ and Cp at the same time;

Error maps for τl (figures 1 and 2) and Cpl (figures 3 and 4) are also given, showing the

relative error at each point (Pl, Tl), with an error limited by a ceiling of 5%.
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All the previous indicators show that NASG-CK EOS is far more accurate than a SG

EOS on a large liquid domain.

Indicators (%) NASG CK EOS SG EOS

Mean relative errors on τ 3.0 9.6

on Cp 0.87 7.0

Min relative errors on τ ' 10−6 ' 10−7

on Cp ' 10−6 ' 10−6

Max relative errors on τ 20 29

on Cp 22 55

% of domain with err < 5% on τ 78 26

on Cp 99 33

on τ and Cp 78 13

Table 2: Comparison of accuracy indicators for NASGCK EOS and SG on a large liquid domain,

relatively to IAPWS
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Figure 1: Relative error on τ compared with

IAPWS-97 for NASGCK EOS, with error satu-

ration at 5%.

Figure 2: Relative error on τ compared with

IAPWS-97 for SG EOS, with error saturation at

5%.

Figure 3: Relative error on Cp compared with

IAPWS-97 for NASGCK EOS, with error satura-

tion at 5%.

Figure 4: Relative error on Cp compared with

IAPWS-97 for SG EOS, with error saturation at

5%.
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3 Numerical implementation

The numerical implementation is carried out following the same numerical strategy

as in (22; 23). We will only recall here the main features of the method and we refer to the

previous references for more details. The numerical method is based on a fractional step

method (42) using a Lie-Trotter splitting (with a unique sub-iteration). More precisely,

system of equations (31) can be rewritten as:

∂W
∂t

= −∂F (W)

∂x
+ G(W), W(t = 0) = W0, (64)

where F correspond to the convective flux and G to the source terms. A straightforward

Lie-Trotter splitting is chosen, consisting in solving at time t = tn the following two sub-

systems during a time step ∆tn:

(i)
∂Wa

∂t
= −∂F (Wa)

∂x
, Wa(tn) = Wn, (65)

which gives Wa(tn + ∆tn). Then, for the second step, the following equations are solved:

(ii)
∂Wb
∂t

= G(Wb), Wb(t = tn) = Wa(tn + ∆tn), (66)

which gives Wn+1 = Wb(tn + ∆tn). Since this splitting is first order with respect to time,

each sub-system is solved using first order schemes.

3.1 Numerical schemes to solve the convective sub-system (65)

First sub-system (65) takes into account the convective part: it is solved with first-

order explicit and conservative finite volumes schemes. Their general form for a one-

dimensional framework with cells Ωi is:

|Ωi|(Wn+1
i −Wn

i ) =

−∆tn((F(Wn
i , Wn

i+1)− F(Wn
i−1, Wn

i )),
(67)

where Wn
i denotes the space-average value of W on the cell Ωi at time tn. Note that

other methods may be used, as in (29) where a similar model has been implemented us-

ing a Lattice-Boltzmann method. In this work, two different schemes are used: Rusanov

31



scheme (43) and a relaxation scheme proposed in (44) and used in (23) for complex EOS.

We recall very briefly their main features and we refer to previous references for more

details.

For the Rusanov scheme, the numerical flux is:

F(Wl, Wr) =
1
2
(F (Wl) +F (Wr))−

max(Λr, Λl)

2
(Wr −Wl) ,

(68)

where Λr (resp. Λl) is the spectral radius of the convection matrix∇WF at W = Wr (resp.

W = Wl). The time step ∆tn at iteration n should satisfy the CFL constraint:

∆tn

∆x
max(Λr, Λl) <

1
2

. (69)

As far as the relaxation scheme is concerned, an enlarged hyperbolic system is intro-

duced, associated with a strong relaxation term, so that the relaxation procedure enables

to formally recover the initial system of equations. The enlarged system to solve is then

the following: 

∂t(ρY) + ∂x(ρYU) = 0;

∂tρ + ∂x(ρU) = 0;

∂t(ρU) + ∂x(ρU2 + Π) = 0;

∂t(ρΣ) + ∂x(ρUΣ + UΠ) = 0;

∂t(ρT ) + ∂x(ρT U) =
1
ε

ρ(τ − T );

(70)

where the relaxation source terms for T are characterized by the parameter ε ≥ 0. Some

additional variables have been introduced to build system (70): one additional scalar

unknown T with the initial condition:

∀x, T (0, x) = τ(0, x);

a relaxed pressure Π:

Π = P(Y, T , e) + a2(T − τ); (71)
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and a relaxed specific total energy Σ:

Σ =
u2

2
+ e +

Π2 − P2(Y, T , e)
2a2 , (72)

as well as a positive parameter a, which should satisfy the following sub-characteristic

condition:

a > max
(

cl(Yl, τl, el)

τl
,

cr(Yr, τr, er)

τr

)
. (73)

The numerical flux is the following:

F(Wl, Wr) =

(
YU
τ

,
U
τ

,
U2

τ
+ Π,

UΣ
τ

+ UΠ
)

,

where Y, τ, U, Σ are the components ofZ (x/t = 0, Zl, Zr), the self-similar solutionZ (x/t, Zl, Zr)

of the Riemann problem associated with the homogeneous part of (70) at the interface sep-

arating cells l and r, so that Π=Π(Y, τ, Σ). In practice, we use the relaxation scheme by

enforcing ε→ 0.

3.2 Applying the source terms through sub-system (66)

The return towards thermodynamical equilibrium is accounted for with second sub-

system (66), which reads: 

∂

∂t
(Y) =

Ȳ(τ, e)−Y
λ(t)

;

∂

∂t
(ρ) = 0;

∂

∂t
(ρU) = 0;

∂

∂t
(ρE) = 0.

(74)

In this second subsystem (74), τ and e are constant:

τ(t) = τ(0) ; e(t) = e(0).

We make furthermore the approximation: λ(t) = λ(0), so that the fractions can be com-

puted as the exact solutions of the approximated sub-system:

∂Y
∂t

=
Ȳ(τ(0), e(0))−Y

λ(0)
. (75)
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For an initial condition given by the value at time tn, the final approximation at time

tn+1 = tn + ∆tn then reads:

Y(tn+1) = Y(tn) e
−∆tn
λ(tn) + Ȳ(tn)

(
1− e

−∆tn
λ(tn)

)
;

ρ(tn+1) = ρ(tn);

U(tn+1) = U(tn);

e(tn+1) = e(tn).

(76)

Remark 5 — For the sake of simplicity, both sub-systems (65) and (66) are solved using

only one time-step. Since the explicit numerical scheme of the convective sub-system

imposes a stability constraint on this time-step, this second step is achieved using an

implicit scheme.

The major difficulty in this step is in fact to compute the thermodynamical equilib-

rium Ȳ: the algorithm, based on (14), is briefly explained in the next section 3.3 and fully

described in appendix 9.

3.3 Principles enabling to compute the thermodynamical equilibrium

After the convection step, (ya, τ, e) are known and we need now to find the equilib-

rium fractions Ȳ(ya, τ, e) = (ᾱv, ȳv, z̄v, ya) enabling to maximize the mixture entropy s (36)

for a fixed (τ, e, ya). The main procedure is the following:

ALGORITHM 1 (Type of equilibrium) — Arguments: (ya, τ, e).

• If ya = 1: the equilibrium is a monophasic state with only field a, so that:

ᾱv = 0 ; ȳv = 0 ; z̄v = 0 ; z̄a = 1.

• Else if ya = 0: we compute an equilibrium state with the two fields l and v using AL-

GORITHM 2 (LV), computing a potential equilibrium Ȳlv(ya, τ, e) = (α̃lv
v , ỹlv

v , z̃lv
v , z̃lv

a ).

34



– If Ȳlv is admissible (i.e. if all the fractions are in ]0, 1[):

Ȳ = Ȳlv.

– Else: the equilibrium state is a monophasic state with only l or only v. More

precisely, the equilibrium state is the monophasic state maximizing the en-

tropy:

* If sl(τ, e) > sv(τ, e): the equilibrium is a pure liquid water state, so that:

ᾱv = 0 ; ȳv = 0 ; z̄v = 0 ; z̄a = 0.

* Else: the equilibrium is a pure water vapor state, so that:

ᾱv = 1 ; ȳv = 1 ; z̄v = 1 ; z̄a = 0.

• Else: we compute an equilibrium state Ỹlva(ya, τ, e) with the three fields l, v and a,

determined using ALGORITHM 3 (LVA):

– If Ȳlva is admissible (i.e. if all the fractions are in ]0, 1[):

Ȳ = Ỹlva.

– Else: the equilibrium state is a mixture of l and a, or a mixture of v and a. Both

possible states Ỹla(ya, τ, e) and Ỹva(ya, τ, e) are computed using ALGORITHM

4 (LA) and ALGORITHM 5 (VA), thanks to conditions from property 4. The

physical state is obtained by comparing both mixture entropies ska = (1 −

ya)sk(τ̃k, ẽk) + yasa(τ̃a, ẽa), k = l, v:

* If sla(ya, τ, e) > sva(ya, τ, e): the equilibrium is a two-phase mixture of liq-

uid water and non-condensable gas, so that

Ȳ = Ȳla.

* Else: the equilibrium is a miscible gaseous mixture of water vapor and

non-condensable gas, so that:

Ȳ = Ȳva.
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The previous procedure calls algorithms to compute the thermodynamical equilib-

rium, depending on the fields which are actually present in the mixture. These algo-

rithms are described in details in appendix 9. The LV-equilibrium (ALGORITHM 2) and

the LVA-equilibrium (ALGORITHM 3) algorithms are based on the algorithm initially pro-

posed in (14). The key idea is to use a change of thermodynamical plane. Indeed, if we

consider the LVA-case, the equilibrium is characterized by the four following equations

in the (τ, e)-plane:

Pl(τl, el) = Pv(τv, ev) + Pa(τa, ea);

Tl(τl, el) = Tv(τv, ev);

Tv(τv, ev) = Ta(τa, ea);

µl(Pl(τl, el), Tl(τl, el)) = µv(Pv(τv, ev), Tv(τv, ev));

(77)

since the previous system can be rewritten using relations τk =
αk
yk

τ and ek =
zk
yk

e for

k = l, v, a: the four remaining unknowns are thus the equilibrium fractions, noted ᾱv,

ȳv, z̄v and z̄a. Instead of looking for these fractions ᾱv, ȳv, z̄v and z̄a satisfying (77), the

idea, proposed in (14) and used for instance in (? 23), is to rather consider the following

unknowns P̄v, P̄a, T̄ and ȳv. Miscibility constraints (7) enable to get a system equivalent

to system (77) in the pressure-temperature plane:

ȳv × τv(P̄v, T̄) = ya × τa(P̄a, T̄);

τ = (1− ȳv)× τl(P̄v + P̄a, T̄) + ȳv × τv(P̄v, T̄);

e = (1− ȳv)× el(P̄v + P̄a, T̄) + ȳv × ev(P̄v, T̄)

+ya × ea(P̄a, T̄);

µl(P̄v + P̄a, T̄) = µv(P̄v, T̄).

(78)

With the particular choice for phasic EOS considered in section 2, system (78) can be

rewritten as a system of the coupled equations of only two variables (P̄v and P̄a), corre-

sponding to the second and the third equations of (78), solved in ALGORITHM 3 with a

Broyden algorithm, as described in appendix 9.
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Remark 6 (Analytical phasic EOS for v and a) — Without specifying any phasic EOS, the

only obvious simplification of system (78) is to replace ȳv by its expression as a function

of P̄v, P̄a and T̄ obtained from the first equation of (78):

ȳv = ya
τa(P̄a, T̄)
τv(P̄v, T̄)

.

It remains a system of three coupled equations of three unknowns P̄v, P̄a and T̄. Our par-

ticular choice of stiffened gas EOS for the vapor and the non-condensable gas enables to

get an explicit formula for T̄ as a function of P̄v and P̄a. This is no longer the case when

replacing the SG phasic EOS for vapor by a Noble-Able equation (26).

Remark 7 (Threshold for fractions) — In practice, a threshold ε f rac = 10−12 is defined

in the code for the fractions: a fraction 1 ≥ ϕ > 1− ε f rac will be taken equal to 1 and a

fraction 0 ≤ ϕ < ε f rac will be taken equal to 0.

4 Verification test cases

In order to verify the implementation of the numerical methods as well as the ther-

modynamical equilibrium computation, convergence studies are performed on Riemann

problems for which a unique analytical solution can be exhibited.

As in (23; 39), particular Riemann problems with only a contact wave and a shock wave

are built. More precisely, we consider a one-dimensional domain x ∈ [0 m, 1 m], dis-

cretized using uniform meshes, with an initial discontinuity at xd = 0.5 m. The exact

solution (see figure 5) consists in the left and right initial states, respectively WL and WR,

separated by a uniform intermediate state W∗. The nature of waves is the following:

• the wave travelling at U − c is a ghost wave;
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• the wave travelling at U, separating left state WL and intermediate state W∗, is a

contact-wave;

• the wave travelling at U + c, separating intermediate state W∗ and right state WR,

is a shock-wave.

x

t

|
x = 0 m

|
x = 1 mxd = 0.5 m

WL WR

U − c

U

U + c
WL W∗

Figure 5: Riemann problem with one intermediate state; U-c: ghost wave; U: contact wave; U+c:

shock wave

As in (23), two types of Riemann problems are considered:

• “out-of-equilibrium” Riemann problems, with λ → ∞: only the convective part of

model 1 is tested;

• “at-equilibrium” Riemann problem, with λ → 0: first, the convective terms are

taken into account and the thermodynamical equilibrium is then enforced through

the source terms, as depicted in section 3.3.

Computing the analytical solutions is classical but somehow tricky because of the non-

condensable gas: the method is presented in the next section. Then, convergence results

for out-of-equilibrium Riemann problems (section 4.2) and for at-equilibrium Riemann

problems (section 4.3) are presented. The initial data for each test case are reported in ap-

pendix 8. Convergence studies are performed by computing the relative L1-error, defined

38



as follows: for an approximated solution Ψapprox and an exact solution Ψexact, since the

mesh size is uniform, the relative L1-error is computed at time tn on the whole mesh as:

∑i |Ψ
approx,n
i −Ψexact(xi, tn)|
∑i |Ψexact(xi, tn)| ,

where xi is the barycenter of the cell i. Obviously, when ∑i |Ψexact(xi, tn)| = 0 (i.e. Ψexact =

0), this relative error is meaningless and we then consider the mere L1-error:

∑
i
|Ψapprox,n

i −Ψexact(xi, tn)|.

4.1 General method to build analytical solutions

The main approach is the same as the one used in (45; 22; 23). First a left state WL

is chosen; then the intermediate state W∗ is computed across the contact wave from WL

thanks to conditions (44); last, the right state WR is obtained from W∗ through the shock

wave thanks to conditions (43).

For a out-of-equilibrium Riemann problem, P is the mixture pressure from (38), so

that P = P(Y, τ, e), directly evaluated with the variables Y, τ, e computed through the

convection step (65).

For an at-equilibrium Riemann problem, P is always computed with (38), but no

more with the convected fractions Y: this time, P = P(Ȳ, τ, e) = P̄, with Ȳ = Ȳ(τ, e)

the equilibrium fractions computed with algorithms from appendix 9. We highlight that,

for Riemann problems at equilibrium, only the mass fraction ya is convected and still

complies with J[ya] = 0: the other equilibrium fractions ᾱv, ȳv, z̄v and z̄a do not verify the

jump relations anymore.

The detailed algorithms enabling to build such Riemann problems are given in ap-

pendix 10.
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4.2 Out-of-equilibrium test cases

An out-of-equilibrium Riemann problem is considered in table 8.1 in appendix, where

the data is obtained using out-of-equilibrium problem algorithm from appendix 10. The

expected convergence rate of 1
2 , due to the presence of the contact wave, is observed on

the convergence curves (see figure 6).
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Figure 6: Convergence curve for Riemann problem 1 (out-of-equilibrium): meshes from 100 to 150

000 cells

4.3 At-equilibrium test cases

Two at-equilibrium Riemann problems are considered, obtained by using at-equilibrium

problem algorithm from appendix 10:

• a first Riemann problem, with an initial pressure gap around 10 bar (see initial data

in table 8.2 in appendix);

• a more brutal Riemann problem, with an initial pressure gap around 150 bar, in

order to prepare the validation case SUPERCANON of section 5 (see initial data in

table 8.3 in appendix).

In both cases, the asymptotical convergence rate is between 1
2 and 1, as expected (see

figures 7 and 8). A higher initial pressure gap seems to induce a slightly higher error on

the pressure, but not really on the other quantities.

40



−5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0
log(1/N), with N = n mber of cells in the mesh

−5

−4

−3

−2

−1

lo
g(
re
sid

 a
ls)

alpha
rho
P
 
order 1/2

Figure 7: Convergence curve for Riemann problem 2 (at-equilibrium, with a ' 10 bar pressure

gap): meshes from 100 to 150 000 cells
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Figure 8: Convergence curve for Riemann problem 3 (at-equilibrium, with a ' 150 bar pressure

gap): meshes from 100 to 150 000 cells

5 Validation test case: SUPERCANON simulations

A validation test case is now considered, based on the SUPERCANON experiment

(46), aiming at reproducing a simplified loss of coolant accident (LOCA) scenario. The

experimental set-up is described on figure 9. A tube is filled with pressurized liquid

water at 150 bar and 300°C (in order to be representative of the primary circuit of a pres-

surized water reactor). At the beginning of the experiment, the cap is removed, so that
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the liquid water is now at the contact of the ambiant air at 1 bar and 20°C.
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Figure 9: SUPERCANON experimental set-up (46)

A rough description of the main phenomena occuring during a SUPERCANON run

is the following: the initial pressure gap creates a fast depressurization wave, which trav-

els in the tube to the left. The pressure drops to a pressure around the saturation pres-

sure, leading to the vaporisation of a small amount of liquid. The vapor fraction then

increases slowly and the pressure remains almost constant until the arrival of the vapor-

isation front. This vaporisation front, which travels from the opening of the tube to the

end of the tube, produces smoother changes of the pressure. It is responsible for the last

pressure drop. Figure 10 shows the pressure evolution within time, measured at point

P1 (see figure 9). Due to the importance of the initial pressure gap (around 150 bar), the

observed pressure plateau does not match with the expected pressure saturation. It ap-

pears that the flow remains out of the thermodynamical equilibrium for a moment within

a run, in particular close to the wall when the depressurization wave reaches the end of

the tube. Previous numerical works (22; 47) based on a similar homogeneous model as

the one studied here (18) highlight that taking into account the out-of-equilibrium effects

is essential to obtain qualitatively correct results.

In the following, SUPERCANON simulations are performed on a mesh containing

2000 cells, on a domain of 10 meters, including the tube with a length of 4.389 m in its left

part. The present work aims to better assess the importance of several parameters:

• the initial air mass fraction dissolved in liquid water. Liquid water has been degased
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vaporisation front
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Vaporisation front

Equilibrium

Non−equilibrium

Figure 10: Pressure at P1 (see Figure 9) within time

in SUPERCANON experiment, but the residual air fraction, even if it is very small,

may have a strong influence on the simulations, as it has been highlighted in similar

simulations (3);

• the relaxation time scale λ, defined in hypothesis 7. Some toy laws have been used

in (22; 47), leading to a rather good agreement with the experimental results. These

laws are here compared with a simplified model based on the nucleation theory,

proposed in (23).

5.1 At-equilibrium simulations

Simulations are performed by taking λ = 0 and by chosing several ya in the tube (see

table 3). Results can be seen on figure 11. When the air mass fraction is very small (cases

ya = 0, ya = 10−6, ya = 5× 10−6, ya = 5× 10−5, ya = 10−4), the pressure suddently

decreases and is then almost constant for a while. The pressure plateau on point P1 is

overestimated, as expected because of the thermodynamical equilibrium assumption (see

figure 11a). The more air there is, the smoother is the pressure drop. When the air mass

fraction is quite important (cases ya = 10−2, ya = 10−3), the pressure drop is even de-

layed and becomes so smooth that the plateau is no longer observed. For cases ya = 0,

ya = 10−6, ya = 5× 10−6, the slightly different initial air mass fraction leads to slight
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differences in the very first milliseconds of the experiment (see figure 11b).

In pure liquid, the depressurization at point P1 (see figure 9) appears too early compar-

ing with the experiment (around ' 0.003s instead of ' 0.004s; see figure 11b). The sound

speed is thus overestimated in our simulation. On one hand, thanks to experimental data,

the experimental sound speed can be estimated around ' 900m.−1. On the other hand,

we compared the sound speed computed with NASG-CK EOS and obtained with IAPWS

closed to the reference point (P0 = 80bar, T0 = 425K), chosen to fit NASG-CK parameter

(see appendix 11): NASG-CK sound speed is quite stable around ' 1480m.s−1, which is

the correct order of magnitude obtained with IAPWS-IF97 around (P0, T0). This observa-

tion incites to consider that a small amount of air is in fact dissolved in the liquid water:

indeed, by choosing ya = 5× 10−5, the depressurization wave has this time a velocity in

accordance with the experimental data (see figure 11b).

Left State Right State

Components of the mixture Liquid water + Air Air + Vapor (moist rate=55 %)

ya ? various ya ya = 0.0085162

Pressure (Pa) 150 bar 1 bar

Temperature (°C) 300 °C 20 °C

Table 3: Initialization of the simulations: quantity of air for both left and right states.

5.2 Out-of-equilibrium simulations

5.2.1 Time scale following a "toy" law

First results have been obtained by using a toy law for λ, improved from (22) and also

used in (47). The law is the following:

λ = ttoy = λ0 f (αv) e−
(
|αv−αv |

δα

)2

, (79)

where the function α ∈ [0, 1] 7→ f (α) corresponds to 3 constant values with cosine con-

nections to get a smooth function, as defined on figure 12. The law used to compute the
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(a) Comparison between simulations and

experimental data.

(b) Zoom on the first miliseconds: differ-

ences arise, depending on ya.

Figure 11: Pressure (Pa) within time (s) at point P1 (see figure 9): at-equilibrium simulation (λ =

0), using NASG-CK EOS for the liquid with several initial air fractions ya.

results presented below has the following parameters : λ0 = 1.5 10−2 s et δα = 5.5 10−4,

a = 1, b = 0.05, c = 0, α1 = 0, α2 = 0.15, α3 = 0.25, α4 = 0.65.

5.2.2 Time scale following a simplified model based on nucleation theory

Some tests have been made using for λ a simplified model tnuc based on nucleation

theory, proposed in (23), from assumptions made for instance in (48) or (49). It reads:

tnuc =
( a0

∆P

)3
exp

(
ϕEa

kBT

)
, (80)

where Ea is defined from ∆P = |Pl − Psat| and γ, the surface tension estimated from the

IAPWS 94 correlation (50):

Ea =
16πγ3

3(∆P)2 , (81)

and

γ = B0(1 + b(1− T
Tc
))

(
T
Tc

)ν

, (82)
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Figure 12: Definition of the function α ∈ [0, 1] 7→ f (α) used for the definition of λ.

where: B0 = 235.8 10−3 mN/m ; b = −0.625 ; ν = 1.256 and Tc = 647.096K (water crit-

ical temperature). ϕ ∈ [0, 1] depends on the nucleation type : homogeneous nucleation

occurs when ϕ = 1, whereas heterogeneous nucleation occurs when ϕ is in ]0, 1[. In the

simplified model (80), we have (theoreticaly) only two parameters to define: a0 in (Pa.s),

homogeneous to a dynamical viscosity, and ϕ ∈ [0, 1].

We make the assumption that air and vapor act like impurities, enhancing to vaporize

liquid water. Therefore, we define ϕ as:

ϕ =

 1 if yv + ya < 10−9,

(yv + ya)2 otherwise.
(83)

a0 is estimated as:

a0 = P × T , P in bar, T in s, (84)

with P taken equal to 1 bar and T = 4.389m/1481 m.s−1 s is chosen as an estimation of

the time when the depressurization wave will reach the wall of the tube.

Taking λ = tnuc seems relevant, while the flow is mainly made of liquid, because the

model is related to the very first bubbles appearing at the beginning of the vaporization.

Some criterion has to be chosen, to activate or not out-of-equilibrium effects, depend-
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ing on the vapor quantity in the flow as well as ∆P (describing how far is the flow from

thermodynamical equilibrium after the convection step). Moreover, the time scale is reg-

ularized through a cosine function, to avoid too sharp discontinuities. More precisely, λ

is chosen as follows:

λ =


tnuc if 0.01bar < ∆P < 150bar, yv

eq − yv < −10−6 and yv < 10−2,

˜tnuc if 0.01bar < ∆P < 150bar and yv
eq − yv < −10−6 and 5.0× 10−3 < yv < 10−2,

0 otherwise.
(85)

with

˜tnuc = tnuc cos
(

(yv − 5× 10−3)π

(10−2 − 5× 10−3)2

)
.

All the previous threshold values are not based on physical considerations, so that some

improvements should be made to propose a more physically relevant model.

5.2.3 Numerical results

Figure 13 shows some results otained with ya = 5× 10−5 in the liquid water: three

simulations (with λ = 0, λ = ttoy and λ = tnuc) are compared. Out-of-equilibrium simula-

tions enable to get an undershoot for the pressure, below the saturation pressure (around

' 70bar for ttoy and ' 20bar for tnuc), as observed in the experiment around ' 60bar (see

figure 13a). Moreover, for both out-of-equilibrium simulations, the last depressurisation

is correctly delayed, compared with the at-equilibrium simulation, around' 0.15s. These

results thus highlight the importance of out-of-equilibrium effects to get realistic results.
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(a) Comparison between simulations and

experimental data.
(b) Zoom on the first miliseconds.

Figure 13: Pressure (Pa) within time (s) at point P1 (see figure 9): at-equilibrium simulation (λ = 0)

and out-of-equilibrium simulation (λ = ttoy, see (79) or λ = tnuc, see (80)), using NASG-CK EOS

for the liquid.

Conclusion

The homogeneous model based on (18) and already studied in (25) has been imple-

mented by using a quite realistic phasic equation of state for the liquid water: an extension

of the Noble-Able stiffened gas (26), modified with the Chemkin EOS (27), as proposed

in (28). As in (23; 47), the convective part of the model is discretized using the scheme

proposed in (44) which appeared to be robust and accurate. In fact, for the present model,

the main difficulty arises with the computation of the thermodynamical equilibrium: that

is why the algorithms have been carefully detailed in this work. Coping with the evanes-

cent phases is more tricky than for liquid-vapor models. This is due to the fact that the

number of situations to handle is more important that the threshold fractions may be too

close to the thermodynamical equilibrium in some configurations.
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The complete scheme has been first verified on Riemann problems, even when con-

sidering the source terms for equilibrium configurations as in (23). Then, simulations

based on the SUPERCANON experiment (46) have been presented. In pure liquid, with

a realistic EOS such as the NASG-CK EOS, the sound speed seems overestimated with

respect to the experimental measurements of SUPERCANON. Adding a small amount of

air enables to recover a correct speed of propagation of the depressurization wave. More

generally, the mass fraction of air ya is a key parameter, which has a strong influence on

the final results. Taking into account out-of-equilibrium effects, through the definition

of a time scale λ describing the return towards thermodynamical equilibrium, enables to

obtain qualitatively correct results compared with the experiments. The proposition of

λ = tnuc should still be improved, based on some physical considerations. In particular,

tnuc is relevant for small vapor fraction and it should be coupled with an other physical

model for high vapor fraction.
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Appendices

6 Concavity of the intensive entropies

Here, we recall the consequences of property 1 in terms of concavity, without detail-

ing the proofs. We refer to (24) for detailed proofs, adapted from (32; 35; 30), in a very

similar case: indeed, in (24), the model deals with a three-phase flow model describing

three immiscible components, which leads to the same definition as (18) for the mixture

entropy.
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Property 11 (Concavity of S)

W ∈ Ω 7→ S(W) is concave. Moreover, if we consider the manifold Ω̃ = {W ∈ Ω/M >

0 is fixed}, then W ∈ Ω̃ 7→ S(W) is strictly concave.

Property 12 (Concavity of sk)

(τk, ek) ∈ (R+,∗, R∗) 7→ sk(τk, ek) is concave.

Property 13 (Concavity of s)

We recall the notation Y = (αv, yv, ya, zv, za).

(I) : For a given (τ, e), Y ∈ [0, 1]5 7→ s(Y, τ, e) is strictly concave. This property implies

that s admits a unique maximum reached on a fraction set Ȳ, which is defined as the

thermodynamical equilibrium.

(II) : For a given Y ∈ [0, 1]5, (τ, e) 7→ s(Y, τ, e) is strictly concave. This property allows

to define the shock wave in a unique manner.

7 Coefficients for NASG-CK EOS and SG EOS
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Coefficients Liquid NASG-CK

Al (dimensionless) 4.69738865636393e+01

Bl (K−1) -4.19269571479452e-01

Cl (K−2) 1.70702143968620e-03

Dl (K−3) -3.04805662517983e-06

El (K−4) 2.02814588067819e-09

Fl (K) -2.523528536614e+06/R

Gl (dimensionless) -7.431869850561e+04/R

γl (dimensionless) 1.22208363133609e+00

Cv,l (JK−1kg−1) 3.51131133724707e+03

Πl (Pa) 7.01704922088062e+08

bl (m3kg−1) 6.20558682225980e-04

Table 7.1: Coefficients for Noble-Able Chemkin EOS (50), for liquid water.

Coefficients Liquid SG

γ (dimensionless) 1.39864082368510

Cv (JK−1kg−1) 3.19641035947920e+03

Q (Jkg−1) -1.357495682920e+06

Π (Pa) 4.79690712132593e+08

k (JK−1kg−1) 5.962461101053e+01

Table 7.2: Coefficients for stiffened gas EOS, for liquid water, obtained from the optimization

process in chapter 2 of (37), where k = Cv ln(Cv) + Cv(γ− 1) ln(Cv(γ− 1)) + s0.
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Coefficients Vapor SG

γ (dimensionless) 1.15442237458290

Cv (JK−1kg−1) 2.91668522329726e+03

Q (Jkg−1) 1.25942536895827e+06

Π (Pa) -3.24993579473092e+02

k (JK−1kg−1) -7.77026092439033e+03

Table 7.3: Coefficients for stiffened gas EOS, for vapor, obtained from the optimization process in

chapter 2 of (37), where k = Cv ln(Cv) + Cv(γ− 1) ln(Cv(γ− 1)) + s0.

Coefficients Air SG

γ (dimensionless) 1.4

Cv (JK−1kg−1) 719.0

Q (Jkg−1) 0

Π (Pa) 0

k (JK−1kg−1) 0

Table 7.4: Coefficients for stiffened gas EOS, for air, considered as a perfect gas
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8 Initial data for Riemann problems test cases

Data Left state Intermediate state Right state

α 9.83232179608806 10−1 9.87041861906529 10−1 9.87041861906529 10−1

y 3.17380286565343 10−2 4.03113857253491 10−2 4.03113857253491 10−2

z 4.91959192421520 10−1 5.44567894139035 10−1 5.44567894139035 10−1

ya 5.0 10−2 6.18446225562366 10−2 6.18446225562366 10−2

za 8.83504641470457 10−2 9.77984087865951 10−2 9.77984087865951 10−2

τ (m3/kg) 5.4427805669757310−2 6.886350393192439 10−2 6.89635039319242 10−2

u (m/s) 1.0 1.0 -2.15013291878029

P (Pa) 1.86680031787657 105 1.86680031787657 105 8.74466577184921 104

Table 8.1: Out-of-equilibrium test case 1. σ = 2170.29190638504 m/s
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Data Left state Intermediate state Right state

α 2.83455356934630 10−1 6.11774284813328 10−1 3.99122663398670 10−1

y 4.25625125846829 10−3 8.70625146760066 10−3 1.0 10−2

z 1.51011070725486 10−2 2.91840921657732 10−2 3.35291837019411 10−2

ya 2.0 10−2 3.0 10−2 3.0 10−2

za 9.24831478659724 10−3 1.32498062560992 10−2 1.32417151719985 10−2

τ (m3/kg) 1.6382140748807462 10−3 1.9485538689275692 10−3 2.080256962546277 10−3

u (m/s) 1.0 1.0 -9.71690290715716

P (Pa) 8.00000000000805 106 7.99999999999713 106 7.12794753132892 106

Table 8.2: At-equilibrium test case 2 (smooth case) : σ = 159.557115470034 m/s
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Data Left state Intermediate state Right state

α 4.55806467748821 10−1 6.35814523035530 10−1 9.88240646295054 10−1

y 2.79348914129385 10−2 5.74662402110775 10−2 1.0 10−1

z 7.30830106253936 10−2 1.44714572786685 10−1 4.11152591599341 10−1

ya 5.0 10−2 9.0 10−2 9.0 10−2

za 1.81366554653765 10−2 3.15417178714970 10−2 4.39343919538099 10−2

τ (m3/kg) 2.18882462814298 10−3 3.0386914611470485 10−3 7.55537631384807 10−2

u (m/s) 1.0 1.0 -1028.59799314035

P (Pa) 1.49999999999975 107 1.50000000000035 107 3.21668487111682 105

Table 8.3: At-equilibrium test case 3 (high pressure gap) : σ = 44.1445568183537 m/s

9 Algorithms to compute the thermodynamical equilibrium

Here, we present the four auxiliary algorithms, called in the main algorithm 1. They

are built among the same principles in (14), enabling to compute the thermodynamical

equilibrium, depending on the fields which are actually present in the mixture, as ex-

plained in properties 3 and 4. Note that ALGORITHM 2 is independent from the choice of

phasic EOS, whereas the other algorithms take advantage of the particular form of the

stiffened gas EOS used for the vapor and the non-condensable gas (see remark 6).

ALGORITHM 2 (Equilibrium l and v) — Arguments: (τ, e).

Liquid-vapor equilibrium satisfies:

Pl(τl, el) = Pv(τv, ev) = P̄;

Tl(τl, el) = Tv(τv, ev) = T̄;

µl(Pl, Tl) = µv(Pv, Tv),

(86)

with τk =
αk
yk

τ and ek =
zk
yk

e for k = l, v.

Instead of looking for fractions ᾱv, ȳv and z̄v satisfying (86), the unknowns P̄, T̄ and ȳv
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are considered. Last equation from (86):

µl(P̄, T̄) = µv(P̄, T̄), (87)

enables to implicitely define the function for the saturation temperature P̄→ T̄ = Tsat(P̄).

In practice, for each tested P̄, the saturation temperature T̄ is then obtained by using a se-

cant method to solve (87).

Our entry arguments (τ, e) give us two more equations due to the miscibility con-

straints (8) and (9), both depending on ȳv, which are:

τ = (1− ȳv)× τl(P̄, Tsat(P̄))

+ ȳv × τv(P̄, Tsat(P̄)),

e = (1− ȳv)× el(P̄, Tsat(P̄))

+ ȳv × ev(P̄, Tsat(P̄)).

(88)

First equation of (88) leads to an explicit formula for ȳv, as a function of P̄:

ȳv = ȳv(P̄)

=
τ − τl(P̄, Tsat(P̄))

τv(P̄, Tsat(P̄))− τl(P̄, Tsat(P̄))
.

(89)

The resolution is finally achieved with a secant method by looking for P̄ verifying:

e = (1− ȳv(P̄))× el(P̄, Tsat(P̄))

+ ȳv(P̄)× ev(P̄, Tsat(P̄)),
(90)

using the previous definition (89) for ȳv(P̄).

ALGORITHM 3 (Equilibrium l, v and a) — Arguments: (ya, τ, e).

Thermodynamical equilibrium (27) is characterized in (τ, e)-plane, as depicted in prop-

erty 3, by:

Pl(τl, el) = Pv(τv, ev) + Pa(τa, ea) = P̄;

Tl(τl, el) = Tv(τv, ev) = T̄;

Tv(τv, ev) = Ta(τa, ea) = T̄;

µl(Pl(τl, el), Tl(τl, el)) = µv(Pv(τv, ev), Tv(τv, ev));

(91)
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As already explained in section 3.3, instead of looking for ᾱv, ȳv, z̄v and z̄a satisfying (91),

the following unknows are considered in pressure-temperature plane: P̄v, P̄a, T̄ and ȳv.

Miscibility constraints (7) enable to get a system equivalent to system (91) in pressure-

temperature plane:

ȳv × τv(P̄v, T̄) = ya × τa(P̄a, T̄);

τ = (1− ȳv)× τl(P̄v + P̄a, T̄)

+ȳv × τv(P̄v, T̄);

e = (1− ȳv)× el(P̄v + P̄a, T̄)

+ȳv × ev(P̄v, T̄) + ya × ea(P̄a, T̄);

µl(P̄v + P̄a, T̄) = µv(P̄v, T̄).

(92)

The previous system is solved as follows, in three steps:

1. Thanks to the particular form of the stiffened gas EOS, the first equation of (92) gives

an explicit definition of ȳv as a function of P̄v and P̄a:

ȳv = ya =
Cv,a(γa − 1)
Cv,v(γv − 1)

(P̄v + Πv)

(P̄a + Πa)

= ȳv(P̄v, P̄a).
(93)

2. The stiffened gas formula is used to compute T̄. Indeed, its particular form enables

to uncouple T̄ and ȳv in the second equation of (92) :

T̄ = (τ − (1− ya − ȳv)bl)×

((1− ya − ȳv)Cv,l(γl − 1)

+yaCv,a(γa − 1))−1

= T̄(P̄v, P̄a).

(94)

3. We still need to solve the following system relatively to (P̄v, P̄a), for instance with a
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Broyden algorithm:

( f1) : µl(P̄v + P̄a, T̄) = µv(P̄v, T̄)

( f2) : e = (1− ȳv − ya)× el(P̄v + P̄a, T̄)

+ȳv × ev(P̄v, T̄) + ya × ea(P̄a, T̄)

with: ȳv = ȳv(P̄v, P̄a) from (93)

and T̄ = T̄(P̄v, P̄a) from (94).

A difficulty arising with Broyden algorithm is to propose a relevant starting point. Several

choices are tested in the code:

• correlations based on polynomials, obtained with R from large data sets;

• pressures obtained after solving a dichotomy on either ( f1) or ( f2), by fixing either

Pv or Pa;

• pressure Pv obtained with the same τ and e but ya = 0.

However, Broyden algorithm may still fail. A double dichotomy on Pv, and then Pa has

also been implemented, but it has also a lack of robustness since we may have difficulties

to define some explicit bounds for Pv and Pa.

ALGORITHM 4 (Equilibrium l and a) — Arguments: (τ, e).

In this case:

yv = 0 ; yl = 1− ya.

Conditions from property 4 are recalled, with τk =
αk
yk

τ and ek =
zk
yk

e for k = l, a:

Pl(τl, el) = Pa(τa, ea) = P̄;

Tl(τv, ev) = Ta(τa, ea) = T̄;
(95)

Due to our entry arguments (τ, e), unknowns P̄, T̄ are once more relevant, and misci-

bility constraints (8) and (9) lead to:

τ = (1− ya)× τl(P̄, T̄) + ya × τa(P̄, T̄),

e = (1− ya)× el(P̄, T̄) + ya × ea(P̄, T̄).
(96)
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Due to the particular form of the stiffened gas EOS, the first equation of (96) leads to an

explicit definition of T̄ as a function of P̄:

T̄ = (τ − (1− ya)bl)×(
yaCv,a(γa − 1)

P̄ + Πa
+

(1− ya)Cv,l(γl − 1)
P̄ + Πl

)−1

= T̄(P̄),

(97)

so that there is only one implicit equation in P̄ left:

( f ) : e = (1− ya)× el(P̄, T̄(P̄)) + ya × ea(P̄, T̄(P̄)),

with: T̄ = T̄(P̄) from (97).
(98)

The resolution is finally achieved by looking for P̄ verifying equation (98) with a secant

method.

ALGORITHM 5 (Equilibrium v and a) — Arguments: (τ, e).

In this case:

yl = 0 ; yv = 1− ya.

Only one condition is obtained from property 4:

T̄ = Tv(τv, ev) = Ta(τa, ea). (99)

In pressure-temperature plane, the miscibility constraints from hypothesis 6 lead to the

following condition:

τ = yaτa(P̄a, T̄) = (1− ya)τv(P̄v, T̄),

which implies (since we use stiffened gas EOS):

T̄ =
(e− (yaQa + (1− ya)Qv)

yaCv,a + (1− ya)Cv,v
+ (Πa + Πv)τ.

Finally, P̄a and P̄v can be explicitly deduced thanks to the stiffened gas phasic EOS:

P̄k =
ykCv,k(γk − 1)T̄

τ
−Πk, k = v, a.
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10 Analytical solutions for the model

For the sake of readibility, let us highlight that all the variables are initialized since ya

and phasic pressures and temperatures are given through the following function INIT(ya, Pl, Pv, Pa, Tl, Tv, Ta):

ALGORITHM 6 (Initialization) — INIT(ya, Pl, Pv, Pa, Tl, Tv, Ta) enables to compute: (α, yv, zv, za, τ, e, P, T)

from (ya, Pl, Pv, Pa, Tl, Tv, Ta):

1. Using the phasic EOS:

• τl = bl +
Cv,l(γl − 1)Tl

Pl + Πl
and τk =

Cv,k(γk − 1)Tk

Pk + Πk
for k = v, a.

• el = RTl(Al +
Bl
2 Tl +

Cl
3 T2

l + Dl
4 T3

l + El
5 T4

l + Fl
Tl
)− Pl(τl − bl)

and ek = Cv,kTk + Qk + (τk − bk)Πk for k = v, a.

2. Using miscibility constraints (7):

• yv = ya
τa

τv
so that yl = 1− ya − yv;

• τ = ylτl + yaτa;

• e = ylel + yvev + yaea.

3. Using the definition of phasic fractions:

• α = αv = αa = yv
τv

τ
;

• zk = yk
ek
e

for k = v, a.

4. Using the definition of mixture pressure and temperature (38) and (39):

P =
(1− αv)

Pl
Tl
+ αv(

Pv
Tv

+ Pa
Ta
)

1−zv−za
Tl

+ zv
Tv

+ za
Ta

;

1
T
=

1− zv − za

Tl
+

zv

Tv
+

za

Ta
.

Our methods to build analytical Riemann problems are now presented in the two

following algorithms.
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ALGORITHM 7 (Out-of-equilibrium Riemann problem) — Approach:

1. We define the left state WL:

• by choosing UL, PL
k and TL

k for k ∈ K;

• by deducing the other quantities αL
v , yL

v , zL
v , zL

a , eL, τL, PL and TL from INIT(yL
a , PL

l , PL
v , PL

a , TL
l , TL

v , TL
a ).

2. Then, we define the intermediate state W∗:

• by imposing U∗ = UL (due to (43) through a contact);

• by choosing P∗k and T∗k for k ∈ K;

• by finding thanks to dichotomy algorithm y∗a so that

P∗(y∗a) = PL (due to (43) through a contact).

Indeed, for each tested ỹ∗a , we use INIT(ỹ∗a , P∗l , P∗v , P∗a , T∗l , T∗v , T∗a ), so that we get

a value for P̃∗ = P̃∗(ỹ∗a).

• once y∗a is found, the other quantities are computed with INIT(y∗a , P∗l , P∗v , P∗a , T∗l , T∗v , T∗a ).

3. Last, we define the right state WR:

• by imposing αR
v = α∗v, yR

v = y∗v, yR
a = y∗a , zR

v = z∗v and zR
a = z∗a (due to (43)

through a shock);

• by arbitrarely imposing τR;

• by looking for eR verifying the last Rankine-Hugoniot equation through a shock:

eR − e∗ + (τR − τ∗)
PR(eR, ...) + P∗

2
= 0

where, using (38),

PR = PR(eR, τR, αR
v , yR

v , yR
a , zR

v , zR
a );

• and last by deducing with (43) J2 =
−PR + P∗

τR − τ∗ , and then UR = U∗ − PR − P∗
J

and σ = UR − JτR.
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ALGORITHM 8 (At-equilibrium Riemann problem) — Approach:

1. We define the left state WL:

• by choosing UL;

• by choosing PL
k and TL

k to comply with thermodynamical equilbrium, so that:

PL
l = PL

v + PL
a and TL

k = Tsat(PL
v , PL

a ) ∀k ∈ K;

• by deducing the other quantities αL
v , yL

v , zL
v , zL

a , eL, τL, PL and TL from INIT(yL
a , PL

l , PL
v , PL

a , TL
l , TL

v , TL
a ).

2. Then, we define the intermediate state W∗:

• by imposing U∗ = UL (due to (43) through a contact);

• by choosing P∗k and T∗k to comply with thermodynamical equilibrium) i.e. by

choosing

P∗l = PL
l and P∗k 6= PL

k ,

so that:

PL
v + PL

a = P∗v + P∗a and

TL
k = Tsat(P∗v , P∗a ) ∀k ∈ K;

• and then, by deducing the other quantities α∗v, y∗v, z∗v, z∗a , e∗, τ∗, P∗ and T∗ from

INIT(y∗a , P∗l , P∗v , P∗a , T∗l , T∗v , T∗a ).

3. Last, we define the right state WR:

• by imposing yR
a = y∗a (due to (43) through a shock);

• by arbitrarely defining yR
v 6= y∗v;

• by looking for PR
v verifying the last Rankine-Hugoniot equation through a

shock:
eR(PR

v , ...)− e∗ + (τR(PR
v , ...)− τ∗)×

PR
v + PR

a (PR
v , ...) + P∗

2
= 0;

We detail the terms from the previous equation:
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– as yR
v and yR

a are given, PR
a is imposed by PR

v through the constraints yaτa =

yvτv for SG EOS, so that:

PR
a =

yR
a

yR
v

Cv,a(γa − 1)
Cv,v(γv − 1)

(PR
v + Πv)−Πa

= PR
a (PR

v );

– once PR
v and PR

a are known, TR is defined as

TR = Tsat(PR
v , PR

a ),

by equalizing the chemical potentials via a dichotomy algorithm:

µl(PR
v + PR

a (PR
v ), TR) = µv(PR

v , TR).

– eR and τR can be evaluated with PR
v , PR

a and TR thanks to phasic EOS (cf

ALGORITHM 6):

eR = ∑
k∈K

yR
k ek(PR

k , TR(PR
v ));

τR = (1− yR
a − yR

v )τl(PR
v + PR

a (PR
v ), TR(PR

v ))

+yR
v τv(PR

v , TR(PR
v ).

• Last by deducing with (43) J2 =
−PR + P∗

τR − τ∗ , and then UR = U∗ − PR − P∗
J

and

σ = UR − JτR.

Remark 8 — We draw the reader’s attention on the jump for the fractions within the

shock for an at-equilibrium Riemann problem: the evolution of Y is far more complex as

a simple convection equation as it is the case for an out-of-equilibrium Riemann prob-

lem. Therefore, the fractions are no more constant in a shock when we consider an at-

equilibrium Riemann problem.
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11 Empirical method to estimate NASG-CK coefficients

In order to estimate the coefficients for a NASG-CK EOS, an empirical method is pro-

posed, in the same spirit as what was proposed in (41) for the stiffened gas EOS:

1. A point (P0, T0) of the physical domain is chosen as reference point. It should be rep-

resentative of the aimed simulation. The following thermodynamical quantities are

obtained with the IAPWS-97 formulation: the specific volume τ0(P0, T0), the ther-

mal expansion coefficient αP,0(P0, T0), the specific heat capacity at constant volume

Cv,0(P0, T0) as well as the sound speed c0(P0, T0).

2. Cp
NASG−CK is computed with formula (51) as Cp

NASG−CK = Cp
NASG−CK(T0), using

coefficients Al, Bl, Cl, Dl and El obtained by a minimization of the L1-error with

respect to IAPWS on a large liquid domain.

3. Recalling formula for NASG-CK EOS:

c2 =
1

Tα2
P

(
1

(γ− 1)Cv
− 1

Cp(T)

)−1

,

Al = (γNASG−CK − 1)× Cv
NASG−CK is deduced from c0 and αP,0:

Al = (γNASG−CK − 1)× Cv
NASG−CK

=

(
1

c2
0αP,02T0

+
1

Cp
NASG−CK

)−1

.

4. Cv
NASG−CK is taken equal as the IAPWS value at P0 and T0:

Cv
NASG−CK = Cv,0(P0, T0),

so that γNASG−CK is obtained through the relation

γNASG−CK =
Al

Cv,0(P0, T0)
+ 1.
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5. Then, using αP definition (51), we get:

Bl = bl × (P0 + Πl) =

(
1

αP,0
− T0)× (γNASG−CK − 1)× Cv

NASG−CK.

6. Πl and bl are deduced from τ0 and Bl:

Πl =
Bl + T0 ×Al

τ0
− P0

and

bl =
Bl

(P0 + Πl)
.

7. Last, Fl and Gl are obtained as follows:

• µ̃l is computed using a lot of points (Pl, Tl = Tsat
IAPWS(Pl)), by taking Fl = Gl =

0;

• thanks to a linear regression on µ̃l − µv, we get: µ̃l − µv ' c1 + Tlc2, which can

be seen as a linear correction for µ̃l;

• we then choose:

Fl = −
c1

R
; Gl =

c2

R
.

In practice, the previous method is used in this work for a liquid reference point

(P0 = 80bar, T0 = 425K).

Note that this method works quite well far from the saturation curve (that is to say,

according to our tests, for a given pressure P0, a temperature T0 < Tsat(P0)− 40K shoud

be chosen): otherwise, it may lead to a bl < 0, which is not physically relevant.
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