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Let f be a post-critically finite endomorphism (PCF map for short) on P 2 , let J1 denote the Julia set and let J2 denote the support of the measure of maximal entropy. In this paper we show that: 1. J1 \ J2 is contained in the union of the (finitely many) basins of critical component cycles and stable manifolds of sporadic super-saddle cycles. 2. For every x ∈ J2 which is not contained in the stable manifold of a sporadic super-saddle cycle, there is no Fatou disk containing x. Here sporadic means that the super-saddle cycle is not contained in a critical component cycle. Under the additional assumption that all branches of P C(f ) are smooth and intersect transversally, we show that there is no sporadic super-saddle cycle. Thus in this case J1 \ J2 is contained in the union of the basins of critical component cycles, and for every x ∈ J2 there is no Fatou disk containing x.

As consequences of our result: 1.We answer some questions of Fornaess-Sibony about the non-wandering set for PCF maps on P 2 with no sporadic super-saddle cycles. 2. We give a new proof of de Thélin's laminarity of the Green current in J1 \ J2 for PCF maps on P 2 . 3. We show that for PCF maps on P 2 an invariant compact set is expanding if and only if it does not contain critical points, and we obtain characterizations of PCF maps on P 2 which are expanding on J2 or satisfy Axiom A.

1. Introduction 1.1. Background. Let f : P 2 → P 2 be a holomorphic endomorphism of degree ≥ 2, where P 2 is the complex projective plane. The first Julia set J 1 is defined as the locus where the iterates (f n ) n≥0 do not locally form a normal family, i.e. the complement of the Fatou set. Let T be the dynamical Green current of f , defined by T = lim n→+∞ d -n (f n ) * ω F S , where ω F S is the Fubini-Study (1,1) form on P 2 . The Julia set J 1 coincides with Supp (T ), and the self intersection measure µ = T ∧ T is the unique measure of maximal entropy of f . See Dinh-Sibony [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF] for background on holomorphic dynamics on projective spaces.

We define the second Julia set to be J 2 = Supp µ. From the definitions we know that J 2 ⊂ J 1 . By Briend-Duval [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF], J 2 is contained in the closure of the set of repelling periodic points. However contrary to the situation in dimension one there may exists repelling periodic point outside J 2 . A major problem in holomorphic dynamics is to investigate the structure of J 1 \ J 2 . A promising picture is that J 1 \ J 2 is foliated (in some appropriate sense) by holomorphic disks D along which ( f n | D ) n≥0 is a normal family. Such disks are called Fatou disks. The dynamical Green current T is called laminar in some open set Ω if it expresses as an integral of integration currents over a measurable family of compatible holomorphic disks (which means that these disks have no isolated intersections) in Ω. These disks are automatically Fatou disks. Let σ T = T ∧ ω be the trace measure of T, which is a natural reference measure on J 1 . If T is laminar in Ω, then for σ T a.e. x ∈ Ω there exists a germ of holomorphic Fatou disk D containing x. De Thélin proved in [START_REF] De | Sur la laminarité de certains courants[END_REF] and [START_REF] De | Un phénomène de concentration de genre[END_REF] that T is laminar in J 1 \ J 2 for post-critically finite endomorphisms on P 2 . We note that by the works of Dujardin in general T is not necessarily laminar in J 1 \ J 2 [START_REF] Dujardin | A non-laminar dynamical Green current[END_REF], but a related weaker result holds [START_REF] Dujardin | Fatou directions along the Julia set for endomorphisms of CP k[END_REF].

A holomorphic endomorphism f on P k , k ≥ 1 is called post-critically finite (PCF for short) if the post-critical set

P C(f ) := n≥1 f n (C(f ))
is an algebraic subset of P k , where C(f ) := x ∈ P k : Df (x) is not invertible is the critical set.

In dimension 1 , this coincides with the usual definition of PCF maps on the Riemann sphere P 1 . PCF maps play an important role in one-dimensional complex dynamics, mainly because the remarkable topological classification theorem of Thurston [START_REF] Douady | A proof of thurston's topological characterization of rational functions[END_REF]. PCF maps are still of interest in higher dimension, and their dynamics have been investigated by many authors. Here are some results which are useful for our purpose:

1. The Fatou set of a PCF maps on P 2 is the union of the basins of super-attracting cycles (Fornaess-Sibony [START_REF] Erik | Complex dynamics in higher dimensions[END_REF], Ueda [START_REF] Ueda | Critical orbits of holomorphic maps on projective spaces[END_REF] and Rong [START_REF] Rong | The Fatou set for critically finite maps[END_REF]).

2. J k = P k for strictly PCF maps on P k (k = 2 by Jonsson [START_REF] Jonsson | Some properties of 2-critically finite holomorphic maps of P 2[END_REF], general k by Ueda [START_REF] Ueda | Critically finite holomorphic maps on projective spaces[END_REF]), our main result can be seen as a generalization of Jonsson's result.

3. The eigenvalues of periodic points of PCF maps on P 2 are either 0 or larger than 1 (Le [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF]).

The dynamics of PCF maps on P k , k ≥ 2 were further studied by Ueda [START_REF] Ueda | Critically finite holomorphic maps on projective spaces[END_REF] and Astorg [START_REF] Astorg | Dynamics of post-critically finite maps in higher dimension[END_REF]. Moreover, interesting examples of PCF maps were constructed by Crass [START_REF] Crass | A family of critically finite maps with symmetry[END_REF], Fornaess-Sibony [START_REF] Erik | Critically finite rational maps on P 2[END_REF] and Koch [START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF].

1.2. Basins of critical component cycles. In this paper we investigate the dynamics on the Julia sets J 1 and J 2 for PCF maps on P 2 . Let f be a PCF map on P 2 . Recall that the critical set C(f ) is an algebraic curve. We call an irreducible component Λ of C(f ) periodic if there exists an integer n ≥ 1 such that f n (Λ) = Λ. Such an irreducible component is called a periodic critical component. There are finitely many periodic critical components. The set Λ, f (Λ), . . . , f n-1 (Λ) is called a critical component cycle. Similarly, a critical point x satisfying f n (x) = x for some n ≥ 1 is called a periodic critical point. The set x, f (x), . . . , f n-1 (x) is called a critical point cycle. Since f n and f have the same Julia sets, to investigate the structure of J 1 \J 2 we may assume that all periodic critical components are invariant.

An important observation is that in P 2 , any invariant critical component Λ is an attracting set. By definition an attracting set Λ in P 2 is an invariant compact subset such that there is a neighborhood U of Λ satisfying f (U ) ⊂⊂ U, and Λ = n≥1 f n (U ). The open set U is called a trapping region of Λ. The attracting basin B(Λ) of an attracting set Λ is by definition the set n≥0 f -n (U ), where U is a trapping region of Λ. Equivalently B(Λ) is the set of points attracted by Λ, i.e. B(Λ) = x ∈ P 2 : dist (f n (x), Λ) → 0, as n → +∞ .

An attracting basin in P 2 is always disjoint from J 2 , except when Λ = P 2 , see [START_REF] Taflin | Attracting currents and equilibrium measures for quasi-attractors of P k[END_REF] Proposition 1.1 for a proof. Fornaess and Sibony [START_REF] Erik | Complex dynamics in higher dimensions[END_REF] proved that for any fixed Riemannian metric on P 2 , if Λ is an invariant critical component, then for x ∈ P 2 , when dist (x, Λ) → 0, we have

dist(f (x), Λ) = o(dist(x, Λ))
It follows that for ǫ > 0 sufficiently small, the ǫ -neighborhood

U ǫ = x ∈ P 2 : dist(x, Λ) < ǫ satisfies f (U ǫ ) ⊂⊂ U ǫ , and Λ = n≥1 f n (U ǫ ).
Then Λ is an attracting set with trapping region U ǫ . Fornaess and Sibony [START_REF] Erik | Complex dynamics in higher dimensions[END_REF] also showed that an invariant irreducible curve in P 2 has genus 0 or 1. Bonifant, Dabija and Milnor showed that an elliptic curve can not be an attracting set [START_REF] Bonifant | Elliptic curves as attractors in P 2 Part 1: Dynamics[END_REF], so the invariant critical component Λ must be a (possibly singular) rational curve. Now let f be a PCF map on P 2 with an invariant critical component Λ. Let π : Λ → Λ be the normalization of Λ, then f restricted to Λ lifts to a map f from Λ to itself. By [START_REF] Jonsson | Some properties of 2-critically finite holomorphic maps of P 2[END_REF], f is a PCF map on P 1 of degree ≥ 2. Let J(f ) be the Julia set of f, and let ν be the unique measure of maximal entropy of f . Then ν = π * ( ν) is an invariant measure on P 2 . It follows that Supp ν = π(J(f )), and ν is a hyperbolic measure of saddle type. Daurat showed that the Green current T is laminar in the basin B(Λ) and subordinate to the stable manifolds x∈ Supp ν W s (x). See [START_REF] Daurat | Hyperbolic saddle measures and laminarity for holomorphic endomorphisms of P 2 (C)[END_REF] for the proof and for more details (it is easy to verify in our case the trapping region U ǫ satisfies conditions (Tub) and (SJ) in Daurat's paper when ǫ sufficiently small). See also for the case when Λ is totally invariant. 1.3. Main results. At this stage we get a nice description of the dynamics in the attracting basins of critical component cycles for PCF maps on P 2 . In this paper we will show that except maybe for a possibly "small" set (the stable manifolds of sporadic super-saddle cycles), every point in J 1 \ J 2 is indeed contained in the basin of a critical component cycle, and for every point in J 2 , there is no Fatou disk passing through it. Recall that a fixed point is called supersaddle if it has one 0 eigenvalue and one eigenvalue with modulus larger than 1. A sporadic super-saddle fixed point is by deninition a super-saddle fixed point which is not contained in a critical component cycle. We will see in Lemma 2.9 that there are at most finitely many sporadic super-saddle cycles. The following is our main result.

Theorem 1.1. Let f be a PCF map on P 2 of degree ≥ 2, then:

(1) J 1 \ J 2 is contained in the union of the basins of critical component cycles and stable manifolds of sporadic super-saddle cycles.

(2) For every x ∈ J 2 which is not contained in the stable manifold of a sporadic super-saddle cycle, there is no Fatou disk containing x.

Here are some remarks of Theorem 1.1. First, for general holomorphic endomorphisms on P 2 , there can exist an invariant compact set E ⊂ J 2 with positive entropy such that for every x ∈ E there exists a Fatou disk containing x, see Taflin [START_REF] Taflin | Blenders near polynomial product maps of C 2[END_REF] Theorem 1.6.

Second, if f has no critical component cycle, by Theorem 1.1 and the fact that the Green current T put no mass on pluri-polar set, we conclude that the stable manifolds of sporadic super-saddle cycles must be contained in J 2 , and we have J 1 = J 2 . However if f has critical component cycles, we can not easily conclude that the stable manifolds of sporadic supersaddle cycles are contained in J 2 by the previous argument. In fact the following phenomenon can happen: there exist a positive closed current S with continuous local potential in P 2 and two disjoint open sets Ω 1 , Ω 2 such that Supp(S| Ω 1 ) and Supp(S| Ω 2 ) intersect along a subvariety. A similar phenomenon appears in a dynamical context in Dujardin-Favre [START_REF] Dujardin | Distribution of rational maps with a preperiodic critical point[END_REF] Example 6.13, see also Dujardin [START_REF] Dujardin | Cubic polynomials: A measurable view of parameter space[END_REF] Section 5.1. Their example is the bifurcation current in the parameter space of cubic polynomials.

Third, to the author's knowledge, there are no sporadic super-saddle cycles for all known examples of PCF maps on P 2 . It is interesting to know whether there exists a PCF map on P 2 carrying a sporadic super-saddle cycle. If the answer is yes, it is also interesting to know whether the stable manifold of this sporadic super-saddle point is contained in J 2 or J 1 \ J 2 . However, under the additional assumption that all branches of P C(f ) are smooth and intersect transversally, the answer of this question is no.

Theorem 1.2. Let f be a PCF maps on P 2 of degree ≥ 2 such that all branches of P C(f ) are smooth and intersect transversally, then every super-saddle cycle is contained in a critical component cycle, that is, sporadic super-saddle cycles do not exist.

We note that the assumption that all branches of P C(f ) are smooth and intersect transversally are satisfied by examples constructed by Crass [START_REF] Crass | A family of critically finite maps with symmetry[END_REF], Fornaess-Sibony [START_REF] Erik | Critically finite rational maps on P 2[END_REF] and Koch [START_REF] Koch | Teichmüller theory and critically finite endomorphisms[END_REF], in fact in these examples P C(f ) are union of projective lines. A direct corollary of Theorem 1.1 and 1.2 is the following.

Corollary 1.3. Let f be a PCF maps on P 2 of degree ≥ 2 such that all branches of P C(f ) are smooth and intersect transversally, then (1) J 1 \ J 2 is contained in the union of the basins of critical component cycles [START_REF] Bedford | Dynamics of regular polynomial endomorphisms of C k[END_REF] There is no Fatou disk containing x for every x ∈ J 2 .

1.4. Some corollaries of the main results. In [START_REF] Erik | Some open problems in higher dimensional complex analysis and complex dynamics[END_REF], Fornaess and Sibony asked several questions about the non-wandering set Ω(f ) of a holomorphic endomorphism on P 2 . The following are the questions: Q1: Is Ω(f ) the closure of periodic points and Siegel varieties? (Here a Siegel variety is an irreducible analytic set X of positive dimension such that there exists a subsequence {n j } such that f n j | X → Id.) Q2: Is the closure of the repelling periodic points open in Ω(f )? Q3:

Is J 2 open in Ω(f )? Q4: Describe Ω(f ) \ J 2 .
As a corollary of Theorem 1.1, we can give answers to the above four questions for PCF maps on P 2 with no sporadic super-saddle cycles.

Theorem 1.4. Let f be a PCF map on P 2 of degree ≥ 2. Then J 2 is the closure of repelling periodic points. If we further assume that there is no sporadic super-saddle cycle, then Ω(f ) is the closure of periodic points, and Ω(f ) \ J 2 is the union of super-attracting cycles together with ∪(C ∩ J 1 ), where C ranges over the set of critical component cycles, in particular J 2 is open in Ω(f ).

Next, as a direct corollary of Theorem 1.1, we obtain a new proof of the laminarity of the Green current in J 1 \ J 2 for PCF maps on P 2 , which was first proved by de Thélin [START_REF] De | Un phénomène de concentration de genre[END_REF].

Corollary 1.5 (de Thélin). Let f be a PCF map on P 2 of degree ≥ 2. Then the Green current T is laminar in

J 1 \ J 2 .
We note that Fornaess and Sibony have studied the non-wandering set and the problem of laminarity of the Green current for s-hyperbolic holomorphic endomorphisms on P 2 (s-hyperbolic means Axiom A plus some technical conditions), see [START_REF] Erik | Hyperbolic maps on P 2[END_REF].

Finally, we obtain a charactrization of expanding invariant compact sets for PCF maps on P 2 . By using both Theorem 1.1 and the methods in the proof of Theorem 1.1, we obtain the following result.

Theorem 1.6. Let f be a PCF map on P 2 of degree ≥ 2 and let K be an invariant compact set. Then K is expanding if and only if K does not contain critical points.

We note that for rational maps on P 1 , an invariant compact set in the Julia set is expanding if it does not intersect the closure of the post-critical set. It is an open problem that whether the same is true for holomorphic endomorphisms on P k , i.e. whether an invariant compact set in J k is expanding if it does not intersect the closure of the post-critical set. See Maegawa [START_REF] Maegawa | On Fatou maps into compact complex manifolds[END_REF] for a discussion of this problem. Theorem 1.6 answer this question for PCF maps on P 2 .

As corollaries of Theorem 1.6 and Theorem 1.1, we obtain characterizations of PCF maps on P 2 which are expanding on J 2 or satisfy Axiom A.

Corollary 1.7. Let f be a PCF map on P 2 of degree ≥ 2. Then f is expanding on J 2 if and only if every critical component of f is preperiodic to a critical component cycle, and f is Axiom A if and only if f is expanding on J 2 , and for every critical component cycle C, C ∩ J 1 is a hyperbolic (saddle) set.

1.5. Outline of the paper. The structure of this paper is as follows. Section 2 is devoted to some preliminaires. In particular we recall Ueda's results about Fatou maps and the normality of backward iterates of holomorphic endomorphisms on P k , k ≥ 1.

In section 3 we prove Theorem 1.2 and the following theorem Theorem 1.8. Let f be a PCF map on P 2 of degree ≥ 2, then J 2 is the closure of the set of repelling periodic points.

Here is a comment of Theorem 1.8. We note that for a general holomorphic endomorphism on P 2 , repelling periodic point may not be contained in J 2 . Indeed there exist examples possessing isolated repelling points outside J 2 , see [START_REF] Erik | Dynamics of P 2 (examples)[END_REF] and [START_REF] John | Superattractive fixed points in C n[END_REF]. The proof of Theorem 1.8 is a rather quick consequence of a result of Ueda [START_REF] Ueda | Critical orbits of holomorphic maps on projective spaces[END_REF].

In section 4 we prove Theorem 1.1, by using the previous results. The proof is divided into two steps. First, we prove that there exists a Fatou disk containing x for every x ∈ J 1 \ J 2 which is not contained in the basin of critical component cycle. Second, we prove that if there is a Fatou disk containing x for some x ∈ J 1 , then x must be contained in the basin of a critical component cycle or in the stable manifold of a sporadic super-saddle cycle. Theorem 1.1 is a combination of these two steps.

In section 5 we prove Theorem 1.4, Corollary 1.5, Theorem 1.6 and Corollary 1.7.

In section 6 we discuss some open problems about the existence of sporadic super-saddle periodic points (for PCF maps on P 2 ) and the possible generalization of Theorem 1.1 to higher dimension.
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Preliminaires

In this section we recall some results of Ueda that we will use later. We start with the following definitions of Ueda [START_REF] Ueda | Critical orbits of holomorphic maps on projective spaces[END_REF] Definition 4.5 and [32] Section 1.

Definition 2.1. Let f be a holomorphic endomorphism on P k of degree ≥ 2. Let Z be a complex analytic space. A holomorphic map h :

Z → P k is called a Fatou map if {f n • h} n≥1 is a normal family. A Fatou disk D ⊂ P k is an image of a non-constant Fatou map φ : D → P k , where D is the unit disk.
Note that with this definition, a Fatou disk may be singular.

The following fundamental result about Fatou maps can be found in Ueda [START_REF] Ueda | Critically finite holomorphic maps on projective spaces[END_REF] Proposition 2.1.

Let π : C k+1 \{0} → P k be the canonical projection. Given a holomorphic map φ : X → P k , we say a holomorphic map Φ :

X → C k+1 \ {0} is a lift of φ if π • Φ = φ holds.
For a homogeneous regular polynomial endomorphism F on C k , we define the dynamical Green function as

G(z) := lim n→∞ 1 d n log F n (z) , for z ∈ C k .
Theorem 2.2. Let X be a complex analytic space. Let φ : X → P k be a holomorphic map. Then the following are equivalent.

(1) φ is a Fatou map.

(2) f j • φ contains a locally uniformly convergent subsequence.

(3

) If V is an open set of X and Φ V : V → C k+1 \ {0} is a holomorphic lift of φ| V , then G • Φ V is pluriharmonic on V . (4) For any x ∈ X, there exists a neighborhood V of x and Φ V : V → C k+1 \ {0} a holomorphic lift of φ| V , such that G • Φ V is identically 0 on V .
Next we introduce the conception of points with bounded ramification, first introduced by Ueda in [START_REF] Ueda | Critical orbits of holomorphic maps on projective spaces[END_REF] Definition 4.5.

Definition 2.3. Let f be a holomorphic endomorphism on P k of degree ≥ 2. A point q is said to be a point of bounded ramification if the following conditions are satisfied:

(1) there exists a neighborhood W of q such that P C(f ) ∩ W is an analytic subset of W .

(2) there exists an integer m such that for every j > 0 and every p ∈ f -j (q), we have that ord f j , p ≤ m.

In the case k = 2, we have the following characterization of points of bounded ramification for PCF maps on P 2 . (See Ueda [START_REF] Ueda | Critical orbits of holomorphic maps on projective spaces[END_REF] Lemma 5.7.) Lemma 2.4. Let f be a PCF map on P 2 of degree ≥ 2. Then the points with unbounded ramification are the union of critical component cycles and critical point cycles.

Next we introduce the following abstract result of Ueda. (See [START_REF] Ueda | Critical orbits of holomorphic maps on projective spaces[END_REF] Lemma 3.7 and Lemma 3.8.) Lemma 2.5. Let X be a complex manifold and D an analytic subset of X of codimension 1. Let x ∈ X and let X 0 be a compact neighborhood of x such that the pair (X 0 , X 0 ∩ D) can be triangulated, i.e. there exist simplicial complex K and its subcomplex L whose underlying spaces are X 0 and X 0 ∩ D. Let W be the open star of x with respect to the complex K. Then for every integer m ≥ 0, there exists an irreducible normal complex space Z and η : Z → W holomorphic such that:

(1) η is m-universal, in the sense that for every

D ∩ W -branched holomorphic covering h : Y → W (i.e. the ramification locus of h is contained in D ∩ W ) with sheet number ≤ m, there exists a holomorphic map γ : Z → Y such that h • γ = η. (2) If h : Y → W is a D ∩ W branched holomorphic covering, then h -1 (x) is a single point.
Specializing to holomorphic endomorphisms on P k , we get the following corollary: Corollary 2.6. Let f be a holomorphic endomorphism on P k of degree ≥ 2. Let x ∈ P k be a point with bounded ramification. Then for every neighborhood W of x satisfying the assumption in Lemma 2.5, there exists an irreducible normal complex space Z, and η :

Z → W a P C(f ) ∩ W branched holomorphic covering map such that if W n denotes a connected component of f -n (W ), then there exists a holomorphic map g n : Z → W n such that f n • g n = η, i.e. the following diagram is commute. Z W W n η gn f n
The map g n constructed above can be seen as a kind of inverse branch of f n .

Proof. Since x has bounded ramification, there exists m ≥ 0 such that ord (f n , x n ) ≤ m for every x n ∈ f -n (x) and n ≥ 0. Take X = P k and D = P C(f ) in Lemma 2.5. Then for W satisfying the assumption in Lemma 2.5, there exists an irreducible normal complex space Z, and η : Z → W a P C(f ) ∩ W branched holomorphic covering map, satisfy the two conclusion of Lemma 2.5. Let W n denote a connected component of f -n (W ), then by Lemma 2.5 (2), W n ∩ f -n (x) contains a single point, thus f n : W n → W has sheet number ≤ m. By Lemma 2.5 (1), there exists a holomorphic map g n : Z → W n such that f n • g n = η. Thus the proof is complete.

The sequence {g v } defined in Corollary 2.6 is in fact normal, and any limit map of {g v } is also a Fatou map, by the following result of Ueda ([32] Theorem 2.4 ).

Lemma 2.7. Let f be a holomorphic endomorphism on P k of degree ≥ 2. Let Z be a complex analytic space and h : Z → P k a holomorphic map, for every integer n let g n : Z → P k be the holomorphic map such that f n • g n = h. Then {g n } is a normal family. Further more if φ is a limit map of a subsequence of {g n } , then φ is a Fatou map.

The following lemma is implicitly contained in [START_REF] Ueda | Critically finite holomorphic maps on projective spaces[END_REF] Theorem 4.2, which will be important in our proof of the main results.

Lemma 2.8. Let f be a holomorphic endomorphism on P k of degree ≥ 2. Let K be compact connected subset of P k such that {f n | K } contains a uniformly convergent subsequence and K is not a single point . let φ be the limit map of the uniformly convergent subsequence of

f n | K . Then (1) If φ is a constant map, then x := φ(K) is a point of unbounded ramification.
(2) If φ is not a constant map and there exists x ∈ φ(K) which is a point of bounded ramification. Then there exists a Siegel variety Y containing x, i.e. an irreducible analytic set of positive dimension such that there is a subsequence

{n j } such that f n j | Y → Id.
Proof. The proof is contained in the proof of [START_REF] Ueda | Critically finite holomorphic maps on projective spaces[END_REF] Theorem 4.2, except at one point one should replace the branched covering map ξ : X → P k in [START_REF] Ueda | Critically finite holomorphic maps on projective spaces[END_REF] by the branched covering η : Z → W , where W is a neighborhood of x, and η : Z → W is the branched covering constructed in Corollary 2.6. The idea is to construct locally uniformly convergent subsequences in the following style: g j : Z → P k such that f n j • g j = η. The property of the limit map of well-chosen {g j } will either give a contradiction of (1), or give the desired Fatou map of (2).

We end this section by showing the following finiteness result. Lemma 2.9. Let f be a PCF map on P 2 of degree ≥ 2. Then the set of critical point cycles is a finite set.

Proof. For every critical point cycle, there is a periodic point x in this cycle such that x ∈ C(f ). Let V be the union of periodic components in P C(f

), then x ∈ V ∩ C(f ). It is clear that every irreducible curve in V ∩ C(f ) is contained in a critical component cycle. So if x is not contained in a critical component cycle, then x is contained in the dimension 0 subvariety of V ∩ C(f ).
Since this dimension 0 part is just a union of finite number of points, there are at most finitely many critical point cycles which are not contained in a critical component cycle.

Location of periodic points.

Let f be a PCF map on P 2 of degree ≥ 2. In this section we prove Theorem 1.2 and Theorem 1.8. By Briend-Duval [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF], J 2 is contained in the closure of the set of repelling periodic points. Thus to prove J 2 is the closure of the set of repelling periodic points, we only need to prove that repelling periodic points are contained in J 2 . We start with a definition. Definition 3.1. Let f be a PCF map on P 2 of degree ≥ 2. A fixed point x 0 is called repelling if all eigenvalues of Df at x 0 have modulus larger than 1. A fixed point x 0 is called supersaddle if Df at x 0 has one 0 eigenvalue and one eigenvalue with modulus larger than 1. A fixed point x 0 is called super-attracting if Df at x 0 has only 0 eigenvalues.

Note that by the result of Le [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF], for PCF maps on P 2 every periodic point is either repelling, super-saddle or super-attracting.

3.1. Repelling points. We first recall the following fundamental result, for the proof see Sibony [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] Corollaire 3.6.5. Proposition 3.2. Let f be a holomorphic endomorphism on P k of degree ≥ 2. Then x ∈ J k if and only if for every neighborhood U of x,

P k \ ∞ n=0 f n (U ) is a pluri-polar set.
Now we can prove Theorem 1.8.

Theorem 3.3. Let f be a PCF map on P 2 of degree ≥ 2, then every repelling periodic point belongs to J 2 .

Proof. Our argument concerns the backward iterates around a fixed point. This kind of argument has already appeared in Fornaess-Sibony [START_REF] Erik | Dynamics of P 2 (examples)[END_REF]. Without loss of generality we may assume x 0 is fixed. Since x 0 / ∈ C(f ), by Lemma 2.4, x 0 is a point of bounded ramification. We are going to show that for every neighborhood U of x 0 , we have P 2 \ P C(f ) ⊂ ∞ n=0 f n (U ). Thus since P C(f ) is algebraic, by Proposition 3.2 we will get x 0 ∈ J 2 .

Let y ∈ P 2 \ P C(f ) be an arbitrary point. Let W be a neighborhood of x 0 such that y ∈ W and W satisfies the condition in Corollary 2.6. It can be achieved, by first joining x 0 and y by a smooth embedded (real) curve, and let W be a sufficiently thin tubular neighborhood of this curve such that ∂W is smooth. Let m ≥ 0 such that ord (f n , x n ) ≤ m for every x n ∈ f -n (x 0 ) and n ≥ 0. Let η : Z → W a P C(f ) ∩ W branched holomorphic covering map as in Corollary 2.6. For n ≥ 0, let W n denote the connected component of f -n (W ) containing x 0 . Then by Corollary 2.6 we can define holomorphic map g n : Z → W n such that f n • g n = η. By Lemma 2.7, {g n } is a normal family. We are going to show that actually g n converges to the fixed point x 0 . Since x 0 is repelling, there exists a small neighborhood Ω ⊂ W such that g n converges to x 0 uniformly on η -1 (Ω). Now let φ be any limit map of some subsequence of {g n }. Since φ is constant on an open set η -1 (Ω), φ is constant on Z. Thus any limit map of some subsequence of {g n } is the constant map z → x 0 . This implies that g n converges to the fixed point x 0 . In particular if z 0 satisfies η(z 0 ) = y, we have g n (z 0 ) → x 0 when n → +∞. Now let U be an arbitrary neighborhood of x 0 . Since g n (z 0 ) → x 0 , there exists

N > 0 such that g N (z 0 ) ∈ U . Since f N • g N = η we get y ∈ f N (U ). Since y ∈ P 2 \ P C(f ) is arbitrary we get P 2 \ P C(f ) ⊂ ∞ n=0 f n (U )
. By the arbitrariness of U , we have x 0 ∈ J 2 , which completes the proof.

3.2. Super-saddle points. Let f be a PCF map on P 2 of degree ≥ 2. We investigate the location of super-saddle cycles of f. The following is an equivalent formulation of Theorem 1.2. Theorem 3.4. Let f be a PCF map on P 2 of degree ≥ 2, Let x 0 be a super-saddle fixed point in P 2 . If the branches of P C(f ) are smooth and intersect transversally at x 0 , then x 0 is contained in a critical component cycle.

Proof. In the following we let C x 0 (f ) denote the union of critical components containing x 0 and let

P C x 0 (f ) := ∞ n=1 f n (C x 0 (f )).
It is easy to observe that P C x 0 (f ) = P C x 0 (f n ) for every n ≥ 1. Then up to an iterate of f, we may assume that all periodic components of P C x 0 (f ) are invariant, and every component of P C x 0 (f ) is mapped to an invariant component by at most one iterate. It remains to show that x 0 is contained in an invariant component of C x 0 (f ). We argue by contradiction. Assume x 0 is not contained in an invariant component of C x 0 (f ), then there exists V an invariant component of P C x 0 (f ) such that V ⊂ C x 0 (f ). We first show that V = P C x 0 (f ). We argue by contradiction, assuming V = P C x 0 (f ), then there exists a neighborhood U of x 0 such that f :

U → f (U ) is a V -branched covering. Then, since x 0 ∈ C x 0 (f ), f -1 (V ) contains a component of C x 0 (f ). Since f -1 (V ) also contains V ,
we deduce that f -1 (V ) is singular at x 0 . We recall the following result of Ueda [START_REF] Ueda | Critical orbits of holomorphic maps on projective spaces[END_REF] Lemma 3.5.

Lemma 3.5. Let f : U 1 → U 2 be a V -branched holomorphic covering, where U 1 , U 2 are complex manifolds and V is a codimension 1 analytic subset of U 2 . Suppose that x 0 ∈ U 1 is a singular point of f -1 (V ), then f (x 0 ) is a singular point of V .
Coming back to our situation, letting U = U 1 and f (U ) = U 2 in above lemma, we know that x 0 is a singular point of V . This is impossible, since by our assumption V is smooth at x 0 . Thus there must exist a component

V 1 of P C x 0 (f ) such that V 1 = V.
Let V ′ = f (V ), then by our assumption V ′ is invariant. We recall the following result of Le [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF] Proposition 5.5. Lemma 3.6. Let f : (C 2 , 0) → (C 2 , 0) be a proper holomorphic germ and let Σ 1 , Σ 2 be two irreducible germs at 0 such that

Σ 1 = Σ 2 , f (Σ 1 ) = Σ 2 and f (Σ 2 ) = Σ 2 . If Σ 2 is
smooth at 0 then the eigenvalue of Df at 0 are 0 and λ where λ is the eigenvalue of

D 0 f | T 0 Σ 2 .
Coming back to our situation, take V = Σ 2 (resp. V ′ = Σ 2 ) in above lemma, since x 0 is super-saddle, we get that the eigenvalue of f restricted to V (resp. V ′ ) at x 0 must be repelling. By our assumption V ′ and V intersect transversally, the only possible case that x 0 being super-saddle is when V ′ = V . Thus we must have f (V 1 ) = V by our assumption that every component of P C x 0 (f ) is mapped to an invariant component by one iterate. To summarize, there exists

V 1 ⊂ P C x 0 (f ) such that V 1 = V , and every component of P C x 0 (f ) is mapped to V by one iterate (in particular, f (V 1 ) = V ).
We do a local coordinate change such that x 0 = (0, 0), V = {x = 0} ∩ U, where U is a small neighborhood of (0, 0). By [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF] Proposition 5.5, 0 is a repelling point of f | V . Let λ be the eigenvalue of f | V at 0, |λ| > 1. Thus after a linear coordinate change fixing V , the expression of f in this coordinate has the following form (3.1) f (x, y) = (G(x, y), λy + ax + H(x, y)),

Where G(x, y) = O x 2 , y 2 , x is a factor of G and H(x, y) = O |x| 2 , |y| 2 .
Since V 1 is a smooth curve that intersects {x = 0} transversally, we may assume V 1 = {y = φ(x)} for some holomorphic function φ. We do a local coordinate change x ′ → x y ′ → yφ(x). In this coordinate the expression of f has the same form as in (3.1), and V 1 = {y = 0}. In the following we work in this coordinate.

By our assumption that every component of P C x 0 (f ) is mapped to an invariant component by one iterate, there exists a critical component

C such that f (C) = V 1 . Thus C satisfies the equation (3.2) λy + ax + H(x, y) = 0.
By the implicit function theorem, C is a smooth curve that intersects with {x = 0} transversally. We let C = {y = ψ(x)} for some holomorphic function ψ.

By direct calculation, the Jacobian of f is

Jac(f ) = ∂G ∂x λ + ∂H ∂y - ∂G ∂y a + ∂H ∂x .
Since C is in the critical set of f, ψ satisfies the following equation

(3.3) ∂G ∂x (x, ψ(x)) λ + ∂H ∂y (x, ψ(x)) - ∂G ∂y (x, ψ(x)) a + ∂H ∂x (x, ψ(x)) = 0.
Take differential of x in the both sides of (3.2) we get

(3.4) λψ ′ (x) + a + ∂H ∂x (x, ψ(x)) + ∂H ∂y (x, ψ(x))ψ ′ (x) = 0.
Combining (3.3) and (3.4) we get

λ + ∂H ∂y (x, ψ(x)) ∂G ∂x (x, ψ(x)) + ∂G ∂y (x, ψ(x))ψ ′ (x) = 0. Since λ + ∂H ∂y (x, ψ(x)) = 0 in a neighborhood of 0, ψ satisfies ∂G ∂x (x, ψ(x)) + ∂G ∂y (x, ψ(x))ψ ′ (x) = 0.
This implies that ψ satisfies G(x, ψ(x)) = 0 for every x. Then by the expression (3.1), we must have f (C) ⊂ V. Since f (C) = V 1 , we have f (C) = (0, 0), which is a contradiction since f is a locally finite to one map. Thus x 0 is contained in an invariant critical component, and the proof is complete. Corollary 3.7. Let f be a PCF map on P 2 of degree ≥ 2 such that all branches of P C(f ) are smooth and intersect transversally, then every periodic point in J 2 is repelling.

Proof. Let x 0 ∈ J 2 be a periodic point. By Le [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF], x 0 is either repelling, super-saddle or super-attracting. Since super-attracting periodic points belong to the Fatou set, x 0 is not super-attracting. By Theorem 3.4, super-saddle periodic points are contained in critical component cycles, in particular they are not in J 2 . So x 0 must be repelling.

Structure of the Julia sets.

In this section we prove Theorem 1.1. We will first prove that there exists a Fatou disk containing x for every x ∈ J 1 \ J 2 which is not contained in a basin of critical component cycle (Theorem 4.5). Second we prove that if there is a Fatou disk containing x for x ∈ J 1 , then x must be contained in the basin of a critical component cycle or in the stable manifold of a sporadic super-saddle cycle (Theorem 4.8). Then Theorem 1.1 is a combination of these two theorems. We start with several lemmas. Lemma 4.1. Let f be a PCF map on P 2 of degree ≥ 2. Let x 0 ∈ P k and let v be a subsequence of integers such that x v → y and y is of bounded ramification, where x v = f v (x 0 ). Let W be a neighborhood of y and η : Z → W a holomorphic covering as in Corollary 2. [START_REF] Crass | A family of critically finite maps with symmetry[END_REF].

Let W v denote the connected component of f -v (W ) containing x 0 . Let g v : Z → W v such that f v • g v = η.
Assume g v converges to a constant map, then x 0 ∈ J 2 and y ∈ J 2 Proof. We first prove y ∈ J 2 . We take W = B(y, r) for sufficiently small r. Let Z ′ = η -1 (B(y, r/2)). Let N large enough such that x v ∈ B(y, r/2) when v ≥ N. Since g v converges to a constant map and Z ′ ⊂⊂ Z, we have diam [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF] Theorem 2.22, there exists a fixed point of f v-N in W . Letting r → 0, we get that y is approximated by periodic points. By the result of Le [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF], every periodic point of a PCF map f on P 2 is repelling, super-saddle or super-attracting. Since y is not in a critical component cycle, and since there are only finitely many super-attracting periodic points and super-saddle periodic points outside critical component cycles (see Lemma 2.9), y is approximated by repelling periodic points. By Theorem 3.3, y ∈ J 2 . Let z = η -1 (y). The convergence of g v to x 0 implies g v (y) → x 0 , thus there is a sequence of preimage {y v } of y such that y v converges to x 0 . By the backward invariance of J 2 , we conclude that x 0 ∈ J 2 . Lemma 4.2. Let f be a PCF map on P 2 of degree ≥ 2. Let x 0 ∈ P 2 and let v be a subsequence of integers such that x v → y and y is of bounded ramification, where x v = f v (x 0 ). Let W be a neighborhood of y and η : Z → W a holomorphic covering as in Corollary 2. [START_REF] Crass | A family of critically finite maps with symmetry[END_REF]

g v (Z ′ ) → 0. Let v large enough such that W ′ := f N (g v (Z ′ )) ⊂⊂ W. Then f v-N : W ′ → W is a polynomial-like map, By
. Let W v denotes the connected component of f -v (W ) containing x 0 . Let g v : Z → W v such that f v • g v = η.
Assume g v converges to a non-constant map φ, then there exists a Fatou disk containing x 0 .

Proof. Let W = B(y, r) for small r. Let M = φ(Z), we will show that M contains a Fatou disk containing x 0 . Let N large enough such that

x v ∈ W when v ≥ N. Then for v ≥ N, there exist z v ∈ Z ′ such that g v (z v ) = x 0 . Let z = η -1 (y), it is clear that z v → z when v → +∞. Let v → +∞ in the equation g v (z v ) = x 0 we get φ(z) = x 0 , then x 0 ∈ M . By Lemma 2.7, φ : Z → P 2 is a Fatou map, by definition, this implies that { f n | M } n≥1 is a normal family. Let D ⊂ Z be a holomorphic disk containing z such that φ is not a constant map when restricted to D, then φ(D) ⊂ M is a Fatou disk containing x 0 .
Lemma 4.3. Let f be a PCF map on P 2 of degree ≥ 2. Let x 0 ∈ J 1 such that x 0 is not contained in the attracting basin of a critical component cycle nor contained in the stable manifold of a super-saddle cycle, then there exists a subsequence v of positive integers such that x v = f v (x 0 ) → y, where y is a point of bounded ramification.

Proof. There are at most finitely many critical point cycles, which are not contained in the critical component cycles (see Lemma 2.9). We denote this finite set by E. We show that if x 0 ∈ J 1 satisfying that x 0 is not contained in the attracting basins of critical component cycles and ω (x 0 ) contains only points of unbounded ramification, then x 0 is contained in the stable manifold of a sporadic super-saddle cycle. If x 0 satisfies the above assumption, by Lemma 2.4 we know that ω (x 0 ) ⊂ E. We recall the following basic property of ω -limit set: Lemma 4.4. Let X be a compact metric space, let f : X → X be a continuous map, and let g : ω(x 0 ) → ω(x 0 ) be the restriction of f on the ω-limit set of x 0 , then there is no non-trivial open subset U of ω(x 0 ) such that g(U ) ⊂ U .

Proof. Bowen ([4] Theorem 1) proved the above lemma for homeomorphisms, but the proof also holds for non-invertible maps. For the completion we give a proof here. Assume by contradiction that such open subset U exists, let Y := ω(x 0 ). By our assumption 2ǫ := dist(Y \U, g(U )) > 0. Choose 0 < δ < ǫ such that dist(x 1 , x 2 ) < δ implies dist(f (x 1 ), f (x 2 )) < ǫ for every x 1 , x 2 ∈ X. Now it is clear that there is N > 0 such that dist(f n (x 0 ), Y ) < δ when n > N (otherwise ω(x 0 ) will be strictly larger than Y ). Pick M ≥ N such that dist(f M (x 0 ), g(U )) < ǫ and dist(f M (x 0 ), y) < δ for some y ∈ Y . Then dist(g(U ), y) < 2ǫ, which implies y ∈ U . Then

dist(f M +1 (x 0 ), g(U )) ≤ dist(f M +1 (x 0 ), g(y)) < ǫ. Inductively for all m ≥ M we have dist(f m (x 0 ), g(U )) < ǫ. This implies Y ∩ (Y \ U ) = ∅, which is a contradiction.
Coming back to our situation, since ω(x 0 ) is a finite set, the only possibility is that ω (x 0 ) contains a single periodic cycle. Since x 0 ∈ J 1 and ω(x 0 ) contains no points of bounded ramification, this cycle must be a super-saddle cycle. Thus x 0 is contained in the stable manifold of this super-saddle cycle. It follows that if x 0 is not contained in the attracting basin of a critical component cycle nor contained in the stable manifold of a super-saddle cycle, ω (x 0 ) has non-empty intersection with the set of points of bounded ramification. This completes the proof. Now we can prove the following theorem. Theorem 4.5. Let f be a PCF map on P 2 of degree ≥ 2. If x ∈ J 1 \ J 2 which is not contained in the basin of a critical component cycle, then there is a Fatou disk D containing x.

Proof. Suppose first x 0 is contained in the stable manifold of a super-saddle cycle. Then there exists an embedded holomorphic disc D containing x 0 such that D coincides with the local stable manifold at x 0 , and it is clear that {f n |D} n≥1 is normal. Now suppose x 0 satisfies the assumptions of the theorem, and x 0 is not contained in the stable manifold of a supersaddle cycle. By Lemma 4.3, we can choose a subsequence v of positive integers such that x v = f v (x 0 ) → y, and y is of bounded ramification. Consider a neighborhood W of y and η : Z → W the holomorphic covering as in Corollary 2.6. Let W v denotes the connected component of

f -v (W ) containing x 0 . Let g v : Z → W v such that f v • g v = η
. By Lemma 2.7 {g v } is a normal family. By passing to some subsequence, we may assume g v converges to a holomorphic map φ. φ can not be a constant map, since otherwise by Lemma 4.1, x 0 ∈ J 2 , which is a contradiction. Thus φ is a non-constant map. By Lemma 4.2, there is a Fatou disk containing x 0 , which completes the proof.

Before proving Theorem 4.8, we need some lemmas. Lemma 4.6. Let f be a PCF map on P 2 of degree ≥ 2. Let x ∈ J 1 which is not contained in the basin of a critical component cycle, nor in the stable manifold of a super-saddle cycle. Assume moreover that there is a Fatou disk X containing x. Then there is a point y ∈ ω(x) such that there is a Siegel variety containing y.

Proof. We choose y ∈ ω(x) such that y is not a super-saddle periodic point. Then by Lemma 2.4, y is a point of bounded ramification. Let φ be a limit map of {f n | X } such that φ(x) = y. Then by Lemma 2.8, there is a Siegel variety X containing y. Lemma 4.7. let f be a PCF map on P 2 of degree ≥ 2. Let X be a Siegel variety, then

X ⊂ P C(f ).
Proof. Assume by contradiction that X ⊂ P C(f ). By passing to an iterate of f we may assume X is contained in an invariant component V of P C(f ). Let π : V → V be the normalization of V, and let f be the lift of f on V . Then by Jonsson [START_REF] Jonsson | Some properties of 2-critically finite holomorphic maps of P 2[END_REF] V = P 1 or a torus, and f is a PCF map on P 1 or an expanding torus map. We have the following commutative diagram

V V V V f π π f Let U ⊂ π -1 (X)
be an open set which is contained in the unramification locus of π. Then U is a Siegel variety in V . It is well-known that a PCF map on P 1 or a expanding torus map can not have such a Siegel variety, a contradiction.

Next we can prove Theorem 4.8, thus completes the proof of Theorem 1.1.

Theorem 4.8. Let f be a PCF map on P 2 of degree ≥ 2. If x ∈ J 1 such that there is a Fatou disk containing x. Then x must be contained in the basin of a critical component cycle, or in the stable manifold of a super-saddle cycle.

Proof. Our argument borrows some ingredients in Ueda's paper [START_REF] Ueda | Critically finite holomorphic maps on projective spaces[END_REF] and Le's paper [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF]. We argue by contradiction. Suppose x is not contained in the basin of a critical component cycle, nor in the stable manifold of a super-saddle cycle. Then by Lemma 4.6, there is a point y ∈ ω(x) such that there is a Siegel variety X containing y. By Lemma 4.7 we may assume

X ∩ P C(f ) = ∅ (shrink X if necessary).
Let Z be the universal covering space of P 2 \ P C(f ), and let η :

Z → P 2 \ P C(f ) be the universal covering map. Let z 0 ∈ Z satisfying η(z 0 ) ∈ φ(X). Recall that φ = lim j→∞ f n j | X .
By passing to a subsequence we may assume k j := n j+1 -n j → +∞. Let W be a neighborhood of η(z 0 ) such that W ∩ P C(f ) = ∅, and let Z 0 be a neighborhood of z 0 such that η : Z 0 → W is a biholomorphism. Let x 0 ∈ X satisfying f n j (x 0 ) → η(z 0 ). Let W j be the connected component of f -k j (W ) containing f n j (x 0 ). Let g j : Z 0 → W j be the holomorphic map such that f k j • g j = η as in Corollary 2.6. Since Z is simply connected, there is no obstruction to extend g j as a globally defined map on Z. In the following g j will denote this globally defined map. By Lemma 2.7 {g j } is a normal family. By shifting to a subsequence we may assume {g j } converges locally uniformly to a holomorphic map g.

Let V := η -1 (X) ∩ Z 0 . We claim that g = η on V. To show this, let z ∈ V be an arbitrary point, we are going to show g(z) = η(z). Let x ∈ X satisfying f n j (x) → η(z). Since for j large enough we have f n j+1 (x) ∈ W , we get f n j (x) ∈ W j . Let z j+1 ∈ Z 0 such that g j (z j+1 ) = f n j (x). By the equation f k j • g j = η we have that η(z j+1 ) = f n j+1 (x). Since f n j+1 (x) → η(z), we get that z j+1 → z. Now let j → +∞ in the equation g j (z j+1 ) = f n j (x) we get that g(z) = η(z). Thus g = η on V.

The equation g = η defines a closed analytic set Y ⊂ Z. Since V ⊂ Y , Y has dimension one. Let Y 0 be an irreducible component of Y 0 of pure dimension 1. By Lemma 2.7 g is a Fatou map, thus η| Y 0 is a Fatou map since g = η on Y 0 . Since Y 0 is a closed analytic set in Z and η is a covering map, the following property holds: for every

x ∈ P 2 \ P C(f ), there is a neighborhood U of x such that either η -1 (U ) ∩ Y 0 = ∅ or every connected component of η -1 (U ) ∩ Y 0 is relatively compact in Y 0 .
Let π : C 3 \ {0} → P 2 be the canonical projection. Let F be a homogeneous polynomial endomorphism on C 3 which induce f . It is clear that F is a PCF map on C 3 . Let G F be the Green function of F . Recall that η : Y 0 → P 2 is a Fatou map. By Theorem 2.2, there exists a holomorphic lift Φ :

Y 0 → C 3 \ {0} of η| Y 0 such that π • Φ = η and G F • Φ is identically zero on Y 0 . Since η(Y 0 )∩P C(f ) = ∅ we get that Φ(Y 0 )∩P C(F ) = ∅.
By the construction of Φ and by the fact that π is an open map, the following property holds: for every

x ∈ C 3 \ P C(F ), there is a neighborhood U of x such that either Φ -1 (U ) ∩ Y 0 = ∅ or every connected component of Φ -1 (U ) ∩ Y 0 is relatively compact in Y 0 . Let Y 1 be the smooth part of Y 0 , then Y 1 is a Riemann surface. Let S := Φ(Y 0 \ Y 1 ), then S is a discrete set in C 3 \ P C(F ). Since G F • Φ is identically zero on Y 1 , Φ(Y 1 )
is contained in a bounded domain in C 3 . This implies that Y 1 is a hyperbolic Riemann surface, i.e. there exists a universal covering map κ : D → Y 1 , where D is the unit disk. Since κ is a covering map, the following property holds:

for every x ∈ C 3 \ (P C(F ) ∪ S), there is a neighborhood U of x such that either (Φ • κ) -1 (U ) ∩ D = ∅ or every connected component of (Φ • κ) -1 (U ) ∩ D is relatively compact in D (⋆).

We consider the map Φ • κ : D → C 3 . The following idea of using Fatou-Riesz's theorem was first appeared in Le [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF]. As we mentioned before Φ • κ(D) is contained in a bounded domain in C 3 . By the well known Fatou-Riesz's theorem (see Milnor [START_REF] Milnor | Dynamics in One Complex Variable[END_REF] Theorem A.3), for Lebesgue a.e. θ ∈ [0, 2π), the radial limit

τ θ = lim r→1 - Φ • κ(re iθ ) exists for some τ θ ∈ C 3 .
We next show that for every limit τ θ , τ θ ∈ P C(F ) ∪ S. Assume by contradiction that τ θ / ∈ P C(F ) ∪ S. Let U be a small neighborhood of τ θ , then by property (⋆), (Φ • κ) -1 (U ) is a disjoint union of relatively compact open set in D. Then for every R ∈ (0, 1) there exists a r satisfying R < r < 1 such that re iθ / ∈ (Φ • κ) -1 (U ) (by the connectedness of the interval [R, 1]). This contradicts the fact that τ θ = lim r→1 -Φ • κ(re iθ ). Thus τ θ ∈ P C(F ) ∪ S.

Since S is a countable set, there must exist a positive Lebesgue measure set E ⊂ [0, 2π) such that for every θ ∈ E either lim r→1 -Φ • κ(re iθ ) ∈ P C(F ) or lim r→1 -Φ • κ(re iθ ) = s for an element s ∈ S. We will show that these two cases are both impossible, then we will get a contradiction.

We first treat the case that for every θ ∈ E, lim r→1 -Φ • κ(re iθ ) ∈ P C(F ). Let P be a homogeneous polynomial that defines P C(F ), i.e. Second we treat the case that for every θ ∈ E, lim r→1 -Φ • κ(re iθ ) = s, where s ∈ S. Let P 1 , P 2 , P 3 be three linear polynomial in C 3 that define s, i.e. {s} = x ∈ C 3 : P i (x) = 0, i = 1, 2, 3 .

Then for every i we get that P i • Φ • κ is a bounded holomorphic function on D such that the radial limit lim

r→1 - P • Φ • κ(re iθ ) = 0
for every θ ∈ E, where E has positive Lebesgue measure. By Fatou-Riesz's theorem, for every i we get that P i • Φ • κ is identically zero on D. This implies Φ • κ(D) = {s} which imples Φ(Y 1 ) = {s}, contradicts the fact that Y 1 has dimension 1. This completes the proof.

We end this section by showing the sporadic super-saddle cycle is contained in J 2 . Lemma 4.9. Let f be a PCF map on P 2 of degree ≥ 2, then every sporadic super-saddle cycle is contained in J 2 .

Proof. Let x be a super-saddle cycle which is not contained in a critical component cycle. Passing to an iterate of f we may assume every x is fixed and every periodic component of P C(f ) is invariant. Let V be an invariant component of P C(f ) containing x, by our assumption V ⊂ C(f ). By Lemma 3.6, the eigenvalue λ of Df | TxV satisfies |λ| > 1. Let π : V → V be the normalization of V, and let f be the lift of f on V . Let x ∈ V such that π(x) = x. Since V is smooth at x, such a x is unique. Then x is a repelling fixed point of f . Since V is either P 1 or a torus and f is either a rational function of degree ≥ 2 or an expanding torus map, x can be approximated by a sequence of periodic points {ŷ n } ⊂ V such that y n = π(ŷ n ) is in the smooth part of P C(f ). Then by the result of Le [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF], y n is a repelling periodic point of f for every n. By Theorem 1.8, y n ∈ J 2 . Since y n → x we get x ∈ J 2 as desired.

Some corollaries of the main results

In this section we prove Theorem 1.4, Corollary 1.5, Theorem 1.6 and Corollary 1.7.

5.1. Non-wandering set for PCF maps on P 2 . Before proving Theorem 1.4, we prove the following lemma. Lemma 5.1. Let f be a PCF map on P 2 of degree ≥ 2. Let C be an invariant critical component. Then Ω(f ) ∩ C is the union of super-attracting cycles and J 1 ∩ C, moreover periodic points are dense in Ω(f ) ∩ C.

Proof. Let π : C → C be the normalization of V, and let f be the lift of f on C. Then C = P 1 , and f is a rational function of degree ≥ 2, see [START_REF] Erik | Complex dynamics in higher dimensions[END_REF]. Moreover by Jonsson [START_REF] Jonsson | Some properties of 2-critically finite holomorphic maps of P 2[END_REF], f is also a PCF map. We have the following commutative diagram.

C C C C f π π f
It is clear that if p is a periodic point of f , then π(p) is a periodic point of f. Let J( f ) be the Julia set of f . Since periodic points of f are dense in J( f ), periodic points of f are dense in π(J( f ). We claim that J 1 ∩ C = π(J( f ). By the above discussion π(J( f ) is contained in the closure of periodic points. These periodic points must be super-saddle. Thus π(J( f ) ⊂ J 1 ∩C. To show J 1 ∩C ⊂ π(J( f ), it is equivalent to show that for every y in the Fatou set of f , π(y) is in the Fatou set of f . Since f is a PCF map, y is contained in the basin of a super-attracting cycle of f . For every super-attracting fixed point z of f , π(z) is a fixed point of f . It is clear that π(z) is not repelling, since π(z) ∈ C(f ). It is also clear that π(z) is not super-saddle, since otherwise π(z) is a smooth point of C (see Le [START_REF] Van Tu | Fixed points of post-critically algebraic endomorphisms in higher dimension[END_REF] Proposition 5.4), and z must be a repelling point of f . Thus π(z) must be a super-attracting fixed point of f . Thus π(y) is in the basin of π(z), this implies π(y) is in the Fatou set of f . Thus J 1 ∩ C = π(J( f ) as desired. Since π(J( f ) is contained in the closure of periodic points, J 1 ∩ C is contained in Ω(f ). Since the Fatou set of f is the union of basins of super-attracting cycles, we get that Ω(f ) ∩ C is exactly the union of super-attracting cycles and J 1 ∩ C. This implies periodic points are dense in Ω(f ) ∩ C. Now we can prove Theorem 1.4. Recall the statement. Theorem 5.2. Let f be a PCF map on P 2 of degree ≥ 2. Then J 2 is the closure of repelling periodic points. If further assumed there is no sporadic super-saddle cycle, then Ω(f ) is the closure of periodic points and Ω(f ) \ J 2 is the union of super-attracting cycles together with ∪(C ∩ J 1 ), where C ranges over the set of critical component cycles, in particular J 2 is open in Ω(f ).

Proof. By Theorem 1.8, J 2 is the closure of the set of repelling periodic points. In the following we assume there is no sporadic super-saddle cycle. First we show that Ω(f ) is the closure of periodic points. Let x ∈ Ω(f ) such that x / ∈ J 2 . By Theorem 1.1 and the fact that Fatou set are only super-attracting basins, either x is contained in the basin of a super-attracting cycles, or x is contained in the basin of a critical component cycle. In the first case it is clear that x must be a super-attracting periodic point. In the second case, x must be contained in a critical component cycle, thus x is contained in the closure of periodic points by Lemma 5.1. Again by Lemma 5.1, for every critical component C we have Ω(f ) ∩ C is the union of super-attracting cycles and J 1 ∩ C. Thus Ω(f ) \ J 2 is the union of super-attracting cycles together with ∪(C ∩ J 1 ), where C ranges over the set of critical component cycles. 5.2. Laminarity of the Green current for PCF maps on P 2 . Recall the statement of Corollary 1.5.

Corollary 5.3 (de Thélin). Let f be a PCF map on P 2 of degree ≥ 2. Then the Green current T is laminar in J 1 \ J 2 .

Proof. Let E be the union of sporadic super-saddle cycles. Let W be the union of stable manifolds of super-saddle cycles in E. Then W is a pluri-polar set, and T put no mass on W (since the local potential of T is Hölder continuous, see [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]). By Theorem 1.1, T | J 1 \J 2 put full mass on the union of the basins of critical component cycles. By Daurat [START_REF] Daurat | Hyperbolic saddle measures and laminarity for holomorphic endomorphisms of P 2 (C)[END_REF], T is laminar in every basin of critical component cycle. Thus T is laminar in J 1 \ J 2 .

5.3.

Expanding sets for PCF maps on P . Recall the statement of Theorem 1.6. The following proof is an adaption of the argument in Maegawa [START_REF] Maegawa | On Fatou maps into compact complex manifolds[END_REF].

Theorem 5.4. Let f be a PCF map on P 2 of degree ≥ 2 and let K be an invariant compact set. Then K is expanding if and only if K does not contain critical points.

Proof. The only if part is obvious. In the following we prove K is expanding if K does not contain critical points. To prove that K is an expanding set, it is equivalent to prove the following limit tends to infinity:

min x∈K min v∈TxP 2 ,|v|=1 |D(f n )(v)| → +∞, n → +∞.
Assume by contradiction that the limit does not go to infinity. Then there exists a constant C > 0 and a sequence of points {x m } ⊂ K and vectors {v m } ⊂ T K P 2 such that |v m | = 1 and |D(f nm ) xm (v m )| < C, where {n m } is a sequence of integers. By shifting to a subsequence we may assume f nm (x m ) → x ∈ K. Since K is invariant and K ∩ C(f ) = ∅, by Lemma 2.4 we know that x is a point of bounded ramification. Let W be a neighborhood of x and let η : Z → W be the branched covering constructed in Corollary 2.6. Let W m be the connected component of f -nm (W ) containing x m . Let g m : Z → W m be the holomorphic map such that f nm • g m = η. Then by Lemma 2.7 by shifting to a subsequence we may assume {g m } locally uniformly converges to a Fatou map g. Since K is an invariant compact set and K ∩ C(f ) = ∅, by Theorem 1.1 we get K ⊂ J 2 . Again by Theorem 1.1 and the fact that K ∩ C(f ) = ∅, there is no Fatou disk containing points in K. Thus g must be a constant map. Thus we have diam W m → 0. Since K ∩ C(f ) = ∅, W m ∩ C(f ) = ∅ for m large enough. Thus f nm : W m → W is a biholomorphism when m large. We can then define g ′ m : W → W m be the inverse map of f nm | Wm , and it easily follows that g ′ m converges locally uniformly to a constant map. This implies This contradicts (5.2). Thus the proof is complete.

5.4. PCF maps on P 2 that are expanding on J 2 or Axiom A. We first discuss the PCF maps on P 2 that are expanding on J 2 . Recall the first part of the statement of Corollary 1.7.

Corollary 5.5. Let f be a PCF map on P 2 of degree ≥ 2. Then f is expanding on J 2 if and only if every critical component of f is preperiodic to a critical component cycle.

Proof. We first show the if part. If every critical component of f is preperiodic to a critical component cycle, then C(f ) is contained in the basins of critical component cycles. Thus J 2 ∩ C(f ) = ∅ and J 2 is expanding follows form Theorem 1.6.

Next we show the only if part. Assume by contradiction that there is a critical component C which is not preperiodic to a critical component cycle. Let V be a periodic component of P C(f ) such that V ⊂ C(f ). Then by the argument in the proof of Lemma 5.1, there is a repelling periodic point x ∈ V . By Theorem 1.8 we know that x ∈ J 2 . Let y ∈ C(f ) such that f n (y) = x for some n > 0. Then y ∈ J 2 since J 2 is totally invariant. Thus J 2 ∩ C(f ) = ∅. Thus J 2 is not expanding, which is a contradiction. This completes the proof.

Next we introduce the notion of Axiom A for holomorphic endomorphisms on P k . (For the general definition for smooth endomorphisms on Riemannian manifold, see for instance [START_REF] Qian | Ergodic theory for Axiom A endomorphisms[END_REF].) Definition 5.6. Let f be a holomorphic endomorphism on P 2 of degree ≥ 2. Then f satisfies the Axiom A if the following two conditions hold:

(1) The non-wandering set Ω(f ) is hyperbolic.

(2) Ω(f ) is the closure of periodic points.

We give the following characterization of Axiom A for PCF maps on P 2 . Some interesting examples of Axiom A PCF maps can be found in Ueno [START_REF] Ueno | Dynamics of symmetric holomorphic maps on projective spaces[END_REF].

Corollary 5.7. Let f be a PCF map on P 2 of degree ≥ 2. Then f is Axiom A if and only if f is expanding on J 2 , and for every critical component cycle C, C ∩ J 1 is a hyperbolic (saddle) set.

Proof. By Theorem 1.4 we know that Ω(f ) is the closure of periodic points. Thus f is Axiom A if and only if f is hyperbolic on Ω(f ). By Theorem 1.4, Ω(f ) \ J 2 is the union of superattracting cycles and C ∩ J 1 , where C is a critical component cycle. Thus f is Axiom A if and only if f is expanding on J 2 , and for every critical component cycle C, C ∩ J 1 is a hyperbolic (saddle) set (since super-attracting cycle is automatically a unstable dimension 0 hyperbolic set).

Further discussion

In Lemma 2.9 we proved that if f is a PCF map on P 2 , then the set of sporadic super-saddle cycles is a finite set. However we do not know any examples of PCF maps on P 2 carrying such sporadic super-saddle fixed points. One may conjecture that such sporadic super-saddle fixed points actually can not exist for PCF maps on P 2 . Theorem 3.4 may be seen as an evidence supporting this conjecture.

It is natural to ask whether our main result Theorem 1.1 can be generalized to higher dimension. Let f be a PCF map on P k , one may conjecture that in nice enough cases, the picture might be the following:

(1) Let J m be the Julia set of order m. Then J m \ J m+1 is contained in the union of the attracting basins of m-dimensional periodic submanifolds, where these submanifolds are contained in the critical set.

(2) There is no Fatou disk containing x for every x ∈ J k .

At least two difficulties need to be overcome for proving this conjectural picture. The first is that the classification of points of bounded ramification is not known for higher dimensional PCF maps. In dimension 2 this classification is known by Lemma 2.4. A more serious problem is that, even if the classification of the points of bounded ramification is known, one can possibly prove that for x ∈ P k \ J k , ω(x) is contained in the set of points of unbounded ramification. But it is not possible to show (1), the structure of the Julia sets filtration, by the argument in Theorem 4.5 and 4.8, since in our argument the points of bounded ramification play an important role.

P

  C(F ) = x ∈ C 3 : P (x) = 0 . Then P • Φ • κ is a bounded holomorphic function on D such that the radial limit lim r→1 - P • Φ • κ(re iθ ) = 0 for every θ ∈ E, where E has positive Lebesgue measure. By Fatou-Riesz's theorem P • Φ • κ is identically zero on D. This implies Φ • κ(D) ⊂ P C(F ) which imples Φ(Y 1 ) ⊂ P C(F ), a contradiction.

  )| → 0, m → +∞,where U is a small neighborhood of x.By the definition of g ′ m (5.1) is equivalent to the following (5.2) minz∈Um min v∈Tz P 2 ,|v|=1 |D(f nm )(v)| → +∞, m → +∞,whereU m := f -nm (U ) ∩ W m .By our construction of {x m } and {v m }, it follows that x m ∈ U m for m large and|D(f nm ) xm (v m )| < C.