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STRUCTURE OF JULIA SETS FOR POST-CRITICALLY FINITE

ENDOMORPHISMS ON P
2

ZHUCHAO JI

Abstract. Let f be a post-critically finite endomorphism (PCF map for short) on P
2, let

J1 denote the Julia set and let J2 denote the support of the measure of maximal entropy. In
this paper we show that: 1. J1 \ J2 is contained in the union of the (finitely many) basins of
critical component cycles and stable manifolds of sporadic super-saddle cycles. 2. For every
x ∈ J2 which is not contained in the stable manifold of a sporadic super-saddle cycle, there is
no Fatou disk containing x. Here sporadic means that the super-saddle cycle is not contained
in a critical component cycle. Under the additional assumption that all branches of PC(f)
are smooth and intersect transversally, we show that there is no sporadic super-saddle cycle.
Thus in this case J1 \ J2 is contained in the union of the basins of critical component cycles,
and for every x ∈ J2 there is no Fatou disk containing x.

As consequences of our result: 1.We answer some questions of Fornaess-Sibony about the
non-wandering set for PCF maps on P

2 with no sporadic super-saddle cycles. 2. We give a
new proof of de Thélin’s laminarity of the Green current in J1 \ J2 for PCF maps on P

2. 3.
We show that for PCF maps on P

2 an invariant compact set is expanding if and only if it
does not contain critical points, and we obtain characterizations of PCF maps on P

2 which
are expanding on J2 or satisfy Axiom A.

1. Introduction

1.1. Background. Let f : P2 → P
2 be a holomorphic endomorphism of degree ≥ 2, where

P
2 is the complex projective plane. The first Julia set J1 is defined as the locus where the

iterates (fn)n≥0 do not locally form a normal family, i.e. the complement of the Fatou set.
Let T be the dynamical Green current of f , defined by T = limn→+∞ d−n(fn)∗ωFS, where
ωFS is the Fubini-Study (1,1) form on P

2. The Julia set J1 coincides with Supp (T ), and
the self intersection measure µ = T ∧ T is the unique measure of maximal entropy of f . See
Dinh-Sibony [10] for background on holomorphic dynamics on projective spaces.

We define the second Julia set to be J2 = Supp µ. From the definitions we know that
J2 ⊂ J1. By Briend-Duval [5], J2 is contained in the closure of the set of repelling periodic
points. However contrary to the situation in dimension one there may exists repelling periodic
point outside J2. A major problem in holomorphic dynamics is to investigate the structure
of J1 \ J2. A promising picture is that J1 \ J2 is foliated (in some appropriate sense) by
holomorphic disks D along which (fn|D)n≥0

is a normal family. Such disks are called Fatou

disks. The dynamical Green current T is called laminar in some open set Ω if it expresses
as an integral of integration currents over a measurable family of compatible holomorphic
disks (which means that these disks have no isolated intersections) in Ω. These disks are
automatically Fatou disks. Let σT = T ∧ ω be the trace measure of T, which is a natural
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2 ZHUCHAO JI

reference measure on J1. If T is laminar in Ω, then for σT a.e. x ∈ Ω there exists a germ of
holomorphic Fatou disk D containing x. De Thélin proved in [8] and [9] that T is laminar in
J1 \ J2 for post-critically finite endomorphisms on P

2. We note that by the works of Dujardin
in general T is not necessarily laminar in J1 \ J2 [14], but a related weaker result holds [13].

A holomorphic endomorphism f on P
k, k ≥ 1 is called post-critically finite (PCF for short)

if the post-critical set

PC(f) :=
⋃

n≥1

fn(C(f))

is an algebraic subset of Pk, where

C(f) :=
{
x ∈ P

k : Df(x) is not invertible
}

is the critical set.

In dimension 1 , this coincides with the usual definition of PCF maps on the Riemann
sphere P

1. PCF maps play an important role in one-dimensional complex dynamics, mainly
because the remarkable topological classification theorem of Thurston [11]. PCF maps are
still of interest in higher dimension, and their dynamics have been investigated by many
authors. Here are some results which are useful for our purpose:

1. The Fatou set of a PCF maps on P
2 is the union of the basins of super-attracting cycles

(Fornaess-Sibony [17], Ueda [33] and Rong [28]).

2. Jk = P
k for strictly PCF maps on P

k (k = 2 by Jonsson [22], general k by Ueda [32]),
our main result can be seen as a generalization of Jonsson’s result.

3. The eigenvalues of periodic points of PCF maps on P
2 are either 0 or larger than 1 (Le

[24]).

The dynamics of PCF maps on P
k, k ≥ 2 were further studied by Ueda [32] and Astorg [1].

Moreover, interesting examples of PCF maps were constructed by Crass [6], Fornaess-Sibony
[16] and Koch [23].

1.2. Basins of critical component cycles. In this paper we investigate the dynamics on
the Julia sets J1 and J2 for PCF maps on P

2. Let f be a PCF map on P
2. Recall that the

critical set C(f) is an algebraic curve. We call an irreducible component Λ of C(f) periodic
if there exists an integer n ≥ 1 such that fn(Λ) = Λ. Such an irreducible component is
called a periodic critical component. There are finitely many periodic critical components.
The set

{
Λ, f(Λ), . . . , fn−1(Λ)

}
is called a critical component cycle. Similarly, a critical

point x satisfying fn(x) = x for some n ≥ 1 is called a periodic critical point. The set{
x, f(x), . . . , fn−1(x)

}
is called a critical point cycle. Since fn and f have the same Julia

sets, to investigate the structure of J1\J2 we may assume that all periodic critical components
are invariant.

An important observation is that in P
2, any invariant critical component Λ is an attracting

set. By definition an attracting set Λ in P
2 is an invariant compact subset such that there is

a neighborhood U of Λ satisfying f(U) ⊂⊂ U, and Λ =
⋂

n≥1 f
n(U). The open set U is called

a trapping region of Λ. The attracting basin B(Λ) of an attracting set Λ is by definition the
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set
⋃

n≥0 f
−n(U), where U is a trapping region of Λ. Equivalently B(Λ) is the set of points

attracted by Λ, i.e.

B(Λ) =
{
x ∈ P

2 : dist (fn(x),Λ) → 0, as n→ +∞
}
.

An attracting basin in P
2 is always disjoint from J2, except when Λ = P

2, see [30] Proposition
1.1 for a proof.

Fornaess and Sibony [17] proved that for any fixed Riemannian metric on P
2, if Λ is an

invariant critical component, then for x ∈ P
2, when dist (x,Λ) → 0, we have

dist(f(x),Λ) = o(dist(x,Λ))

It follows that for ǫ > 0 sufficiently small, the ǫ -neighborhood

Uǫ =
{
x ∈ P

2 : dist(x,Λ) < ǫ
}

satisfies f (Uǫ) ⊂⊂ Uǫ, and Λ =
⋂

n≥1 f
n (Uǫ). Then Λ is an attracting set with trapping

region Uǫ. Fornaess and Sibony [17] also showed that an invariant irreducible curve in P
2

has genus 0 or 1. Bonifant, Dabija and Milnor showed that an elliptic curve can not be an
attracting set [3], so the invariant critical component Λ must be a (possibly singular) rational
curve.

Now let f be a PCF map on P
2 with an invariant critical component Λ. Let π : Λ̂ → Λ be

the normalization of Λ, then f restricted to Λ lifts to a map f̂ from Λ̂ to itself. By [22], f̂
is a PCF map on P

1 of degree ≥ 2. Let J(f) be the Julia set of f, and let ν̂ be the unique

measure of maximal entropy of f̂ . Then ν = π∗(ν̂) is an invariant measure on P
2. It follows

that Supp ν = π(J(f)), and ν is a hyperbolic measure of saddle type. Daurat showed that
the Green current T is laminar in the basin B(Λ) and subordinate to the stable manifolds⋃

x∈ Supp ν W
s(x). See [7] for the proof and for more details (it is easy to verify in our case the

trapping region Uǫ satisfies conditions (Tub) and (SJ) in Daurat’s paper when ǫ sufficiently
small). See also Bedford-Jonsson [2] for the case when Λ is totally invariant.

1.3. Main results. At this stage we get a nice description of the dynamics in the attracting
basins of critical component cycles for PCF maps on P

2. In this paper we will show that except
maybe for a possibly “small” set (the stable manifolds of sporadic super-saddle cycles), every
point in J1 \ J2 is indeed contained in the basin of a critical component cycle, and for every
point in J2, there is no Fatou disk passing through it. Recall that a fixed point is called super-
saddle if it has one 0 eigenvalue and one eigenvalue with modulus larger than 1. A sporadic
super-saddle fixed point is by deninition a super-saddle fixed point which is not contained in
a critical component cycle. We will see in Lemma 2.9 that there are at most finitely many
sporadic super-saddle cycles. The following is our main result.

Theorem 1.1. Let f be a PCF map on P
2 of degree ≥ 2, then:

(1) J1 \ J2 is contained in the union of the basins of critical component cycles and stable
manifolds of sporadic super-saddle cycles.

(2) For every x ∈ J2 which is not contained in the stable manifold of a sporadic super-saddle
cycle, there is no Fatou disk containing x.
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Here are some remarks of Theorem 1.1. First, for general holomorphic endomorphisms on
P
2, there can exist an invariant compact set E ⊂ J2 with positive entropy such that for every
x ∈ E there exists a Fatou disk containing x, see Taflin [31] Theorem 1.6.

Second, if f has no critical component cycle, by Theorem 1.1 and the fact that the Green
current T put no mass on pluri-polar set, we conclude that the stable manifolds of sporadic
super-saddle cycles must be contained in J2, and we have J1 = J2. However if f has critical
component cycles, we can not easily conclude that the stable manifolds of sporadic super-
saddle cycles are contained in J2 by the previous argument. In fact the following phenomenon
can happen: there exist a positive closed current S with continuous local potential in P

2

and two disjoint open sets Ω1, Ω2 such that Supp(S|Ω1
) and Supp(S|Ω2

) intersect along a
subvariety. A similar phenomenon appears in a dynamical context in Dujardin-Favre [15]
Example 6.13, see also Dujardin [12] Section 5.1. Their example is the bifurcation current in
the parameter space of cubic polynomials.

Third, to the author’s knowledge, there are no sporadic super-saddle cycles for all known
examples of PCF maps on P

2. It is interesting to know whether there exists a PCF map
on P

2 carrying a sporadic super-saddle cycle. If the answer is yes, it is also interesting to
know whether the stable manifold of this sporadic super-saddle point is contained in J2 or
J1 \ J2. However, under the additional assumption that all branches of PC(f) are smooth
and intersect transversally, the answer of this question is no.

Theorem 1.2. Let f be a PCF maps on P
2 of degree ≥ 2 such that all branches of PC(f)

are smooth and intersect transversally, then every super-saddle cycle is contained in a critical
component cycle, that is, sporadic super-saddle cycles do not exist.

We note that the assumption that all branches of PC(f) are smooth and intersect transver-
sally are satisfied by examples constructed by Crass [6], Fornaess-Sibony [16] and Koch [23],
in fact in these examples PC(f) are union of projective lines. A direct corollary of Theorem
1.1 and 1.2 is the following.

Corollary 1.3. Let f be a PCF maps on P
2 of degree ≥ 2 such that all branches of PC(f)

are smooth and intersect transversally, then

(1) J1 \ J2 is contained in the union of the basins of critical component cycles

(2) There is no Fatou disk containing x for every x ∈ J2.

1.4. Some corollaries of the main results. In [20], Fornaess and Sibony asked several
questions about the non-wandering set Ω(f) of a holomorphic endomorphism on P

2. The
following are the questions:

Q1: Is Ω(f) the closure of periodic points and Siegel varieties? (Here a Siegel variety is
an irreducible analytic set X of positive dimension such that there exists a subsequence {nj}
such that fnj |X → Id.)

Q2: Is the closure of the repelling periodic points open in Ω(f)?
Q3: Is J2 open in Ω(f)?
Q4: Describe Ω(f) \ J2.

As a corollary of Theorem 1.1, we can give answers to the above four questions for PCF
maps on P

2 with no sporadic super-saddle cycles.
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Theorem 1.4. Let f be a PCF map on P
2 of degree ≥ 2. Then J2 is the closure of repelling

periodic points. If we further assume that there is no sporadic super-saddle cycle, then Ω(f)
is the closure of periodic points, and Ω(f) \ J2 is the union of super-attracting cycles together
with ∪(C ∩ J1), where C ranges over the set of critical component cycles, in particular J2 is
open in Ω(f).

Next, as a direct corollary of Theorem 1.1, we obtain a new proof of the laminarity of the
Green current in J1 \ J2 for PCF maps on P

2, which was first proved by de Thélin [9].

Corollary 1.5 (de Thélin). Let f be a PCF map on P
2 of degree ≥ 2. Then the Green

current T is laminar in J1 \ J2.

We note that Fornaess and Sibony have studied the non-wandering set and the prob-
lem of laminarity of the Green current for s−hyperbolic holomorphic endomorphisms on P

2

(s−hyperbolic means Axiom A plus some technical conditions), see [18].

Finally, we obtain a charactrization of expanding invariant compact sets for PCF maps on
P
2. By using both Theorem 1.1 and the methods in the proof of Theorem 1.1, we obtain the

following result.

Theorem 1.6. Let f be a PCF map on P
2 of degree ≥ 2 and let K be an invariant compact

set. Then K is expanding if and only if K does not contain critical points.

We note that for rational maps on P
1, an invariant compact set in the Julia set is expanding

if it does not intersect the closure of the post-critical set. It is an open problem that whether
the same is true for holomorphic endomorphisms on P

k, i.e. whether an invariant compact
set in Jk is expanding if it does not intersect the closure of the post-critical set. See Maegawa
[25] for a discussion of this problem. Theorem 1.6 answer this question for PCF maps on P

2.

As corollaries of Theorem 1.6 and Theorem 1.1, we obtain characterizations of PCF maps
on P

2 which are expanding on J2 or satisfy Axiom A.

Corollary 1.7. Let f be a PCF map on P
2 of degree ≥ 2. Then f is expanding on J2 if

and only if every critical component of f is preperiodic to a critical component cycle, and f
is Axiom A if and only if f is expanding on J2, and for every critical component cycle C,
C ∩ J1 is a hyperbolic (saddle) set.

1.5. Outline of the paper. The structure of this paper is as follows. Section 2 is devoted to
some preliminaires. In particular we recall Ueda’s results about Fatou maps and the normality
of backward iterates of holomorphic endomorphisms on P

k, k ≥ 1.

In section 3 we prove Theorem 1.2 and the following theorem

Theorem 1.8. Let f be a PCF map on P
2 of degree ≥ 2, then J2 is the closure of the set of

repelling periodic points.

Here is a comment of Theorem 1.8. We note that for a general holomorphic endomorphism
on P

2, repelling periodic point may not be contained in J2. Indeed there exist examples
possessing isolated repelling points outside J2, see [19] and [21]. The proof of Theorem 1.8 is
a rather quick consequence of a result of Ueda [33].
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In section 4 we prove Theorem 1.1, by using the previous results. The proof is divided into
two steps. First, we prove that there exists a Fatou disk containing x for every x ∈ J1 \ J2
which is not contained in the basin of critical component cycle. Second, we prove that if there
is a Fatou disk containing x for some x ∈ J1, then x must be contained in the basin of a
critical component cycle or in the stable manifold of a sporadic super-saddle cycle. Theorem
1.1 is a combination of these two steps.

In section 5 we prove Theorem 1.4, Corollary 1.5, Theorem 1.6 and Corollary 1.7.

In section 6 we discuss some open problems about the existence of sporadic super-saddle
periodic points (for PCF maps on P

2) and the possible generalization of Theorem 1.1 to higher
dimension.

Acknowledgements. I would like to thank my advisor Romain Dujardin for his advice, help
and encouragement during the course of this work. I also would like to thank Xavier Buff,
Henry de Thélin, Van Tu Le, Jasmin Raissy, Matteo Ruggiero, Weixiao Shen and Gabriel
Vigny for useful discussion.

2. Preliminaires

In this section we recall some results of Ueda that we will use later. We start with the
following definitions of Ueda [33] Definition 4.5 and [32] Section 1.

Definition 2.1. Let f be a holomorphic endomorphism on P
k of degree ≥ 2. Let Z be a

complex analytic space. A holomorphic map h : Z → P
k is called a Fatou map if {fn ◦ h}n≥1

is a normal family. A Fatou disk D ⊂ P
k is an image of a non-constant Fatou map φ : D → P

k,
where D is the unit disk.

Note that with this definition, a Fatou disk may be singular.

The following fundamental result about Fatou maps can be found in Ueda [32] Proposition
2.1.

Let π : Ck+1\{0} → P
k be the canonical projection. Given a holomorphic map φ : X → P

k,
we say a holomorphic map Φ : X → C

k+1 \ {0} is a lift of φ if π ◦ Φ = φ holds.
For a homogeneous regular polynomial endomorphism F on C

k, we define the dynamical
Green function as

G(z) := lim
n→∞

1

dn
log ‖Fn(z)‖, for z ∈ C

k.

Theorem 2.2. Let X be a complex analytic space. Let φ : X → P
k be a holomorphic map.

Then the following are equivalent.

(1) φ is a Fatou map.

(2)
{
f j ◦ φ

}
contains a locally uniformly convergent subsequence.

(3) If V is an open set of X and ΦV : V → C
k+1 \ {0} is a holomorphic lift of φ|V , then

G ◦ΦV is pluriharmonic on V .

(4) For any x ∈ X, there exists a neighborhood V of x and ΦV : V → C
k+1 \ {0} a

holomorphic lift of φ|V , such that G ◦ΦV is identically 0 on V .

Next we introduce the conception of points with bounded ramification, first introduced by
Ueda in [33] Definition 4.5.
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Definition 2.3. Let f be a holomorphic endomorphism on P
k of degree ≥ 2. A point q is

said to be a point of bounded ramification if the following conditions are satisfied:

(1) there exists a neighborhood W of q such that PC(f) ∩W is an analytic subset of W .

(2) there exists an integer m such that for every j > 0 and every p ∈ f−j(q), we have that
ord

(
f j, p

)
≤ m.

In the case k = 2, we have the following characterization of points of bounded ramification
for PCF maps on P

2. (See Ueda [33] Lemma 5.7.)

Lemma 2.4. Let f be a PCF map on P
2 of degree ≥ 2. Then the points with unbounded

ramification are the union of critical component cycles and critical point cycles.

Next we introduce the following abstract result of Ueda. (See [33] Lemma 3.7 and Lemma
3.8.)

Lemma 2.5. Let X be a complex manifold and D an analytic subset of X of codimension
1. Let x ∈ X and let X0 be a compact neighborhood of x such that the pair (X0,X0 ∩D) can
be triangulated, i.e. there exist simplicial complex K and its subcomplex L whose underlying
spaces are X0 and X0 ∩D. Let W be the open star of x with respect to the complex K. Then
for every integer m ≥ 0, there exists an irreducible normal complex space Z and η : Z → W
holomorphic such that:

(1) η is m-universal, in the sense that for every D ∩W -branched holomorphic covering
h : Y → W (i.e. the ramification locus of h is contained in D ∩W ) with sheet number ≤ m,
there exists a holomorphic map γ : Z → Y such that h ◦ γ = η.

(2) If h : Y → W is a D∩W branched holomorphic covering, then h−1(x) is a single point.

Specializing to holomorphic endomorphisms on P
k, we get the following corollary:

Corollary 2.6. Let f be a holomorphic endomorphism on P
k of degree ≥ 2. Let x ∈ P

k

be a point with bounded ramification. Then for every neighborhood W of x satisfying the
assumption in Lemma 2.5, there exists an irreducible normal complex space Z, and η : Z →
W a PC(f) ∩W branched holomorphic covering map such that if Wn denotes a connected
component of f−n(W ), then there exists a holomorphic map gn : Z →Wn such that fn ◦gn =
η, i.e. the following diagram is commute.

Z W

Wn

η

gn
fn

The map gn constructed above can be seen as a kind of inverse branch of fn.

Proof. Since x has bounded ramification, there exists m ≥ 0 such that ord (fn, xn) ≤ m for
every xn ∈ f−n(x) and n ≥ 0. Take X = P

k and D = PC(f) in Lemma 2.5. Then for W
satisfying the assumption in Lemma 2.5, there exists an irreducible normal complex space Z,
and η : Z →W a PC(f)∩W branched holomorphic covering map, satisfy the two conclusion
of Lemma 2.5. Let Wn denote a connected component of f−n(W ), then by Lemma 2.5 (2),
Wn ∩ f−n(x) contains a single point, thus fn : Wn →W has sheet number ≤ m. By Lemma
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2.5 (1), there exists a holomorphic map gn : Z → Wn such that fn ◦ gn = η. Thus the proof
is complete. �

The sequence {gv} defined in Corollary 2.6 is in fact normal, and any limit map of {gv} is
also a Fatou map, by the following result of Ueda ([32] Theorem 2.4 ).

Lemma 2.7. Let f be a holomorphic endomorphism on P
k of degree ≥ 2. Let Z be a complex

analytic space and h : Z → P
k a holomorphic map, for every integer n let gn : Z → P

k be the
holomorphic map such that fn ◦ gn = h. Then {gn} is a normal family. Further more if φ is
a limit map of a subsequence of {gn} , then φ is a Fatou map.

The following lemma is implicitly contained in [32] Theorem 4.2, which will be important
in our proof of the main results.

Lemma 2.8. Let f be a holomorphic endomorphism on P
k of degree ≥ 2. Let K be compact

connected subset of Pk such that {fn|K} contains a uniformly convergent subsequence and K
is not a single point . let φ be the limit map of the uniformly convergent subsequence of fn|K .
Then

(1) If φ is a constant map, then x := φ(K) is a point of unbounded ramification.

(2) If φ is not a constant map and there exists x ∈ φ(K) which is a point of bounded
ramification. Then there exists a Siegel variety Y containing x, i.e. an irreducible analytic
set of positive dimension such that there is a subsequence {nj} such that fnj |Y → Id.

Proof. The proof is contained in the proof of [32] Theorem 4.2, except at one point one should
replace the branched covering map ξ : X → P

k in [32] by the branched covering η : Z → W ,
where W is a neighborhood of x, and η : Z → W is the branched covering constructed
in Corollary 2.6. The idea is to construct locally uniformly convergent subsequences in the
following style:

{
gj : Z → P

k
}

such that fnj ◦ gj = η. The property of the limit map of
well-chosen {gj} will either give a contradiction of (1), or give the desired Fatou map of
(2). �

We end this section by showing the following finiteness result.

Lemma 2.9. Let f be a PCF map on P
2 of degree ≥ 2. Then the set of critical point cycles

is a finite set.

Proof. For every critical point cycle, there is a periodic point x in this cycle such that x ∈
C(f). Let V be the union of periodic components in PC(f), then x ∈ V ∩ C(f). It is clear
that every irreducible curve in V ∩C(f) is contained in a critical component cycle. So if x is
not contained in a critical component cycle, then x is contained in the dimension 0 subvariety
of V ∩ C(f). Since this dimension 0 part is just a union of finite number of points, there are
at most finitely many critical point cycles which are not contained in a critical component
cycle. �
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3. Location of periodic points.

Let f be a PCF map on P
2 of degree ≥ 2. In this section we prove Theorem 1.2 and Theorem

1.8. By Briend-Duval [5], J2 is contained in the closure of the set of repelling periodic points.
Thus to prove J2 is the closure of the set of repelling periodic points, we only need to prove
that repelling periodic points are contained in J2. We start with a definition.

Definition 3.1. Let f be a PCF map on P
2 of degree ≥ 2. A fixed point x0 is called repelling

if all eigenvalues of Df at x0 have modulus larger than 1. A fixed point x0 is called super-
saddle if Df at x0 has one 0 eigenvalue and one eigenvalue with modulus larger than 1. A
fixed point x0 is called super-attracting if Df at x0 has only 0 eigenvalues.

Note that by the result of Le [24], for PCF maps on P
2 every periodic point is either

repelling, super-saddle or super-attracting.

3.1. Repelling points. We first recall the following fundamental result, for the proof see
Sibony [29] Corollaire 3.6.5.

Proposition 3.2. Let f be a holomorphic endomorphism on P
k of degree ≥ 2. Then x ∈ Jk

if and only if for every neighborhood U of x, Pk \
⋃∞

n=0 f
n(U) is a pluri-polar set.

Now we can prove Theorem 1.8.

Theorem 3.3. Let f be a PCF map on P
2 of degree ≥ 2, then every repelling periodic point

belongs to J2.

Proof. Our argument concerns the backward iterates around a fixed point. This kind of
argument has already appeared in Fornaess-Sibony [19]. Without loss of generality we may
assume x0 is fixed. Since x0 /∈ C(f), by Lemma 2.4, x0 is a point of bounded ramification. We
are going to show that for every neighborhood U of x0, we have P

2 \ PC(f) ⊂
⋃∞

n=0 f
n(U).

Thus since PC(f) is algebraic, by Proposition 3.2 we will get x0 ∈ J2.

Let y ∈ P
2 \PC(f) be an arbitrary point. Let W be a neighborhood of x0 such that y ∈W

and W satisfies the condition in Corollary 2.6. It can be achieved, by first joining x0 and y
by a smooth embedded (real) curve, and let W be a sufficiently thin tubular neighborhood
of this curve such that ∂W is smooth. Let m ≥ 0 such that ord (fn, xn) ≤ m for every
xn ∈ f−n(x0) and n ≥ 0. Let η : Z → W a PC(f) ∩W branched holomorphic covering map
as in Corollary 2.6. For n ≥ 0, letWn denote the connected component of f−n(W ) containing
x0. Then by Corollary 2.6 we can define holomorphic map gn : Z →Wn such that fn ◦gn = η.
By Lemma 2.7, {gn} is a normal family. We are going to show that actually gn converges to
the fixed point x0. Since x0 is repelling, there exists a small neighborhood Ω ⊂W such that
gn converges to x0 uniformly on η−1(Ω). Now let φ be any limit map of some subsequence of
{gn}. Since φ is constant on an open set η−1(Ω), φ is constant on Z. Thus any limit map of
some subsequence of {gn} is the constant map z 7→ x0. This implies that gn converges to the
fixed point x0. In particular if z0 satisfies η(z0) = y, we have gn(z0) → x0 when n→ +∞.

Now let U be an arbitrary neighborhood of x0. Since gn(z0) → x0, there exists N > 0 such
that gN (z0) ∈ U . Since fN ◦ gN = η we get y ∈ fN(U). Since y ∈ P

2 \ PC(f) is arbitrary we
get P2 \ PC(f) ⊂

⋃∞
n=0 f

n(U). By the arbitrariness of U , we have x0 ∈ J2, which completes
the proof. �
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3.2. Super-saddle points. Let f be a PCF map on P
2 of degree ≥ 2. We investigate the

location of super-saddle cycles of f. The following is an equivalent formulation of Theorem
1.2.

Theorem 3.4. Let f be a PCF map on P
2 of degree ≥ 2, Let x0 be a super-saddle fixed

point in P
2. If the branches of PC(f) are smooth and intersect transversally at x0, then x0

is contained in a critical component cycle.

Proof. In the following we let Cx0
(f) denote the union of critical components containing x0

and let PCx0
(f) :=

⋃∞
n=1 f

n(Cx0
(f)). It is easy to observe that PCx0

(f) = PCx0
(fn) for

every n ≥ 1. Then up to an iterate of f, we may assume that all periodic components of
PCx0

(f) are invariant, and every component of PCx0
(f) is mapped to an invariant component

by at most one iterate. It remains to show that x0 is contained in an invariant component of
Cx0

(f). We argue by contradiction. Assume x0 is not contained in an invariant component
of Cx0

(f), then there exists V an invariant component of PCx0
(f) such that V 6⊂ Cx0

(f).
We first show that V 6= PCx0

(f). We argue by contradiction, assuming V = PCx0
(f), then

there exists a neighborhood U of x0 such that f : U → f(U) is a V -branched covering. Then,
since x0 ∈ Cx0

(f), f−1(V ) contains a component of Cx0
(f). Since f−1(V ) also contains V ,

we deduce that f−1(V ) is singular at x0. We recall the following result of Ueda [33] Lemma
3.5.

Lemma 3.5. Let f : U1 → U2 be a V -branched holomorphic covering, where U1, U2 are
complex manifolds and V is a codimension 1 analytic subset of U2. Suppose that x0 ∈ U1 is
a singular point of f−1(V ), then f(x0) is a singular point of V .

Coming back to our situation, letting U = U1 and f(U) = U2 in above lemma, we know
that x0 is a singular point of V . This is impossible, since by our assumption V is smooth at
x0. Thus there must exist a component V1 of PCx0

(f) such that V1 6= V.

Let V ′ = f(V ), then by our assumption V ′ is invariant. We recall the following result of
Le [24] Proposition 5.5.

Lemma 3.6. Let f : (C2, 0) → (C2, 0) be a proper holomorphic germ and let Σ1,Σ2 be two
irreducible germs at 0 such that Σ1 6= Σ2, f(Σ1) = Σ2 and f(Σ2) = Σ2. If Σ2 is smooth at 0
then the eigenvalue of Df at 0 are 0 and λ where λ is the eigenvalue of D0f |T0Σ2

.

Coming back to our situation, take V = Σ2 (resp. V ′ = Σ2) in above lemma, since x0
is super-saddle, we get that the eigenvalue of f restricted to V (resp. V ′) at x0 must be
repelling. By our assumption V ′ and V intersect transversally, the only possible case that
x0 being super-saddle is when V ′ = V . Thus we must have f (V1) = V by our assumption
that every component of PCx0

(f) is mapped to an invariant component by one iterate. To
summarize, there exists V1 ⊂ PCx0

(f) such that V1 6= V , and every component of PCx0
(f)

is mapped to V by one iterate (in particular, f(V1) = V ).

We do a local coordinate change such that x0 = (0, 0), V = {x = 0}∩U, where U is a small
neighborhood of (0, 0). By [24] Proposition 5.5, 0 is a repelling point of f |V . Let λ be the
eigenvalue of f |V at 0, |λ| > 1. Thus after a linear coordinate change fixing V , the expression
of f in this coordinate has the following form

(3.1) f(x, y) = (G(x, y), λy + ax+H(x, y)),

Where G(x, y) = O
(∣∣x2

∣∣ ,
∣∣y2

∣∣), x is a factor of G and H(x, y) = O
(
|x|2, |y|2

)
.
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Since V1 is a smooth curve that intersects {x = 0} transversally, we may assume V1 =
{y = φ(x)} for some holomorphic function φ. We do a local coordinate change x′ → x
y′ → y − φ(x). In this coordinate the expression of f has the same form as in (3.1), and
V1 = {y = 0}. In the following we work in this coordinate.

By our assumption that every component of PCx0
(f) is mapped to an invariant component

by one iterate, there exists a critical component C such that f(C) = V1. Thus C satisfies the
equation

(3.2) λy + ax+H(x, y) = 0.

By the implicit function theorem, C is a smooth curve that intersects with {x = 0} transver-
sally. We let C = {y = ψ(x)} for some holomorphic function ψ.

By direct calculation, the Jacobian of f is

Jac(f) =
∂G

∂x

(
λ+

∂H

∂y

)
−
∂G

∂y

(
a+

∂H

∂x

)
.

Since C is in the critical set of f, ψ satisfies the following equation

(3.3)
∂G

∂x
(x, ψ(x))

(
λ+

∂H

∂y
(x, ψ(x))

)
−
∂G

∂y
(x, ψ(x))

(
a+

∂H

∂x
(x, ψ(x))

)
= 0.

Take differential of x in the both sides of (3.2) we get

(3.4) λψ′(x) + a+
∂H

∂x
(x, ψ(x)) +

∂H

∂y
(x, ψ(x))ψ′(x) = 0.

Combining (3.3) and (3.4) we get
(
λ+

∂H

∂y
(x, ψ(x))

)(
∂G

∂x
(x, ψ(x)) +

∂G

∂y
(x, ψ(x))ψ′(x)

)
= 0.

Since λ+ ∂H
∂y

(x, ψ(x)) 6= 0 in a neighborhood of 0, ψ satisfies

∂G

∂x
(x, ψ(x)) +

∂G

∂y
(x, ψ(x))ψ′(x) = 0.

This implies that ψ satisfies G(x, ψ(x)) = 0 for every x. Then by the expression (3.1), we
must have f(C) ⊂ V. Since f(C) = V1, we have f(C) = (0, 0), which is a contradiction since
f is a locally finite to one map. Thus x0 is contained in an invariant critical component, and
the proof is complete. �

Corollary 3.7. Let f be a PCF map on P
2 of degree ≥ 2 such that all branches of PC(f)

are smooth and intersect transversally, then every periodic point in J2 is repelling.

Proof. Let x0 ∈ J2 be a periodic point. By Le [24], x0 is either repelling, super-saddle
or super-attracting. Since super-attracting periodic points belong to the Fatou set, x0 is
not super-attracting. By Theorem 3.4, super-saddle periodic points are contained in critical
component cycles, in particular they are not in J2. So x0 must be repelling. �
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4. Structure of the Julia sets.

In this section we prove Theorem 1.1. We will first prove that there exists a Fatou disk
containing x for every x ∈ J1 \ J2 which is not contained in a basin of critical component
cycle (Theorem 4.5). Second we prove that if there is a Fatou disk containing x for x ∈ J1,
then x must be contained in the basin of a critical component cycle or in the stable manifold
of a sporadic super-saddle cycle (Theorem 4.8). Then Theorem 1.1 is a combination of these
two theorems. We start with several lemmas.

Lemma 4.1. Let f be a PCF map on P
2 of degree ≥ 2. Let x0 ∈ P

k and let v be a subsequence
of integers such that xv → y and y is of bounded ramification, where xv = f v(x0). Let W be a
neighborhood of y and η : Z →W a holomorphic covering as in Corollary 2.6. Let Wv denote
the connected component of f−v(W ) containing x0. Let gv : Z → Wv such that f v ◦ gv = η.
Assume gv converges to a constant map, then x0 ∈ J2 and y ∈ J2

Proof. We first prove y ∈ J2. We take W = B(y, r) for sufficiently small r. Let Z ′ =
η−1(B(y, r/2)). Let N large enough such that xv ∈ B(y, r/2) when v ≥ N. Since gv con-
verges to a constant map and Z ′ ⊂⊂ Z, we have diam gv (Z

′) → 0. Let v large enough such
that W ′ := fN (gv (Z

′)) ⊂⊂ W. Then f v−N : W ′ → W is a polynomial-like map, By [10]
Theorem 2.22, there exists a fixed point of f v−N in W . Letting r → 0, we get that y is
approximated by periodic points. By the result of Le [24], every periodic point of a PCF map
f on P

2 is repelling, super-saddle or super-attracting. Since y is not in a critical component
cycle, and since there are only finitely many super-attracting periodic points and super-saddle
periodic points outside critical component cycles (see Lemma 2.9), y is approximated by re-
pelling periodic points. By Theorem 3.3, y ∈ J2. Let z = η−1(y). The convergence of gv to
x0 implies gv(y) → x0, thus there is a sequence of preimage {yv} of y such that yv converges
to x0. By the backward invariance of J2, we conclude that x0 ∈ J2. �

Lemma 4.2. Let f be a PCF map on P
2 of degree ≥ 2. Let x0 ∈ P

2 and let v be a subsequence
of integers such that xv → y and y is of bounded ramification, where xv = f v(x0). Let W be a
neighborhood of y and η : Z →W a holomorphic covering as in Corollary 2.6. Let Wv denotes
the connected component of f−v(W ) containing x0. Let gv : Z → Wv such that f v ◦ gv = η.
Assume gv converges to a non-constant map φ, then there exists a Fatou disk containing x0.

Proof. Let W = B(y, r) for small r. Let M = φ(Z), we will show that M contains a Fatou
disk containing x0. Let N large enough such that xv ∈W when v ≥ N. Then for v ≥ N, there
exist zv ∈ Z ′ such that gv (zv) = x0. Let z = η−1(y), it is clear that zv → z when v → +∞.
Let v → +∞ in the equation gv (zv) = x0 we get φ(z) = x0, then x0 ∈ M . By Lemma 2.7,
φ : Z → P

2 is a Fatou map, by definition, this implies that {fn|M}
n≥1

is a normal family. Let

D ⊂ Z be a holomorphic disk containing z such that φ is not a constant map when restricted
to D, then φ(D) ⊂M is a Fatou disk containing x0. �

Lemma 4.3. Let f be a PCF map on P
2 of degree ≥ 2. Let x0 ∈ J1 such that x0 is not

contained in the attracting basin of a critical component cycle nor contained in the stable
manifold of a super-saddle cycle, then there exists a subsequence v of positive integers such
that xv = f v (x0) → y, where y is a point of bounded ramification.

Proof. There are at most finitely many critical point cycles, which are not contained in the
critical component cycles (see Lemma 2.9). We denote this finite set by E. We show that
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if x0 ∈ J1 satisfying that x0 is not contained in the attracting basins of critical component
cycles and ω (x0) contains only points of unbounded ramification, then x0 is contained in the
stable manifold of a sporadic super-saddle cycle. If x0 satisfies the above assumption, by
Lemma 2.4 we know that ω (x0) ⊂ E. We recall the following basic property of ω -limit set:

Lemma 4.4. Let X be a compact metric space, let f : X → X be a continuous map, and let
g : ω(x0) → ω(x0) be the restriction of f on the ω-limit set of x0, then there is no non-trivial
open subset U of ω(x0) such that g(U ) ⊂ U .

Proof. Bowen ([4] Theorem 1) proved the above lemma for homeomorphisms, but the proof
also holds for non-invertible maps. For the completion we give a proof here. Assume by
contradiction that such open subset U exists, let Y := ω(x0). By our assumption 2ǫ :=
dist(Y \U, g(U )) > 0. Choose 0 < δ < ǫ such that dist(x1, x2) < δ implies dist(f(x1), f(x2)) <
ǫ for every x1, x2 ∈ X. Now it is clear that there is N > 0 such that dist(fn(x0), Y ) < δ
when n > N (otherwise ω(x0) will be strictly larger than Y ). Pick M ≥ N such that
dist(fM (x0), g(U )) < ǫ and dist(fM (x0), y) < δ for some y ∈ Y . Then dist(g(U ), y) < 2ǫ,
which implies y ∈ U . Then

dist(fM+1(x0), g(U )) ≤ dist(fM+1(x0), g(y)) < ǫ.

Inductively for all m ≥ M we have dist(fm(x0), g(U )) < ǫ. This implies Y ∩ (Y \ U) = ∅,
which is a contradiction. �

Coming back to our situation, since ω(x0) is a finite set, the only possibility is that ω (x0)
contains a single periodic cycle. Since x0 ∈ J1 and ω(x0) contains no points of bounded
ramification, this cycle must be a super-saddle cycle. Thus x0 is contained in the stable
manifold of this super-saddle cycle. It follows that if x0 is not contained in the attracting
basin of a critical component cycle nor contained in the stable manifold of a super-saddle
cycle, ω (x0) has non-empty intersection with the set of points of bounded ramification. This
completes the proof. �

Now we can prove the following theorem.

Theorem 4.5. Let f be a PCF map on P
2 of degree ≥ 2. If x ∈ J1 \J2 which is not contained

in the basin of a critical component cycle, then there is a Fatou disk D containing x.

Proof. Suppose first x0 is contained in the stable manifold of a super-saddle cycle. Then there
exists an embedded holomorphic disc D containing x0 such that D coincides with the local
stable manifold at x0, and it is clear that {fn|D}n≥1 is normal. Now suppose x0 satisfies
the assumptions of the theorem, and x0 is not contained in the stable manifold of a super-
saddle cycle. By Lemma 4.3, we can choose a subsequence v of positive integers such that
xv = f v (x0) → y, and y is of bounded ramification. Consider a neighborhood W of y and
η : Z → W the holomorphic covering as in Corollary 2.6. Let Wv denotes the connected
component of f−v(W ) containing x0. Let gv : Z →Wv such that f v ◦ gv = η. By Lemma 2.7
{gv} is a normal family. By passing to some subsequence, we may assume gv converges to a
holomorphic map φ. φ can not be a constant map, since otherwise by Lemma 4.1, x0 ∈ J2,
which is a contradiction. Thus φ is a non-constant map. By Lemma 4.2, there is a Fatou disk
containing x0, which completes the proof. �

Before proving Theorem 4.8, we need some lemmas.
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Lemma 4.6. Let f be a PCF map on P
2 of degree ≥ 2. Let x ∈ J1 which is not contained

in the basin of a critical component cycle, nor in the stable manifold of a super-saddle cycle.
Assume moreover that there is a Fatou disk X containing x. Then there is a point y ∈ ω(x)
such that there is a Siegel variety containing y.

Proof. We choose y ∈ ω(x) such that y is not a super-saddle periodic point. Then by Lemma
2.4, y is a point of bounded ramification. Let φ be a limit map of {fn|X} such that φ(x) = y.
Then by Lemma 2.8, there is a Siegel variety X containing y. �

Lemma 4.7. let f be a PCF map on P
2 of degree ≥ 2. Let X be a Siegel variety, then

X 6⊂ PC(f).

Proof. Assume by contradiction that X ⊂ PC(f). By passing to an iterate of f we may

assume X is contained in an invariant component V of PC(f). Let π : V̂ → V be the

normalization of V, and let f̂ be the lift of f on V̂ . Then by Jonsson [22] V̂ = P
1 or a torus,

and f̂ is a PCF map on P
1 or an expanding torus map. We have the following commutative

diagram

V̂ V̂

V V

f̂

π π

f

Let U ⊂ π−1(X) be an open set which is contained in the unramification locus of π. Then

U is a Siegel variety in V̂ . It is well-known that a PCF map on P
1 or a expanding torus map

can not have such a Siegel variety, a contradiction. �

Next we can prove Theorem 4.8, thus completes the proof of Theorem 1.1.

Theorem 4.8. Let f be a PCF map on P
2 of degree ≥ 2. If x ∈ J1 such that there is a Fatou

disk containing x. Then x must be contained in the basin of a critical component cycle, or in
the stable manifold of a super-saddle cycle.

Proof. Our argument borrows some ingredients in Ueda’s paper [32] and Le’s paper [24]. We
argue by contradiction. Suppose x is not contained in the basin of a critical component cycle,
nor in the stable manifold of a super-saddle cycle. Then by Lemma 4.6, there is a point
y ∈ ω(x) such that there is a Siegel variety X containing y. By Lemma 4.7 we may assume
X ∩ PC(f) = ∅ (shrink X if necessary).

Let Z be the universal covering space of P2 \ PC(f), and let η : Z → P
2 \ PC(f) be the

universal covering map. Let z0 ∈ Z satisfying η(z0) ∈ φ(X). Recall that φ = limj→∞ fnj |X .
By passing to a subsequence we may assume kj := nj+1−nj → +∞. LetW be a neighborhood
of η(z0) such that W ∩PC(f) = ∅, and let Z0 be a neighborhood of z0 such that η : Z0 → W
is a biholomorphism. Let x0 ∈ X satisfying fnj(x0) → η(z0). Let Wj be the connected

component of f−kj(W ) containing fnj(x0). Let gj : Z0 → Wj be the holomorphic map such

that fkj ◦ gj = η as in Corollary 2.6. Since Z is simply connected, there is no obstruction to
extend gj as a globally defined map on Z. In the following gj will denote this globally defined
map. By Lemma 2.7 {gj} is a normal family. By shifting to a subsequence we may assume
{gj} converges locally uniformly to a holomorphic map g.
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Let V := η−1(X) ∩ Z0. We claim that g = η on V. To show this, let z ∈ V be an
arbitrary point, we are going to show g(z) = η(z). Let x ∈ X satisfying fnj(x) → η(z). Since
for j large enough we have fnj+1(x) ∈ W , we get fnj(x) ∈ Wj . Let zj+1 ∈ Z0 such that
gj(zj+1) = fnj(x). By the equation fkj ◦ gj = η we have that η(zj+1) = fnj+1(x). Since
fnj+1(x) → η(z), we get that zj+1 → z. Now let j → +∞ in the equation gj(zj+1) = fnj(x)
we get that g(z) = η(z). Thus g = η on V.

The equation g = η defines a closed analytic set Y ⊂ Z. Since V ⊂ Y , Y has dimension
one. Let Y0 be an irreducible component of Y0 of pure dimension 1. By Lemma 2.7 g is a
Fatou map, thus η|Y0

is a Fatou map since g = η on Y0. Since Y0 is a closed analytic set in
Z and η is a covering map, the following property holds: for every x ∈ P

2 \ PC(f), there is
a neighborhood U of x such that either η−1(U) ∩ Y0 = ∅ or every connected component of
η−1(U) ∩ Y0 is relatively compact in Y0.

Let π : C3 \ {0} → P
2 be the canonical projection. Let F be a homogeneous polynomial

endomorphism on C
3 which induce f . It is clear that F is a PCF map on C

3. Let GF be the
Green function of F . Recall that η : Y0 → P

2 is a Fatou map. By Theorem 2.2, there exists a
holomorphic lift Φ : Y0 → C

3 \{0} of η|Y0
such that π◦Φ = η and GF ◦Φ is identically zero on

Y0. Since η(Y0)∩PC(f) = ∅ we get that Φ(Y0)∩PC(F ) = ∅. By the construction of Φ and by
the fact that π is an open map, the following property holds: for every x ∈ C

3 \PC(F ), there
is a neighborhood U of x such that either Φ−1(U) ∩ Y0 = ∅ or every connected component of
Φ−1(U) ∩ Y0 is relatively compact in Y0.

Let Y1 be the smooth part of Y0, then Y1 is a Riemann surface. Let S := Φ(Y0 \ Y1), then
S is a discrete set in C

3 \ PC(F ). Since GF ◦ Φ is identically zero on Y1, Φ(Y1) is contained
in a bounded domain in C

3. This implies that Y1 is a hyperbolic Riemann surface, i.e. there
exists a universal covering map κ : D → Y1, where D is the unit disk. Since κ is a covering
map, the following property holds:

for every x ∈ C
3 \ (PC(F ) ∪ S), there is a neighborhood U of x such that either (Φ ◦

κ)−1(U) ∩ D = ∅ or every connected component of (Φ ◦ κ)−1(U) ∩ D is relatively compact in
D (⋆).

We consider the map Φ ◦ κ : D → C
3. The following idea of using Fatou-Riesz’s theorem

was first appeared in Le [24]. As we mentioned before Φ ◦ κ(D) is contained in a bounded
domain in C

3. By the well known Fatou-Riesz’s theorem (see Milnor [26] Theorem A.3), for
Lebesgue a.e. θ ∈ [0, 2π), the radial limit

τθ = lim
r→1−

Φ ◦ κ(reiθ)

exists for some τθ ∈ C
3.

We next show that for every limit τθ, τθ ∈ PC(F ) ∪ S. Assume by contradiction that
τθ /∈ PC(F ) ∪ S. Let U be a small neighborhood of τθ, then by property (⋆), (Φ ◦ κ)−1(U)
is a disjoint union of relatively compact open set in D. Then for every R ∈ (0, 1) there exists
a r satisfying R < r < 1 such that reiθ /∈ (Φ ◦ κ)−1(U) (by the connectedness of the interval
[R, 1]). This contradicts the fact that τθ = limr→1− Φ ◦ κ(reiθ). Thus τθ ∈ PC(F ) ∪ S.

Since S is a countable set, there must exist a positive Lebesgue measure set E ⊂ [0, 2π)
such that for every θ ∈ E either limr→1− Φ ◦ κ(reiθ) ∈ PC(F ) or limr→1− Φ ◦ κ(reiθ) = s for
an element s ∈ S. We will show that these two cases are both impossible, then we will get a
contradiction.
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We first treat the case that for every θ ∈ E, limr→1− Φ ◦ κ(reiθ) ∈ PC(F ). Let P be a
homogeneous polynomial that defines PC(F ), i.e.

PC(F ) =
{
x ∈ C

3 : P (x) = 0
}
.

Then P ◦Φ ◦ κ is a bounded holomorphic function on D such that the radial limit

lim
r→1−

P ◦Φ ◦ κ(reiθ) = 0

for every θ ∈ E, where E has positive Lebesgue measure. By Fatou-Riesz’s theorem P ◦Φ ◦κ
is identically zero on D. This implies Φ ◦ κ(D) ⊂ PC(F ) which imples Φ(Y1) ⊂ PC(F ), a
contradiction.

Second we treat the case that for every θ ∈ E, limr→1− Φ ◦ κ(reiθ) = s, where s ∈ S. Let
P1, P2, P3 be three linear polynomial in C

3 that define s, i.e.

{s} =
{
x ∈ C

3 : Pi(x) = 0, i = 1, 2, 3
}
.

Then for every i we get that Pi ◦Φ ◦κ is a bounded holomorphic function on D such that the
radial limit

lim
r→1−

P ◦Φ ◦ κ(reiθ) = 0

for every θ ∈ E, where E has positive Lebesgue measure. By Fatou-Riesz’s theorem, for every
i we get that Pi ◦ Φ ◦ κ is identically zero on D. This implies Φ ◦ κ(D) = {s} which imples
Φ(Y1) = {s}, contradicts the fact that Y1 has dimension 1. This completes the proof. �

We end this section by showing the sporadic super-saddle cycle is contained in J2.

Lemma 4.9. Let f be a PCF map on P
2 of degree ≥ 2, then every sporadic super-saddle

cycle is contained in J2.

Proof. Let x be a super-saddle cycle which is not contained in a critical component cycle.
Passing to an iterate of f we may assume every x is fixed and every periodic component
of PC(f) is invariant. Let V be an invariant component of PC(f) containing x, by our
assumption V 6⊂ C(f). By Lemma 3.6, the eigenvalue λ of Df |TxV satisfies |λ| > 1. Let

π : V̂ → V be the normalization of V, and let f̂ be the lift of f on V̂ . Let x̂ ∈ V̂ such that
π(x̂) = x. Since V is smooth at x, such a x̂ is unique. Then x̂ is a repelling fixed point of

f̂ . Since V̂ is either P
1 or a torus and f̂ is either a rational function of degree ≥ 2 or an

expanding torus map, x̂ can be approximated by a sequence of periodic points {ŷn} ⊂ V̂
such that yn = π(ŷn) is in the smooth part of PC(f). Then by the result of Le [24], yn is
a repelling periodic point of f for every n. By Theorem 1.8, yn ∈ J2. Since yn → x we get
x ∈ J2 as desired. �

5. Some corollaries of the main results

In this section we prove Theorem 1.4, Corollary 1.5, Theorem 1.6 and Corollary 1.7.
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5.1. Non-wandering set for PCF maps on P
2. Before proving Theorem 1.4, we prove

the following lemma.

Lemma 5.1. Let f be a PCF map on P
2 of degree ≥ 2. Let C be an invariant critical

component. Then Ω(f) ∩ C is the union of super-attracting cycles and J1 ∩ C, moreover
periodic points are dense in Ω(f) ∩ C.

Proof. Let π : Ĉ → C be the normalization of V, and let f̂ be the lift of f on Ĉ. Then

Ĉ = P
1, and f̂ is a rational function of degree ≥ 2, see [17]. Moreover by Jonsson [22], f̂ is

also a PCF map. We have the following commutative diagram.

Ĉ Ĉ

C C

f̂

π π

f

It is clear that if p is a periodic point of f̂ , then π(p) is a periodic point of f. Let J(f̂) be the

Julia set of f̂ . Since periodic points of f̂ are dense in J(f̂), periodic points of f are dense in

π(J(f̂). We claim that J1 ∩C = π(J(f̂). By the above discussion π(J(f̂) is contained in the

closure of periodic points. These periodic points must be super-saddle. Thus π(J(f̂) ⊂ J1∩C.

To show J1∩C ⊂ π(J(f̂ ), it is equivalent to show that for every y in the Fatou set of f̂ , π(y) is

in the Fatou set of f . Since f̂ is a PCF map, y is contained in the basin of a super-attracting
cycle of f̂ . For every super-attracting fixed point z of f̂ , π(z) is a fixed point of f . It is clear
that π(z) is not repelling, since π(z) ∈ C(f). It is also clear that π(z) is not super-saddle,
since otherwise π(z) is a smooth point of C (see Le [24] Proposition 5.4), and z must be a

repelling point of f̂ . Thus π(z) must be a super-attracting fixed point of f . Thus π(y) is in

the basin of π(z), this implies π(y) is in the Fatou set of f . Thus J1 ∩C = π(J(f̂) as desired.

Since π(J(f̂ ) is contained in the closure of periodic points, J1 ∩C is contained in Ω(f). Since
the Fatou set of f is the union of basins of super-attracting cycles, we get that Ω(f) ∩ C
is exactly the union of super-attracting cycles and J1 ∩ C. This implies periodic points are
dense in Ω(f) ∩ C.

�

Now we can prove Theorem 1.4. Recall the statement.

Theorem 5.2. Let f be a PCF map on P
2 of degree ≥ 2. Then J2 is the closure of repelling

periodic points. If further assumed there is no sporadic super-saddle cycle, then Ω(f) is the
closure of periodic points and Ω(f) \ J2 is the union of super-attracting cycles together with
∪(C ∩ J1), where C ranges over the set of critical component cycles, in particular J2 is open
in Ω(f).

Proof. By Theorem 1.8, J2 is the closure of the set of repelling periodic points. In the following
we assume there is no sporadic super-saddle cycle. First we show that Ω(f) is the closure of
periodic points. Let x ∈ Ω(f) such that x /∈ J2. By Theorem 1.1 and the fact that Fatou
set are only super-attracting basins, either x is contained in the basin of a super-attracting
cycles, or x is contained in the basin of a critical component cycle. In the first case it is clear
that x must be a super-attracting periodic point. In the second case, x must be contained
in a critical component cycle, thus x is contained in the closure of periodic points by Lemma
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5.1. Again by Lemma 5.1, for every critical component C we have Ω(f) ∩ C is the union of
super-attracting cycles and J1 ∩ C. Thus Ω(f) \ J2 is the union of super-attracting cycles
together with ∪(C ∩ J1), where C ranges over the set of critical component cycles. �

5.2. Laminarity of the Green current for PCF maps on P
2. Recall the statement of

Corollary 1.5.

Corollary 5.3 (de Thélin). Let f be a PCF map on P
2 of degree ≥ 2. Then the Green

current T is laminar in J1 \ J2.

Proof. Let E be the union of sporadic super-saddle cycles. Let W be the union of stable
manifolds of super-saddle cycles in E. Then W is a pluri-polar set, and T put no mass on W
(since the local potential of T is Hölder continuous, see [10]). By Theorem 1.1, T |J1\J2 put
full mass on the union of the basins of critical component cycles. By Daurat [7], T is laminar
in every basin of critical component cycle. Thus T is laminar in J1 \ J2. �

5.3. Expanding sets for PCF maps on P
2. Recall the statement of Theorem 1.6. The

following proof is an adaption of the argument in Maegawa [25].

Theorem 5.4. Let f be a PCF map on P
2 of degree ≥ 2 and let K be an invariant compact

set. Then K is expanding if and only if K does not contain critical points.

Proof. The only if part is obvious. In the following we prove K is expanding if K does not
contain critical points. To prove that K is an expanding set, it is equivalent to prove the
following limit tends to infinity:

min
x∈K

min
v∈TxP

2,|v|=1
|D(fn)(v)| → +∞, n→ +∞.

Assume by contradiction that the limit does not go to infinity. Then there exists a constant
C > 0 and a sequence of points {xm} ⊂ K and vectors {vm} ⊂ TKP

2 such that |vm| = 1 and
|D(fnm)xm(vm)| < C, where {nm} is a sequence of integers. By shifting to a subsequence
we may assume fnm(xm) → x ∈ K. Since K is invariant and K ∩ C(f) = ∅, by Lemma 2.4
we know that x is a point of bounded ramification. Let W be a neighborhood of x and let
η : Z →W be the branched covering constructed in Corollary 2.6. Let Wm be the connected
component of f−nm(W ) containing xm. Let gm : Z → Wm be the holomorphic map such
that fnm ◦ gm = η. Then by Lemma 2.7 by shifting to a subsequence we may assume {gm}
locally uniformly converges to a Fatou map g. Since K is an invariant compact set and
K ∩ C(f) = ∅, by Theorem 1.1 we get K ⊂ J2. Again by Theorem 1.1 and the fact that
K ∩ C(f) = ∅, there is no Fatou disk containing points in K. Thus g must be a constant
map. Thus we have diamWm → 0. Since K ∩C(f) = ∅, Wm ∩C(f) = ∅ for m large enough.
Thus fnm : Wm → W is a biholomorphism when m large. We can then define g′m : W → Wm

be the inverse map of fnm|Wm , and it easily follows that g′m converges locally uniformly to a
constant map. This implies

(5.1) max
y∈U

max
v∈TyP

2,|v|=1
|Dg′m(v)| → 0, m→ +∞,

where U is a small neighborhood of x.

By the definition of g′m (5.1) is equivalent to the following

(5.2) min
z∈Um

min
v∈TzP

2,|v|=1
|D(fnm)(v)| → +∞, m→ +∞,
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where Um := f−nm(U) ∩Wm.

By our construction of {xm} and {vm}, it follows that xm ∈ Um for m large and

|D(fnm)xm(vm)| < C.

This contradicts (5.2). Thus the proof is complete. �

5.4. PCF maps on P
2 that are expanding on J2 or Axiom A. We first discuss the PCF

maps on P
2 that are expanding on J2. Recall the first part of the statement of Corollary 1.7.

Corollary 5.5. Let f be a PCF map on P
2 of degree ≥ 2. Then f is expanding on J2 if and

only if every critical component of f is preperiodic to a critical component cycle.

Proof. We first show the if part. If every critical component of f is preperiodic to a critical
component cycle, then C(f) is contained in the basins of critical component cycles. Thus
J2 ∩ C(f) = ∅ and J2 is expanding follows form Theorem 1.6.

Next we show the only if part. Assume by contradiction that there is a critical component
C which is not preperiodic to a critical component cycle. Let V be a periodic component of
PC(f) such that V 6⊂ C(f). Then by the argument in the proof of Lemma 5.1, there is a
repelling periodic point x ∈ V . By Theorem 1.8 we know that x ∈ J2. Let y ∈ C(f) such
that fn(y) = x for some n > 0. Then y ∈ J2 since J2 is totally invariant. Thus J2∩C(f) 6= ∅.
Thus J2 is not expanding, which is a contradiction. This completes the proof. �

Next we introduce the notion of Axiom A for holomorphic endomorphisms on P
k. (For the

general definition for smooth endomorphisms on Riemannian manifold, see for instance [27].)

Definition 5.6. Let f be a holomorphic endomorphism on P
2 of degree ≥ 2. Then f satisfies

the Axiom A if the following two conditions hold:

(1) The non-wandering set Ω(f) is hyperbolic.

(2) Ω(f) is the closure of periodic points.

We give the following characterization of Axiom A for PCF maps on P
2. Some interesting

examples of Axiom A PCF maps can be found in Ueno [34].

Corollary 5.7. Let f be a PCF map on P
2 of degree ≥ 2. Then f is Axiom A if and only if f

is expanding on J2, and for every critical component cycle C, C ∩ J1 is a hyperbolic (saddle)
set.

Proof. By Theorem 1.4 we know that Ω(f) is the closure of periodic points. Thus f is Axiom
A if and only if f is hyperbolic on Ω(f). By Theorem 1.4, Ω(f) \ J2 is the union of super-
attracting cycles and C∩J1, where C is a critical component cycle. Thus f is Axiom A if and
only if f is expanding on J2, and for every critical component cycle C, C ∩ J1 is a hyperbolic
(saddle) set (since super-attracting cycle is automatically a unstable dimension 0 hyperbolic
set). �
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6. Further discussion

In Lemma 2.9 we proved that if f is a PCF map on P
2, then the set of sporadic super-saddle

cycles is a finite set. However we do not know any examples of PCF maps on P2 carrying such
sporadic super-saddle fixed points. One may conjecture that such sporadic super-saddle fixed
points actually can not exist for PCF maps on P

2. Theorem 3.4 may be seen as an evidence
supporting this conjecture.

It is natural to ask whether our main result Theorem 1.1 can be generalized to higher
dimension. Let f be a PCF map on P

k, one may conjecture that in nice enough cases, the
picture might be the following:

(1) Let Jm be the Julia set of order m. Then Jm \ Jm+1 is contained in the union of
the attracting basins of m-dimensional periodic submanifolds, where these submanifolds are
contained in the critical set.

(2) There is no Fatou disk containing x for every x ∈ Jk.

At least two difficulties need to be overcome for proving this conjectural picture. The first is
that the classification of points of bounded ramification is not known for higher dimensional
PCF maps. In dimension 2 this classification is known by Lemma 2.4. A more serious
problem is that, even if the classification of the points of bounded ramification is known, one
can possibly prove that for x ∈ P

k \ Jk, ω(x) is contained in the set of points of unbounded
ramification. But it is not possible to show (1), the structure of the Julia sets filtration, by the
argument in Theorem 4.5 and 4.8, since in our argument the points of bounded ramification
play an important role.
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