
HAL Id: hal-02963298
https://hal.science/hal-02963298v1

Submitted on 10 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Features Understanding in 3D CNNs for Actions
Recognition in Video

Kazi Ahmed Asif Fuad, Pierre-Etienne Martin, Romain Giot, Romain
Bourqui, Jenny Benois-Pineau, Akka Zemmari

To cite this version:
Kazi Ahmed Asif Fuad, Pierre-Etienne Martin, Romain Giot, Romain Bourqui, Jenny Benois-Pineau,
et al.. Features Understanding in 3D CNNs for Actions Recognition in Video. Tenth International
Conference on Image Processing Theory, Tools and Applications, IPTA 2020, Oct 2020, Paris, France.
�hal-02963298�

https://hal.science/hal-02963298v1
https://hal.archives-ouvertes.fr

Features Understanding in 3D CNNs
for Actions Recognition in Video

Kazi Ahmed Asif Fuad
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, F-33400
Talence, France

asif.ahmed.fuad@gmail.com

Pierre-Etienne Martin
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, F-33400
Talence, France

pierre-etienne.martin@u-bordeaux.fr

Romain Giot
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, F-33400
Talence, France

romain.giot@u-bordeaux.fr

Romain Bourqui
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, F-33400
Talence, France

romain.bourqui@u-bordeaux.fr

Jenny Benois-Pineau
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, F-33400
Talence, France

jenny.benois-pineau@u-bordeaux.fr

Akka Zemmari
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, F-33400
Talence, France

zemmari@u-bordeaux.fr

Abstract—Human Action Recognition is one of the key tasks
in video understanding. Deep Convolutional Neural Networks
(CNN) are often used for this purpose. Although they usually
perform impressively, their decision interpretation remains chal-
lenging. We propose a novel visual CNN features understanding
technique. Its objective is to find salient features that played a
key role in decision making of the network. The technique only
uses the features from the last convolutional layer before the fully
connected layers of a trained model and builds an importance
map of features. The map is propagated to the original frame
thus highlighting the regions in them that contribute to the final
decision. The method is fast as it does not require gradient
computation as many state-of-the-art methods do. Proposed tech-
nique is applied to the Twin Spatio-Temporal 3D Convolutional
Neural Network (TSTCNN), designed for Table Tennis Actions
recognition. Features visualization is performed at the RGB and
Optical flow branches of the network. Obtained results are
compared to other visualization techniques both in terms of
human understanding and similarity metrics. The metrics show
that generated maps are similar to those obtained with known
Grad-CAM method, e.g. Pearson Correlation Coefficient between
the maps generated of RGB data for Grad-CAM and our method
is 0.7± 0.05 and 0.72± 0.06 on Optical Flow data.

Index Terms—Explainable Deep Learning, 3D convolutions,
Action classification, Video indexing, Table Tennis

I. INTRODUCTION

Human action recognition in video is one of the key problems
in video analysis. This computer vision task involves identifying
different actions in a sequence of images. It becomes chal-
lenging when actions have low inter-class variability. Although
Convolutional Neural Networks are performing impressively
in different action recognition datasets such as DeepMind
Kinetics, UCF-101 or AVA [1], it is not quite explainable why
they make the correct or incorrect classification decisions. Our
main objective is to perform fine grained action recognition in
table tennis with the aim of improving athletes’ performances.

From raw video of table tennis exercises, it is necessary to
recognize actions properly before motion, posture and other
performance indicators could be analyzed. The difficulties
in indexing such video content reside in the low inter-class
variability of actions [1]. The so-called 3D CNNs [2], [3] with
Twin Spatio-Temporal architectures (TSTCNN) [1] classify
actions quite efficiently, but the interpretation of their decision
making still remains open. It is our concern in this paper. The
explanation of decisions is specifically important for the target
users of video classification, sport coaches in our case. Hence,
this will help table tennis teachers to focus on particular strokes
performed by students for post exercise analysis. It is needed to
explain the decision making of the CNN, at the generalization
step, as the user is interested why a particular image or video
segment is assigned to a particular class by the CNN classifier.

The contribution of this paper is a new fast method of
explanation of network decisions. It is generic and is applied
to the RGB and Optical Flow (OF) branches of a TSTCNN
architecture to highlight contributions of pixels both in video
frames (RGB) and motion vectors (OF) into the final decision.
Contrary to the popular visualization methods which are based
on back-propagation with gradient computation, the proposed
method uses only features value and global importance of
features channels. It is compared with the state-of-the-art
gradient-based techniques such as Vanilla Gradient-based Back-
propagation [4], Guided Back-propagation and Grad-CAM [5].

The rest of the paper is organized as follows. Section 2
discusses related works on CNN features understanding tech-
niques. Section 3 explains the proposed algorithm and Section
4 compares the results of different test cases between the
proposed algorithm and existing algorithms. Finally, conclusion
and discussions are drawn in Section 5.

II. RELATED WORK

Deep Neural Networks (DNN) are commonly considered
as black-boxes; indeed they are composed of stacked layers978-1-7281-8750-1/20/$31.00 ©2020 IEEE

of individually very simple functions whose parameters cor-
respond to weights that mainly depend on the training data.
However, the global function that represents such a network is
hardly understandable. Several works has been done to mitigate
this issue by visually providing hints on the decision taken
by the DNN [6]. Such visual application often relies on a
view that provides features importance in the input space (i.e
which feature positively voted for the final classification). Two
main approaches are used: i) methods on the basis of back-
propagation and gradient computation and ii) methods based
on back-tracing feature values.

A. Methods with back-propagation and gradient computation

In the pioneering work by Simonyan et al. [4], the authors
are interested in the so-called “class-saliency”: what are the
pixels which contribute the most into the decision of assigning
an image to a particular class. A class score function Sc(I) of
a CNN was considered as a linear operation of convolution of
an input image and a weight vector w. In reality the decision
function of a CNN is highly non-linear. Hence the Taylor
expansion is used and the derivatives (gradient) of the weights
with regard to the argument -image I in the vicinity of I0 were
computed. Strong derivatives of weights indicate pixels which
contribute to the decision the most. This allowed to build the
so-called “class-saliency maps”. The Grad-CAM method [5]
is based on the same principle. It generates a heatmap that
highlights features of interest by backgpropagating the gradient
of the last layer until it reaches a convolution to compute the
influence of the neurons on the prediction. The importance map
is then upscaled to the initial image size in order to produce the
heatmap. Zintgraf et al. [7] generates a heatmap that indicates
the input pixels that voted against the predicted class and those
that voted for. The method relies on difference analysis that
modifies the input space in order to detect how the prediction
changes if the feature is unknown. Despite the gradient is not
computed as in [4], it is kind of “differential” approach.

B. Methods based on back-tracing feature values

The Guided Backpropagation uses the neuronal responses
in high-level feature maps and propagates them back to the
image thus finding pixels which contributed the most into
the response of a single neuron [8]. When a single neuron
is left non-zero in the high level feature map the resulting
reconstructed image shows the part of the input image that is
the most strongly activating this neuron. The authors of [8]
work with fully convolutional neural networks which does not
contain max pooling layers and thus the “tractability” of a
neural response to the original pixel is possible. Layer-Wise
Relevance Propagation (LRP) [9] also generates a heatmap of
input features that supported the decision. The method relies on
the concept of a relevance score per activation; the sum of all
relevance scores of each layer is equal. Li et al. [10] generate
salience relevant maps thanks to firstly LRP generated maps.
This additional step allows to highlight part of image following
human attention mechanisms by removing irrelevant parts
highlighted by LRP. VisualBackProp [11] aims at visualizing

Fig. 1. Analyzed TSTCNN architecture.

the pixels at the origin of the decision in order to help to
debug CNN in real time; the method can be used both during
training and inference. The method is quite simple: the output
of each ReLU layer is averaged, up-scaled to the resolution of
the previous layer and multiplied by the previous layer. The
operation is identically repeated until the input layer.

Our proposed approach relies on the feature maps of the
last convolutional layer only following the philosophy that
in Deep CNNs all feature layers except the fully connected
(FC) layers are “feature extractors”. Hence, we only use the
last one, the most relevant features for the final decision to
identify the salient regions in the video frames due to their
back-propagation. The method is presented in the next section.

III. PROPOSED METHOD

The proposed method is generic and can be applied to fea-
tures understanding in 2D or 3D spatio-temporal convolutional
networks. We shortly present the architecture of this later type
in the following section.

A. 3D spatio-temporal CNN for action recognition

The TSTCNN for action recognition has been already
proposed and explained in [1]. We shortly review it. It is
illustrated in figure 1. It is a twin network which consists of
2 individual branches of the same architecture. It comprises
three 3D conv blocks consisting of 3D conv layers, ReLu and
Max Pooling layers. The number of filters and hence features
maps from input to output respectively is of 30, 60 and 80,
followed by a fully connected layer of size 500. Each 3D conv
layer uses 3× 3× 3 space-time filters. The pooling operation
is performed uniformly in space and time with a factor of
two. The first branch, the upper one in figure 1 takes, as input
data, chunks of cropped video frames using RGB values of
pixels. The second branch takes as input the motion vectors
V = (vx, vy) computed using the“Beyond Pixel” [12], [13]
estimator on the same cropped frames. Velocity fields vx and
vy are considered as the input data channels. The two branches
are fused through a final fully connected layer of size 21,
representing the number of classes in the taxonomy proposed
in [1], ending by a Softmax function for computation of a
classification score.

B. Features understanding method

The core of the method we propose relies in the back-tracing
of “strong” features from the last feature-layer (conv layer).
It “explains” the Network decisions at the generalization step.

At the generalization step, the chunk of input video frames to
classify is forward-propagated through the trained network. In
a CNN the conv layers act as features extractors and the last
FC-layers - as classifiers. The upper conv layers extract low
level features [14] from input data, while deeper ones extract
higher level semantic features. Hence, we extract features from
the last conv layer. The features are taken after the activation
layer and just before the fully connected layers. The overview
of our proposed algorithm is given in Figure 2. Here the method
is illustrated for one video frame in RGB data without loosing
generality.

By pushing the input data (chunks of video frames of size
(W × H × T)=(120 × 120 × 100), through the convolution
and polling layers of the network, the input video frames
become “feature frames”. Their number is reduced by pooling
in temporal dimension by a factor of 2. Accordingly to the
chosen number of filters and pooling factors in spatial and
temporal dimensions [1] before fully connected layers we get
F = 80 feature maps containing each N = 12 feature frames
of size 15×15. The proposed method is applied to each feature
frame and the resulting N importance maps M ′n, n = 1, ...N
are back-projected on all input frames by trilinear interpolation
in space and time.

The second step generates a binary map for each channel of
this feature map in order to give an importance value for each
feature channel-by-channel. To detect the strongest features,
we suppose that the features values in features maps follow
Gaussian distributions. Obviously, the mean is positive as we
take the features after a commonly used ReLu non-linearity
that transforms negative values to 0.

In the last convolutional layers features are “expressive”
and only few of them are important. Following the Gaussian
distribution hypothesis we are interested in the right queue of
the distribution corresponding to “rare” and strong features.
Hence we threshold the features maps xi,c accordingly to the K-
sigma rule. c mean µc and standard deviation σc are calculated
for each channel. Then a binary map per channel is built which
marks the strong features as in eq. 1:

bc(R(xi,c)) =

{
1 if xi,c ≥ µc +K ∗ σc
0 otherwise. (1)

Hence after thresholding, in each channel we have marked
the strongest features (see the illustration of binary features
maps in the figure 2 in the bottom part).

Next, not all features channels are globally significant for
decision making. The number of convolutional filters in each
layer is often chosen on the basis of preliminary experiments,
full optimization of the network hyper parameters being too
heavy. We propose to weight channel contributions accordingly
their importance. The importance is measured by the mean
value wf = µf of all the features in a channel after the ReLu
layer over the temporal dimension. In our case, according to
the size of the features before the fully connected layer, the
channel importance matrix is composed a F = 80 vectors of
size N = 12.

Then, we compute the importance map M as a linear
combination of all channel binary maps bc using the channel
weights µc and normalize it to [0; 1] by using Min-Max feature
scaling. Finally, the normalized importance map M ′ is up-
scaled to the original image/video frame dimension W×H by a
linear interpolation giving M ′W,H . Further, the importance map
M ′W,H is superimposed on the original image as a heat-map
to visualize the spatial information which has contributed the
most into strong features of the last conv layer. Therefore, we
visualize the importance map without calculating the gradient.

IV. EXPERIMENTS AND RESULTS

All experiments have been conducted using the Twin Spatio-
Temporal CNN - TSTCNN - model trained on TTStroke-21
presented in [1], and shortly described in Section III-A. The
dataset, and the training process are presented in Section IV-A,
our visualization results are compared with common methods
in Section IV-B and computation times of all methods are
compared in Section IV-D.

A. Experimental Protocol

In this work we used TTStroke-21 dataset composed of
129 videos recorded at 120 frames per second. It was annotated
by experts of table tennis. The beginning, the end and the type
of stroke performed were labeled. It contains a total of 1387
crowd-sourced annotations for 20 stroke types and a rejection
class. After filtering, a total of 1164 samples are considered
with 1058 strokes and 106 negative samples. Each sample
represents a video segment of length ranging from 99 frames
(0.82s) to 276 frames (2.30s) with mean length of 174±43.14
frames (1.46 ± 0.36 sec). Those samples are then split in 3
sets: “Train set” with 808 samples, “Validation set” with 230
samples and “Test set” with 116 samples.

Training step was performed over 2000 epochs. The opti-
mization algorithm used was Stochastic Gradient Descent with
Nesterov Momentum. The momentum coefficient was set to
0.5 and decreased to 0.1 and 0.05 respectively at epoch 1000
and 1500, with a learning rate of 0.001, Cross-entropy loss,
weight decay of 0.005 and a batch-size of 10 are other hyper
parameters of the model. The input of the model is of size
(W ×H × T)=(120× 120× 100) representing the width, the
height and the temporal dimension (duration) of our cropped
region of interest (ROI), from original frames of size (320),
with 3 channels for RGB and 2 channels for OF. The RGB
values are normalized by theoretical maximum (255 in our
case of 8-bit coding of each color channel). The OF data are
normalized using the “Normal” method [13] described in eq. 2
where v and vN represent respectively one component of the
OF V and its normalization, and µ and σ are standing for the
mean and the standard deviation of the distribution of maximum
OF magnitude values over the whole TTStroke-21 dataset.

v′ = v
µ+3×σ

vN (i, j) =

{
v′(i, j) if |v′(i, j)| < 1
SIGN(v′(i, j)) otherwise.

(2)

Conv.
Layers

w1 w2 wF-1 wF

C1

C2

Cm-1

Cm

*

Convolu�onal
Layers

Last Convolu�onal
Ac�va�on Feature maps

Fully Connected
Layers

+ Add all
channels

+
K-Sigma

Thresholding

Binary features maps

Classes
Input
Image

Importance Map

Input Image with
Importance map

Importance Weights

Weighted Binary
features maps

N
or

m
al

iz
a�

on

U
ps

ca
le

Fig. 2. Overview of proposed visualization algorithm. Features are extracted from the last convolutional layer after the activation function (upper part). Binary
features maps are generated. Importance weights are calculated. Importance map is computed as a normalized linear combination with channel weights and
visualized as a heat-map on the original image

The training samples are randomly augmented at each epoch
using a random translation in x and y direction respectively
in the range of ±0.1 ∗W and ±0.1 ∗H , a random rotation in
the range of ±10◦, and a random homothecy in the range of
1±0.1. Temporal augmentation is also done by selecting the T
successive frames of the sample following a normal distribution,
around the temporal center of the segmented video [1]. Without
data augmentation, the T frames from the RGB and OF are
centrally extracted in the temporal dimension. Model with the
best accuracy on the validation set has been saved and used
in our experiment in features explanation. This model attained
91.3% and 87.9% of accuracy respectively on the validation
set and on the test set.

B. Visual Analysis

Visualization was initiated with PyTorch Code from [15]. The
author developed the code for different visualization algorithms
considering Single Branch CNNs in 2D. We extended it for
Multi Branches CNNs and for 3D application. Our video results
are available online1, the code will be made available too.

To keep the comparison uniform in the Figures 3 and 4,
all the importance maps are scaled between 0 and 1 using
Min-Max Feature scaling and are visualized as heatmap over
the input frame using “jet” color scale represented on the
right of the Figures. Even if the data processed are in 3D, we
only show one frame from the 100 frames of the video input
for better visualization. In Figure 3 the OF are visualized by
converting V = (vx, vy) into an image in the color domain
HSL where the Hue represents the angle created by vx and
vy , the Saturation is set to 1 and the Lightness represents the
amplitude of the motion.

Figure 3 presents Table Tennis stroke Defensive Backhand
block with different visualization algorithms for both RGB and
OF data input. From visual observation, we can see that Vanilla

1https://github.com/asifahmedfuad/feature understanding method

Gradient-Based Back-propagation(VaGrBp) [4], Guided Back-
propagation(GuBp) [8] and Guided Grad-CAM(GuGrc) [5]
visualizations suffer from “discretization effect”. On the other
hand, continuous and smooth visualization has been obtained
in Grad-CAM(GrC) [5] and Our Algorithm. If we observe
the RGB data and it’s visualizations, in the Figure 3. a-f,
Vanilla Gradient-Based Back-propagation has focused on all
over the body and table but Guided approaches focused mostly
on the upper body and the Ball. In contrast, Grad-CAM and
Our Algorithm focused on the left leg and the hands as they
are most important features that are changing over the time.
Regarding OF (see Figure 3.g-k), our algorithm highlights the
ball mainly (remember that we select only the most prominent
and “rare” features in the last conv layer, see Section III-B),
as most algorithms but Vanilla Gradient-Based and Guided BP
give quite a noisy picture of “important” motion vectors on
the body.

We have also conducted experiments to check if the choice
of the features from the last conv layer was justified, see
motivation for this in Section III-B. Figure 4 illustrates a
typical visualization (on one stroke) using features of different
conv layers of the analyzed 3D CNN.

Furthermore, our method uses features thresholding with
K-sigma rule 1. Hence we use the popular 2-sigma and 3-
sigma rules supposing Gaussian distribution of features, i.e.
K = 2 and K = 3. What comes out of these experiments,
is that the features from the third conv layer are the most
coherent with the motion of the person and the ball (the third
row) and that the 3-sigma rule is more interesting as allows to
filter-out contrasted features on static objects and concentrate
on changing details captured due to 3D convolutions. The
objective visual evaluation of explanation requires a large user
study which is in the perspective of our work. Nevertheless,
we can quantify the similarity of resulting visualization maps
obtained by our method and by the baseline methods. This
comparison is presented in the following section.

a. RGB Input b. VaGrBp [4] c. GuBp [8] d. GrC [5] e. GuGrC [5] f. Our Algorithm

g. Flow Input h. VaGrBp [4] i. GuBp [8] j. GrC [5] k. GuGrC [5] l. Our Algorithm

Fig. 3. Different Visualization algorithm outputs of our model for the class: Defensive Backhand block. First row shows the visualization for RGB input data
and second row does the same for Flow input data.

a. conv1 feature b. with K = 2 c. with K = 3

e. conv2 feature f. with K = 2 g. with K = 3

h. conv3 feature i. with K = 2 j. with K = 3

Fig. 4. Visualization with features from different conv layers and Influence
of K - value in thresholding. At top row, result with first conv layer features.
At middle row, second conv layer features and at the third row, results with
third conv layer features

C. Metric-based Comparison of methods

To compare our method with the baselines we use a common
strategy of bench-marking of algorithms for prediction of visual
attention. Here we will compute the so-called “Similarity” and
Pearson correlation coefficient metrics [16]. We perform the
comparison on the normalized importance map M re-scaled
to the resolution of input frames, see Section III.

The Similarity (SIM) [16] is a popular metric to perform
a simple comparison between importance maps. Given two
importance maps P1 and P2, Similarity Metric is:

SIM(P1, P2) =
∑
i

min(P1i, P2i) (3)

iterating over the discrete pixel i where
∑
i P1i =

∑
i P2i = 1.

Two completely overlapping importance maps will result in
maximal Similarity of 1 and 0 when there is no overlapping
which is good for partial matches [16].

The Pearson’s Correlation Coefficient (PCC) [16] measures
how two maps are correlated or depend on each other: it is
close to 1 when two variables are perfectly correlated and 0

TABLE I
COMPARISON OF VANILLA GRADIENT-BASED BACK-PROPAGATION [4]

(VAGRBP) AND OF OUR METHOD (OURS) WITH GUIDED
BACK-PROPAGATION [8] (GUBP), GRAD-CAM [5] (GRC), GUIDED

GRAD-CAM [5] (GUGRC)

RGB Flow
Methods Similarity PCC Similarity PCC

µ± σ µ± σ µ± σ µ± σ

VaGrBp vs GuBp .77± .01 .75± .02 .99± .01 .99± .01
VaGrBp vs GrC .69± .04 .61± .08 .66± .02 .54± .06
VaGrBp vs GuGrC .73± .02 .70± .03 .79± .02 .80± .03

Ours vs VaGrBp .70± .03 .63± .05 .70± .01 .61± .02
Ours vs GuBp .70± .03 .64± .05 .70± .01 .61± .02
Ours vs GrC .70± .05 .63± .10 .72± .06 .69± .12
Ours vs GuGrC .68± .03 .63± .05 .77± .02 .71± .02

when they are not at all. For two importance maps P1 and P2,
PCC is:

PCC(P1, P2) =
σ(P1, P2)

σ(P1)× σ(P2)
(4)

where σ(P1, P2) is the covariance of P1 and P2.
There has been many sanity checks done on visualization

algorithms. In the paper [17], Adebayo et al. suggest Vanilla
Gradient-Based Back-propagation (VaGrBp) is more effective
than other visualization algorithms, as a result, it is taken as
reference for comparison. In Table I, complete metric evaluation
of the test set of TTStroke-21 dataset is provided. The
test set is composed of 118 instances over 21 classes. We
calculated both mean and standard deviation to characterize
stability on different instances. In our observation on the test
cases, Similarity and PCC metrics are coherent for all the
samples and algorithms for both RGB and OF data.

Comparing all state-of-the-art methods between them, we
state that Vanilla Gradient-based Back-propagation (VaGrBp)
and Guided Back-propagation (GuBp) have highest Similarity
and PCC. These results are obvious as both algorithms
rely on almost the same principle of using first conv layer
gradients except on how they treat the gradients. Vanilla
plots both positive and negative gradients whereas Guided
Back-propagation plots only positive gradients. For Guided

TABLE II
COMPUTATION TIME FOR THE DIFFERENT VISUALIZATION TECHNIQUES

Visualization techniques Time (in sec)
µ ± σ

Guided Grad-CAM [5] 11.3691± 0.6154
Guided Back-propagation [8] 7.7530± 0.4282
Vanilla Back-propagation [4] 5.1233± 0.2309

Grad-CAM [5] 4.9033± 0.2131
Proposed method* 2.9100 ± 0.1322

Grad-CAM, Grad-CAM output is multiplied with Guided
Back-propagation output. Hence, Vanilla Gradient-based Back-
propagation has higher Similarity and PCC with Guided Grad-
CAM. In contrast to Vanilla Gradient-based Back-propagation
[4] and Guided Back-propagation, Grad-CAM uses last conv
or deep conv layer gradients. Grad-CAM has SIM and PCC
69% and 61% respectively for RGB data but for OF data, it
has SIM 66% and CC 54% which is nearly 30% and 40% less
than compared to Guided Back Propagation.

Comparing our algorithm with state-of-the-art methods, it
has 70% Similarity and 63% PCC with Vanilla Gradient-Based
propagation (VaGrBp) and Guided Back-propagation (GuBp)
for RGB data. Compared to Grad-CAM(GrC), our algorithm
has 5% similarity and 15% PCC more with respect to Vanilla
Gradient-Based (VaGrBp) Visualization for OF data. With Grad-
CAM, our algorithm yields the most similar balanced results:
70% similarity for RGB and and 72% for Optical Flow data.
At the end, with Guided Grad-Cam, our algorithm has 77%
similarity and 71% Correlation on OF data. This is explained
by the use of the features of the same (last) conv layer.

D. Computational Analysis

All the algorithms have been implemented using Python
based PyTorch and Numpy libraries for the visualization of
our developed CNN model. The same functions were used
for calculating similar functionality of different algorithms to
make computational analysis uniform. Average time for each
instance visualization of different algorithms is given in Table II.
Model training was performed on GPU while visualization was
implemented on CPU only. Computation time for each method
was measured in Intel(R) Xeon(R) Gold 5118 CPU @2.3GHz
and Intel(R) Core(TM) i9 9900 CPU @3.1GHz. In both CPUs,
similar results were obtained. In the Table II, computation
time is provided only for Intel(R) Xeon(R) Gold 5118 CPU
@2.3GHz. Over all, average computation time was calculated
on 118 instances of test set each having 100 image frames.
From the Table II, it is clear that our algorithm is the fastest
among all the visualizations since it does not contain a time-
consuming gradient back-propagation. Our algorithm is almost
two times faster than Vanilla Gradient-Based visualization and
Grad-CAM.

V. CONCLUSION

We have proposed a new method for explanation of visual
features of CNNs in classification tasks. It is generic and can
be applied both to 2D and 3D CNNs. It is based on selection

of important features in last conv layer, on the use of channel
importance and back-projection of the feature importance maps
to the original frames. We have shown that the method gives
comprehensive results both on RGB input and on optical flow
in a twin 3D conv net for table tennis stroke classification.
We also compared it to the known features visualization
methods with the help of classical similarity metrics used for
saliency/importance maps. The method gives very much similar
results in terms of Similarity and Pearson Correlation coefficient
with regards to the Vanilla Gradient Back-propagation and the
result is also the most similar to Grad-CAM. It remains faster
than all considered baseline methods. In future work we intend
to compare it with available Gaze Fixation density maps of
observers in video action recognition tasks. We also intend
to extend it using more information from the whole network
architectures.

REFERENCES

[1] P. Martin, J. Benois-Pineau, R. Péteri, and J. Morlier, “Fine grained sport
action recognition with siamese spatio-temporal convolutional neural
networks,” in Multimedia Tools and Applications, 2020.

[2] G. Varol, I. Laptev, and C. Schmid, “Long-term temporal convolutions
for action recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40,
no. 6, pp. 1510–1517, 2018.

[3] J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the kinetics dataset,” CoRR, vol. abs/1705.07750, 2017.

[4] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
in ICLR, 2014.

[5] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[6] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual analytics
in deep learning: An interrogative survey for the next frontiers,” IEEE
Transactions on Visualization and Computer Graphics, 2018.

[7] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualizing deep
neural network decisions: Prediction difference analysis,” International
Conference on Learning Representations, 2017.

[8] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller,
“Striving for simplicity: The all convolutional net,” in ICLR, 2015.

[9] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller,
“Layer-wise relevance propagation: an overview,” in Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning. Springer, 2019,
pp. 193–209.

[10] H. Li, Y. Tian, K. Mueller, and X. Chen, “Beyond saliency: understanding
convolutional neural networks from saliency prediction on layer-wise
relevance propagation,” Image and Vision Computing, vol. 83, pp. 70–86,
2019.

[11] M. Bojarski, A. Choromanska, K. Choromanski, B. Firner, L. Jackel,
U. Muller, and K. Zieba, “Visualbackprop: efficient visualization of cnns,”
arXiv preprint arXiv:1611.05418, 2016.

[12] C. Liu, “Beyond pixels: Exploring new representations and applications
for motion analysis,” Ph.D. dissertation, Massachusetts Institute of
Technology, 5 2009.

[13] P. Martin, J. Benois-Pineau, R. Péteri, and J. Morlier, “Optimal choice
of motion estimation methods for fine-grained action classification with
3d convolutional networks,” in ICIP 2019. IEEE, 2019, pp. 554–558.

[14] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” in Advances in
neural information processing systems, 2016, pp. 4898–4906.

[15] U. Ozbulak, “Pytorch cnn visualizations,”
https://github.com/utkuozbulak/pytorch-cnn-visualizations, 2019.

[16] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, “What do
different evaluation metrics tell us about saliency models?” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 3, pp. 740–757, 2019.

[17] J. Adebayo, J. Gilmer, M. Muelly, I. J. Goodfellow, M. Hardt, and
B. Kim, “Sanity checks for saliency maps,” pp. 9525–9536, 2018.

