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Finding geodesics on graphs using reinforcement learning1

Daniel Kious∗ Cécile Mailler∗† Bruno Schapira‡2

October 9, 20203

Abstract4

It is well-known in biology that ants are able to find shortest paths between their nest and the food5

by successive random explorations, without any mean of communication other than the pheromones6

they leave behind them. This striking phenomenon has been observed experimentally and modelled by7

different mean-field reinforcement-learning models in the biology literature.8

In this paper, we introduce the first probabilistic reinforcement-learning model for this phenomenon.9

In this model, the ants explore a finite graph in which two nodes are distinguished as the nest and10

the source of food. The ants perform successive random walks on this graph, starting from the nest11

and stopped when first reaching the food, and the transition probabilities of each random walk depend12

on the realizations of all previous walks through some dynamic weighting of the graph. We discuss13

different variants of this model based on different reinforcement rules and show that slight changes in14

this reinforcement rule can lead to drastically different outcomes.15

We prove that, in two variants of this model and when the underlying graph is, respectively, any16

series-parallel graph and a 5-edge non-series-parallel losange graph, the ants indeed eventually find the17

shortest path(s) between their nest and the food. Both proofs rely on the electrical network method18

for random walks on weighted graphs and on Rubin’s embedding in continuous time. The proof in the19

series-parallel cases uses the recursive nature of this family of graphs, while the proof in the seemingly-20

simpler losange case turns out to be quite intricate: it relies on a fine analysis of some stochastic21

approximation, and on various couplings with standard and generalised Pólya urns.22

1 Introduction and main results23

1.1 Context and motivation24

In this paper, we introduce and analyse two variants of a stochastic, unsupervised, reinforcement-learning25

algorithm, which, given as an input a graph in which two nodes are marked, gives as output the shortest26

path(s) between the two marked nodes. This algorithm is inspired by mean-field models introduced in27

the biology literature as models for the behavior of foraging ants (see, e.g. [DS04, MJT+13]): it has been28

widely empirically observed (see, e.g., [GADP89, MJT+13] for experiments) that a colony of ants is able29

to find shortest paths between their nest and the food. Unsupervised reinforcement learning is widely30

proposed as a model for this phenomenon in the biology literature. Our contribution is to introduce a31

new probabilistic reinforcement-learning model for this phenomenon and prove that, in this model, the32

ants indeed find the shortest path between their nest and the food.33

We consider a sequence of random walkers on a finite graph G = (V, E) with two distinguished nodes34

N and F (for “nest” and “food” when the walkers are interpreted as ants). At the beginning of time,35

all edges of G are given weight 1. The idea is that the walkers explore the graph from N to F one after36
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each other, and the weights of the edges are updated after each walker reaches F . More precisely, for all37

n ≥ 1, the n-th walker starts a random walk from N and walks randomly on the graph until it reaches F .38

At every step, the walker chooses one of the neighboring edges with probability proportional to their39

weights and crosses the chosen edge to the next vertex. Once the n-th walker has reached F , we update40

the weights of the edges by adding 1 to a subset of the trace of this walker. In this paper, we look at two41

possible rules for the choice of this subset of edges to reinforce:42

• In the loop-erased version of the model, we reinforce the loop-erased time-reversed trace of walker n.43

This corresponds to how a hiker without a map would go back from F to N by walking backwards44

on their own trace, but avoiding unnecesary loops: when facing a choice between several edges they45

crossed on their way to F , they choose the edge that they crossed the earliest on their way forward.46

• In the geodesic version of the model, we reinforce the shortest path from N to F inside the trace of47

the walker (i.e. we only look at the subgraph of all edges that were crossed by this specific walker).48

The case when there are several shortest paths presents some subtleties, on which we will come49

back when we will define more formally the model in Subsection 1.2 and when discussing our main50

results (see Subsection 1.3).51

We call this stochastic process the loop-erased or geodesic ant process.52

The interpretation of the model in terms of ants is as follows: (1) the ants only lay pheromones behind53

them on their way back from the food to the nest, (2) each ant goes back to the nest either following the54

loop-erasure of their forward trajectory reversed in time (for the loop-erased ant process), or following the55

shortest path in the subgraph that they have explored on the way forward (for the geodesic ant process),56

and (3) each ant can sense from the amount of pheromones how many of its predecessors have crossed57

an edge on their way back to the nest, and crosses each neighboring edge with probability proportional58

to this number. We conjecture that, following this simple unsupervised reinforcement-learning algorithm,59

the colony of ants eventually finds the shortest path(s) between the nest and the food, more precisely,60

asymptotically when time goes to infinity, a proportion 1 of all ants go from the nest to the food following61

a geodesic.62

The difficulty of our analysis comes from different factors: (i) This is a linear reinforcement model:63

indeed, each ant chooses the next edge to cross with probability proportional to the number of previous64

ants that laid pheromones on it on their way back to the nest. Interestingly, the assumption that ants65

react linearly to pheromones is supported in the biology literature (see, e.g. [PGG+12, VPFV13]). In66

fact, one can easily find counter-examples that show that the same algorithm with super- or sub-linear67

reinforcement would not find the shortest path (see Subsection 1.3). (ii) The algorithm is a sequence of68

interacting reinforced random walks, and the reinforcement of the n-th random walk depends from the69

realisations of all previous ones.70

Our main contribution is to prove that, as conjectured, the ants indeed find the shortest path if we71

assume that the underlying graph is either a series-parallel graph (as in [HJ04]) whose “source” is the nest72

and whose “sink” is the source of food, or the 5-edge losange graph of Figure 4. Surprisingly, the proof73

for the 5-edge losange graph is more intricate than the proof for the whole class of series-parallel graphs;74

we therefore expect that finding a proof that would hold for any underlying graph is a very challenging75

and interesting problem. Both our proofs rely heavily on the electric network method for random walks76

on graphs (see, e.g., [LP05] for an introduction to this method), and Rubin’s embedding in continuous77

time (first introduced in [Dav90]). The proof for series-parallel graphs also uses the inductive nature of78

this family of graphs; the proof for the losange graph relies on the fine analysis of different stochastic79

approximations (see, e.g., [Duf97, Pem07]). Interestingly, we show that the losange case can be seen as80

an intricate coupling between two types of Pólya urns (see, e.g., [Pem07] for a survey); a fact that is81

reminiscent of the proof of Pemantle and Volkov [PV99] of the localisation on five sites with positive82

probability of the vertex-reinforced random walk (see also [Tar11, Tar04]).83
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Figure 1: First visual aid for the definition of the uniform-geodesic ant process. On the left is pictured a
graph G. In the middle is a possible realization of a graph G(n), the trace of the n-th random walk, and
on the right is γ(n) the unique geodesic from N to F in G(n).

1.2 Mathematical description of the model and statement of the main results84

Let G = (V,E) be a finite graph with vertex set V and edge set E. Let N (the nest) and F (the food)85

be two distinct vertices in V . In this paper we consider two versions of the same model, which differ by86

their reinforcement rules.87

We define the sequence (W(n) = (We(n) : e ∈ E))n≥0 recursively as follows: We(0) = 1 for all e ∈ E,88

and, for all n ≥ 1:89

• We sample a random walk X(n) = (X(n)

i )i≥0 on G that starts at N , is killed when first reaching F ,90

and whose transition probabilities are: for all i ≥ 1, for all u, v ∈ V ,91

P(X(n)

i = v | X(n)

i−1 = u,W(n− 1)) =
W{u,v}(n− 1)1u∼v∑
w∼uW{u,w}(n− 1)

,92

where {u, v} is the (unoriented) edge between u and v, and u ∼ v if and only if the edge {u, v} is93

in E.94

• Let G(n) be the trace of X(n), that is the subgraph of G obtained when removing from G all edges95

that the random walk X(n) did not cross, and choose a path of edges γn as follows:96

– For the loop-erased ant process, we imagine that the walker goes back from F to N by following97

its trajectory X(n) backwards and avoiding loops as follows: when the walker is at a vertex that98

was visited several times on the way forward, possibly coming from different edges at different99

times, it chooses to cross the edge that was crossed the earliest on the way forward. We define100

γ(n) as the set of edges crossed by the walker on its way back to the nest.101

Remark. Note that this construction selects a self-avoiding path between F and N , which is102

in fact the loop-erased version of the backward trajectory. Indeed, if we assume that X(n) =103

(X(n)

0 = N,X(n)

1 , . . . , X(n)

Kn
= F ), for some Kn ≥ 1, and define the time-reversed trajectory X

(n)
=104

(X(n)

Kn−i, 0 ≤ i ≤ Kn), then, by definition, we have that γ(n)

i = X
(n)

ji for 0 ≤ i ≤ kn for some105

1 ≤ kn ≤ Kn, where j0 = 0 and γ(n)

kn
= F , for 0 ≤ i ≤ kn − 1, ji+1 = max{j+1 : X

(n)

j = X
(n)

ji }. This106

corresponds to the loop-erasure of X
(n)

, as defined in [LL10].107

– In the uniform-geodesic version of the model, we define γ(n) as the shortest path from N to F108

in G(n); if there are several shortest path, we choose one of them uniformly at random.109

• For all e ∈ E, set We(n+ 1) = We(n) + 1e∈γn .110

We conjecture that111
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Figure 2: Second visual aid for the definition of the uniform-geodesic ant process. On the left is pictured
a graph G. In the middle is a possible realization of a graph G(n), the trace of the n-th random walk. On
the right, in orange and purple, are the two geodesics from N to F in G(n), and thus the two possible
choices for γ(n).

Conjecture 1.1. Let G = (V,E) be any finite graph in which two distinct nodes have been marked as N112

and F . Almost surely when n→ +∞, for all e ∈ E,113

We(n)

n
→ χe,114

where (χe)e∈E is a random vector such that:115

(1) For the loop-erased ant process, χe 6= 0 almost surely if and only if the edge e belongs to at least116

one of the geodesics from N to F .117

(2) For the uniform-geodesic ant process, χe 6= 0 almost surely only if the edge e belongs to at least one118

of the geodesics from N to F .119

Thus, if there is a unique geodesic γ from N to F in G, then almost surely χe = 1e∈γ, for all e ∈ E, in120

the two versions of the model.121

This indeed means that the ants eventually find the shortest paths between their nest and the source122

of food, because it implies that the probability that the n-th ant goes from the nest to the food through123

a geodesic path converges to 1 when n→ +∞.124

The difference between (1) and (2) is that, in the uniform-geodesic ant process, edges that belong to a125

geodesic may have limiting normalised weight χe that equal zero with positive probability: the ants find126

at least one of the geodesics, but maybe not all of them. In Proposition 1.5, we provide an example of a127

series-parallel graph where χe = 0 with positive probability for some edge e on a geodesic path.128

Our first main contribution is to prove that this conjecture is true for all series-parallel graphs for129

the loop-erased ant process. As their name suggests, series-parallel graphs are classical in electricity;130

in probability theory, they are the object of a famous and and still-open conjecture of Hambly and131

Jordan [HJ04]. They have two distinguished nodes called the “source” and the “sink”, which we can132

naturally see as the the nest N and the source of food F in our context.133

Definition 1.2 (See Figure 3). We define series-parallel (sp) graphs recursively as follows: a series-parallel134

graph is135

• either the single-edge graph (graph made of two vertices joined by one edge) with one node marked136

as the source and the other as the sink,137

• or two series-parallel graphs in series (i.e. we merge the sink of the first graph and the source of the138

second),139

• or two series-parallel graphs in parallel (i.e. we merge the two sources and the two sinks).140

4



N

F

N

F

N

F
(a) (b) (c)

N

F
(d)

Figure 3: The definition of series-parallel graphs: a sp graph is either (a) the base case, or (b) two sp
graphs in parallel, or (c) two sp graphs in series. (d) is an example.
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Figure 4: The losange graph

Theorem 1.3. For any sp graph whose source and sink are respectively marked as N and F , and for the141

loop-erased ant process, Conjecture 1.1 is true, i.e. almost surely when n→ +∞, for all e ∈ E,142

We(n)

n
→ χe,143

where (χe)e∈E is a random vector, such that χe 6= 0 almost surely if and only if the edge e belongs to at144

least one of the geodesics from N to F .145

Interestingly, the analysis of the loop-erased ant process outside the family of series-parallel graphs146

turns out to be very challenging. To illustrate this, we consider one of the simplest non-series-parallel147

graph one could think of, which is the 5-edge losange of Figure 4, which we call “the losange graph”: even148

on this simple graph, we are not able to prove convergence of the loop-erased ant process. However, we149

are able to prove convergence of the uniform-geodesic ant process, which turns out to be simpler in this150

setting (see the remark before Lemma 3.6).151

We number the edges of the losange graph from 1 to 5 as in Figure 4. Our second main result is the152

following.153

Theorem 1.4. For all 1 ≤ i ≤ 5 and n ≥ 0, we denote by Wi(n) (∀1 ≤ i ≤ 5) the weight of edge154

number i after the n-th walker has reached the food in the uniform-geodesic ant process on the losange155

graph. (Recall that Wi(0) = 1, by definition.) Almost surely as n→ +∞,156

Wi(n)

n
→ χi, for all 1 ≤ i ≤ 5,157

where (χi)1≤i≤5 is a random vector such that almost surely χ1 = χ2 = 1−χ4 = 1−χ5 ∈ (0, 1) and χ3 = 0.158

1.3 Discussion159

Discussion on the loop-erased vs. uniform-geodesic reinforcement rules: While we believe the160

result on the losange graph is also true for the loop-erased ant process, we think the proof would be more161

involved than with the uniform-geodesic ant process.162
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Figure 5: Graphs used in the discussions of Subsection 1.3.

The first of three steps in the proof in the uniform-geodesic case is to show that the normalised weight163

of the middle edge (edge number 3) converges to zero, and then use this convergence to zero to prove that164

the speed of convergence to zero is polynomial. Although proving convergence of the normalised weight165

of edge 3 would be similar (and in fact almost identical) in the loop-erased case, proving that the speed of166

convergence is polynomial is, we believe, much harder, and could in fact be wrong. Intuitively, it should167

not be surprising that the weight of edge 3 could be bigger in the loop-erased than in the uniform-geodesic168

version of the model: this comes from the fact that reinforcing the edge 3 is more likely at every step169

in the loop-erased version of the model. Since the proof in the uniform-geodesic case is already quite170

involved, we leave the case of the loop-erased ant process on the losange open.171

Conversely, the analysis of the uniform-geodesic ant process (and all its variants - see discussion172

below) on series-parallel graphs seems to be a challenging problem, which we also leave for further work.173

In summary, it seems that neither of the two versions of the process is easier to analyse than the other in174

general, but that this depends on the underlying (family of) graph(s).175

Discussion on the (uniform-)geodesic version of the model: First note that on the losange176

graph, the trace of a walker can contain at most one geodesic, and thus the rule of choosing the subset of177

edges to reinforce uniformly among all geodesics in the trace is irrelevant in this case. In fact, we believe178

that the way we choose which shortest path to reinforce when there are several in the trace can have a179

significant impact on the behaviour of the system.180

Indeed, we first observe that, in the uniform-geodesic version of the model, there could exist an edge181

that belongs to a geodesic between N and F whose normalised weight converges to zero:182

Proposition 1.5. If G is the graph on the left-hand side of Figure 5, then the uniform-geodesic version183

of the model satisfies: there exists e ∈ E such that e lies on a geodesic between N and F (in fact, all edges184

lie on such a geodesic in this graph) and, for all L large enough (see Figure 5 for the definition of L),185

P(We(n)/n→ 0) > 0.186

This proposition also holds (with an almost identical proof) when the choice of the geodesic is not187

uniform as long as any geodesic within the trace is chosen with a probability bounded away from 0.188

Another rule for the choice of γ(n) when there are several shortest paths in G(n) is the following:189

Consider G(n)

0 the subgraph of G(n) obtained by removing all the edges and vertices that do not belong to190

any of the shortest paths from N to F in G(n). As in the loop-erased version of the model, imagine that191

the walker walks back from F to N , by only crossing edges from G(n)

0 , and, when faced with a choice,192

choosing the edge it crossed the earliest on the way forward. Define γ(n) as the set of edges crossed by the193

walker on its way back to the nest. We believe that the same conjecture as for the loop-erased version of194

the model should be true for this version of geodesic ant process.195

Other possible reinforcement rules: An alternative reinforcement rule could be to reinforce all196

edges that the n-th walker crossed, i.e. all edges in G(n), instead of only reinforce the edges of γ(n).197

Intuitively, this would mean that ants lay pheromones on their way to the food instead of laying them on198

their way back to the nest. A mean-field version of this alternative model is also considered in the biology199
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literature (see, e.g., [MJT+13]). Preliminary work on this alternative reinforcement rule suggests that it200

could lead to surprisingly different results and that the ants may not always find the shortest path, we201

leave this for further work.202

In this alternative reinforcement rule where ants lay pheromones on their way to the food, one could203

consider that ants cannot sense from the pheromones laid on an edge how many different ants have crossed204

this edge, but rather how many times this edge has been crossed by an ant. This would mean that if205

the n-th ant crossed an edge k times the weight of this edge is increased by k when updating the weights206

after the n-th ant has reached the food. Finally, one could wonder how the results are impacted if the ants207

are sensitive to their own pheromones, i.e. if the weights are updated during the random walks after every208

steps of the ants, and not after each ant reaches the food. Each ant would then perform a (self-)reinforced209

random walk that starts on an already-weighted graph. We believe that these variants could lead to210

different asymptotic behaviours and raise various interesting mathematical challenges.211

Discussion on linear vs. sub- or super-linear reinforcement: As mentioned in the introduction,212

Conjecture 1.1 would no longer be true if we considered super- or sub-linear reinforcement instead of linear213

reinforcement. Indeed, consider the graph in the middle of Figure 5, and imagine that all the ants perform214

weighted random walks on the graph G, but according to the weights We(n)α (∀e ∈ E), for some α > 0.215

One can check that if α > 1 (i.e. in the super-linear case), then, almost surely, the subset of edges from E216

such that lim infnWe(n)/n 6= 0 is either {N,F} or E \ {{N,F}}, each with positive probability. Also, if217

α < 1 (i.e. in the sub-linear case), the subset of all edges from E such that lim infnWe(n)/n 6= 0 is almost218

surely equal to E itself.219

Discussion on the underlying graph: Theorems 1.3 and 1.4 confirm Conjecture 1.1 in the cases220

when G is a series-parallel graph or when G is the losange graph, which is the simplest non-series parallel221

graph. In the proof for series-parallel graph the iterative nature of this family of graph allows us to222

reason by induction. An iterative family of graphs that builds on the losange example is the “double223

Sierpiński gasket” graph, which consists of two Sierpiński gaskets of the same fractal depth whose bases224

have been merged (see the right-hand side of Figure 5 where a double Sierpiński gasket graph of depth 3225

is represented). Interestingly, a version of this graph has been considered in the biology literature under226

the name “tower of Hanoi” (see [MJT+13, RSB11]).227

Other models of path and network formation by reinforcement: Our model can be seen as a228

reinforcement path formation model. The idea is that we start from a weighted graph G where all edges229

have the same weight 1, and we look at the graph G(∞) of all edges whose normalised weight does not230

tend to zero when time goes to infnity. In the langage of Conjecture 1.1, G∞ = (V,E∞) where e ∈ E∞ if231

and only if e ∈ E and χe > 0. The fact that G∞ 6= G means that some path or some network has been232

selected by the dynamics: in our case, we conjecture (and prove for series parallel graphs or the losange233

graph) that the dynamics selects the shortest paths between the nest and the food.234

Other related models of path formation by reinforcement exist in the literature: for example, Le235

Goff and Raimond [LGR18] look at a model of non-backtracking vertex-reinforced random walk, also236

inspired from ant behaviour. They show that, in this model, with positive probability, the ant eventually237

walks along a cycle of finite edges. This model is very different from ours: the reinforcement is super-238

linear instead of linear, there is one ant as opposed to several ants walking successively in the graph, the239

underlying graph is infinite (although locally finite), and there is no nest or food and thus no geodesics240

involved.241

Another related model of network formation is the warm model of van der Hofstad, Holmes, Kuznetsov242

and Ruszel [VDHHK+16], where, at every time step, an edge is chosen at random and its weight increased243

by one (see also [HK17]). The choice of the edge to reinforce at each step is done according to a two-step244

procedure that involves super-linear reinforcement. Van der Hofstad et al. prove that the limiting graph245

(i.e. the graph consisting of all edges whose normalised weight does not go to zero) is a linearly-stable246

equilibrium with positive probability. They conjecture that, if the reinforcement is strong enough, all247
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linearly-stable configuration is a union of trees of diameter at most 3. They prove this conjecture in the248

simple case of a triangle graph, i.e. the complete graph on three vertices.249

A model of network formation with linear reinforcement is the “signaling game” of [HST11, KT16],250

where at every time step, “Nature” decides which pairs of neighbours are allowed to communicate for this251

round, and each vertex chooses a neighbour with probability proportional to the number of times they252

have communicated in the past, and they communicates if they both choose each other and if Nature253

allows it. In [KT16], the authors show that the limiting graph (consisting of edges between two vertices254

that communicate asymptotically a positive proportion of rounds) is star-shaped with positive probability.255

Plan of the paper: Section 2 contains the proof of Theorem 1.3 (i.e. the series-parallel case), and256

Section 3 the proof of Theorem 1.4 (i.e. the losange case). These two sections can be read independently.257

Finally we prove Proposition 1.5 in Section 4.258

2 The loop-erased ant process on series-parallel graphs259

In this section, we only consider the loop-erased ant process. We define the size of a graph as its number260

of edges. For a series-parallel graph G, we define its height, which we denote by hmin(G), as the length261

of a shortest path from the source to the sink.262

2.1 Preliminary lemmas263

We start with two simple observations. The first one is a direct consequence of the definition of series-264

parallel graphs:265

Lemma 2.1. Let G be a nonempty series-parallel graph. Then, either G is reduced to a single edge (it266

has size one), or one can find two non-empty series-parallel subgraphs G1 and G2, such that G is obtained267

by merging G1 and G2, either in series or in parallel.268

The second observation is the following:269

Lemma 2.2. Let ϕ : (0,+∞)2 → (0,∞) be the function defined by270

ϕ(x, y) =
1

1
x + 1

y

for all (x, y) ∈ (0,+∞)2.271

Then, for all (x, y), (x′, y′) ∈ (0,+∞)2, one has272

(a) ϕ(x+ x′, y + y′) ≥ ϕ(x, y) + ϕ(x′, y′), and273

(b) ϕ(x+ 1, y + 1) ≤ ϕ(x, y) + 1.274

Proof. Since275

ϕ
(x+ x′

2
,
y + y′

2

)
=

1

2
· ϕ(x+ x′, y + y′),276

proving that ϕ is concave is enough to prove (a). A simple calculation shows that277

∂2ϕ

∂x2
(x, y) =

−2y2

(x+ y)3
,

∂2ϕ

∂y2
(x, y) =

−2x2

(x+ y)3
, and

∂2ϕ

∂x∂y
(x, y) =

2xy

(x+ y)3
.278

This implies that the Hessian of ϕ is everywhere non-positive, and thus that ϕ is concave as claimed,279

which concludes the proof of (a).280

To prove (b), fix x > 0 and set H(y) := 1 +ϕ(x, y)−ϕ(x+ 1, y+ 1) for all y > 0. Using the definition281

of ϕ, we can calculate282

H ′(y) =
1( y

x + 1
)2 − 1( y+1

x+1 + 1
)2 ,283
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implying that the function H is increasing on [0, x) and decreasing on (x,+∞). Since H(0) > 0, and284

limy→∞H(y) = 0, it follows that H(y) > 0 for all positive y, which concludes the proof of (b).285

Remark. Item (a) has another simple proof in terms of conductances. Indeed one could note that by286

Rayleigh’s monotonicity’s principle, putting first (x, x′) in parallel and (y, y′) in parallel, and then putting287

the two of them in series has a better conductance than first putting (x, y) in series and (x′, y′) in series,288

and then putting them in parallel (to go to the first one, we need to add an edge with infinite conductance).289

2.2 Our main result in terms of effective conductances290

The main idea to prove Theorem 1.3 is to reason in terms of the “effective conductance” of the graph.291

We interpret the weight of an edge as its “conductance” and let CG(n) be the effective conductance (from292

the source to the sink) after the n-th walk has reached the sink, and simply write CG for the initial293

effective conductance. In order to compute the effective conductance of a series parallel graph, one can294

use Lemma 2.1 and the two following rules:295

• If G is composed of two graphs G1 and G2 merged in parallel, then CG = CG1 + CG2 .296

• If G is composed of two graphs G1 and G2 merged in series, then CG = ϕ
(
CG1 , CG2

)
.297

Our main result in terms of effective conductances reads as follows.298

Theorem 2.3. If G is a series-parallel graph, and CG(n) is its conductance after the n-th walker has299

reached the sink, then, almost surely when n→ +∞,300

CG(n)

n
→ 1

hmin(G)
,301

where hmin(G) is the graph distance between the source and the sink in G.302

2.3 Deterministic bounds for the effective conductance of a series-parallel graph after303

n walks304

The first step towards proving Theorems 1.3 and 2.3 is the following (deterministic) lemma.305

Lemma 2.4. (a) Let G be a series-parallel graph with weighted edges and let CG be its effective con-306

ductance from the source to the sink. Consider a self-avoiding path from the source to the sink of length307

L, and denote by C′G the effective conductance of G after the weights of all edges on this path have been308

increased by one. Then,309

1/L ≤ C′G − CG ≤ 1.310

(b) Let G be a series-parallel graph and consider the loop-erased ant process on G. There exists a constant311

C > 0 depending only on G, such that, almost surely,312

CG(n) ≤ n+ C

hmin(G)
, for all n ≥ 0.313

Proof. We first prove (a) by induction on the size of the graph. If G has size one, then the result is314

immediate since C′G = CG + 1. Now assume that the result holds for all series-parallel graphs with size at315

most N (for some integer N ≥ 1) and consider a graph G of size N + 1. By Lemma 2.1 we know that G316

is the merging of two non-empty subgraphs G1 and G2, either in parallel or in series. Note that G1 and317

G2 both have size at most N and thus that the induction hypothesis applies to them.318

If G1 and G2 are in parallel, then CG = CG1 +CG2 . Now since the chosen path is self-avoiding, it either319

lies entirely in G1 or in G2. Assume for instance that it lies in G1: using the induction hypothesis, we320

get that 1 ≥ C′G1
− CG1 ≥ 1/L, which concludes the proof since C′G = C′G1

+ CG2 .321
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If G1 and G2 are in series, then first observe that one can write L = L1 + L2, with Li the length of322

the restriction of the path to Gi, for i = 1, 2. Then,323

C′G =
1

1
C′G1

+ 1
C′G2

≥ 1
1

CG1
+ 1
L1

+ 1
CG2

+ 1
L2

≥ 1
1
CG1

+ 1
CG2

+
1

L1 + L2
= CG +

1

L
,324

using the induction hypothesis for the first inequality and Lemma 2.2(a) for the second one. This325

concludes the proof of the lower bound of (a). The proof of the upper bound is entirely similar, using326

this time Lemma 2.2(b) instead of Lemma 2.2(a).327

Let us now prove (b) by induction on the size of the graph again. If G has only one edge (which328

connects the source and the sink), then CG(n) = 1 + n, which proves the result in this case. Assume329

by induction that the upper bound holds for all graphs with at most N edges, and assume that G has330

N + 1 edges. By Lemma 2.1, G consists of two nonempty graphs G1 and G2 which are merged either in331

parallel or in series, and such that both G1 and G2 have at most N edges. By hypothesis, there exist two332

constants C1 and C2, such that for all n ≥ 0,333

CG1(n) ≤ n+ C1

hmin(G1)
, and CG2(n) ≤ n+ C2

hmin(G2)
. (1)334

If G1 and G2 are in parallel, then CG(n) = CG1(n1) + CG2(n−n1), for some (random) integer 0 ≤ n1 ≤ n,335

and the result follows immediately from (1), with the constant C := C1 + C2, using that hmin(G) =336

min(hmin(G1), hmin(G2)). If G1 and G2 are in series, then noting that hmin(G) = hmin(G1) + hmin(G2),337

we get338

CG(n) =
1

1
CG1

(n) + 1
CG2

(n)

(1)

≤ 1
hmin(G1)
n+C1

+ hmin(G2)
n+C2

≤ n+ max(C1, C2)

hmin(G1) + hmin(G2)
=
n+ max(C1, C2)

hmin(G)
.339

This proves the induction step when G1 and G2 are in series, and concludes the proof of the lemma.340

A consequence of this lemma is that one has the deterministic bounds341

n

hmax(G)
≤ CG(n)− CG(0) ≤ n+ C

hmin(G)
, for all n ≥ 0, (2)342

for some constant C > 0 and where hmax(G) is the length of the longest self-avoiding path from the source343

to the sink of G. In particular, almost surely CG(n) → ∞, as n → ∞. Note also that if the ants were344

always choosing the shortest path, then we would have345

n

hmin(G)
≤ CG(n) ≤ n+ C

hmin(G)
,346

for some constant C > 0, for all n ≥ 0. While the ants usually do not make this optimal choice, we will347

see that almost surely the asymptotic behavior of the effective conductance of the graph is still of this348

order (with a weaker control on the error term for the lower bound).349

2.4 Bounds for a generalised version of the model350

In the following, for any series-parallel graph G, any (series-parallel) subgraph H ⊆ G, and any n ≥ 0,351

we let WG
H (n) denote the set of weights on the edges of G after the n-th time a path in H has been352

reinforced. We also simply write WG(n), when H = G.353

In order to implement an induction argument, we need to consider a generalisation of the loop-erased354

ant process. The reason for this is that we want the law of the process to be stable under restriction to a355

subgraph. Unfortunately, the loop-erased ant process does not fulfil this: for instance if G is the merging356
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of two subgraphs G1 and G2 in parallel, then when reinforcing a path in G1, an ant on G tends to visit357

the source less often than an ant restricted to G1. We now explain how we go around this problem.358

In the original model on a graph G, when the n-th ant starts its random walk from N , it comes back359

to N a random geometric number of times, say Bn, and then goes from N to F without returning to N .360

We say that the n-th ant did Bn unsuccessful excursions in G (i.e. going from N to N without hitting361

F ), and one successful excursion (i.e. going from N to F without returning to N).362

In the original model, for all n ≥ 1, Bn is measurable with respect to Fn−1(G) := σ(WG(0), . . . ,WG(n−363

1)). In the generalised model, we allow Bn and its law to be different and to depend on a larger sigma-364

field. More precisely, given Fn−1(G) and given some additional integer-valued random variable Bn, we365

condition the n-th ant on performing Bn unsuccessful excursions before hitting F , and then reinforce a366

path in its range according to the same rule as for the loop-erased ant process, i.e. we increase by one the367

weights of the edges along the loop-erasure of the backwards trajectory of the n-th ant. The only case of368

interest is when Bn is measurable with respect to some sigma-field of the type σ(WG′
G (0), . . . ,WG′

G (n−1)),369

where G′ is some series-parallel graph containing G; however the proofs of the next results work in full370

generality, without assuming anything on the random variables Bn.371

For a series-parallel graph G, we still let CG(n) denote the effective conductance of graph G after n372

walkers have performed their walks and updated the weights in the generalised version of the loop-erased373

ant process described above. We set374

α(G) :=
hmin(G)

hmin(G) + 1
. (3)375

The following proposition, together with Lemma 2.4, implies Theorem 2.3:376

Proposition 2.5. Consider a generalised version of the loop-erased ant process on a series-parallel377

graph G, and let α = α(G). There exists a real random variable KG, such that almost surely KG is378

finite, and for all n ≥ 1,379

(i) CG(n) ≥ n−KG·nα
hmin(G) ;380

(ii) after n steps, the conditional probability that the (n+ 1)-th walk reinforces a geodesic path is larger381

than 1−KG · nα−1.382

Proof. We reason by induction on the size of G: if G has size 1, then CG(n) = n+1 almost surely, implying383

that the result holds. Let us now assume that the result holds for all series-parallel graphs of size at most384

N , and consider a graph G of size N + 1. By Lemma 2.1 we know that G is the merging of two nonempty385

subgraphs G1 and G2, either in parallel or in series. We denote N1 and N2 the sources of G1 and G2, F1386

and F2 their sinks.387

Case 1: G1 and G2 are in series. Assume without loss of generality that G1 is on the top of G2388

(meaning that the sink F1 of G1 coincides with the source N2 of G2). First note that each ant performing389

its walk in G will reinforce one path in G1 and one path in G2. Moreover, by definition of the loop-erasure390

process, the path that is reinforced in G1 is entirely determined by the trajectory of the walk up to its first391

hitting time of F1 = N2, while the path that is reinforced in G2 is entirely determined by the trajectory392

of the ants after this hitting time of N2. As a consequence, conditionally on the number of times the393

walker returns to N before first hitting N2, the laws of the two paths that are reinforced in G1 and G2394

are independent.395

Furthermore, for each n, the number of unsuccessful excursions in G1 (resp. G2) that are made by396

the n-th walk before first hitting N2 (resp. after first hitting N2) is a measurable function of WG(n− 1)397

and the number Bn of unsuccessful excursions that are prescribed in G. Therefore, the restrictions398

of the process to G1 and G2 are generalised versions of the loop-erased ant process, as defined before399

Proposition 2.5. Therefore, we can use the induction hypothesis for G1 and G2: there exist two random400
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variables K1,K2 ∈ (0,∞), such that with α1 = α(G1), and α2 = α(G2),401

CG1(n) ≥ n−K1n
α1

hmin(G1)
and CG2(n) ≥ n−K2n

α2

hmin(G2)
.402

If we denote by β = max(α1, α2), and by K = max(K1,K2), then403

CG(n) =
1

1
CG1

(n) + 1
CG2

(n)

≥ 1
hmin(G1)
n−K1nα1

+ hmin(G2)
n−K2nα2

404

≥ n−Knβ

hmin(G1) + hmin(G2)
=
n−Knβ

hmin(G)
,405

406

since hmin(G) = hmin(G1) + hmin(G2); which concludes the induction argument for Part (i) because, by407

definition, β ≤ α(G).408

For Part (ii) we just observe that, by the induction hypothesis and a union bound, the conditional409

probability that the n-th walker does not reinforce a geodesic path is smaller than K1n
α1−1 +K2n

α2−1 ≤410

Knβ−1, which concludes the induction argument in the case when G1 and G2 are merged in series.411

Case 2: G1 and G2 are in parallel. We start again by showing that the restrictions of the process412

on G1 and G2 are generalised versions of the loop-erased model as defined before Proposition 2.5. For all413

integers n, we denote by Ni(n) the number of times a path in Gi have been reinforced after n ants have414

performed their walks in G: one has415

CG(n) = CG1(N1(n)) + CG2(N2(n)). (4)416

We also let (τ (i)

k )k≥1 be the random times when the process Ni increases by one, i.e. the times when an417

ant reinforces a path in Gi. For all n ≥ 1, k ≥ 0, i ∈ {1, 2}, given τ (i)

k−1, the time to wait until another ant418

reinforces a path in Gi (i.e. τ (i)

k − τ
(i)

k−1) and the number B(i)

k of unsuccessful excursions made by this ant419

(the τ (i)

k -th ant) in Gi are both measurable functions of W(τ (i)

k−1) and of the total number of unsuccessful420

excursions performed in G by all ants between times τ (i)

k−1 + 1 and τ (i)

k . Moreover, by definition, given this421

information, the reinforced path in Gi is chosen by performing B(i)

k independent unsuccessful excursions,422

plus one additional independent successful excursion, and using the loop-erasure rule. Thus we can use423

the induction hypothesis for G1 and G2.424

In the following, we use the fact that, at any time n, the (n + 1)-th walker performs its successful425

excursion in Gi with probability CGi(n)/(CG1(n) + CG2(n)), for i = 1, 2. Indeed, this follows from the fact426

the law of the successful excursion of each ant walking on G is by definition independent of the number of427

unsuccessful excursions performed by this ant and of their trajectories. Moreover, for the simple random428

walk in G (that is if we were considering the original model), the probability to reinforce a path in Gi is429

given by the ratio of the effective conductances, and this happens if and only if the successful excursion430

belongs to Gi.431

Case 2.1: We first assume that hmin(G1) = hmin(G2). Using the induction hypothesis, there exist432

two random variables K1,K2 ∈ (0,∞) such that, almost surely,433

CG(n) ≥ N1(n)−K1N1(n)α

hmin(G1)
+
N2(n)−K2N2(n)α

hmin(G2)
434

≥ N1(n) +N2(n)

hmin(G)
− K(N1(n)α +N2(n)α)

hmin(G)
,435

436

with α = α(G) (see Equation (3) for the definition of α(G)) and K = K1 + K2. This concludes the437

induction argument for Part (i), since by concavity of the map x 7→ xα, we have438

N1(n)α +N2(n)α ≤ 21−αnα. (5)439
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Concerning Part (ii), note that using the induction hypothesis, if the (n+1)-th walker makes its successful440

excursion in G1, then the probability that its range contains a geodesic path of G1 is larger than 1 −441

K1N1(n)α−1, and similarly for G2. Considering the complement and using a union bound, we deduce442

that the probability that the (n+ 1)-th walker reinforces a geodesic path of G is at least443

1−K1N1(n)α−1 −K2N2(n)α−1 ≥ 1−Knα−1,444
445

which concludes the proof of the induction argument in the case when hmin(G1) = hmin(G2).446

Case 2.2: We now assume that hmin(G1) 6= hmin(G2), and without loss of generality hmin(G1) <447

hmin(G2), which implies α(G) = α(G1) (see Equation (3) for the definition of α(G)). Using the induction448

hypothesis, we have that there exists a random variable K1 ∈ (0,∞), such that449

CG1(N1(n)) ≥ N1(n)

hmin(G1)
· (1−K1N1(n)α−1). (6)450

For small values of N1(n), this lower bound can be negative (recall that, by definition, α = α(G) < 1; see451

Equation (3)); a better lower bound for small values of N1(n) is given by452

CG1(N1(n)) ≥ CG1(0). (7)453

By Lemma 2.4(b), there exists a constant C2 > 0 (only depending on G2), such that454

CG2(n−N1(n)) ≤ n−N1(n) + C2

hmin(G2)
≤ n−N1(n) + C2

hmin(G1) + 1
, (8)455

because, by assumption, hmin(G2) ≥ hmin(G1) + 1. For all b > 0, we define the function ϕb such that, for456

all i ≥ 0,457

ϕb(i) := max

(
CG1(0),

i− biα

hmin(G1)

)
. (9)458

We also define the function ψ such that, for all i ≥ 0,459

ψ(i) :=
α(i+ C2)

hmin(G1)
. (10)460

By Equations (6), (7), and (8) we get that the probability pn that the (n + 1)-th reinforces a geodesic461

path of G1, conditionally on WG(n), satisfies462

pn =
CG1(N1(n))

CG1(N1(n)) + CG2(n−N1(n))
≥ ϕK1(N1(n))

ϕK1(N1(n)) + ψ(n−N1(n))
, (11)463

for all n ≥ 0. We now prove that, almost surely, there exists a finite random variable K > 0, such that464

N1(n) ≥ n−Knα, for all n ≥ 1. (12)465

This is enough to concludes the proofs of the induction step for both Parts (i) and (ii). Indeed, on the466

one hand, we get that, for all n ≥ 1,467

CG(n) ≥ CG1(N1(n)) ≥ N1(n)(1−K1N1(n)α−1)

hmin(G1)
≥ n− (K +K1)n

α

hmin(G)
,468

which concludes the proof of the induction step of Part (i). And, on the other and, using (2), we get that469

the probability of not reinforcing a geodesic path in G is smaller than470

K1N1(n)α−1 + (1− pn) ≤ (K1 + hmax(G)K)nα−1,471
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Time

ξ1i /ϕb(i)

T 2
j

T 1
i

ξ2j/ψ(j)

t
T 1
τ1(t)

T 2
τ2(t)

0 = T 1
0 = T 2

0

Figure 6: Rubin’s construction for the proof of Proposition 2.5 (Case 2.2 in the proof). On the top line,
the intervals between crosses are the ξ1i /ϕb(i) and, similarly, on the bottom line, the intervals between
crosses are the ξ2i /ψ(i). On the middle line, we show how the T 1

i ’s and T 2
i ’s are defined as the partial

sums of these interval lengths and how τ1t and τ2t are defined for a given time t > 0.

which concludes the proof of the induction step of Part (ii). Therefore, to conclude the proof, it only472

remains to prove Equation (12).473

If K1 was a fixed constant, the conclusion would come by simply analysing the generalised urn process474

associated to ϕK1 and ψ. But here, K1 is a random variable that depends on the whole history of the475

process. To go around this issue, we are going to define a family of generalised Pólya urns, and couple all476

of them with the process (N1(n))n≥0, in such a way that almost surely (N1(n))n≥0 will dominate at least477

one of those urns. To be more precise, for all b > 0, we define the Markov process (Rbn)n≥0, by Rb0 = 0,478

and for all n ≥ 0,479

qbn := P(Rbn+1 = Rbn + 1 | Rbn) = 1− P(Rbn+1 = Rbn | Rbn) =
ϕb(R

b
n)

ϕb(Rbn) + ψ(n−Rbn)
, (13)480

where ϕb and ψ are defined in Equations (9) and (10) respectively. We now fix some b > 0 and show that481

there exists an almost surely finite random variable Cb, such that482

n−Rbn ≤ Cbnα, for all n ≥ 0. (14)483

To prove Equation (14), it is convenient to use Rubin’s algorithm, which was introduced in Davis’s484

paper on reinforced random walks [Dav90]. Consider {ξ1i }i≥0 and {ξ2i }i≥0 two independent sequences of485

independent mean-one exponential random variables, and define, for all n ≥ 1,486

T 1
n :=

n−1∑
k=0

ξ1k
ϕb(k)

, and T 2
n :=

n−1∑
k=0

ξ2k
ψ(k)

.487

Set also T 1
0 = T 2

0 = 0 and, for all t > 0 (see Figure 6),488

τ1(t) := sup{n ≥ 0 : T 1
n ≤ t}, and τ2(t) := sup{n ≥ 0 : T 2

n ≤ t}.489

It follows from standard properties of independent exponential random variables that, for any t > 0,490

conditionally on the fact that τ1(t) = n1, and τ2(t) = n2, the probability qbn1+n2
that Rbn1+n2

increases491

by one at the next step is also equal to the probability of T 1
n1+1 being smaller than T 2

n2+1.492

As a consequence if we let tn = inf{t ≥ 0 : τ1(t) + τ2(t) ≥ n}, then the process (τ1(tn))n≥0 has the493

same law as (Rbn)n≥0. Note that, since they are bounded in L2, the series494

∞∑
k=0

ξ1k − 1

ϕb(k)
and

∞∑
k=0

ξ2k − 1

ψ(k)
495
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converge almost surely. In particular496

T 1
n =

n−1∑
k=0

1

ϕb(k)
+O(1) = log n+O(1), and T 2

n =

n−1∑
k=0

1

ψ(k)
+O(1) =

1

α
log n+O(1), (15)497

where the O(1) are almost surely bounded. Moreover, by definition, one has498

sup
n≥0
|T 1
τ1(tn)

− T 2
τ2(tn)

| ≤ sup
n≥0

max
( ξ1n
ϕb(n)

,
ξ2n
ψ(n)

)
,499

from which it follows that500

T 1
τ1(tn)

= T 2
τ2(tn)

+O(1),501

where O(1) stands for an almost surely finite random variable. Together with (15), this entails τ2(tn) ≤502

Cbn
α, for all n ≥ 0, and some almost surely finite random variable Cb, which concludes the proof of503

Equation (14).504

To conclude the proof of Equation (12), we only need to couple the family of processes (Rbn)n≥0, b > 0,505

with (N1(n))n≥0 so that, almost surely, there exists K > 0 such that N1(n) ≥ RKn and pn ≥ qKn , for506

all n ≥ 0. To do this coupling, we use a sequence (Un)n≥1 of i.i.d. uniform random variables on [0, 1],507

independent of everything else. We start the processes so that N1(0) = 0 and Rb0 = 0 for all b > 0. Then,508

at each time step n ≥ 0, set N1(n+ 1) = N1(n) + 1 if and only if pn ≥ Un+1 and, similarly for all b > 0,509

Rbn+1 = Rbn + 1 if and only if qbn ≥ Un+1. By induction on n, we can prove that, in this coupling, for all510

b ≥ K1, for all n ≥ 1, N1(n) ≥ Rbn. Indeed, first note that, by Equation (11), for all b ≥ K1, N1(n) ≥ Rbn511

implies pn ≥ qbn. Moreover, if N1(n) ≥ Rbn and pn ≥ qbn, then N1(n + 1) ≥ Rbn+1, which concludes the512

proof by induction: we get that, for all b ≥ K1, N1(n) ≥ Rbn ≥ n − Cbnα. This concludes the proof of513

Equation (12), thus the proof of the induction step in Case 2.2, and thus the proof of Proposition 2.5514

altogether.515

2.5 Proof of Theorem 1.3516

Since the original model is a particular case of the generalised model of Section 2.4, it is enough to prove517

that Theorem 1.3 holds in the generalised model.518

By Proposition 2.5, for any edge e that is not contained in a geodesic path, one has We(n)/n → 0,519

when n→ +∞. Thus it only remains to show that, for every edge e that lies on a geodesic path, We(n)/n520

converges to some random variable χe, which is almost surely non-zero.521

The proof is done by induction on the size of G. If G has size one, the result is straightforward.522

We now assume that the result holds for all series-parallel graphs of size at most N , and consider a523

series-parallel graph G of size N + 1. Once again, by Lemma 2.1 we know that G is the merging of two524

non-empty subgraphs G1 and G2. If G1 and G2 are in series, then the result for G follows immediately525

from the induction hypothesis.526

Let us now assume that G1 and G2 are merged in parallel. If hmin(G1) 6= hmin(G2), and for instance527

if hmin(G1) < hmin(G2), then the proof in the previous subsection shows that a fraction 1 − o(1) of the528

ants chooses a path in G1, and then the result follows from the induction hypothesis.529

If hmin(G1) = hmin(G2), we first show that lim inf Ni(n)/n > 0, almost surely for all i ∈ {1, 2}. To do530

this, we use again Rubin’s construction; the argument is very similar to the one given in Case 2.2 of the531

proof of Proposition 2.5. We only briefly indicate how to adapt the proof to show that lim inf Ni(n)/n > 0532

in the present case. We aim at coupling the process (N1(n))n≥0 with a family of processes (Rbn)n≥0, b > 0.533

We define ϕb as in Equation (9) and set ψ(i) = (i + C2)/hmin(G1) for all integers i (compare with534

Equation (10)). We then define Rbn as in Equation (13). One can show that, on the one hand, for any535

b > 0, there exists a random variable cb > 0, such that almost surely for all n ≥ 1, Rbn ≥ cbn. And, on536

the other hand, there exists a random b > 0 such that N1(n) ≥ Rbn for all n ≥ 0 almost surely. Hence,537
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we deduce that almost surely lim inf N1(n)/n > 0, as claimed. In other words, almost surely, a positive538

fraction of the ants chooses a path in G1, and by symmetry the same holds for G2.539

We now show that N1(n)/n converges almost surely when n tends to infinity. To do this, we show540

that X(n) := N1(n)/n is a stochastic approximation. Indeed, we have, for all n ≥ 1,541

X(n+ 1) = X(n) +
∆Mn + hn
n+ 1

,542

where ∆Mn = N1(n + 1) − N1(n) − pn, with pn as defined in (11), and hn := pn −X(n). Iterating the543

above equation, we get that, for all n ≥ 1,544

X(n+ 1) = X(1) +
n∑
k=1

∆Mk + hk
k

.545

Note that, by definition, the martingale increment ∆Mk is bounded by 1 in absolute value, and thus the546

martingale
∑n

k=1 ∆Mk/k, is bounded in L2, and hence almost surely convergent. Using the definition of pn547

(see Equation (11)), together with Lemma 2.4(b), Proposition 2.5, and the fact that lim inf Ni(n)/n > 0,548

for i = 1, 2, one can show that, almost surely when n tends to infinity, hn = O(nα(G1)−1), where we549

recall that, by definition (see Equation (3)), α(G1) < 1. This implies that the sum
∑n

k=1 hk/k is almost550

surely convergent, and thus that X(n) converges almost surely, as claimed. Together with the induction551

hypothesis applied to G1 and G2, this allows us to conclude the induction step for that last case (G1 and552

G2 merged in parallel and hmin(G1) = hmin(G2)).553

Altogether, this concludes the proof of Theorem 1.3.554

3 The geodesic ant process on the losange graph555

We prove here Theorem 1.4 concerning the losange graph; in this section, we thus only consider the556

(uniform-)geodesic version of the model (as discussed in Section 1.3, the rule about how to choose the557

geodesic to reinforce when there are several in the trace of the walker is irrelevant here since the trace558

of a walker can only contain one geodesic). The proof relies primarily on the fact that the sequence of559

weights is the solution of a certain stochastic recursion formula, which we state in Lemma 3.1 below.560

Recall Figure 4 of the losange graph, and define for n ≥ 0,561

W(n) := (W1(n),W2(n),W3(n),W4(n),W5(n)), and Ŵ(n) =
W(n)

n+ 2
, (16)562

where Wi(n) denotes the weight of edge i after n walkers (or ants) have reached the food. Then for563

w = (w1, . . . , w5) ∈ [0, 1]5, denote by p12(w) the probability that a walker reinforces edges 1 and 2, when564

the weights of the five edges of the losange graph are respectively w1, . . . , w5. Define similarly p135(w),565

p234(w), and p45(w), and set566

F (w) := p12(w)(1, 1, 0, 0, 0) + p135(w)(1, 0, 1, 0, 1) + p45(w)(0, 0, 0, 1, 1) + p234(w)(0, 1, 1, 1, 0)− w. (17)567

Lemma 3.1 expresses the fact that the whole study of the process (W(n))n≥0 takes place in the subset of568

[0, 1]5, defined as569

E :=

(w1, w2, w3, w4, w5) ∈ [0, 1]5 :
w1 + w4 = 1, and w2 + w5 = 1
|w1 − w2| ≤ w3 and |w5 − w4| ≤ w3

w1 + w2 ≥ w3 and w4 + w5 ≥ w3

 . (18)570

Let us briefly explain the restrictions above. Note that each walk can only reinforce one of the following571

sets of edges:572
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(i) edge 1 and edge 2;573

(ii) edge 4 and edge 5;574

(iii) edge 1, edge 3 and edge 5;575

(iv) edge 4, edge 3 and edge 2.576

One can see above that, at each round, precisely one of edge 1 or edge 4 is reinforced and precisely one577

of edge 2 or edge 5 is reinforced. Hence, we have that w1 + w4 = w2 + w5 = 1. Next, the only cases578

where edge 1 is reinforced but not edge 2, or edge 2 is reinforced but not edge 1 are in scenarios (iii) and579

(iv), in which cases edge 3 is reinforced. Therefore, |w1 − w2| ≤ w3, and by symmetry |w4 − w5| ≤ w3.580

Finally, again using (iii) and (iv), every time edge 3 is reinforced edge 1 or edge 2 is reinforced. Therefore581

w1 + w2 ≥ w3 and by symmetry w4 + w5 ≥ w3.582

Using further the definition of the ant process, we obtain Lemma 3.1 below. We use now the shorthand583

notation En to denote the conditional expectation with respect to the sigma-field Fn (where (Fn)n≥0 is584

the natural filtration of the process).585

Lemma 3.1. For all n ≥ 0, Ŵ(n) ∈ E. Furthermore,586

Ŵ(n+ 1) = Ŵ(n) +
1

n+ 3

(
F (Ŵ(n)) + ∆M(n+ 1)

)
, (19)587

where ∆M(n+ 1) = Y (n+ 1)− En[Y (n+ 1)], and Y (n+ 1) := W(n+ 1)−W(n).588

As mentioned in the introduction, this losange case can be seen as an intricate coupling between a589

biased urn (the ants that reinforce edge 3 versus all others, i.e. W3(n) vs. n−W3(n)) and a standard Pólya590

urn (the ants that reinforce edges 1 and 2 vs. the ants that reinforce edges 4 and 5). In Subsection 3.1591

we treat the first urn by proving that W3(n)/n converges to 0 almost surely, at a polynomial speed. The592

“Pólya” part is treated in two additional steps: In Subsection 3.2 we show that Ŵ(n) converges almost593

surely to some limit in [0, 1]5, and, in Subsection 3.3, we prove that the limit is non-degenerate, in the594

sense that it does not charge the extremal points (1, 1, 0, 0, 0) and (0, 0, 0, 1, 1). In terms of the ants, this595

means that the ants find both geodesics and not just one of them. Interestingly, ruling out these extremal596

cases is the most delicate part of the proof.597

3.1 On the convergence of W3(n)/n to 0598

In this section, we prove here the following result.599

Proposition 3.2. Almost surely, as n → +∞, one has W3(n)/n → 0. More precisely, there exists600

α ∈ (0, 1), such that almost surely,601

lim
n→∞

W3(n)

nα
= 0.602

The first idea of the proof is to compare W3(n) with the number of red balls in a two-colour Friedman-603

like urn defined as follows:604

Lemma 3.3. We define a Markov process (Rn)n≥0 as follows: first R0 = 1, and for all n ≥ 0, we set605

Rn+1 = Rn +An+1, where606

P(An+1 = 1 | Rn) = 1− P(An+1 = 0 | Rn) :=
Rn
n+ 2

·
( Rn
n+2)2 + 1

2
Rn
n+2 + 1

2

.607

Then almost surely when n→ +∞, we have Rn/n→ 0.608
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Proof. Let us define Zn := Rn/(n+ 2), for all n ≥ 0. We use stochastic approximation: by definition, we609

have that, for all n ≥ 0,610

Zn+1 =
Rn+1

n+ 3
=
Rn +An+1

n+ 3
=

Rn
n+ 2

· n+ 2

n+ 3
+
An+1

n+ 3
= Zn +

1

n+ 3

(
An+1 − Zn

)
.611

For n ≥ 0, set ∆Mn+1 = An+1 − E
[
An+1 | Rn

]
. By definition of the model, we have612

E
[
An+1 | Rn

]
= Zn ·

Z2
n + 1

2

Zn + 1
2

,613

implying that614

Zn+1 = Zn +
1

n+ 3
(G(Zn) + ∆Mn+1) ,615

where, for all x ∈ [0, 1],616

G(x) = x ·
x2 + 1

2

x+ 1
2

− x.617

Note that G(x) ≤ 0 for all x ∈ [0, 1]. Thus (Zn)n≥0 is a non-negative supermartingale, and converges618

almost surely. Moreover, by definition |∆Mn| ≤ 1, for all n ≥ 0, and thus the martingale619

M̃n :=

n−1∑
i=1

∆Mi+1

i+ 3
,620

converges almost surely, since it is bounded in L2. It follows that the series
∑
G(Zn)/n also converges621

almost surely, which implies that the limit of (Zn)n≥0 is necessarily a zero of G, that is either 0 or 1. To622

see that Zn → 0 almost surely, we couple (Zn)n≥0 with a Pólya urn: this coupling is based on the fact623

that, by definition and because x2+1
x+1 ≤ 1 for all x ∈ [0, 1], we have624

P(An+1 = 1 | Zn) ≤ Zn.625

Thus if we define a process (Un)n≥0 such that U0 = Z0 and, for all n ≥ 0,626

P(Un+1 = Un + 1 | Un) = 1− P(Un+1 = Un | Un) = Un,627

then (Un)n≥0 and (Zn)n≥0 can be coupled in a way that Zn ≤ Un almost surely for all n ≥ 0. It is known628

that Un → U almost surely when n→ +∞, where U is uniform on [0, 1]. Thus Zn cannot converge to 1629

and thus converges to 0 almost surely when n→ +∞.630

The next step to prove Proposition 3.2 is to compute the probability that a walker reinforces the631

middle edge 3. Recall the definition (18) of the set E .632

Lemma 3.4. One has for all w ∈ E,633

p135(w) =
w1w3w5

(w2 + w3 + w1w4)(w4 + w5) + w2w3 + w1w3w4
.634

Proof. We call “left” vertex the vertex linked to edges 1, 2 and 3, and “right” vertex the vertex between635

edges 3, 4 and 5. To renforce edges 1, 3 and 5, a walker has to636

(i) go through edge 1 in its first step,637

(ii) then, from the left vertex, reach the right vertex before going through edge 2,638

(iii) finally, from the right vertex, reach the food before going through edge 2 or 4.639
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w1

w4

w3 w4

w5w2

w3

w2

w1w4

w1 + w4
w3w2 +

w1w4

w1 + w4⇔ ⇔

Figure 7: Calculation of the probability of (ii), the event that a random walker starting at the black dot
reaches the white dot before reaching the crosses. The dashed edges in the left-hand side picture have no
effect on the calculation and can be removed. In terms of effective conductances between the black dot
and the crosses and the black dot and white dot, these three graphs are equivalent.

w1

w4

w3 w4

w5w2

⇔ w3 w5

w4

w2

w1w4

w5

w4

w2 + w1w4

⇔

w5

w4

w2w3 + w1w3w4

w2 + w3 + w1w4

⇔ w5

w4 +
w2w3 + w1w3w4

w2 + w3 + w1w4

⇔

w3

Figure 8: Calculation of the probability of (iii) in the case w1 + w4 = 1, the event that a random
walker starting at the black dot reaches the white dot before reaching the crosses. In terms of effective
conductances between the black dot and the crosses and the black dot and white dot, these five graphs
are equivalent.

Let us denote by pi, pii and piii the respective probabilities of these three events; we thus have p135(w) =640

pipiipiii. First note that641

pi =
w1

w1 + w4
= w1,642

using for the last equality that w ∈ E . To calculate pii and piii, we use effective conductances. One can643

check that pii is the probability that a random walker starting from the black dot in the left-hand side644

of Figure 7 reached the white dot before reaching one of the crosses. In Figure 7, we use the parallel645

and series formulas for effective conductances to simplify the left-hand side graph into the equivalent (in646

terms of effective conductances) right-hand side graph. In the right-hand side graph, it is easy to see that647

the probability to reach the white dot before the cross starting from the black dot is648

pii =
w3

w2 + w3 + w1w4
w1+w4

=
w3

w2 + w3 + w1w4
,649

using again that w ∈ E for the last equality. Similarly, one can check that piii is the probability that a650

walker staring from the black dot in the left-hand side of Figure 8 reaches the white dot before reaching651

one of the crosses. Using the calculation of effective conductances done in Figure 8, we eventually get652

that653

piii =
w5

w4 + w5 + w2w3(w1+w4)+w1w3w4

(w2+w3)(w1+w4)+w1w4

=
w5

w4 + w5 + w2w3+w1w3w4
w2+w3+w1w4

,654

which concludes the proof, since, for all w ∈ E , w1 + w4 = 1.655
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We deduce the following result, proving the first part of Proposition 3.2.656

Lemma 3.5. One has for all w ∈ E,657

p135(w) + p234(w) ≤ w3 ·
w2
3 + 1

2

w3 + 1
2

,658

and as a consequence almost surely,659

lim
n→∞

W3(n)

n
= 0.660

Proof. The idea is the following: we run the ants walk from time 0, and simultaneously, we consider an661

urn that contains black and red balls. We call this urn the “ants urn”. At time zero, we put one black662

ball and one red ball in the urn, and everytime an ant reaches the food in the ants walk process, we add663

a ball into the urn: this ball is red if edge number 3 has been reinforced by this ant, black otherwise. The664

first part of the lemma will show that this urn can be coupled with a Friedman-like urn of Lemma 3.3 so665

that there are always more red balls in the Friedman-like urn.666

By Lemmas 3.1 and 3.4 we have for all w ∈ E ,667

p135(w) =
w1w3w5

(w2 + w3 + w1w4)(w4 + w5) + w2w3 + w1w3w4
≤ w1w3w5

(w3 + w2)(w4 + w5) + w3w2
. (20)668

Using that w3 + w2 ≥ w1, and w2 + w5 = 1, we deduce669

p135(w) ≤ w1w3w5

w3 + w1w4 + w2w5
. (21)670

By symmetry, we have that671

p234(w) ≤ w2w3w4

w3 + w1w4 + w2w5
,672

and thus, the probability that the n-th walker reinforces edge 3 is at most673

p135(w) + p234(w) ≤ w3 ·
w1w5 + w2w4

w3 + w1w4 + w2w5
.674

Finally, we note that675

w1w5 + w2w4 = w1w4 + w2w5 + (w1 − w2)(w5 − w4) ≤ w1w4 + w2w5 + w2
3,676

which entails677

p135(w) + p234(w) ≤ w3 ·
w1w4 + w2w5 + w2

3

w1w4 + w2w5 + w3
≤ w3

(
1− w3(1− w3)

w1w4 + w2w5 + w3

)
.678

Recalling next that, for all x ∈ [0, 1], x(1 − x) ≤ 1/4 and that w1 + w4 = w2 + w5 = 1, we have that679

w1w4 + w2w5 ≤ 1/2, which implies680

p135(w) + p234(w) ≤ w3

(
1− w3(1− w3)

w3 + 1
2

)
= w3 ·

w2
3 + 1

2

w3 + 1
2

,681

proving the first part of the lemma. Applying this with w = Ŵ(n), we thus have proved that, at every682

time step n, the probability to add a red ball in the ants-urn is at most the probability to add a red ball683

in the Friedman-like urn of Lemma 3.3. Therefore, the number of red balls in the ants urn (i.e. W3(n))684

is at most Rn at time n (for all n ≥ 0), where Rn is the quantity defined in Lemma 3.3. Thus the result685

follows from Lemma 3.3.686
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Remark. It is interesting to note that, in the loop-erased ant process, one has687

p135 =
w1w3w5

w3 + w1w4 + w2w5
,688

to compare with Equation (21). This means that Lemma 3.5 holds in this case too. However, to show689

almost-sure convergence of Ŵ(n), we need to know that the convergence of Ŵ3(n) to zero has polynomial690

speed. This is done in the following lemma, whose proof relies on a better bound, using the equality in691

Equation (20). Therefore, the fact that this better bound does not hold in the loop-erased case is the692

reason why we believe that the proof of Conjecture 1.1 in that case is more intricate.693

We now aim at bootstraping the previous result to get a polynomial speed of convergence. For this694

we will need the following fact.695

Lemma 3.6. For any ρ ∈ (0, 1/6), there exists ε > 0 such that for any w ∈ E satisfying w3 ≤ ε,696

p135(w) + p234(w) ≤ (1− ρ)w3.697

Proof. By Lemma 3.4, for any w ∈ E ,698

p135(w) =
w1w3w5

w3(1 + w4 + w1w4) + w2w4 + w2w5 + w1w2
4 + w1w4w5

. (22)699

Assume that w3 < 1/4. Let us first prove a lower bound on the denominator of (22). This denominator700

is at least equal to w3(1 + w4) + w2w4 + w2w5, and we would like to prove that701

w3(1 + w4) + w2w4 + w2w5 ≥ −w2
3 + 2w1w5. (23)702

Indeed, first using the fact that, for all w ∈ E , w4 ≥ w5 − w3, we get703

w3(1 + w4) + w2w4 + w2w5 ≥ w3(1 + w4) + w2(w5 − w3) + w2w5 ≥ w3(1 + w4 − w2) + 2w2w5.704

Now, using the facts that, for all w ∈ E , w2 ≥ w1 − w3, w4 − w5 ≥ −w3, and 1− w2 = w5, we get that705

w3(1 + w4) + w2w4 + w2w5 ≥ w3(w4 + w5) + 2(w1 − w3)w5 ≥ w3(w4 − w5) + 2w1w5 ≥ −w2
3 + 2w1w5,706

which concludes the proof of (23).707

Next we distinguish two cases: either w2 ≥ w1 or w2 < w1.708

• We first treat the case when w1 ≥ w2 and, as a consequence, w5 ≥ w4. Plugging Equation (23) into709

Equation (22), we thus get710

p135(w) ≤ w1w3w5

2w1w5 − w2
3

.711

Since w ∈ E , we have w1 + w2 ≥ w3, which, since w1 ≥ w2 implies w1 ≥ w3/2. Similarly, the facts that712

w4 + w5 ≥ w3 and w5 ≥ w4 imply that w5 ≥ w3/2. Moreover, since w ∈ E , we have w1 + w4 = 1, and713

thus either w1 ≥ 1/2 or w4 ≥ 1/2. If w1 ≥ 1/2 then we conclude that w1w5 ≥ w5/2 ≥ w3/4. If w4 ≥ 1/2,714

then w5 ≥ w4 ≥ 1/2, and we also get w1w5 ≥ w3/4 in this case. Therefore, in both cases (w1 ≥ 1/2 and715

w4 ≥ 1/2), using the fact that 1
1−x ≤ 1 + 2x for all 0 ≤ x ≤ 1/2, we get716

p135(w) ≤ w3

2(1− 2w3)
≤ w3

2
+ 2w2

3,717

as long as w3 < 1/4.718

• We now treat the case when w2 ≥ w1, which implies w4 ≥ w5. In that case, it is straightforward to719

see that the denominator in (22) is at least w2(w4 + w5) ≥ 2w1w5, which implies p135(w) ≤ w3/2.720
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By the two cases above, we have thus proved that, for all w ∈ E such that w3 ≤ 1/4,721

p135(w) ≤ w3

2
+ 2w2

3.722

Note that by symmetry the same inequality holds for p234(w), i.e. for all w ∈ E ,723

max(p135(w), p234(w)) ≤ w3

2
+ 2w2

3, (24)724

but this is not yet enough to conclude the proof: we need to get a better upper bound by taking into725

account the terms in the denominator of Equation (22) that we previously neglected.726

To do that, we again distinguish two cases: first assume that w4 ≥ 1/2. In this case, using the fact727

that for all w ∈ E , w4 ≥ w5 − w3, we get728

w1w
2
4 ≥ w1w4w5 − w1w3w4 ≥

1

2
w1w5 − w1w3w4,729

and since we assume that w4 ≥ 1/2, we also get730

w1w4w5 ≥
1

2
w1w5.731

Now if in addition w5 ≥ w4, one has w1 ≥ w2 and thus w1 ≥ w3/2, as well as w5 − w4 ≤ w3 ≤ 4w1w5.732

This, together with the last two displays and (22) implies733

p135(w) ≤ w1w3w5

3w1w5 + w3(w4 − w5)
≤ w3

3
· 1

1− 4w3
3

≤ w3

3

(
1 +

8w3

3

)
,734

as long as w3 ≤ 3/8. We thus get that, for all w ∈ E such that w3 ≤ 3/8, and w4 ≥ 1/2,735

p135(w) ≤ w3

3
+ w2

3.736

We now need to treat the case when w4 ≤ 1/2. In that case, w1 ≥ 1/2 and we get, by symmetry,737

p234(w) ≤ w3

3
+ w2

3.738

In both cases (w4 ≥ 1/2 and w1 ≥ 1/2), using Equation (24), we get739

p135(w) + p234(w) ≤
(1

2
+

1

3

)
w3 + 3w2

3 =
5w3

6
+ 3w2

3,740

as long as w3 ≤ 1/4, and the lemma follows.741

Lemma 3.7. Almost surely, for any α > 5/6,742

lim
n→∞

W3(n)

nα
= 0.743

Proof. Fix α > 5/6, and set Zn := n−α ·W3(n). Using Equation (19), we get, for all n ≥ 1,744

Zn+1 = Zn ·
(

1− 1

n+ 1

)α
+
W3(n+ 1)−W3(n)

(n+ 1)α
= Zn +

rn
n+ 1

+
∆M3(n+ 1)

(n+ 1)α
,745

with rn = (n+1)1−αEnY3(n+1)−αZn+O(Zn/n), almost surely when n→ +∞. Recall that Y (n+1) =746

W(n+ 1)−W(n), and thus747

EnY3(n+ 1) = p135(Ŵ(n)) + p234(Ŵ(n)) ≤ αŴ3(n),748
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almost surely for all n large enough, by Lemmas 3.5 and 3.6. Therefore, almost surely for n large enough,749

rn ≤ −δZn, for some constant δ > 0. As a consequence, almost surely there exists m ≥ 1, such that for750

all n > m,751

Zn ≤ γm,n · Zm +

n∑
i=m+1

γi,n ·∆M3(i)

iα
,752

where γi,n :=
∏n
j=i+1(1−

δ
j ), for all i ≤ n (with the convention that γn,n = 1). Recall that by definition753

|∆M3(i)| ≤ 1, almost surely for all i ≥ 1. Thus, by Doob’s L2-inequality, one has as m→ +∞,754

P

(
sup
n≥m

∣∣∣∣∣
n∑

i=m+1

γi,n ·∆M3(i)

iα

∣∣∣∣∣ ≥ 1

m2α−1− 3
5

)
= O

( 1

m6/5

)
.755

By Borel-Cantelli, we deduce that almost surely, one has for all m large enough,756

sup
n≥m

∣∣∣∣∣
n∑

i=m+1

γi,n ·∆M3(i)

iα

∣∣∣∣∣ ≤ 1

m2α−1− 3
5

.757

The lemma follows, since 2α− 1− 3
5 > 0, and for any fixed m ≥ 1, γm,n → 0, as n→∞.758

3.2 Convergence of Ŵ(n)759

Our next goal is to prove the following proposition.760

Proposition 3.8. Almost surely, there exists some (random) real χ ∈ [0, 1], such that as n→∞,761

Wi(n)

n
→ χ, ∀i = 1, 2, and

Wi(n)

n
→ 1− χ, ∀i = 4, 5.762

We start with a computation giving the probability to reinforce edge 2, which is similar to Lemma 3.4.763

Lemma 3.9. One has for all w ∈ E,764

p12(w) + p234(w) =
w2w3 + w1w2w5 + w1w2w4

w3 + w2w5 + w1w4
.765

766

Proof. Note that p12(w) + p234(w) is equal to the probability that the last step before reaching the vertex767

F is through edge 2. Let us compute this probability by decomposing with respect to the first step, which768

is either through edge 1 (jumping on the left vertex), or through edge 4 (jumping on the right vertex),769

hence we will write770

p12(w) + p234(w) = p`(w) + pr(w). (25)771

For w ∈ E , the probability to jump on the left vertex is w1, and once on the left vertex, we need772

to compute the probability to cross edge 2 before crossing edge 5, which is easily done through graph773

transformations similar to those done in the proof of Lemma 3.4; see Figure 9. One obtains:774

p`(w) = w1 ×
w2(w3 + w5 + w1w4)

w2(w3 + w5 + w1w4) + w5(w3 + w1w4)
(26)775

= w1 ×
w2w3 + w2w5 + w1w2w4

w3 + w2w5 + w1w4
, (27)776

777

where we used that w2 + w5 = 1.778

Now, using symmetry, one has779

pr(w) = w4 ×
(

1− w5w3 + w2w5 + w1w5w4

w3 + w2w5 + w1w4

)
(28)780

= w4 ×
w2w3 + w1w2w4

w3 + w2w5 + w1w4
. (29)781

782

One can now easily conclude using (25), by adding up (27) with (29) and using that w1 + w4 = 1.783
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w1 w4

w3

w5w2

⇔ w3

w5w2

w1w4

⇔

w5w2

w1w4 + w3 ⇔

w2

w5(w1w4 + w3)

w3 + w5 + w1w4

Figure 9: Calculation of p`(w)/w1 (i.e. the probability to reach the circled vertex before the crossed vertex
starting from the black vertex) for w ∈ E (in particular, we use w1 + w4 = 1).

We next deduce the following bound on F2(w) (the second coordinate of the function F (w) from (17)).784

Lemma 3.10. For any w ∈ E, we have785

|F2(w)| ≤ w3

2
.786

Proof. By Lemma 3.9, for any w ∈ E ,787

F2(w) = p12(w) + p234(w)− w2 =
(w1 − w2)w2w5

w3 + w2w5 + w1w4
. (30)788

Note now that since w1 − w2 = w5 − w4, either w1 ≥ w2, or w4 ≥ w5. In the first case, using also that789

w4 ≥ w5 −w3, we deduce w3 +w1w4 ≥ w2w5. By symmetry, the same holds when w4 ≥ w5. We thus get790

|F2(w)| ≤ |w1 − w2|
2

≤ w3

2
, for all w ∈ E ,791

where we have used |w1 − w2| ≤ w3 in the second inequality.792

Proof of Proposition 3.8. Iterating Equation (19), we get that, for all n ≥ 0793

Ŵ(n) = Ŵ(0) +

n−1∑
i=0

1

i+ 3

(
F (Ŵ(i)) + ∆M(i+ 1)

)
. (31)794

where we recall that ∆M(n + 1) := Y (n + 1) − EnY (n + 1) with Y (n + 1) := W(n + 1) −W(n), and795

where F is defined in Equation (17). By definition of the model, ‖Y (n+ 1)‖1 ≤ 3 almost surely, and thus796

‖∆M(i+ 1)‖1 ≤ 3 almost surely, which implies that the martingale797

M̂(n) :=
n−1∑
i=0

∆M(i+ 1)

i+ 3
798

is bounded in L2 and thus converges almost surely when n → +∞. By Lemma 3.1, Ŵ(n) ∈ E , for all799

n ≥ 0. Thus Lemma 3.10 gives |F2(Ŵ(n))| ≤ Ŵ3(n)/2, for all n ≥ 0, which implies using Lemma 3.7800

that801

Ŵ2(n) = Ŵ2(0) +
n−1∑
i=0

F2(Ŵ(i))

i+ 3
+
n−1∑
i=0

∆M2(i+ 1)

i+ 3
,802

converges almost surely when n→ +∞. The proposition follows, since by Lemma 3.5, one has Ŵ1(n)−803

Ŵ2(n)→ 0, and by Lemma 3.1, one has Ŵ4(n) = 1− Ŵ1(n), and Ŵ5(n) = 1− Ŵ2(n), for all n ≥ 0.804
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3.3 On the absence of convergence to 0 or 1805

The last step of the proof is to exclude the convergence toward an extremal point, that is we prove the806

following proposition.807

Proposition 3.11. Almost surely,808

lim
n→∞

W1(n)

n
/∈ {0, 1}.809

Note that by symmetry it suffices to exclude the possibility of converging to 1. We prove this by810

contradiction, and start with the following fact.811

Lemma 3.12. For all α ∈ (0, 1), on the event where812

lim
n→∞

W1(n)

n
= 1, and lim

n→+∞

W3(n)

nα
= 0,813

both hold, we have almost surely for any β > α,814

lim
n→+∞

W5(n)

nβ
= 0.815

Proof. Fix α ∈ (0, 1) and assume that both W1(n)/n→ 1 and W3(n)/nα → 0 when n→ +∞. Assume by816

contradiction that there exists β > α, such that lim supn→+∞W5(n)/nβ > 0. Without loss of generality817

one can even assume that lim supn→+∞W5(n)/nβ > 1, by taking a smaller β if necessary. In other words,818

letting819

E :=

{
lim
n→∞

W3(n)

nα
= 0, and lim

n→∞

W1(n)

n
= 1

}
, and E′ := E ∩

{
lim sup
n→+∞

W5(n)

nβ
> 1

}
,820

our aim is to show that P(E′) = 0.821

For m ≥ 1 integer, define822

Em := {W3(n) ≤ nα, and W2(n) ≥ 3(n+ 2)/4 for all n ≥ m} .823

By definition, and using that W2(m) ≥ W1(m) −W3(m), for all m ≥ 0, one has that E ⊂ ∪mEm, and824

therefore825

lim
m→∞

P(E ∩ Ecm) = 0.826

Thus it amounts to show that827

lim
m→∞

P(Em ∩ E′) = 0.828

Note now that by conditioning with respect to the first time n ≥ m when W5(n) ≥ nβ, it suffices in fact829

to show that almost surely830

lim
m→∞

P(Em ∩ E | Fm) · 1{W5(m) ≥ mβ} = 0, (32)831

where Fm = σ(W(0), . . . ,W(m)). Thus the rest of the proof consists in proving (32). The idea is to show832

that for any integer m ≥ 1, on the event that {W5(m) ≥ mβ}, the process (W2(n))n≥m can be coupled833

with another process (Rn)n≥m, in a way that outside an event with vanishing probability as m→∞, one834

has W2(n) ≤ Rn for all n ≥ m, and lim supn→∞Rn/n < 1, from which (32) follows.835

We proceed with the details now. Fix γ ∈ (0, 1), such that 1 + α < β + γ. Let m ≥ 1 be given, and836

conditionally on Fm, we define the process (Rn)n≥m as follows: Rm = W2(m), and for all n ≥ m,837

qn := P(Rn+1 = Rn + 1 | Gn) = 1− P(Rn+1 = Rn | Gn) =
Rn +Rγn
n+Rγn

, (33)838
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Time

ξi/(i+ iγ)

T̃j

Ti

ξ̃j/j

tn = Tτ(tn)

T̃τ̃(tn) = T̃n−τ(tn)

0 = TW2(m)−1 = T̃W5(m)−1

Figure 10: Rubin’s construction for the proof of Lemma 3.12.

where Gn = Fm ∨ σ(Rm, . . . , Rn).839

• First, we prove that, for all m ≥ 1, if we set840

Am :=

{
inf
n≥m

Rn
n

>
3

5

}
∩
{

inf
n≥m

n−Rn
n

>
3

5m1−β

}
, (34)841

then almost surely on the event {W5(m) ≥ mβ} ∩ {W2(m) ≥ 3(m+ 2)/4}, one has842

P(Acm | Fm) = O(m−δ), (35)843

where the implicit constant in the O is deterministic, and δ = δ(β, γ) is some positive constant depending844

only on β and γ. To do this, we use again Rubin’s construction; see Figure 10: Let (ξi)i≥1 and (ξ̃i)i≥1 be845

two independent sequences of independent exponential random variables with mean 1 (also independent846

of the process (W2(n))n≥1). For all m ≥ 0 and i ≥ 0, set847

Ti :=

i∑
j=W2(m)

ξj
j + jγ

, and T̃i :=

i∑
j=W5(m)

ξ̃j
j
,848

with the convention that Ti = 0 for i < W2(m), and T̃i = 0, for i < W5(m). For all t ≥ 0, set849

τ(t) := sup{i ≥ 0 : Ti ≤ t}, and τ̃(t) := sup{i ≥ 0 : T̃i ≤ t},850

and for all n ≥ m,851

tn := inf{t ≥ m : τ(t) + τ̃(t) ≥ n}.852

Standard properties of independent exponential random variables imply that (τ(tn))n≥m and (Rn)n≥m853

have the same law. Note that for all m ≥ 1, and i ≥W2(m),854

Ti = Mi + log
( i

W2(m)

)
+O

( 1

W2(m)1−γ

)
, with Mi :=

i∑
j=W2(m)

ξj − 1

j + jγ
, (36)855

when m→ +∞, and for all i ≥W5(m),856

T̃i = M̃i + log
( i

W5(m)

)
+O

( 1

W5(m)

)
, with M̃i :=

i∑
j=W5(m)

ξ̃j − 1

j
, (37)857
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when m→ +∞. By Doob’s L2-maximal inequality, we get that, almost surely858

P
(

sup
i≥W2(m)

|Mi| >
1

W2(m)1/4

∣∣∣ W2(m)

)
≤ 4W2(m)

1/2
∑

i≥W2(m)

1

i2
= O

( 1

W2(m)1/2

)
, (38)859

when m→ +∞, and similarly,860

P
(

sup
i≥W5(m)

|M̃i| >
1

W5(m)1/4

∣∣∣ W5(m)

)
= O

( 1

W5(m)1/2

)
, (39)861

when m→ +∞. Moreover, by definition862

Tτ(tn) = T̃n−τ(tn) +O(Γm + Γ̃m), (40)863

with864

Γm = sup
j≥W2(m)

ξj/j, and Γ̃m = sup
j≥W5(m)

ξ̃j/j.865

Note that, for all m large enough,866

P
(

Γm >
1

W2(m)1/2
|W2(m)

)
≤ exp

(
−
√
W2(m)

2

)
and P

(
Γ̃m >

1

W5(m)1/2
|W5(m)

)
≤ exp

(
−
√
W5(m)

2

)
.

(41)867

Taking the exponential in Equation (40) gives868

τ(tn)

n− τ(tn)
· W5(m)

W2(m)
= exp(εn), (42)869

where, by Equations (36), (37), (38), (39) and (41), there exists δ = δ(β, γ) > 0 such that almost surely870

on the event {W5(m) ≥ mβ} ∩ {W2(m) ≥ 3(m+ 2)/4},871

P( sup
n≥m
|εn| > m−δ | Fm) = O(m−δ).872

Since, by Lemma 3.1, W5(m) = m + 2 −W2(m), we get that on the event {W2(m) ≥ 3(m + 2)/4}, one873

has W5(m)/W2(m) ≤ 1/3, and thus, by Equation (42),874

τ(tn) ≥ (n− τ(tn))3eεn =⇒ τ(tn) ≥ 3eεnn

1 + 3eεn
=

3n(1−O(m−δ))

4
, (43)875

where the last equality holds on an event of probability at least 1−O(m−δ) when m → +∞. Similarly,876

on the event {W5(m) ≥ mβ}, we have W5(m)/W2(m) ≥ mβ−1, and thus, by Equation (42),877

(n− τ(tn))m1−βeεn ≥ τ(tn) ≥ 3n(1−O(m−δ))

4
,878

where the last inequality comes from Equation (43). This implies879

n− τ(tn) ≥ 3n

4m1−β (1−O(m−δ)),880

when m→ +∞, on an event of probability at least 1−O(m−δ). Since (Rn)n≥m and (τ(tn))n≥m have the881

same law by construction, this concludes the proof of (35).882

• To conclude we just need to show that there exists a coupling of (W2(n))n≥m and (Rn)n≥m, such883

that almost surely on the event Am∩Em (see Equation (34) for the definition of Am), one has W2(n) ≤ Rn884
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for all n ≥ m, at least for m large enough. Indeed, this would prove that on Am ∩ Em, the sequence885

(W1(n)/n)n≥m cannot converge to 1, or otherwise stated that for all m large enough, almost surely,886

P(Am ∩ Em ∩ E | Fm) = 0.887

Together with (35), this would conclude the proof of (32). So let us prove the existence of the desired888

coupling now.889

Recall that, by Lemma 3.10, for all n ≥ m, on the event {W3(n) ≤ nα},890

pn := P(W2(n+ 1) = W2(n) + 1 | Fn) ≤ W2(n) + nα

n+ 2
.891

To show that our coupling exists, it is enough to prove that, for all n ≥ m, if W2(n) ≤ Rn, then pn ≤ qn,892

where qn is defined in Equation (33). Indeed, if W2(n) ≤ Rn and pn ≤ qn, then there exists a one-step893

coupling such that W2(n+ 1) ≤ Rn+1, and we can proceed by induction. Note that qn ≥ pn is implied by894

(n+ 2)(Rn +Rγn) ≥ (n+Rγn)(W2(n) + nα).895

Developing and using the induction hypothesis (i.e. W2(n) ≤ Rn), it suffices to show that896

Rγn(n−Rn − nα) ≥ n1+α,897

which is indeed true on Am, since on this event898

Rγn(n−Rn − nα) ≥ 3

5
nγ
(3

5
nβ − nα

)
,899

which is well larger than n1+α, for all n large enough, since by hypothesis γ ∈ (0, 1) and γ + β > 1 + α.900

This concludes the proof of (32), and of the lemma.901

Lemma 3.13. Let α ∈ (0, 1) be given. On the event902

A(α) =
{
Wi(n) = O(nα), for i = 3, 5

}
903

one has almost surely for any β > max(2α− 1, α2 ),904

W4(n) +W5(n) ≤W3(n) +O(nβ).905

For the proof of this lemma we need some intermediate results. The first one gives a lower bound on906

F4 + F5 − F3.907

Lemma 3.14. For all w ∈ E, such that w5 ≤ 1/2, we have908

F4(w) + F5(w)− F3(w) ≥ −8(w2
3 + w2

5).909

Proof. Note that910

F4(w) + F5(w)− F3(w) = 2F5(w)− 2p135(w) + w5 − w4 + w3.911

Recall that by Equation (30) (using the symmetry of the model), we have912

F5(w) =
(w4 − w5)w2w5

w3 + w1w4 + w2w5
.913

Also recall that (see Equation (22)),914

p135(w) =
w1w3w5

w3(1 + w4 + w1w4) + w2w4 + w2w5 + w1w2
4 + w1w4w5

915

≤ w1w3w5

w3 + (w3 + w2)w4 + w2w5
≤ w1w3w5

w3 + w1w4 + w2w5
,916

917

28



where we have used in the last inequality that w1 ≤ w2 +w3 for all w ∈ E . Using again that w1 ≤ w2 +w3918

for all w ∈ E , and the fact that w3 +w1w4 +w2w5 ≥ w5(1−w5) ≥ w5/2, for all w ∈ E such that w5 ≤ 1/2,919

we get that920

p135(w) ≤ w2w3w5

w3 + w1w4 + w2w5
+ 2w2

3.921

Therefore,922

F5(w)− p135(w) ≥ −w5w2(w3 − w4 + w5)

w3 + w1w4 + w2w5
− 2w2

3,923

and thus924

F4(w) + F5(w)− F3(w) ≥ (w3 + w1w4 − w2w5)(w3 − w4 + w5)

w3 + w1w4 + w2w5
− 4w2

3925

≥ (w3 + w4 − w5)(w3 − w4 + w5)

w3 + w1w4 + w2w5
+

(w5(1− w2)− w4(1− w1))(w3 − w4 + w5)

w3 + w1w4 + w2w5
− 4w2

3, (44)926

927

Recall that, for all w ∈ E , w1 +w4 = w2 +w5 = 1, and thus w5(1−w2)−w4(1−w1) = w2
5 −w2

4 ≥ −w2
4.928

As a consequence, for all w5 ≤ 1/2,929

(w5(1− w2)− w4(1− w1))(w3 − w4 + w5)

w3 + w1w4 + w2w5
≥ − w

2
4(w3 − w4 + w5)

w3 + w1w4 + w2w5
≥ − w2

4(w3 + w5)

w3 + w1w4 + w5 − w2
5

≥ −2w2
4,930

where we used that, as w5 ≤ 1/2, w3 + w1w4 + w5 − w2
5 ≥ w3 + w5(1 − w5) ≥ (w3 + w5)/2. Then from931

Equation (44), we get932

F4(w) + F5(w)− F3(w) ≥ (w3 + w4 − w5)(w3 − w4 + w5)

w3 + w1w4 + w2w5
− 4w2

3 − 2w2
4933

≥ w2
3 − (w4 − w5)

2

w3 + w1w4 + w2w5
− 4w2

3 − 2w2
4 ≥ −4w2

3 − 2(w3 + w5)
2,934

935

using that |w4 − w5| ≤ w3, for all w ∈ E . This concludes the proof because (w3 + w5)
2 ≤ 2w2

3 + 2w2
5.936

The second result we shall need is the following general fact, which will be used at several places937

during the rest of the proof. For a process (Mn)n≥0, we write ∆Mn := Mn+1 −Mn, for all n ≥ 0.938

Lemma 3.15. Let a, b, c ∈ (0, 1), be such that b < a and 1 < 2a+ c.939

(i) Let (An)n≥1 be a sequence of real random variables. On the event {An = O(nb−1)}, we have almost940

surely as m→ +∞,941

sup
n≥m

n∑
i=m

Ai
(i+ 3)a

= O(mb−a).942

(ii) Let (Mn)n≤0 be a real martingale such that |∆Mn| ≤ 1, almost surely for all n ≥ 0. On the event943

{En[(∆Mn)2] = O(n−c)}, we have almost surely when m→ +∞,944

sup
n≥m

∣∣∣∣∣
n∑

i=m

∆Mi

(i+ 3)a

∣∣∣∣∣ = O(mκ−a),945

for all κ ∈ (1−c2 , a).946

Proof. (i) is straighforward. For (ii), we fix 1−c
2 < κ < a, and then ε > 0, such that 1−c+ε

2 < κ, and947

κ̂ := κ+ ε/2 < a. For m ≤ n, define the event948

Am,n := {Ei[(∆Mi)
2] ≤ i−c+ε ∀m ≤ i ≤ n}.949
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We have, for all n ≥ m ≥ 1,950

P
( n∑
i=m

∆Mi

(i+ 3)a
≥ mκ̂−a, Am,n

)
≤ exp

(
−mε/2

)
E
[ n∏
i=m

exp

(
ma−κ ∆Mi

(i+ 3)a

)
1Am,n

]
.951

952

Using the bound |∆Mn| ≤ 1, and a Taylor expansion, we get for all n ≥ m, on the event Am,n,953

En
[

exp

(
ma−κ ∆Mn

(n+ 3)a

)]
= 1 +O

(
m2a−2κEn[(∆Mn)2]

(n+ 3)2a

)
≤ 1 +O

(
n−2κ−c+ε

)
,954

where the constant in the O-term is deterministic. By induction, and since 2κ + c − ε > 1, we get that955

for all m large enough,956

E
[ n∏
i=m

exp

(
ma−κ ∆Mi

(i+ 3)a

)
1Am,n

]
≤ 2,957

and thus for all 1 ≤ m ≤ n, with m large enough,958

P
( n∑
i=m

∆Mi

(i+ 3)a
≥ mκ̂−a, Am,n

)
≤ 2 exp

(
−mε/2

)
.959

By symmetry and a union bound, we deduce that for all m large enough,960

P
(

sup
m≤n≤2m

∣∣∣∣∣
n∑

i=m

∆Mi

(i+ 3)a

∣∣∣∣∣ ≥ mκ̂−a, Am,2m
)
≤ 4m exp

(
−mε/2

)
.961

Next, another union bound gives, for all m large enough,962

P
(

sup
n≥m

∣∣∣∣∣
n∑

i=m

∆Mi

(i+ 3)a

∣∣∣∣∣ ≥ R ·mκ̂−a, Am,∞
)
≤ exp

(
− 1

2
·mε/2

)
,963

with R :=
∑

i≥0 2(κ̂−a)i, which is finite since κ̂ < a. Then the result follows from Borel-Cantelli’s lemma,964

since on the event {En[(∆Mn)2] = O(n−c)}, almost surely Am,∞ holds for all m large enough.965

We now prove Lemma 3.13.966

Proof of Lemma 3.13. Consider the process U(n) = W5(n) +W4(n)−W3(n), and set Û(n) := U(n)
n+2 . One967

has for any integers m < n,968

Û(n) = Û(m) +

n−1∑
i=m

G(Ŵ(i))

i+ 3
+

n−1∑
i=m

∆Φ(i)

i+ 3
, (45)969

where G(w) = F5(w)+F4(w)−F3(w), and ∆Φ(i) = Y (i+1)−EiY (i+1), with Y (i+1) = U(i+1)−U(i)970

for all i ≥ 0.971

Note first that, |Y (n + 1)| ≤ 2 almost surely for all n ≥ 0, by definition of the model, and thus also972

|∆Φ(n)| ≤ 4. Note furthermore, that on A(α), one has W4(n) = O(nα), since W4(n) ≤ W5(n) + W3(n)973

(recall Lemma 3.1), and thus |Û(n)| = O(nα−1). Moreover, using Lemmas 3.5 and 3.10 (and the fact that974

if at some time n, W4 increases by one unit, then either W3 or W5 also), we deduce that on A(α),975

En[|∆Φ(n)|2] ≤ En[Y (n+ 1)2] ≤ 4 · Pn(Y (n+ 1) 6= 0) = O(Ŵ5(n) + Ŵ3(n)) = O(nα−1).976

On the other hand, by Lemma 3.14, on A(α), we have almost surely G(Ŵ(i)) ≥ −O(i2α−2). Thus977

Lemma 3.15 (applied with a = 1, b = 2α − 1, and c = 1 − α) and Equation (45) (with n taken large978

enough) give Û(m) ≤ O(mβ−1), for any β > max(2α− 1, α/2), which proves the desired result.979
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We deduce the following fact (recall the definition of the events A(α) from Lemma 3.13).980

Lemma 3.16. Let α ∈ (0, 1) be given. One has almost surely,981

A(α) ⊆ A(β),982

for any β > max(2α− 1, α2 ).983

For the proof of this result, we will need some intermediate result.984

Lemma 3.17. (a) For all c ∈ (1/2, 3/4), there exist positive constants ε and C, such that for all r ∈ [0, 1),985

and all w ∈ E, with w3 ≤ ε and w4 + w5 ≤ w3 + r, one has986

F5(w)− F4(w) ≥ c(w4 − w5)− Cr.987

(b) There exist positive constants ε and C, such that for any w ∈ E, with w3 ≤ ε, w4 + w5 ≤ w3 + r,988

and w4 ≤ w5, one has989

9

2
F4(w)− F3(w) ≥ −Cr.990

(c) Let ρ ∈ (0, 1/4) be given. There exist positive constants ε and C, such that for any r ∈ [0, 1), and991

any w ∈ E, with w3 ≤ ε, w4 + w5 ≤ w3 + r, and w4 ≤ ρw3 + r, one has992

F4(w) ≥ −Cr.993

Proof. Let us start with Part (a). Note that, if, under the assumption of the lemma, we have w4+w5−w3 ≥994

2w3, then 3w3 ≤ w4 + w5 ≤ w3 + r, which implies w3 ≤ r/2, and thus w4 + w5 ≤ 3r/2. In particular, we995

have that w3, w4, w5 ∈ [0, 2r). Recall that, F5(w)−F4(w) = p135(w)−p234(w)+w4−w5 ≥ −p234(w)−w5,996

and, by Equation (22) (using the symmetry of the model), we have that, for all w ∈ E , p234(w) ≤ w4.997

Thus F5(w) − F4(w) ≥ −w4 − w5 ≥ −4r, which, using that w4 ≤ 2r, concludes the proof of (a) in the998

case when w4 + w5 − w3 ≥ 2w3. We now assume that w4 + w5 − w3 < 2w3. This implies999

1

2w3
≥ 1

w3 + w4 + w5
≥ 1

2w3(1 + w4+w5−w3
2w3

)
≥ 1

2w3
− r

4w2
3

, (46)1000

using that w4 + w5 ≥ w3, for all w ∈ E , for the first inequality. Using again (22), we get that, when1001

w3, w4, w5 → 0, with (w4 + w5)/3 ≤ w3 ≤ w4 + w5,1002

F5(w)− F4(w) = p135(w)− p234(w) + w4 − w51003

= w4 − w5 +
w3w5

w3 + w4 + w5
(1− o(1))− w3w4

2(w3 + w4 + w5)
(1 + o(1))1004

≥ w4 − w5 +
w5

2
(1− o(1))− w4

4
(1 + o(1))− rw5(1 + o(1))

4w3
1005

≥ 3w4

4
(1− o(1))− w5

2
(1 + o(1))− 3r(1 + o(1))

4
,1006

1007

because w4 + w5 − w3 < 2w3 implies w5 ≤ 3w3. This concludes the proof of (a).1008

We prove now Part (b). First note that if w4 + w5 − w3 ≥ 2w3, then we have as in Part (a) that1009

w3, w4, w5 ∈ [0, 2r], and since F3(w) ≤ 0 by Lemma 3.5, we deduce that 9/2 · F4(w)− F3(w) ≥ −9w4/2 ≥1010

−9r, proving the result. So we may assume now that w4 + w5 − w3 < 2w3. In this case1011

9

2
F4(w)− F3(w) =

9

2

(
F5(w) + w5 − w4 + p234(w)− p135(w)

)
− F3(w).1012
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Using Equation (30), we have, when w3, w4, w5 → 0,1013

F5(w) + w5 − w4 =
(w5 − w4)(w3 + w1w4)

w3 + w1w4 + w2w5
=

(w5 − w4)(w3 + w4)(1 + o(1))

w3 + w4 + w5
.1014

Using Equation (46), and the fact that w4 ≤ w5, we get1015

F5(w) + w5 − w4 ≥
(w5 − w4)(1 + o(1))

2

(
1− r

2w3

)
≥ (w5 − w4)(1 + o(1))

2
− r

4
(1 + o(1)),1016

using that w5 − w4 ≤ w3. In the proof of (a), we have shown that1017

p234 − p135 =
w3w4(1 + o(1))

2(w3 + w4 + w5)
− w3w5(1 + o(1))

w3 + w4 + w5
≥ (w4 − 2w5)(1 + o(1))

4
.1018

Using in addition that by assumption w3 ≥ w4 + w5 − r, we get1019

F3(w) = p135 + p234 − w3 =
w3w5(1 + o(1))

w3 + w4 + w5
+

w3w4(1 + o(1))

2(w3 + w4 + w5)
− w3 (47)1020

≤ −w5(1 + o(1))

2
− 3w4(1 + o(1))

4
+ r.1021

1022

In total, we thus get1023

9

2
F4(w)− F3(w) ≥ −9w4(1 + o(1))

8
− 9r(1 + o(1))

8
+
(w5

2
+

3w4

4
− r
)

(1 + o(1))1024

≥ −3w4

8
(1 + o(1)) +

w5

2
(1− o(1))− 17r(1 + o(1))

8
,1025

≥ w5(1 + o(1))

8
− 17r(1 + o(1))

8
,1026

1027

because w4 ≤ w5, which concludes the proof of (b).1028

Finally we prove (c). Assuming again that w4 +w5 −w3 < 2w3 (as otherwise we conclude as in Part1029

(b)), we get when w3 → 0 (and as consequence w4, w5 → 0 also),1030

F4(w) = F5(w) + p234(w)− p135(w) + w5 − w41031

=
(w5 − w4)(w3 + w1w4)

w3 + w1w4 + w2w5
+ p234(w)− p135(w)1032

≥ (w5 − w4)(w3 + w1w4)

w3 + w1w4 + w2w5
+

w3w4(1− o(1))

2(w3 + w4 + w5)
− w3w5

w3 + w1w4 + w2w5
1033

≥ −w4(1 + o(1)) · w3 + w1w4 − w1w5

w3 + w4 + w5
+

w3w4(1− o(1))

2(w3 + w4 + w5)
1034

=
w4

[
w5(1− o(1))− (w3

2 + w4)(1 + o(1))
]

w3 + w4 + w5
.1035

1036

Using the fact that, for all w ∈ E , w5 ≥ w3 −w4, and the fact that, by assumption, w4 ≤ ρw3 + r, we get1037

w5 −
w3

2
− w4 ≥

w3

2
− 2w4 ≥

w3

2
− 2ρw3 − 2r =

w3

2
(1− 4ρ)− 2r,1038

which implies1039

F4(w) ≥ w4w3(1− 4ρ)

2(w3 + w4 + w5)
(1− o(1))− 2r(1 + o(1)) ≥ −2r(1 + o(1)),1040

since ρ < 1/4 by assumption.1041
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We are now ready to prove Lemma 3.16.1042

Proof of Lemma 3.16. We fix α ∈ (0, 1). Recall that1043

A(α) =
{
W3(n) = O(nα) and W5(n) = O(nα)

}
.1044

The proof is divided in three steps.1045

First step. Fix c ∈ (3/4, 1). Consider the process U(n) = W5(n)−W4(n)
(n+2)1−c . By Equation (19), we have for1046

n ≥ 1,1047

U(n+ 1) = U(n) +
rn

(n+ 3)1−c
+

∆Ψ(n)

(n+ 3)1−c
, (48)1048

where (when n→ +∞ in the second equality)1049

rn = F5(Ŵ(n)) + Ŵ5(n)− F4(Ŵ(n))− Ŵ4(n) +
(
(n+ 2)1−c − (n+ 3)1−c

)
U(n)1050

= F5(Ŵ(n))− F4(Ŵ(n)) + Ŵ5(n)− Ŵ4(n) + (c− 1 + o(1))n−cU(n),1051
1052

and ∆Ψ(n) := ∆M5(n+ 1)−∆M4(n+ 1). By Lemma 3.13, for all β > max(2α− 1, α2 ), almost surely on1053

A(α), we have Ŵ4(n) + Ŵ5(n) ≤ Ŵ3(n) +O(nβ−1) when n → +∞. Using Lemma 3.17(a), this implies1054

that, almost surely on A(α), for all n large enough,1055

F5(Ŵ(n))− F4(Ŵ(n)) ≥ (c− 1/4)
(
Ŵ4(n)− Ŵ5(n)

)
−O(nβ−1),1056

and thus (using the fact that U(n) = (Ŵ5(n)− Ŵ4(n))(n+ 2)c)1057

rn ≥ (1−c+1/4)(Ŵ5(n)−Ŵ4(n))−O(nβ−1)+(c−1+o(1))n−cU(n) =
(
1/4+o(1)

)
n−cU(n)−O(nβ−1), (49)1058

for all β > max(2α−1, α2 ). Note that ∆U(n) 6= 0 implies W3(n+1)−W3(n) = 1, and thus by Lemma 3.51059

on A(α), one has1060

En[|∆Ψ(n)|2] ≤ P(∆U(n) 6= 0) = O(nα−1).1061

Using next Lemma 3.15, we deduce that for any β > α/2,1062

sup
n≥m

∣∣∣∣∣
n∑

i=m

∆Ψ(i)

(i+ 3)1−c

∣∣∣∣∣ = O(m−1+c+β). (50)1063

By Equation (48), we have, for all n > m,1064

U(n) = U(m) +

n−1∑
i=m

ri
(i+ 3)1−c

+

n−1∑
i=m

∆Ψ(i)

(i+ 3)1−c
. (51)1065

Now fix β > max(2α− 1, α2 ). Observe that if for some ε > 0, lim supm→+∞(W5(m)−W4(m))/mβ+ε > 0,1066

then Equations (49), (50), (51) and Lemma 3.15 imply, by induction, that U(n) ≥ 0, for all n large enough.1067

Thus on A(α), there are only two possibilities: either W5(n) ≤W4(n)+O(nβ), for all β > max(2α−1, α2 ),1068

or W5(n) ≥W4(n) for all large enough n.1069

Second step. Consider first the case when W5(n) ≤W4(n) +O(nβ), for any β > max(2α− 1, α2 ). Note1070

that, for all w ∈ E and asymptotically when w3, w4, w5 → 0, we have, using Equation (30),1071

F5(w) =
(w4 − w5)w2w5

w3 + w1w4 + w2w5
=

(w4 − w5)w5

w3 + w4 + w5
(1 + o(1)). (52)1072
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By Lemma 3.13, on A(α), we have W3(n) ≤W4(n) +W5(n) ≤W3(n) +O(nβ). Since we also assume, in1073

this second step, that W5(n) ≤ W4(n) +O(nβ), this implies 2W5(n) ≤ W3(n) +O(nβ). Therefore, using1074

that W4(n) −W5(n) ≥ −W3(n)∧O(nβ) we get F5(Ŵ(n)) ≥ −O(nβ−1). Next, let us prove that for any1075

β > max(2α− 1, α2 ), W5(n) = O(nβ). Using (19), we have, for n ≥ m,1076

Ŵ5(n) = Ŵ5(m) +
n−1∑
i=m

F5(Ŵ(i))

i+ 3
+

n−1∑
i=m

∆M5(i+ 1)

i+ 3
,1077

where by Lemma 3.15 the two sums are greater than −O(mβ−1). On A(α), if lim supm Ŵ5(m)/mβ−1 =∞,1078

then the equation above would contradict that Ŵ5(n) goes to zero, when n→∞. Thus W5(n) = O(nβ),1079

as claimed.1080

Now note that, for all w ∈ E , asymptotically when w3, w4, w5 → 0,1081

F3(w) = p135(w) + p234(w)− w3 =
w3(w5 + w4

2 )

w3 + w4 + w5
(1 + o(1))− w3 ≤

2w5 + w4

4
(1 + o(1))− w3,1082

where we have used Equation (47) and the fact that w4 + w5 ≥ w3 for all w ∈ E . Since, for all w ∈ E ,1083

w4 ≤ w3 + w5, we get1084

F3(w) ≤ 3(w5 − w3)

4
(1 + o(1)).1085

Applying this to w = Ŵ(n) (which belongs to E by Lemma 3.1), we get that on A(α), almost surely1086

when n→ +∞,1087

F3(Ŵ(n)) ≤ O(nβ−1).1088

Now if lim inf W3(n)/nβ ≤ 1, for some β > max(2α − 1, α/2), then Lemma 3.15 gives W3(n) = O(nβ)1089

following an argument very similar to the one above for Ŵ5(n). On the other hand, if lim inf W3(n)/nβ =1090

+∞, for any β > max(2α− 1, α2 ), then, as W4(n) ≥W3(n)−W5(n) ≥W3(n)−O(nβ), we have W4(n)−1091

W5(n) ≥ 0, for all n large enough, which implies F5(Ŵ(n)) ≥ 0. From (19), this means that for m1092

large enough, the process (W5(n))n≥m stochastically dominates a Pólya urn process (Rn)n≥m defined by1093

P(Rn+1 = Rn + 1 | Rn) = 1 − P (Rn+1 = Rn | Rn) = Rn
n+2 , which is well known to grow almost surely1094

linearly in n (this can be seen using Rubin’s construction as in the proof of Lemma 3.12). Thus W5(n)1095

would also grow linearly in n, and we would get a contradiction. Therefore, necessarily W3(n) = O(nβ),1096

as wanted.1097

Third step. Consider next the case when W5(n) ≥ W4(n), for all n large enough. Define V (n) =1098

9
2W4(n)−W3(n), and V̂ (n) = V (n)

n+2 . One has for any n ≥ 1,1099

V̂ (n+ 1) = V̂ (n) +
H(Ŵ(n))

n+ 3
+

∆Θ(n)

n+ 3
,1100

with again ∆Θ(n) the increment of some martingale, and H(w) = 9
2F4(w)−F3(w). Using Lemmas 3.17(b)1101

and 3.15 (with arguments similar to those in the second step), we deduce that V (n) ≤ O(nβ), for any1102

β > max(2α−1, α2 ). We note finally that by Lemma 3.17(c) this entails F4(Ŵ(n)) ≥ −O(nβ−1), and thus1103

by another application of Lemma 3.15, we conclude that W4(n) = O(nβ), for any β > max(2α − 1, α2 ).1104

Then we can use the same argument as in step 2: we first observe that this entails1105

F3(Ŵ(n)) ≤ Ŵ5(n)

2
(1− o(1))− Ŵ3(n) +O(nβ−1) ≤ −Ŵ3(n)

4
+O(nβ−1) ≤ O(nβ−1).1106

Therefore, if lim inf W3(n)
nβ

= ∞, then W3(n) ∼ W5(n), and W4(n) = o(W3(n)). Thus by Lemma 3.17(c)1107

again (applied with r = 0), we get F4(Ŵ(n)) ≥ 0, for all n large enough, which leads to a contradiction1108

as in step 2. We conclude that W3(n) = O(nβ), as wanted. This concludes the proof of the lemma.1109
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An immediate corollary of the results obtained so far is the following fact.1110

Corollary 3.18. On the event when W1(n)/n→ 1, one has almost surely for any ε > 0,1111

W3(n) = O(nε).1112

Proof. It suffices to combine Lemmas 3.7 and 3.12 with Lemma 3.16, which we can iterate as much as1113

needed. Indeed, the map ϕ : α 7→ max(2α − 1, α2 ) is decreasing, with 0 as unique fixed point in [0, 1),1114

which implies that any sequence defined by αn+1 = ϕ(αn), with α0 < 1, converges to 0. Lemmas 3.71115

and 3.12 give the existence of α0 < 1 such that, on the event W1(n)/n → 1, A(α0) has probability 1.1116

Lemma 3.16 then implies that for all n ≥ 0, on the event W1(n)/n → 1, A(αn) has probability 1. We1117

then choose n large enough so that αn < ε.1118

The final step is the following result, which together with Corollary 3.18 brings a contradiction, if1119

W1(n)/n→ 1, and therefore concludes the proof of Proposition 3.11.1120

Lemma 3.19. On the event when W1(n)/n→ 1, one has almost surely for any c ∈ (0, 1/5),1121

lim
n→∞

W3(n)

nc
= +∞.1122

Proof. Recall that when w3, w4 and w5 go to 0, one has for w ∈ E ,1123

p135(w) + p234(w) =
w3(w5 + w4

2 )

w3 + w4 + w5
(1 + o(1)).1124

Using now that w4 + w5 ≥ w3, we get that1125

p135(w) + p234(w) ≥ w3(1 + o(1))

4
=

w3/4(1 + o(1))

1− w3 + w3/4
.1126

Thus there exists ε > 0, such that for any w ∈ E , with w3, w4, w5 ≤ ε,1127

p135(w) + p234(w) ≥
w3/5

1− w3 + w3/5
.1128

By Proposition 3.2 and Lemma 3.12, we deduce that almost surely on the event when W1(n)/n → 1,1129

there exists a random integer n0 such that, for all n ≥ n0,1130

p135(Ŵ(n)) + p234(Ŵ(n)) ≥ Ŵ3(n)/5

1− Ŵ3(n) + Ŵ3(n)/5
=

W3(n)/5

n+ 2−W3(n) + W3(n)/5
.1131

Therefore, after some (random) time n0, the process (W3(n))n≥n0 stochastically dominates an urn process1132

(U(n))n≥n0 , defined by U(n0) = 1 and, for all n ≥ n0,1133

P
(
U(n+ 1) = U(n) + 1 | U(n)

)
= 1− P

(
U(n+ 1) = U(n) | U(n)

)
=

U(n)/5

n+ n0 + 2− U(n) + U(n)/5
.1134

For any fixed n0, the urn process (U(n))n≥n0 is studied for instance in Janson [Jan06] (see in particular1135

Theorem 1.4 and Remark 1.12 there), which provides a precise asymptotic behavior of n−1/5U(n): it1136

converges in law towards some non-degenerate random positive variable. But here one can simply rely1137

again on Rubin’s construction, which covers our needs. It shows that for any fixed n0, almost surely there1138

exists a constant c > 0, such that U(n) ≥ cn1/5, for any n ≥ n0, and the lemma follows.1139

The proofs of Proposition 3.11 and Theorem 1.4 are now complete.1140
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Figure 11: The graph of Proposition 1.5 and the notations used in Section 4.

4 Proof of Proposition 1.51141

We fix an integer L and look at the uniform-geodesic version of the model on the graph on the left-hand1142

side of Figure 5. Note that each ant reinforces either the L edges on the left (and the edge linked to F )1143

or the L edges on the right (and the edge linked to F ). Thus, the L edges on the left have all the same1144

weight at all times, and similarly for the the L edges on the right. For all integers n, we set N1(n) to1145

be the weight of the L left-edges at time n, and by N2(n) the weights of the right-edges at time n. By1146

definition, we have that N1(n) +N2(n) = n+ 2, which is also the weight of the edge linked to F .1147

To prove Proposition 1.5, we apply a result of [HLS80] (see [Pem07, Theorem 2.8]):1148

Theorem 4.1. Let (Zn)n≥0 be a sequence of random variables taking values in [0, 1] satisfying, for all1149

n ≥ 0,1150

Zn+1 = Zn +
1

n

(
F (Zn) + ∆Mn+1

)
, (53)1151

where F : [0, 1] → [0, 1] and ∆Mn+1 is a martingale increment. If there exists ε > 0 such that F < 0 on1152

[0, ε], then P(Zn → 0) > 0.1153

First note that, if Zn = N1(n)/(n + 2) for all n ≥ 0, then Zn satisfies Equation (53) with F (x) =1154

p(x)− x, where p(x) is the probability that an ant reinforces the left-hand side geodesic after performing1155

a random walk on G with weights x on all edges on the left, 1 − x on all edges on the right, and 1 on1156

the edge linked to F . We let G(x) denote the graph G equipped with these weights, P denote the unique1157

vertex neighbouring F , and for all k ∈ {0, . . . , L − 1}, Ak denote the vertex at distance k of N on the1158

right-hand-side geodesic (with A0 = N). See Figure 11 where the notations are illustrated.1159

We now calculate p(x) when x → 0 to show that p(x) < x in a neighbourhood of zero; this implies1160

that F < 0 in a neighbourhood of zero and thus that Theorem 4.1 applies. Asymptotically when x→ 0,1161

p(x) =
L−1∑
k=0

(
p(1)k (x) +

1

2
p(2)k (x)

)
+

1

2
p(3)(x) +

1

2
p(4)(x) +O(x2), (54)1162

where, for all k ∈ {0, . . . , L− 1},1163

• p(1)k (x) the probability that a walker on the weighted graph G(x) goes from N to Ak using only1164

edges on the right-hand-side geodesic, then goes from Ak to N without reaching Ak+1, then goes1165

from N to P without reaching Ak+1, and, finally, goes from P to F without using the left-hand-side1166

geodesic or reaching Ak;1167

• p(2)k (x) the probability that a walker on the weighted graph G(x) goes from N to Ak using only edges1168

on the right-hand-side geodesic, then goes from Ak to P without reaching Ak+1 (thus using edges1169

on the left-hand-side geodesic), and, finally, goes from P to Ak using only edges on the right-hand1170

side geodesic;1171
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• p(3)(x) the probability that a walker on the weighted graph G(x) first goes from N to P only using1172

edges on the right-hand-side geodesic, then goes from P to N using edges on the left-hand-side1173

geodesic, and before entering the left-hand geodesic from N ;1174

• p(4)(x) the probability that a walker on the weighted graph G(x) first goes from N to P only using1175

edges on the right-hand-side geodesic, then goes back from P to N only using edges on the right-1176

hand-side geodesic, and, finally, goes from N to P using edges on the left-hand-side geodesic and1177

before entering the left-hand-side geodesic from P or hitting F .1178

The O(x2)-term in Equation (54) stands for all trajectories of the walker that leave N or P at least twice1179

towards the left. We have, if k ∈ {1, . . . , L− 1},1180

p(1)k (x) =
1−x
k

1−x
k + x

·
1−x
k

1−x
k + (1− x)

·
x
L

x
L + (1−x)

k+1

· 1

1 + x+ 1−x
L−k

=
x

L
· L− k
L− k + 1

+O(x2).1181

We also have1182

p(1)0 (x) =
x
L

x
L + (1− x)

· 1

1 + x+ 1−x
L

=
x

L
· L

L+ 1
+O(x2).1183

Using the fact that
∑n

i=1
1/i = log n+O(1) when n→ +∞, we get1184

L−1∑
k=0

p(1)k (x) =
x

L

L−1∑
k=0

(
1− 1

L− k + 1

)
+O(x2) = x

(
1− logL

L
+OL→+∞(1)

)
+O(x2), (55)1185

where the OL→+∞(1)-term does not depend on x and corresponds to the L → +∞ limit, while the1186

O(x2)-term depends on L and refers to the x→ 0 limit. Similarly, for all k ∈ {1, . . . , L− 1}, we have1187

p(2)k (x) =
1−x
k

1−x
k + x

·
1−x
k

1−x
k + 1− x

·
x
L

x
L + 1−x

k+1

·
1−x
L−k

1−x
L−k + 1 + x

=
x

L
· 1

L− k + 1
,1188

and1189

p(2)0 (x) =
x
L

x
L + (1− x)

·
1−x
L

1−x
L + 1 + x

=
x

L
· 1

L+ 1
+O(x2).1190

Using again the asymptotic behaviour of the harmonic sum, we get1191

1

2

L−1∑
k=0

p(1)k (x) =
x

L

L−1∑
k=0

1

L− k + 1
+O(x2) = x

(
logL

2L
(1 + oL→+∞(1))

)
+O(x2). (56)1192

We also have, when x→ 0,1193

p(3)(x) =
1−x
L

1−x
L + x

·
x
L

x
L + 1 +

x 1−x
L

x+ 1−x
L

=
x

L
+O(x2),1194

and1195

p(4)(x) =
1−x
L

1−x
L + x

·
1−x
L

1−x
L + 1 + x

·
x
L

x
L +

(1+x) 1−x
L

1+x+ 1−x
L

=
x

L
+O(x2).1196

Using these last equations together with (55) and (56) into Equation (54), we get that, in total,1197

p(x) = x

(
1− logL

2L
(1 + oL→+∞(1))

)
+O(x2).1198

Therefore,1199

F (x) = p(x)− x = −x
(

logL

2L
(1 + oL→+∞(1))

)
+O(x2),1200

implying that for all L large enough, F is indeed negative in a right-neighbourhood of 0. Hence, Theo-1201

rem 4.1 applies and we conclude that P(Zn → 0) > 0, which concludes the proof of Proposition 1.5.1202
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[DS04] Marco Dorigo and Thomas Stützle. Ant colony optimization. MIT Press, 2004. 11206

[Duf97] Marie Duflo. Random iterative models, volume 34. Springer-Verlag, 1997. 21207

[GADP89] Simon Goss, Serge Aron, Jean-Louis Deneubourg, and Jacques Marie Pasteels. Self-1208

organized shortcuts in the argentine ant. Naturwissenschaften, 76(12):579–581, 1989. 11209

[HJ04] Ben M. Hambly and Jonathan Jordan. A random hierarchical lattice: the series-parallel1210

graph and its properties. Advances in applied probability, pages 824–838, 2004. 2, 41211

[HK17] Mark Holmes and Victor Kleptsyn. Proof of the warm whisker conjecture for neuronal1212

connections. Chaos, 27(4), 2017. 71213

[HLS80] Bruce M. Hill, David Lane, and William Sudderth. A strong law for some generalized urn1214

processes. The Annals of Probability, 8(2):214–226, 1980. 361215

[HST11] Yilei Hu, Brian Skyrms, and Pierre Tarrès. Reinforcement learning in signaling game.1216

ArXiv preprint arXiv:1103.5818, 2011. 81217

[Jan06] Svante Janson. Limit theorems for triangular urn schemes. Probability Theory and Related1218

Fields, 134(3):417–452, 2006. 351219

[KT16] Daniel Kious and Pierre Tarrès. Reinforcement learning in social networks. ArXiv preprint1220

arXiv:1601.00667, 2016. 81221

[LGR18] Line C. Le Goff and Olivier Raimond. Vertex reinforced non-backtracking random walks:1222

an example of path formation. Electronic Journal of Probability, 23, 2018. 71223

[LL10] Gregory F. Lawler and Vlada Limic. Random walk: a modern introduction, volume 123.1224

Cambridge University Press, 2010. 31225

[LP05] Russell Lyons and Yuval Peres. Probability on trees and networks. Cambridge University1226

Press, 2005. 21227

[MJT+13] Qi Ma, Anders Johansson, Atsushi Tero, Toshiyuki Nakagaki, and David J.T. Sumpter.1228

Current-reinforced random walks for constructing transport networks. Journal of the Royal1229

Society Interface, 10(80):20120864, 2013. 1, 71230

[Pem07] Robin Pemantle. A survey of random processes with reinforcement. Probability Surveys,1231

pages 1–79, 2007. 2, 361232

[PGG+12] Andrea Perna, Boris Granovskiy, Simon Garnier, Stamatios C. Nicolis, Marjorie Labédan,1233
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