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Large deviation principle for the streams and the maximal flow in first passage percolation *

We consider the standard first passage percolation model in the rescaled lattice Z d /n for d ≥ 2 and a bounded domain Ω in R d . We denote by Γ 1 and Γ 2 two disjoint subsets of ∂Ω representing respectively the source and the sink, i.e., where the water can enter in Ω and escape from Ω. A maximal stream is a vector measure -→ µ max n that describes how the maximal amount of fluid can enter through Γ 1 and spreads in Ω. Under some assumptions on Ω and G, we already know a law of large number for -→ µ max n . The sequence ( -→ µ max n ) n≥1 converges almost surely to the set of solutions of a continuous deterministic problem of maximal stream in an anisotropic network. We aim here to derive a large deviation principle for streams and deduce by contraction principle the existence of a rate function for the upper large deviations of the maximal flow in Ω.

Introduction

First definitions and main results

The environment, discrete admissible maximal streams

We use here the same notations as in [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF]. Let n ≥ 1 be an integer. We consider the graph (Z d n , E d n ) having for vertices Z d n = Z d /n and for edges E d n , the set of pairs of points of Z d n at Euclidean distance 1/n from each other. With each edge e ∈ E d n we associate a capacity t(e), which is a random variable with value in R + . The family (t(e)) e∈E d n is independent and identically distributed with a common law G. We interpret this capacity as a rate of flow, i.e., it corresponds to the maximal amount of water that can cross the edge per second. Throughout the paper, we work with a distribution G on R + satisfying the following hypothesis.

Hypothesis 1. There exists M > 0 such that G([M, +∞[) = 0. Let (Ω, Γ 1 , Γ 2 ) that satisfies the following hypothesis.

Hypothesis 2. The set Ω is an open bounded connected subset of R d , that it is a Lipschitz domain.

There exist S 1 , . . . , S l oriented manifolds of class C 1 that intersect each other transversally such that the boundary Γ of Ω is included in ∪ i=1,...,l S i . The sets Γ 1 and Γ 2 are two disjoint subsets of Γ that are open in Γ such that inf{ x -y , x ∈ Γ 1 , y ∈ Γ 2 } > 0, and that their relative boundaries ∂ Γ Γ 1 and ∂ Γ Γ 2 have null H d-1 measure.

The sets Γ 1 and Γ 2 represent respectively the sources and the sinks. We aim to study the maximal streams from Γ 1 to Γ 2 through Ω for the capacities (t(e)) e∈E d n . We shall define discretized versions for those sets. For x = (x 1 , . . . , x d ) ∈ R d , we define

x 2 = d i=1 x 2 i and x ∞ = max |x i |, i = 1, . . . , d .
We use the subscript n to emphasize the dependence on the lattice (Z d n , E d n ). Let Ω n , Γ n , Γ 1 n and Γ 2 n be the respective discretized version of Ω, Γ, Γ 1 and Γ 2 :

Ω n = x ∈ Z d n : d ∞ (x, Ω) < 1 n , Γ n = x ∈ Ω n : ∃y / ∈ Ω n , x, y ∈ E d n , Γ i n = x ∈ Γ n : d ∞ (x, Γ i ) < 1 n , d ∞ (x, Γ 3-i ) ≥ 1 n , for i = 1, 2,
where d ∞ is the L ∞ distance and x, y represents the edge whose endpoints are x and y. We denote by -→ E d n the set of oriented edges. We will denote by x, y the oriented edge in • The stream is inside Ω : for each edge e = x, y such that (x, y) /

- → E d
∈ Ω 2 n \ (Γ 1 n ∪ Γ 2 n ) 2 we have f n (e) = 0
• The stream respects the capacity constraints: for each e ∈ E d n we have f n (e) 2 ≤ t(e) • The stream satisfies the node law:

for each vertex x ∈ Z d n \ (Γ 1 n ∪ Γ 2 n ) we have y∈Z d n : e= x,y ∈E d n f n (e) • -→ xy = 0 .
The node law expresses that there is no loss or creation of fluid outside Γ 1 and Γ 2 . The capacity constraint imposes that the amount of water that flows through an edge e per second is limited by its capacity t(e).

We denote by S n (Γ 1 , Γ 2 , Ω) the set of admissible streams from Γ 1 to Γ 2 through Ω. As the capacities are random, the set of admissible streams S n (Γ 1 , Γ 2 , Ω) is also random. We denote by S M n (Γ 1 , Γ 2 , Ω) the set of streams f n : E d n → R d such that • for each edge e = x, y such that (x, y) / ∈ Ω 2 n \ (Γ 1 n ∪ Γ 2 n ) 2 we have f n (e) = 0 • for each e ∈ E d n we have f n (e) 2 ≤ M • the stream satisfies the node law for any vertex x ∈ Z d n \ (Γ 1 n ∪ Γ 2 n ). Note that the set S M n (Γ 1 , Γ 2 , Ω) is a deterministic set. To each f n , we can define its associated vector measure -→ µ n (f n ) by

- → µ n (f n ) = 1 n d e∈E d n f n (e)δ c(e) ,
where c(e) denotes the center of the edge e. Maximal flow through Ω. For each admissible stream f n in S n (Γ 1 , Γ 2 , Ω), we define its flow by where we recall that -→ xy 2 = 1/n. This corresponds to the amount of water that enters in Ω n through Γ 1 n per second for the stream f n . The maximal flow between Γ 1 and Γ 2 through Ω for the capacities (t(e)) e∈E d n , denoted by φ n (Γ 1 , Γ 2 , Ω), is the supremum of the flows of all admissible streams from Γ 1 to Γ 2 through Ω:

flow n (f n ) =
φ n (Γ 1 , Γ 2 , Ω) = sup flow n (f n ) : f n ∈ S n (Γ 1 , Γ 2 , Ω) .
(1.1)

We define -→ µ max n , the measure corresponding to a given stream f max n ∈ S n (Γ 1 , Γ 2 , Ω) that achieves the maximal flow φ n (Γ 1 , Γ 2 , Ω). Admissible streams through a connected set C without prescribed sinks and sources. Let C ⊂ R d . We denote by S n (C) the set of admissible streams through C, that is streams f n : E d n → R d such that:

• The stream respects the capacity constraint: for each edge x, y ∈ E d n such that x ∈ C and there exists i ∈ {1, . . . , d} such that -→ xy • -→ e i > 0, we have f n (e) 2 ≤ t(e).

• The stream respects the node law: for each vertex x ∈ Z d n ∩ C such that for any i ∈ {1, . . . , d}, (x --→ e i /n) ∈ C, we have In what follows, we will say that x is the left endpoint of the edge e = x, y ∈ E d n , if there exists i ∈ {1, . . . , d} such that -→ xy = -→ e i /n. Moreover, we say that e belongs to C if its left endpoint x belongs

∀A ∈ B P n (A) = P(∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : - → µ n (f n ) ∈ A) .
We define the following rate function I on M(V ∞ (Ω, 1)) d as follows:

∀ν ∈ M(V ∞ (Ω, 1)) d I(ν) = +∞ if ν / ∈ { - → σ L d : - → σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2 , Ω)} I( - → σ ) if ν = - → σ L d , - → σ ∈ Σ(Γ 1 , Γ 2 , Ω)
where Σ M (Γ 1 , Γ 2 , Ω) will be defined more rigorously later, it represents the continuous streams that corresponds to weak limit of a sequence of discrete streams in S M n (Γ 1 , Γ 2 , Ω). We have the following large deviation principle for the stream : Theorem 1.2 (Large deviation principle for admissible streams). Under some regularity hypothesis on Ω, Γ 1 and Γ 2 , for distributions G compactly supported, the sequence (P n ) n≥1 satisfies a large deviation principle with speed n d governed by the good rate function I and with respect to the topology O, i.e., for all A ∈ B inf I(ν) : ν ∈ Å ≤ lim inf We can deduce from theorem 1.2, by a contraction principle, a large deviation principle for the maximal flows. Let J be the following function on R + :

∀λ ≥ 0 J(λ) = inf I( - → σ ) : - → σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2 , Ω), flow cont ( - → σ ) = λ and λ max = sup flow cont ( - → σ ) : - → σ ∈ Σ(Γ 1 , Γ 2 , Ω) .
To prove an upper large deviation principle for maximal flows, we will need the following lower large deviation principle for maximal flows that was proven in [START_REF] Dembin | Large deviation principle for the cutsets and lower large deviation principle for the maximal flow in first passage percolation[END_REF].

Theorem 1.3 (Lower large deviation principle for maximal flows). Let G that satisfies hypothesis 1. Let (Ω, Γ 1 , Γ 2 ) that satisfies hypothesis 2. There exist φ Ω ≥ 0 and λ min ≥ 0 depending on Ω, Γ 1 , Γ 2 and G such that the sequence (φ n (Γ 1 , Γ 2 , Ω)/n d-1 , n ∈ N) satisfies a large deviation principle of speed n d-1 with the good rate function J l . Moreover, the map J l is infinite on [0, λ min [∪]φ Ω , +∞[, decreasing on ]λ min , φ Ω [, positive on ]λ min , φ Ω [. Besides, for every λ < λ min , there exists n 0 ≥ 1 such that

∀n ≥ n 0 P φ n (Γ 1 , Γ 2 , Ω) n d-1 ≤ λ = 0 .
Let λ min ≥ 0 depending on G and Ω given by theorem 1.3. We define the following rate function:

J u (λ) =      J(λ) if λ ∈ [λ min , λ max [ lim λ→λmax λ<λmax J(λ) if λ = λ max +∞ if λ ∈ [0, λ min [∪]λ max , +∞[ . (1.3)
Theorem 1.4 (Upper large deviation principle for maximal flows). Let G that satisfies hypothesis 1. Let (Ω, Γ 1 , Γ 2 ) that satisfies hypothesis 2. Let φ Ω , λ min given by theorem 1.3. The sequence (φ n (Γ 1 , Γ 2 , Ω)/n d-1 , n ∈ N) satisfies a large deviation principle of speed n d with the good rate function J u . Moreover, the map J u is convex on R + , infinite on [0, λ min [∪]λ max , +∞[, J u is null on [λ min , φ Ω ] and strictly positive on ]φ Ω , +∞[. Theorems 1.2 and 1.4 are the main results of this article. To prove these theorems, we will need tools from the realm of large deviations and the following key theorem: Theorem 1.5. Let G that satisfies hypothesis 1. Let (Ω, Γ 1 , Γ 2 ) that satisfies hypothesis 2. For any -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω), we have

-lim ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : d - → µ n (f n ), - → σ L d ≤ ε = -lim ε→0 lim inf n→∞ 1 n d log P ∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : d - → µ n (f n ), - → σ L d ≤ ε = Ω I( - → σ (x))dL d (x) = I( - → σ ) .
Remark 1.6. Theorems 1.3 and 1. [START_REF] Bollobás | Graph theory[END_REF] give the full picture of large deviations of φ n (Γ 1 , Γ 2 , Ω). The lower large deviations are of surface order since it is enough to decrease the capacities of the edges along a surface to obtain a lower large deviations event. The lower large deviations have been studied in the companion paper [START_REF] Dembin | Large deviation principle for the cutsets and lower large deviation principle for the maximal flow in first passage percolation[END_REF]. The upper large deviations are of volume order, to create an upper large deviations event, we need to increase the capacities of constant fraction of the edges. This is the reason why to study lower large deviations, it is natural to study cutsets that are (d -1)-dimensional objects, whereas to study the upper large deviations, we study streams that are d-dimensional objects.

Background

We now present the mathematical background needed in what follows. We present two different flows in cylinders and give a rigorous definition of the limiting objects.

Flows in cylinders and minimal cutsets

Dealing with admissible streams is not so easy, but hopefully we can use an alternative definition of maximal flow which is more convenient. Here n = 1, i.e., we consider the lattice (Z d , E d ). Let E ⊂ E d be a set of edges. We say that E cuts Γ 1 from Γ 2 in Ω (or is a cutset, for short) if there is no path from Γ 1 1 to Γ 2 1 in (Ω 1 , E d \ E). More precisely, let γ be a path from Γ 1 1 to Γ 2 1 in Ω 1 , we can write γ as a finite sequence (v 0 , e 1 , v 1 , . . . , e n , v n ) of vertices (v i ) i=0,...,n ∈ Ω n+1 1 and edges (e i ) i=1,...,n ∈ (E d ) n where v 0 ∈ Γ 1 1 , v n ∈ Γ 2 1 and for any 1

≤ i ≤ n, e i = v i-1 , v i ∈ E d .
Then, E cuts Γ 1 from Γ 2 in Ω if for any path γ from Γ 1 1 to Γ 2 1 in Ω 1 , we have γ ∩ E = ∅. Note that γ can be seen as a set of edges or a set of vertices and we define |γ| = n. We associate with any set of edges E its capacity T (E) defined by

T (E) = e∈E t(e) .
The max-flow min-cut theorem, see [START_REF] Bollobás | Graph theory[END_REF], a result of graph theory, states that

φ 1 (Γ 1 , Γ 2 , Ω) = min T (E) : E cuts Γ 1 from Γ 2 in Ω .
We recall that φ 1 was defined in (1.1). The idea behind this theorem is quite intuitive. By the node law, the flow is always smaller than the capacity of any cutset. Conversely, consider a maximal flow through Ω, some of the edges are jammed. We say that e is jammed if the amount of water that flows through e is equal to the capacity t(e). These jammed edges form a cutset, otherwise we would be able to find a path γ from G 1 to G 2 of non-jammed edges, and we could increase the amount of water that flows through γ which contradicts the fact that the flow is maximal. Thus, the maximal flow is limited by the capacity of these jammed edges: the maximal flow is given by one of the T (E) where E cuts Γ 1 from Γ 2 in Ω. It follows that the maximal flow is equal to the minimal capacity of a cutset.

We are interested in the maximal flow Φ that can cross a cylinder oriented according to -→ v ∈ S d-1

from its top to its bottom per second for admissible streams. A first issue is to understand if the maximal flow in the box properly renormalized converges when the size of the box grows to infinity. This boils down to understand the maximal amount of water that can flow in the direction -→ v . Let us first define rigorously the maximal flow from the top to the bottom of a cylinder. Let A be a non-degenerate hyperrectangle, i.e., a rectangle of dimension d -1 in R d . Let -→ v ∈ S d-1 such that -→ v is not contained in an hyperplane parallel to A. We denote by cyl(A, h, -→ v ) the cylinder of basis A and of height h > 0 in the direction -→ v defined by

cyl(A, h, - → v ) = x + t - → v : x ∈ A, t ∈ [0, h] .
If -→ v is one of the two unit vectors normal to A, we denote by cyl(A, h)

cyl(A, h) = x + t - → v : x ∈ A, t ∈ [-h, h] .
We have to define discretized versions of the bottom B(A, h) and the top T (A, h) of the cylinder cyl(A, h).

We define them by

B(A, h) := x ∈ Z d ∩ cyl(A, h) : ∃y / ∈ cyl(A, h), x, y ∈ E d and x, y intersects A -h - → v and T (A, h) := x ∈ Z d ∩ cyl(A, h) : ∃y / ∈ cyl(A, h), x, y ∈ E d and x, y intersects A + h - → v .
We denote by Φ(A, h) the maximal flow from the top to the bottom of the cylinder cyl(A, h) in the direction -→ v , defined by Φ(A, h) = φ 1 (T (A, h), B(A, h), cyl(A, h, -→ v )) .

The maximal flow Φ(A, h) is not well suited to use ergodic subadditive theorems, because we cannot glue two cutsets from the top to the bottom of two adjacent cylinders together to build a cutset from the top to the bottom of the union of these two cylinders. Indeed, the intersection of these two cutsets with the adjacent face will very likely not coincide.

To fix this issue, we need to introduce another maximal flow through the cylinder for which the subadditivity would be recover. Let T (A, h) (respectively B (A, h)) be the a discretized version of the upper half part (resp. lower half part) of the boundary of cyl(A, h); that is if we denote by z the center of A:

T (A, h) = x ∈ Z d ∩ cyl(A, h) : -→ zx • - → v > 0 and ∃y / ∈ cyl(A, h), x, y ∈ E d , (1.4) B (A, h) = x ∈ Z d ∩ cyl(A, h) : -→ zx • - → v < 0 and ∃y / ∈ cyl(A, h), x, y ∈ E d . (1.5)
We denote by τ (A, h) the maximal flow from the upper half part to the lower half part of the boundary of the cylinder, i.e., τ (A, h) = φ 1 (T (A, h), B (A, h), cyl(A, h)) .

By the max-flow min-cut theorem, the flow τ (A, h) is equal to the minimal capacity of a set of edges E that cuts T (A, h) from B (A, h) inside the cylinder cyl(A, h). The intersection of E with the boundary of the cylinder has to be close to the relative boundary ∂A of the hyperrectangle A.

Some mathematical tools and definitions

Let us first recall some mathematical definitions. For a subset X of R d , we denote by X the closure of X, by X the interior of X. Let a ∈ R d , the set a + X corresponds to the following subset of R d a + X = {a + x : x ∈ X} .

For r > 0, the r-neighborhood V i (X, r) of X for the distance d i , that can be Euclidean distance if i = 2 or the L ∞ -distance if i = ∞, is defined by

V i (X, r) = y ∈ R d : d i (y, X) < r .
We denote by B(x, r) the closed ball centered at x ∈ R d of radius r > 0. Let C b (R d , R) be the set of continuous bounded functions from R d to R. We denote by C k c (A, B) for A ⊂ R p and B ⊂ R q , the set of functions of class C k defined on R p , that takes values in B and whose domain is included in a compact subset of A. The set of functions of bounded variations in Ω, denoted by BV (Ω), is the set of all functions u ∈ L 1 

(Ω → R, L d ) such that sup Ω div - → h dL d : - → h ∈ C ∞ c (Ω, R d ), ∀x ∈ Ω - → h (x) ∈ B(0, 1) < ∞ .
Let ν be a signed-measure on R d , we write ν = ν + -ν -for the Hahn-Jordan decomposition of the signed measures ν. Then ν + and ν -are positive measures, respectively, the positive and negative part of ν.

We define the total variation |ν| of ν as |ν| = ν + + ν -. Let x ∈ R d and α > 0, we define the homothety π x,α : R d → R d as follows ∀y ∈ R d π x,α (y) = αy + x .

(1.6)

We will need the following proposition that enables to relate the Lebesgue measure of a neighborhood of the boundary of a set E with the H d-1 -measure of its boundary ∂E.

Proposition 1.7. Let E be a subset of R d such that ∂E is piecewise of class C 1 and H d-1 (∂E) < ∞.

Then, we have

lim r→0 L d (V 2 (∂E, r)) 2r = H d-1 (∂E) .
This proposition is a consequence of the existence of the (d -1)-dimensional Minkowski content. We refer to Definition 3.2.37 and Theorem 3.2.39 in [START_REF] Federer | Geometric measure theory[END_REF].

Let us now define the distance d. Let k ∈ N. Let λ ∈ [START_REF] Auffinger | 50 years of first-passage percolation[END_REF][START_REF] Basu | Upper tail large deviations in first passage percolation[END_REF]. We denote by ∆ k λ the set of dyadic cubes at scale k with scaling parameter λ, that is,

∆ k λ = 2 -k λ - 1 2 , 1 2 d + x : x ∈ Z d . Let ∆ k λ (Ω) denote the dyadic cubes at scale k that intersect V ∞ (Ω, 2), that is ∆ k λ (Ω) = Q ∈ ∆ k λ : Q ∩ V ∞ (Ω, 2) = ∅ . Let ν, µ ∈ M(V ∞ (Ω, 1)) d be vectorial measures, we set d(ν, µ) = sup x∈[-1,1[ d sup λ∈[1,2] ∞ k=0 1 2 k Q∈∆ k λ µ(Q + x) -ν(Q + x) 2 .
(1.7)

Remark 1.8. Although working with topological neighborhood is the most general setting, we chose here to work with a distance to reduce the amount of technical details. The choice of a distance is arbitrary. However, this distance satisfies some properties that are not satisfied by other more standard distances. This distance was inspired by the distance that appears in [START_REF] Gold | Isoperimetry in supercritical bond percolation in dimensions three and higher[END_REF]. The key property that this distance satisfies is that if for ν, µ ∈ M(V ∞ (Ω, 1)) d the distance d(ν, µ) is small, then the distance restricted to some Q ⊂ Ω is also small. This property will be proven later.

Continuous streams

We give here the mathematical definitions to properly define the max-flow min-cut theorem as in the paper of Nozawa [START_REF] Nozawa | Max-flow min-cut theorem in an anisotropic network[END_REF]

. A stream in Ω is a vector field - → σ ∈ L ∞ (Ω → R d , L d ) that satisfies div - → σ = 0 on Ω, in the distributional sense, that is, div - → σ is a distribution defined on Ω by ∀h ∈ C ∞ c (Ω, R) R d h div - → σ dL d = - R d - → σ • - → ∇hdL d . Thus, a stream - → σ satisfies ∀h ∈ C ∞ c (Ω, R) R d - → σ • - → ∇hdL d = 0 .
This condition is the continuous analogue of the node law, it expresses the fact that there is no loss or gain of fluid for the stream -→ σ inside Ω.

For a stream -→ σ from Γ 1 to Γ 2 in Ω, the fluid can enter or exit only through the source Γ 1 and the sink Γ 2 , we have to mathematically express the fact that no water escapes through Γ \ (Γ 1 ∪ Γ 2 ). Since -→ σ is defined in the distributional sense, we need to give a sense to the value of -→ σ on Γ that is a set of null L d -measure. To do so we need to define the trace on Γ for any u ∈ BV (Ω). According to Nozawa in [START_REF] Nozawa | Max-flow min-cut theorem in an anisotropic network[END_REF], there exists a linear mapping γ from BV (Ω) to

L 1 (Γ → R, H d-1 ), such that, for any u ∈ BV (Ω), lim r→0,r>0 1 L d (Ω ∩ B(x, r)) Ω∩B(x,r) |u(y) -γ(u)(x)|dL d (y) = 0 for H d-1 -a.e. x ∈ Γ. According to Nozawa in [21], Theorem 2.3, for every - → ρ = (ρ 1 , . . . , ρ d ) : Ω → R d such that ρ i ∈ L ∞ (Ω → R d , L d ) for all i = 1, . . . , d and div - → ρ ∈ L d (Ω → R, L d ), there exists g ∈ L ∞ (Γ → R d , H d-1 ) defined by ∀u ∈ W 1,1 (Ω) Γ gγ(u) dH d-1 = Ω - → ρ • - → ∇udL d + Ω u div - → ρ dL d .
The function g is denoted by -→ ρ • -→ n Ω . For any stream -→ σ , since div -→ σ = 0 L d -a.e. on Ω, we have

∀u ∈ W 1,1 (Ω) Γ ( - → σ • - → n Ω )γ(u) dH d-1 = Ω - → σ • - → ∇udL d .
We need to impose some boundary conditions for any stream -→ σ from Γ 1 to Γ 2 in Ω: the water can only

enters through Γ 1 , i.e., - → σ • - → n Ω ≤ 0 H d-1 -a.e. on Γ 1
and no water can enter or exit through Γ \ (Γ 1 ∪ Γ 2 ), i.e.

- → σ • - → n Ω = 0 H d-1 -a.e. on Γ \ (Γ 1 ∪ Γ 2 ) .
Of course, we also need to add a constraint on the local capacity, otherwise the continuous maximal flow is infinite. This local constraint is here anisotropic which means that the maximal amount of water that can spreads in a direction depends on the direction but not on the location. This local constraint is given by a function ν :

R d → R + , that is a continuous convex function that satisfies ν( - → v ) = ν(-- → v ).
In the setting of [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF], the function ν corresponds the flow constant that will be properly defined in section 1.3.1.

The local capacity constraint is expressed by

L d -a.e. on Ω, ∀ - → v ∈ S d-1 - → σ • - → v ≤ ν( - → v ) .
To each admissible stream -→ σ , we associate its flow

flow cont ( - → σ ) = - Γ 1 - → σ • - → n Ω dH d-1
which corresponds to the amount of water that enters in Ω through Γ 1 for the stream -→ σ per second.

Nozawa considered the following variational problem

φ Ω = sup        flow cont ( - → σ ) : - → σ ∈ L ∞ (Ω → R d , L d ), div - → σ = 0 L d -a.e. on Ω, - → σ • - → v ≤ ν( - → v ) for all - → v ∈ S d-1 L d -a.e. on Ω, - → σ • - → n Ω ≤ 0 H d-1 -a.e. on Γ 1 - → σ • - → n Ω = 0 H d-1 -a.e. on Γ \ (Γ 1 ∪ Γ 2 )        . (1.8)
Note that we can extend -→ σ to R d by defining -→ σ = 0 L d -a.e. on Ω c . We denote by Σ ν the set of admissible streams solution of the variational problem, i.e.,

Σ ν =            - → σ ∈ L ∞ (R d → R d , L d ) : - → σ = 0 L d -a.e. on Ω c , div - → σ = 0 L d -a.e. on Ω, - → σ • - → v ≤ ν( - → v ) for all - → v ∈ S d-1 L d -a.e. on Ω, - → σ • - → n Ω ≤ 0 H d-1 -a.e. on Γ 1 - → σ • - → n Ω = 0 H d-1 -a.e. on Γ \ (Γ 1 ∪ Γ 2 ) flow cont ( - → σ ) = φ Ω            . (1.9)
Depending on the domain, the source and the sink, there might be several solutions to the continuous max-flow problem. There is also a formulation of this continuous problem in terms of minimal cutset, but we won't present it here as we are only interested in streams. We refer to [START_REF] Nozawa | Max-flow min-cut theorem in an anisotropic network[END_REF] for more details on this formulation. When we study law of large numbers for maximal streams, the capacity constraint comes naturally from the law of large numbers for maximal flow. Namely, a discrete stream cannot send more water that ν( -→ v ) in the direction -→ v almost surely where ν( -→ v ) is the flow constant defined in section 1.3.1. Otherwise there exists a cylinder in the direction -→ v where the maximal flow properly renormalized exceeds ν( -→ v ), this event is very unlikely. However, when we study large deviations, we are specifically interested in these unlikely events and so the capacity constraint given by ν is not relevant anymore. Of course, if G is compactly supported on [0, M ], the limiting streams have a capacity constraint depending on M , d and -→ v . We define the set of admissible continuous streams Σ(Γ 1 , Γ 2 , Ω) without capacity constraint as

Σ(Γ 1 , Γ 2 , Ω) =    - → σ ∈ L ∞ (R d → R d , L d ) : - → σ = 0 L d -a.e. on Ω c , div - → σ = 0 L d -a.e. on Ω, - → σ • - → n Ω = 0 H d-1 -a.e. on Γ \ (Γ 1 ∪ Γ 2 ) ∀i ∈ {1, . . . , d} | - → σ • - → e i | ≤ M L d -a.e. on Ω    . (1.10)
Remark 1.9. Unlike the definition of Σ ν , in the definition of admissible streams Σ(Γ 1 , Γ 2 , Ω) we do not constrain the water to enter through Γ 1 . Indeed, we are interested in admissible streams that are not necessarily maximal.

State of the art

Flow constant

In 1984, Grimmett and Kesten initiated the study of maximal flows in dimension 2 in [START_REF] Grimmett | First-passage percolation, network flows and electrical resistances[END_REF]. In 1987, Kesten studied maximal flows in dimension 3 in [START_REF] Kesten | Surfaces with minimal random weights and maximal flows: a higher dimensional version of first-passage percolation[END_REF] for straight boxes, i.e., in the direction

- → v = - → v 0 := (0, 0, 1) and basis A = [0, k] × [0, l] × {0} with k ≥ l ≥ 0.
He proved the following theorem.

Theorem 1.10 (Kesten [START_REF] Kesten | Surfaces with minimal random weights and maximal flows: a higher dimensional version of first-passage percolation[END_REF]). Let d = 3. Let G be a distribution that admits an exponential moment and such that G({0}) is small enough. Let k ≥ l and m = m(k, l) ≥ 1. If m(k, l) goes to infinity when k and l go to infinity in such a way there exists δ ∈]0, 1[, such that

lim k,l→∞ 1 k δ log m(k, l) = 0 , then lim k,l→∞ Φ [0, k] × [0, l] × {0}, m(k, l) k l = ν a.s. and in L 1
where ν is a constant depending only on d and G.

The proof is very technical and tries to give a rigorous meaning to the notion of surface. Moreover, it strongly relies on the fact that the symmetry of the straight boxes preserves the lattice, there is no hope to extend this technique to tilted cylinders. In [START_REF] Zhang | Limit theorems for maximum flows on a lattice[END_REF], Zhang generalized the result of Kesten for d ≥ 3 and

G({0}) < 1 -p c (d).
To be able to define the flow constant in any direction, we would like to use a subadditive ergodic theorem. Since we cannot recover a subadditive property from the maximal flow Φ, we consider the flow τ instead. The simplest case to study maximal flows is still for a straight cylinder, i.e., when -→ v = -→ v 0 := (0, 0, . . . , 1) and

A = A( - → k , - → l ) = d-1 i=1 [k i , l i ] × {0} with k i ≤ 0 < l i ∈ Z. In this case, the family of variables (τ (A( - → k , - → l ), h))-→ k , - →
l is subadditive since minimal cutsets in adjacent cylinders can be glued together along the common side of these cylinders. By applying ergodic subadditive theorems in the multi-parameter case (see Krengel and Pyke [START_REF] Krengel | Uniform pointwise ergodic theorems for classes of averaging sets and multiparameter subadditive processes[END_REF] and Smythe [START_REF] Smythe | Multiparameter subadditive processes[END_REF]), we obtain the following result. Proposition 1.11. Let G be an integrable probability measure on [0, +∞[, i.e.,

+∞ 0 xdG(x) < ∞. Let A = d-1 i=1 [k i , l i ] × {0} with k i ≤ 0 < l i ∈ Z. Let h : N → R + such that lim n→∞ h(n) = +∞.
Then there exists a constant ν( -→ v 0 ), that does not depend on A and h but depends on G and d, such that

lim n→∞ τ (nA, h(n)) H d-1 (nA) = ν( - → v 0 ) a.s. and in L 1 .
The constant ν( -→ v 0 ) is called the flow constant. In fact, the property that ν( -→ v 0 ) does not depend on h is not a consequence of ergodic subadditive theorems, but the property can be proved quite easily. Next, a natural question to ask is whether we can define a flow constant in any direction. When we consider tilted cylinders, we cannot recover perfect subadditivity because of the discretization of the boundary. Moreover, the use of ergodic subadditive theorems is not possible when the direction -→ v we consider is not rational. These issues were overcome by Rossignol and Théret in [START_REF] Rossignol | Lower large deviations and laws of large numbers for maximal flows through a box in first passage percolation[END_REF] where they proved the following law of large numbers.

Theorem 1.12 (Rossignol-Théret [START_REF] Rossignol | Lower large deviations and laws of large numbers for maximal flows through a box in first passage percolation[END_REF]). Let G be an integrable probability measure on [0, +∞[ , i.e.,

+∞ 0 xdG(x) < ∞. For any - → v ∈ S d-1 , there exists a constant ν( - → v ) ∈ [0, +∞[ such that for any non- degenerate hyperrectangle A normal to - → v , for any function h : N → R + such that lim n→∞ h(n) = +∞,
we have

lim n→∞ τ (nA, h(n)) H d-1 (nA) = ν( - → v ) in L 1 .

If moreover the origin of the graph belongs to A, or if

+∞ 0

x 1+1/(d-1) dG(x) < ∞, then

lim n→∞ τ (nA, h(n)) H d-1 (nA) = ν( - → v ) a.s..
If the cylinder is flat, i.e., if lim n→∞ h(n)/n = 0, then the same convergence also holds for

Φ(nA, h(n)). Moreover, either ν( - → v ) is null for all - → v ∈ S d-1 or ν( - → v ) > 0 for all - → v ∈ S d-1 .

Upper large deviations for maximal flows in cylinders

We present here some result on upper large deviations for the maximal flows Φ(nA, h(n)) in cylinders and τ (nA, h(n)). The theorem 4 in [START_REF] Théret | Upper large deviations for maximal flows through a tilted cylinder[END_REF] states upper large deviations results for the variable Φ(nA, h(n)) above the value ν( -→ v ).

Theorem 1.13 (Théret [27]). Let us consider a distribution G on R + that admits an exponential moment. Let -→ v be a unit vector and A be an hyperrectangle orthogonal to -→ v , let h :

N → R + be a height function such that lim n→∞ h(n) = +∞. We have for every λ > ν( - → v ) lim inf n→∞ - 1 H d-1 (nA)h(n) log P Φ(nA, h(n)) H d-1 (nA) ≥ λ > 0 .
Let us give an intuition of the speed of deviation. If Φ(nA, h(n)) is abnormally large, there are two possible scenarios. Either there are an order n d-1 of paths from the top to the bottom of the cylinder that use edges of slightly abnormally large capacity, or there are a fewer number of paths from the top to the bottom of the cylinder with edges whose capacities are extremely big (with a capacity that goes to infinity with n). Both scenarios enable to transmit more water from the top to the bottom than the expected value. Actually, when G has an exponential moment, the first scenario is the most likely one. Since the paths from the top to the bottom have a cardinality of order at least h(n), this implies that a positive fraction of edges inside the cylinder have a slightly abnormally large capacity. This accounts for the speed of deviation of volume order. Remark 1.14. We insist on the fact that ν( -→ v ) is not in general the limit of Φ(nA,

h(n))/H d-1 (nA)
when n goes to infinity. We can prove that the limit is equal to ν( -→ v ) only for straight cylinders or flat cylinders. The existence of the limit of Φ(nA, h(n))/H d-1 (nA) when n goes to infinity is known when h(n) = Cn. The limit may be expressed as the solution of a deterministic variational problem of the same kind than φ Ω defined in (1.8). Proving that the limit is smaller or equal than ν( -→ v ) is trivial. Proving the strict inequality has been done only in dimension 2 by Rossignol and Théret in [START_REF] Rossignol | Lower large deviations for the maximal flow through tilted cylinders in two-dimensional first passage percolation[END_REF]. They proved that the limit of Φ(nA, h(n))/H d-1 (nA) is strictly smaller for tilted cylinder. We expect that this result also holds for higher dimensions but the question is still open.

The corresponding large deviation principle have been obtained in the case of straight cylinders by Théret in [START_REF] Théret | Upper large deviations for the maximal flow in first-passage percolation[END_REF].

Theorem 1.15 (Théret [26]). Let h : N → R + be a height function such that

lim n→∞ h(n) log n = +∞ . Set A = [0, 1] d-1 × {0}.
Then for every λ ≥ 0, the limit

ψ(λ) = lim n→∞ - 1 n d-1 h(n) log P Φ(nA, h(n)) ≥ λn d-1
exists and is independent of h. Moreover, the function ψ is convex on R + , finite and continuous on the

set {λ : G([λ, +∞[) > 0}.
If G has a first moment then ψ vanishes on [0, ν((0, . . . , 0, 1))]. If G has an exponential moment then ψ is strictly positive on ]ν((0, . . . , 0, 1)), +∞[, and the sequence

Φ(nA, h(n)) n d-1 n≥1
satisfies a large deviation principle with speed n d-1 h(n) and governed by the good rate function ψ.

This result crucially depends on the symmetry of the lattice with regards to reflexion along the vertical faces of the cylinders. The proof strategy may not be extended to tilted cylinders. The upper large deviations results for τ are a bit different because the speed of deviation depends on the tail of the distribution G. Indeed if the edges around ∂A have very large capacities it will increase the flow τ in a non negligible way. Since the minimal cutsets corresponding to τ (A, h) are anchored around ∂A, their capacity depends a lot on these edges. Théret proved in Theorem 3 in [START_REF] Théret | Upper large deviations for maximal flows through a tilted cylinder[END_REF] upper large deviations of the variable τ . Theorem 1.16 (Théret [27]). Let -→ v be a unit vector and A be an hyperrectangle orthogonal to -→ v , let h : N → R + be a height function such that lim n→∞ h(n) = +∞. The upper large deviations of τ (nA, h(n))/H d-1 (nA) depend on the tail of the distribution of the capacities. We have

(i) If the law G has bounded support, then for every λ > ν( - → v ) we have lim inf n→∞ - 1 H d-1 (nA) min(h(n), n) log P τ (nA, h(n)) H d-1 (nA) ≥ λ > 0 .
(ii) If the law G is exponential of parameter 1, then there exists n 0 such that for every λ > ν( -→ v ) there exists a positive constant D depending on d and λ such that

∀n ≥ n 0 P τ (nA, h(n)) H d-1 (nA) ≥ λ ≥ exp(-DH d-1 (nA)) . (iii) If the law G satisfies ∀θ > 0 R+ e θx dG(x) < ∞ , then for every λ > ν( - → v ) we have lim n→∞ 1 H d-1 (nA) log P τ (nA, h(n)) H d-1 (nA) ≥ λ = -∞ .
Let us give an intuition of why the speed is n d when h(n) ≥ n. Since the cutsets are anchored in ∂(nA), they cannot deviate too far away from nA: as a result, most of the edges outside cyl(nA, n) do not have an influence on τ (nA, h(n)). There is no large deviation principle for maximal flows τ or Φ in tilted cylinder.

Law of large numbers for the maximal stream in a domain

We work here with the lattice (Z d n , E d n ). In [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF], Cerf and Théret proved a law of large number for the maximal flow and the maximal stream. The maximal stream converges in some sense towards the solution of the continuous max-flow problem φ Ω . We recall that the continuous max-flow problem was presented in section 1.2.3 and here the local capacity constraint corresponds to the flow constant ν. Theorem 1.17. ] Let G that satisfies hypothesis 1 and such that G({0}) < 1 -p c (d) (to ensure that ν is a norm). Let (Ω, Γ 1 , Γ 2 ) that satisfies hypothesis 2. We have that the sequence ( -→ µ max n ) n≥1 converges weakly a.s. towards the set Σ ν (defined in (1.9)), that is,

a.s., ∀f ∈ C b (R d , R) lim n→∞ inf - → σ ∈Σν R d f d - → µ max n - R d f - → σ dL d 2 = 0 .
Moreover, we have

lim n→∞ φ n (Γ 1 , Γ 2 , Ω) n d-1 = φ Ω .
The strategy of their proof is to first prove that the measure -→ µ max n converges towards -→ σ L d where -→ σ is an admissible continuous stream and that

lim n→∞ φ n (Γ 1 , Γ 2 , Ω) n d-1 = flow cont ( - → σ ) .
These properties come from the fact that the continuous stream -→ σ inherits the properties of the discrete stream f max n . In particular, the local capacity constraint comes from the fact that the maximal flow in a cylinder in a direction -→ v properly renormalized converges towards ν( -→ v ) when the dimension of the cylinders goes to infinity. This implies that almost surely the stream f max n cannot send more water than ν( -→ v ) in the direction -→ v . The remaining part is to prove that -→ σ ∈ Σ ν , i.e., that flow cont ( -→ σ ) = φ Ω .

To prove it, they need to study discrete minimal cutsets associated with f max n and their continuous counterpart. The originality of this paper is the use of new techniques by working with maximal streams instead of minimal cutsets. This object is more natural than cutsets to study upper large deviations since the upper large deviations are of volume order, whereas cutsets are (d -1)-dimensional objects.

Actually, the convergence of φ n (Γ 1 , Γ 2 , Ω)/n d-1 towards φ Ω when n goes to infnity was already known as a consequence of the companion papers of Cerf and Théret [START_REF] Cerf | Law of large numbers for the maximal flow through a domain of R d in first passage percolation[END_REF], [START_REF] Cerf | Lower large deviations for the maximal flow through a domain of R d in first passage percolation[END_REF] and [START_REF] Cerf | Upper large deviations for the maximal flow through a domain of R d in first passage percolation[END_REF] with an alternative definition for φ Ω . Instead, of expressing φ Ω as the solution of a variational problem for maximal stream, they expressed it as the solution φ Ω of a variational problem for minimal continuous cutsets. In [START_REF] Cerf | Upper large deviations for the maximal flow through a domain of R d in first passage percolation[END_REF], Cerf and Théret proved using upper large deviations result in cylinders (theorem 1.13) that the large deviations of φ n is of volume order. Theorem 1.18 ). If d(Γ 1 , Γ 2 ) > 0 and if the law G admits an exponential moment, then there exists a constant φ Ω such that for all λ > φ Ω ,

lim sup n→∞ 1 n d log P φ n (Γ 1 , Γ 2 , Ω) ≥ λn d-1 < 0 .
Their strategy does not able to prove the existence of the limit of log P φ n (Γ 1 , Γ 2 , Ω) ≥ λn d-1 /n d when n goes to infinity.

Upper large deviation principle for the first passage percolation random pseudometric

We consider here the lattice Z d . There exists another interpretation of the model of first passage percolation which has been much more studied. In this interpretation we say that the random variable t(e) represents a passage time, i.e., the time needed to cross the edge e. We can define a random pseudometric T on the graph: for any pair of vertices x, y ∈ Z d , the random variable T (x, y) is the shortest time to go from x to y, that is, T (x, y) = inf e∈γ t(e) : γ path from x to y .

A natural question is to understand how this random pseudo-metric behaves. In particular, what is the asymptotic behavior of the quantity T (0, nx) when n goes to infinity ? Under some assumptions on the distribution G, one can prove that asymptotically when n is large, the random variable T (0, nx) behaves like n µ(x) where µ(x) is a deterministic constant depending only on the distribution G and the point x, i.e.,

lim n→∞ T (0, nx) n = µ(x)
almost surely and in L 1

when this limit exists. This constant µ is the so-called time constant. This implies the existence of a limiting metric D such that ∀x,

y ∈ R d D(x, y) = µ(y -x) .
This metric approximates well T (x, y) when x -y 2 is large. We refer to [START_REF] Kesten | Aspects of first passage percolation[END_REF] and [START_REF] Auffinger | 50 years of first-passage percolation[END_REF] for reviews on the subject. For d = 2, let -→ e 1 = (1, 0). In [START_REF] Basu | Upper tail large deviations in first passage percolation[END_REF], Basu, Ganguly and Sly study the decay of the probability of the upper large deviations event {T (0, n -→ e 1 ) ≥ (µ( -→ e 1 ) + ε)n}. They prove the following result: The result in [START_REF] Basu | Upper tail large deviations in first passage percolation[END_REF] answers an old open question that was first formulated by Kesten in [START_REF] Kesten | Aspects of first passage percolation[END_REF]. The correct order of large deviations was already known (see [START_REF] Kesten | Aspects of first passage percolation[END_REF]). A large deviation principle was proved by Chow and Zhang in [START_REF] Chow | Large deviations in first passage percolation[END_REF] for the time between two opposite faces of a box. However, their strategy cannot be generalized for proving the existence of a rate function for the time between two points.

We here briefly present the sketch of their proof. Let N ≥ n ≥ 1. The aim is to build the upper large deviations event at the higher scale N using upper large deviations events at the smaller scale n. Let us define B N = [-N, N ] d . Since the passage times are bounded, there exists a positive constant c depending on b, such that geodesics between 0 and N -→ e 1 remain almost surely in the box B cN . The strategy of the proof is to create a configuration ω of the edges in the box of size B cN such that ω ∈ {T (0, N -→ e 1 ) ≥ (µ( -→ e 1 ) + ε)N } using configurations of upper large deviations events at the smaller scale n. Namely, we consider ω 1 , . . . , ω (N/n) 2 (N/n) 2 independent realizations of the edges in the box B cn for the event {T (0, n -→ e 1 ) ≥ (µ( -→ e 1 ) + ε)n}. The key idea is that, even on the upper large deviations event, there exists a limiting metric structure in the configurations ω i . Roughly speaking, at large scales the distance T (x, x + n -→ v ) in a given direction -→ v from a given point x grows linearly with speed ∇ x ( -→ v ),

i.e., we have

T (x, x + n - → v ) ≈ n∇ x ( - → v ).
Up to paying a negligible price, they can pick configurations (ω i , i = 1, . . . , (N/n) 2 ) with the same limiting metric. Each configuration ω i is cut into different regions such that for any x, y in a given region ∇ x ≈ ∇ y . They reassemble all the configurations ω i by gluing together the corresponding regions, in order to create a configuration ω in the box B cN that also has the same limiting metric. It follows that for any path γ in the configuration ω we can build a path γ in the configuration ω 1 such that

T (γ) ≈ N n T ( γ) .
The path γ is the dilated version of γ. It follows that

T (γ) ≥ N n T (0, n - → e 1 ) ≥ (µ( - → e 1 ) + ε)N .
The remaining of the proof uses techniques from large deviations theory to deduce the existence of a rate function.

Our paper finds its inspiration in the philosophy of [START_REF] Basu | Upper tail large deviations in first passage percolation[END_REF]: we use large deviations events at a small scale to build large deviations events at a higher scale. We here manage to formalize the idea of a limiting environment. We obtain something stronger than upper large deviations for maximal flow: we manage to relate an abnormally large flow with local abnormalities on the domain Ω. To obtain this stronger result, we need to deal with complex technical issues: in particular, we need to reconnect streams in adjacent cubes.

Sketch of the proof

Most of the proofs in this paper are about reconnecting streams defined in cubes. Let A be an hyperrectangle of dimension d -1 of side length κ > 0 normal to -→ e 1 = (1, 0, . . . , 0). We consider two streams f n ∈ S n (cyl(A, κ, -→ e 1 )) and g n ∈ S n (cyl(A + (κ + δ) -→ e 1 , κ, -→ e 1 )) for some δ > 0. We would like to exploit the region cyl(A + κ -→ e 1 , δ, -→ e 1 ) between these two cubes -that we call the corridor-to connect the streams f n and g n (see figure 1). Namely, we would like to prove the existence of a stream h n such that

h n ∈ S n (cyl(A, 2κ + δ, - → e 1 )), h n = f n in cyl(A, κ, - → e 1 ) and h n = g n in cyl(A + (κ + δ) - → e 1 , κ, - → e 1 )
. Moreover, we want that no water exists or enters from the lateral sides of the corridor for h n . In particular the stream h n satisfies the node law in the corridor. Note that a necessary condition for the existence of h n is that the flow for f n through the face A + κ -→ e 1 is equal to the flow for g n through the face A + (κ + δ) -→ e 1

(we say that their flow match). Indeed, if such h n exists, since it satisfies the node law inside the corridor and that no flow escapes from its lateral sides, the flows of f n and g n must match.

- → e 1 cyl(A, κ, - → e 1 ) cyl(A + (κ + δ) - → e 1 , κ, - → e 1 ) δ κ A Figure 1 -Connecting two streams in a cylinder
The ideal situation to connect the streams is to take δ = 0 but this is too restrictive because it requires that the outputs of f n perfectly match the inputs of g n . The outputs (respectively inputs) correspond to the values of f n (respectively g n ) for edges exiting (respectively entering) the cylinder by the corridor. However, it seems reasonable that if the capacities of the edges in the corridor are large enough and δ is large enough, then as long as their flow match we can reconnect f n and g n . This is the key property: Key property. There exists a constant c d depending only on d such that for f n and g n with matching flows, if their inputs and outputs are all smaller in absolute value than some constant b > 0, then we can always connect the two streams as long as δ > κc d and all the edges inside the corridor have capacity larger than or equal to b.

The first step before proving theorem 1.5 is to prove the existence of an elementary rate function: theorem 1.1.

Sketch of the proof of theorem 1.1: existence of an elementary rate function

We recall that

C = - 1 2 , 1 2 d . Consider a stream f n ∈ S n (C) that is close to a continuous stream s - → v (in the sense that - → µ n (f n ) is close to s - → v 1 C L d for the distance d).
Step 1. We first prove that at a mesoscopic level the flow of f n through each face of C is almost uniform and close to the flow for the continuous stream s -→ v . Namely, for each face F of C, we can split F into a collection P(F ) of small isometric (d -1)-dimensional hypercubes of side-length κ. For each C ∈ P(F ) the quantity ψ(f n , C) of water that flow through C for f n is close to the flow for the continuous stream s -→ v ,i.e.,

ψ(f n , C) ≈ n d-1 s - → v • - → e i H d-1 (C)
where -→ e i is the vector of the canonical basis that is normal to C.

Step 2. We prove that up to paying a negligible price, we can increase the capacities of a negligible number of edges in C in such a way we guarantee the existence of a stream f n such that for each face F of C, for each

C ∈ P(F ), ψ( f n , C) = n d-1 s - → v • - → e i H d-1 (C) .
We call such a stream a well-behaved stream. To build such a stream we do small modifications to f n to ensure that the water spreads uniformly at the mesoscopic level. To do so we increase the capacities for a negligible portion of the edges in order to add a small amount of water that will correct the differences of flow with the continuous stream. Since these corrections are small, the modified stream f n is still close to the continuous stream s -→ v . The price we have to pay to modify the original configuration is negligible since only a negligible portion of the edges have been modified, i.e., these modifications won't appear in the limit.

Step 3. We prove theorem 1.1. We fix N ≥ n. We consider (N/n) d different configurations of the event {∃f n ∈ S n (C) : f n ≈ s -→ v and f n is well-behaved}. Using these configurations, we connect the streams in order to create a stream in S N (C) that is close to s -→ v . Since the streams we consider at the small scale are well-behaved, the water flow uniformly at a mesoscopic level and we are able to connect at the macroscopic level two adjacent streams by using the key property for connection at the mesoscopic level for each C ∈ P(F ) (see figure 2). The length of the corridor we need to connect two adjacent streams is c d κ that is negligible for small κ. The remaining of the proof uses standard techniques from the realm of large deviations. We aim to prove that for -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω), we have

P ∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : f n ≈ - → σ ≈ exp -I( - → σ )n d where I( - → σ ) = Ω I( - → σ (x))dL d (x).
To prove this result we prove separately an upper and a lower bound on the probability we try to estimate. We can till Ω into a family of small cubes E with disjoint interiors such that -→ σ is almost constant in each cube C ∈ E. Using the independence of the capacities, we have

P ∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : f n ≈ - → σ ≤ C∈E P(∃f n ∈ S n (C) : f n ≈ - → σ 1 C ) .
Since -→ σ is almost constant in C ∈ E, we can use theorem 1.1 and prove that

C∈E P(∃f n ∈ S n (C) : f n ≈ - → σ 1 C ) ≈ exp -n d Ω I( - → σ (x))dL d (x) .
To prove the upper bound, we deconstruct a stream in Ω, to prove the lower bound we do the reverse: we construct a stream in Ω close to -→ σ from a collection of streams inside small cubes. For each cube C, we consider a discrete stream g C n in S n (C) that is close to the constant approximation of -→ σ in C. We use the ideas of corridors and well-behaved streams to reconnect these streams (g C n , C ∈ E) altogether in order to create a stream f n ∈ S n (Ω) that is close to -→ σ . The main difficulty in the proof of the lower bound is to create from f n a stream f n ∈ S n (Γ 1 , Γ 2 , Ω), i.e., to remove all the water that is entering or exiting through Γ \ (Γ 1 ∪ Γ 2 ) for f n and make sure that f n is still close to -→ σ . This is the most technical part of the proof.

Organization of the paper.

In section 2, we give some properties of the distance d, we also give necessary conditions on the stream -→ σ in order to have I( -→ σ ) < ∞. In section 3, we gather all the technical non probabilistic lemmas. In section 4, we prove the existence of the elementary rate function I by proving theorem 1.1 and we also prove the convexity of I. In section 5, we prove theorem 1.5, that is the key result to prove theorem 1.2. Finally, in section 6, we prove the theorem 1.2 and we deduce an upper large deviation principle for the maximal flow theorem 1.4.

Properties of the distance and of the admissible continuous streams

In this section, we introduce the metric we use and derive some properties for the limiting continuous streams.

Properties of the metric d

We recall that d was defined in (1.7). We state here some key properties that this distance satisfies that will be useful in what follows. The proofs of the following lemmas will be given after their statements. The convergence for the distance d of a sequence of measures that are uniformly bounded in the total variation norm implies the weak convergence. We recall that for a signed-measure ν on R d , we write ν = ν + -ν -for the Hahn-Jordan decomposition of ν and we write |ν| the total variation of ν defined as

|ν| = ν + + ν -. Lemma 2.1. Let ν = (ν 1 , . . . , ν d ) ∈ M(V ∞ (Ω, 1)) d . Let (ν n = (ν 1 n , . . . , ν d n )) n≥1 be a sequence of measures in M(V ∞ (Ω, 1)) d such that lim n→∞ d(ν n , ν) = 0 .
Moreover, suppose that the measures ν and (ν n ) n≥1 are uniformly bounded in the total variation norm, that is there exists a positive constant C 1 such that

∀n ≥ 1 d i=1 |ν i n |(V ∞ (Ω, 1)) ≤ C 1 L d (V ∞ (Ω, 1)) ,
and

d i=1 |ν i |(V ∞ (Ω, 1)) ≤ C 1 L d (V ∞ (Ω, 1)) .
Then, the sequence of measure (ν n ) n≥1 weakly converges towards ν, that is

∀f ∈ C b (R d , R) lim n→∞ R d f dν n = R d f dν .
The converse result holds for a sequence of measures absolutely continuous with respect to Lebesgue measure.

Lemma 2.2. Let M > 0. Let ν = hL d with h ∈ L ∞ (R d → R d , L d ) such that h 2 ≤ M a.e. on R d , h = 0 a.e. on V 2 (Ω, 1) c . • Let (h n ) n≥1 be a sequence of functions in L ∞ (R d → R d , L d ) such that ∀n ≥ 1 h n 2 ≤ M a.e. on R d h n = 0 a.e. on V 2 (Ω, 1) c
and the sequence of measure (h n L d ) n≥1 weakly converges towards hL d , that is

∀g ∈ C b (R d , R) lim n→∞ R d gh n dL d = R d ghdL d then, lim n→∞ d(h n L d , hL d ) = 0 . • Let (f n ) n≥1 be a sequence of streams inside Ω such that ∀e ∈ E d n f n (e) 2 ≤ M
and the sequence of measures ( -→ µ n (f n )) n≥1 weakly converges towards hL d . Then,

lim n→∞ d( - → µ n (f n ), hL d ) = 0 .
We can control the distance between two measures that are absolutely continuous with respect to the Lebesgue measure by the L 1 -distance.

Lemma 2.3. Let f, g ∈ L 1 (R d → R d , L d ). We have d(f L d , gL d ) ≤ 2 R d f (x) -g(x) 2 dL d (x) = 2 f -g L 1 .
We say that (E i ) i≥1 is a paving of R d if the sets E i are of pairwise disjoint interior, for i ≥ 1, the set

E i is a translate of E 1 and R d = ∪ i≥1 E i . For a subset E of R d , we denote by diam E its diameter, i.e., diam E = sup { x -y 2 : x, y ∈ E} .
The following lemma will be very useful in what follows, it enables to control the number of elements of a paving that intersect the boundary of a given cube.

Lemma 2.4. There exists a positive constant ε C depending only on the dimension such that for any

δ ∈]0, 1[ and z ∈ R d , for any paving (E i ) i≥1 of R d such that diam E 1 ≤ ε C δ, we have |{i ≥ 1 : E i ∩ (∂(δC + z))}| ≤ 2 H d-1 (∂(δC + z)) L d (E 1 ) diam E 1 .
The result of the following lemma is a key property of the distance d that does not necessarily hold for standard distances: if the distance d(ν, µ) is small then for a cube

Q ⊂ Ω, the distance d(ν1 Q , µ1 Q ) is also small. Lemma 2.5. Let M > 0. Let G be a distribution such that G([M, +∞[) = 0. Let ν ∈ M(V ∞ (Ω, 1)) d such that ∀x ∈ [-1, 1[ d ∀λ ∈ [1, 2] ∀k ≥ 0 ∀Q ∈ (∆ k λ + x) ν(Q) 2 ≤ M L d (Q) .
There exist positive constants β 1 , β 2 depending only on M , Ω and d, and ε C depending on d such that for any δ ∈ [0, 1] and z ∈ R d , we have for any ρ ≤ δε C , for n large enough depending on ρ, for any

f n ∈ S n (Ω) d( - → µ n (f n )1 δC+z , ν1 δC+z ) ≤ β 1 d( - → µ n (f n ), ν) ρ + β 2 ρδ d-1 .
The following lemma implies that to upper-bound the distance between two measures µ, ν, given a partition of Ω, it is sufficient to upper-bound separately the distance d(µ1 A , ν1 A ) on each set A of the partition.

Lemma 2.6. Let µ, ν ∈ M(V ∞ (Ω, 1)) d . Let (A i , 1 ≤ i ≤ r) be a family of pairwise disjoint subsets of R d such that V ∞ (Ω, 1) ⊂ r i=1 A i .
Then, we have

d(µ, ν) ≤ r i=1 d(µ1 Ai , ν1 Ai ) .
We now prove the lemmas above.

Proof of lemma 2.1. Let f ∈ C b (R d , R). Let ε > 0. For k ≥ 1, we set f k = Q∈∆ k 1 (Ω) f (c(Q))1 Q ,
where c(Q) denotes the center of Q. Since the function f is uniformly continuous on the compact set V ∞ (Ω, 2), we fix k large enough (depending on f and ε) such that

∀Q ∈ ∆ k 1 (Ω) ∀x ∈ Q |f k (x) -f (x)| ≤ ε .
Besides, we have

R d f dν n - R d f dν 2 ≤ R d f dν n - R d f k dν n 2 + R d f k dν n - R d f k dν 2 + R d f dν - R d f k dν 2 ≤ ε d i=1 |ν i n |(V ∞ (Ω, 1)) + f ∞ Q∈∆ k 1 (Ω) ν n (Q) -ν(Q) 2 + ε d i=1 |ν i n |(V ∞ (Ω, 1)) ≤ 2εC 1 L d (V ∞ (Ω, 1)) + 2 k f ∞ d(ν n , ν) . (2.1)
Hence for n large enough,

R d f dν n - R d f dν 2 ≤ 3εC 1 L d (V ∞ (Ω, 1)) .
This yields the result.

Proof of lemma 2.2. Let h in L ∞ (R d → R d , L d ) and (h n ) n≥1 be a sequence of functions in L ∞ (R d → R d , L d ) as in the statement of lemma 2.2. Let ε > 0. Let z ∈ [-1, 1[ d , λ ∈ [1, 2]. For k 0 ≥ 1 large enough depending on ε and Ω, we have ∞ k=k0 1 2 k Q∈(z+∆ k λ ) (h n L d )(Q + x) -(hL d )(Q + x) 2 ≤ ∞ k=k0 1 2 k Q∈(z+∆ k λ ) 2M L d (Q)1 Q∩V2(Ω,1) =∅ ≤ ∞ k=k0 1 2 k 2M L d (V 2 (Ω, 3)) ≤ 4M L d (V 2 (Ω, 3))2 -k0 ≤ ε .
We aim at obtaining a uniform control in z and λ of k0 k=0

1 2 k Q∈(z+∆ k λ ) (h n L d )(Q + x) -(hL d )(Q + x) 2 . Let δ > 0 such that dδ ≤ 2 -k0 . Let B = δ(y + C) with y ∈ Z d . Since (hL d )(∂B) = 0, we have by Portmanteau theorem lim n→∞ (h n L d )(B) -(hL d )(B) 2 = 0 . (2.2)
Besides, using lemma 2.4, we have

k0 k=0 1 2 k Q∈(z+∆ k λ ) (h n L d )(Q + x) -(hL d )(Q + x) 2 ≤ k0 k=0 1 2 k Q∈(z+∆ k λ ): Q∩V2(Ω,1) y∈Z d : B=δ(y+C)⊂Q (h n L d )(B) -(hL d )(B) 2 + y∈Z d : B=δ(y+C) s.t. B∩∂Q =∅ 2M δ d ≤ 2 y∈Z d : B=δ(y+C)∩V2(Ω,1) =∅ (h n L d )(B) -(hL d )(B) 2 + k0 k=0 1 2 k Q∈(z+∆ k λ ): Q∩V2(Ω,1) =∅ 8dM H d-1 (∂Q)δ ≤ 2 y∈Z d : B=δ(y+C)∩V2(Ω,1) =∅ (h n L d )(B) -(hL d )(B) 2 + k0 k=0 1 2 k L d (V 2 (Ω, 3)) (λ2 -k ) d 2d(λ2 -k ) d-1 8dM δ ≤ 2 y∈Z d : B=δ(y+C)∩V2(Ω,1) =∅ (h n L d )(B) -(hL d )(B) 2 + (k 0 + 1)L d (V 2 (Ω, 3))16d 2 M δ . It follows that d(h n L d , hL d ) ≤ ε + 2 y∈Z d : B=δ(y+C)∩V2(Ω,1) =∅ (h n L d )(B) -(hL d )(B) 2 + (k 0 + 1)L d (V 2 (Ω, 3))16d 2 M δ .
By taking the limsup in n, we obtain

lim sup n→∞ d(h n L d , hL d ) ≤ ε + k 0 L d (V 2 (Ω, 3))16d 2 M δ .
By first letting δ goes to 0 and then by letting ε goes to 0, we obtain

lim n→∞ d(h n L d , hL d ) = 0 .
This yields the result. The same arguments may be adapted in the case of a sequence ( -→ µ n (f n )) n≥1 using the fact that for any

B ∈ (x + ∆ k λ ) for n large enough - → µ n (f n )(B) 2 ≤ 3dL d (B)M . Proof of lemma 2.3. Write µ = f L d and ν = gL d . Let x ∈ [-1, 1[ d , λ ∈ [1, 2]. We have ∞ k=0 1 2 k Q∈∆ k λ µ(Q + x) -ν(Q + x) 2 = ∞ k=0 1 2 k Q∈∆ k λ Q+x (f (y) -g(y))dL d (y) 2 ≤ ∞ k=0 1 2 k Q∈∆ k λ Q+x f (y) -g(y) 2 dL d (y) = ∞ k=0 1 2 k R d f (y) -g(y) 2 dL d (y) ≤ 2 f -g L 1 .
It follows that

d(f L d , gL d ) ≤ 2 f -g L 1 .
This yields the result.

Proof of lemma 2.4. Write B = δC + z. By proposition 1.7, there exists a positive constant ε C depending on C such that

∀ε 0 ∈ [0, ε C ] L d (V 2 (∂C, ε 0 )) 2ε 0 ≤ 2H d-1 (∂C) .
It follows that

∀ε 0 ∈ [0, ε C δ] L d (V 2 (∂B, ε 0 )) 2ε 0 ≤ 2H d-1 (∂B) . Let (E i ) i≥1 be a paving of R d such that diam E 1 ≤ ε C δ, we have |{i ≥ 1 : E i ∩ (∂(δC + z))}| ≤ L d (V 2 (∂B, diam E 1 )) L d (E 1 ) ≤ 4 H d-1 (∂(δC + z)) L d (E 1 ) diam E 1 .
This yields the result.

Proof of lemma 2.5. Let ν that satisfies the conditions in the statement of the lemma 2.5.

Let δ ∈ [0, 1] and z ∈ R d . Write B = δC + z. Let w ∈ [-1, 1[ d and λ ∈ [1, 2]. Let ε C be given by lemma 2.5. Let ρ ≤ ε C δ. Let f n ∈ S n (Ω). Write - → µ n = - → µ n (f n ). Let j be the smallest integer such that dλ2 -j ≤ ρ. Hence, w + ∆ λ j is a paving of R d such that for any Q ∈ ∆ λ j , we have diam Q ≤ dλ2 -j ≤ ε C δ. Using lemma 2.4, we have ∞ k=0 1 2 k Q∈(∆ λ k +w) - → µ n (B ∩ Q) -ν(B ∩ Q) 2 ≤ j k=0 1 2 k Q∈(∆ λ k +w) - → µ n (B ∩ Q) -ν(B ∩ Q) 2 + ∞ k=j+1 1 2 k Q∈(∆ λ k +w): Q∩B =∅ - → µ n (B ∩ Q) -ν(B ∩ Q) 2 ≤ j k=0 1 2 k Q∈(∆ λ j +w) - → µ n (B ∩ Q) -ν(B ∩ Q) 2 + ∞ k=j+1 1 2 k Q∈(∆ λ k +w): Q∩B =∅ ( - → µ n (B ∩ Q) 2 + ν(B ∩ Q) 2 ) ≤ j k=0 1 2 k    Q∈(∆ λ j +w):Q⊂B - → µ n (Q) -ν(Q) 2 + Q∈(∆ λ j +w):Q∩∂B =∅ ( - → µ n (B ∩ Q) 2 + ν(B ∩ Q) 2 )    + ∞ k=j+1 1 2 k   1 n d e∈E d n :c(e)∈V2(B,ρ) f n (e) 2 + M L d (2δC + z)   ≤ 2 Q∈(∆ λ j +w):Q⊂B - → µ n (Q) -ν(Q) 2 + 2 n d e∈E d n : c(e)∈V2(∂B,dλ2 -j ) f n (e) 2 + 2M L d (λ2 -j C)|{Q ∈ (∆ λ j + w) : Q ∩ ∂B = ∅}| + M 2 j (2d + 1)2 d δ d ≤ 2 j+1 d( - → µ n , ν) + 8M dH d-1 (∂B)ρ + 8M H d-1 (∂B)ρ + M 2 j (2d + 1)2 d δ d ≤ 4dλ ρ d( - → µ n , ν) + M 16d 2 + 16d + (2d + 1)2 d ρδ d-1
where we use in the last inequality that by definition of j, we have dλ2 -j+1 > ρ. It follows that

d( - → µ n (f n )1 B , ν1 B ) ≤ β 1 d( - → µ n (f n ), ν) ρ + β 2 ρδ d-1 .
where β 1 and β 2 are positive constant depending only on M and d.

Proof of lemma 2.6. Let µ, ν ∈ M(V ∞ (Ω, 1)) d and (A i , 1 ≤ i ≤ r) be a family of pairwise disjoint subsets of R d such that V ∞ (Ω, 1) ⊂ r i=1 A i .
We have for w

∈ [-1, 1[ d and λ ∈ [1, 2] ∞ k=0 1 2 k Q∈(∆ λ k +w) µ(Q) -ν(Q) 2 ≤ ∞ k=0 1 2 k Q∈(∆ λ k +w) r i=1 µ(Q ∩ A i ) -ν(Q ∩ A i ) 2 = r i=1 ∞ k=0 1 2 k Q∈(∆ λ k +w) µ(Q ∩ A i ) -ν(Q ∩ A i ) 2 ≤ r i=1 d(µ1 Ai , ν1 Ai ) .
It follows that

d(µ, ν) ≤ r i=1 d(µ1 Ai , ν1 Ai ) .
This yields the result.

Properties of the admissible streams

The aim of this section is to prove properties that the continuous streams -→ σ must be in Σ(Γ 1 , Γ 2 , Ω)

to get I( - → σ ) < ∞. Denote by Σ M (Γ 1 , Γ 2 , Ω) the following set Σ M (Γ 1 , Γ 2 , Ω) = - → σ ∈ L ∞ (R d → R d , L d ) : ∃ψ : N → N ∀n ≥ 1 ∃f ψ(n) ∈ S M ψ(n) (Γ 1 , Γ 2 , Ω) lim n→∞ d( - → µ ψ(n) (f ψ(n) ), - → σ L d ) = 0 (2.3) with f ψ(n) ∈ S M ψ(n) (Γ 1 , Γ 2 , Ω). Proposition 2.7. Let G that satisfies hypothesis 1. Let (Ω, Γ 1 , Γ 2 ) that satisfies hypothesis 2. Let ν ∈ M(R d ) d \ ({ - → σ L d : - → σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2 , Ω)}) (we recall that Σ(Γ 1 , Γ 2 , Ω) was defined in (1.10)), we have lim ε→0 lim inf n→∞ 1 n d log P(∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : d - → µ n (f n ), ν ≤ ε) = -∞ .
To prove this proposition we need the following deterministic lemma. It states that the limit of a sequence of discrete stream inherits the properties of the discrete streams. The main ingredient of the proof of this lemma were already present in [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF]. We postpone its proof after the proof of proposition 2.7.

Lemma 2.8. Let (Ω, Γ 1 , Γ 2 ) that satisfies hypothesis 2. Let M > 0. Let ψ : N → N be an increasing function. Let f ψ(n) ∈ S M ψ(n) (Γ 1 , Γ 2 , Ω), for n ≥ 1 such that µ ψ(n) (f ψ(n) ) weakly converges towards a measure ν ∈ M(R d ) d . Then, we have ν ∈ - → σ L d : - → σ ∈ Σ M (Γ 1 , Γ 2 , Ω) ∩ Σ(Γ 1 , Γ 2 , Ω) . Proof of Proposition 2.7. Let ν ∈ M(R d ) d .
We start by extracting a deterministic sequence of good realizations of -→ µ n (f n ) that converges weakly towards ν. Let us assume there exists κ > 0 such that

∀ε > 0 lim inf n→∞ 1 n d log P(∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : d - → µ n (f n ), ν ≤ ε) ≥ -κ .
Hence, we can build iteratively an increasing sequence (a n ) n≥1 of integers such that

∀n ≥ 1 1 a d n log P ∃f an ∈ S an (Γ 1 , Γ 2 , Ω) : d - → µ an (f an ), ν ≤ 1 n ≥ -2κ .
It follows that the event

∃f an ∈ S an (Γ 1 , Γ 2 , Ω) : d - → µ an (f an ), ν ≤ 1 n
is not empty. We choose according to some deterministic rule a realization ω n of the capacities of the set Ω ∩ E d an that belongs to this event. According to some deterministic rule, on the fixed realization ω n , we choose a stream

f an ∈ S an (Γ 1 , Γ 2 , Ω) that satisfies d - → µ an (f an ), ν ≤ 1 n . ( 2.4) 
By lemma 2.1, it follows that -→ µ an (f an ) weakly converges towards ν. By lemma 2.8, we have that

ν ∈ - → σ L d : - → σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2 , Ω) ) .
This concludes the proof.

Proof of lemma 2.8. To lighten the notation we will write -

→ µ n instead of - → µ ψ(n) (f ψ(n) ). Note that for all n ≥ 1, the support of - → µ n is included in the compact set V ∞ (Ω, 1). For i ∈ {1, . . . , d}, let - → µ i n = - → µ i,+ n -- → µ i,
- n be the Hahn-Jordan decomposition of the signed measure -→ µ i n . Notice that we have

| - → µ i n | V ∞ (Ω, 1) ≤ 1 n d e∈E d n f n (e) 2 ≤ M n d 2d|Ω n | ≤ 2dL d (V ∞ (Ω, 1))M .
Hence, the sequence ( -→ µ n ) n≥1 is uniformly tight and uniformly bounded in the total variation norm. By Prohorov theorem (see for example, Theorem 8.6.2 in volume II of [START_REF] Bogachev | Measure theory[END_REF]), it follows that up to extraction, we can assume that

- → µ i,+ n - → µ i,+ , - → µ i,- n - → µ i,-,
and by using inequality (2.4) and lemma 2.1, we deduce that ∀i ∈ {1, . . . , d}

ν i = - → µ i,+ -- → µ i,-.
Step 1 : We prove that ν is absolutely continuous with respect to L d . This proof is an adaptation of the proof of proposition 4.2. in [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF]. Let A be a Borel subset of R d . Since the Lebesgue measure L d is outer regular, for ε > 0 there exists an open set

O such that A ⊂ O and L d (O \ A) ≤ ε.
By the Vitali covering theorem for Radon measures (see Theorem 2.8. in [START_REF] Mattila | Geometry of sets and measures in Euclidean spaces[END_REF]), there exists a countable family (B(x j , r j ), j ∈ J) of disjoint closed balls included in O such that

- → µ i,+   O \ j∈J B(x j , r j )   = 0 .
We have for δ > 0, using Portmanteau theorem

- → µ i,+ (O) ≤ - → µ i,+ ∪ j∈J B(x j , r j + δ) ≤ lim inf n→∞ - → µ i,+ n ∪ j∈J B(x j , r j + δ) .
Moreover, we have on the realization ω n ,

- → µ i,+ n ∪ j∈J B(x j , r j + δ) ≤ M j∈J L d (B(x j , r j + δ + 2n -1 ) .
Hence, by taking the liminf in n in the previous inequality and then by letting δ goes to 0, we obtain

- → µ i,+ (O) ≤ M j∈J L d (B(x j , r j )) ≤ M L d (O) ≤ M (ε + L d (A))
and

- → µ i,+ (A) ≤ - → µ i,+ (O) ≤ M (ε + L d (A)) .
Finally, we let ε goes to 0, we deduce that -

→ µ i,+ (A) ≤ M L d (A). Similarly, - → µ i,-(A) ≤ M L d (A).
We deduce that ν is absolutely continuous with respect to the Lebesgue measure; that is, there exists

- → σ ∈ L 1 (R d → R d , L d ) such that ν = - → σ L d . Hence, we have - → σ ∈ Σ M (Γ 1 , Γ 2 , Ω).
We use the notation -→ σ = (σ 1 , . . . , σ d ). We have proved that for all i ∈ {1, . . . , d},

∀A ∈ B(R d ) A |σ i |dL d ≤ - → µ i,+ (A) + - → µ i,-(A) ≤ 2M L d (A) ,
and

∀A ∈ B(R d ) -M L d (A) ≤ A - → σ • - → e i dL d = - → µ i,+ (A) -- → µ i,-(A) ≤ M L d (A) which implies that | - → σ • - → e i | ≤ M L d -almost everywhere. It follows that - → σ ∈ L ∞ (R d → R d , L d ). Moreover, we have - → σ L 1 = Ω - → σ 2 dL d ≤ d i=1 Ω |σ i |dL d ≤ d i=1 - → µ i,+ (Ω) + - → µ i,-(Ω) ≤ d i=1 lim inf n→∞ - → µ i,+ n (Ω) + lim inf n→∞ - → µ i,- n (Ω) ≤ lim inf n→∞ d i=1 - → µ i,+ n (Ω) + - → µ i,- n (Ω) = lim inf n→∞ 1 n d e∈E d n f n (e) 2 (2.5) 
where we use Portmanteau theorem and the fact that Ω is an open set.

Step 2 : We prove that ν(R

d \ Ω) = 0. The set R d \ Ω is an open set. Using Portmanteau theorem, we have ∀i ∈ {1, . . . , d} ∀ ∈ {+, -} - → µ i, (R d \ Ω) ≤ lim inf n→∞ - → µ i, n (R d \ Ω) .
Besides, using proposition 1.7, and by construction of -→ µ n we have for n large enough

- → µ i, n (R d \ Ω) ≤ 2dM |V ∞ (∂Ω, 1/n) ∩ Z d n | n d ≤ 2dM L d (V 2 (∂Ω, d/n)) ≤ 8d 2 M n H d-1 (∂Ω) . It follows that ∀i ∈ {1, . . . , d} ∀ ∈ {+, -} - → µ i, (R d \ Ω) = 0 and ν(R d \ Ω) = 0.
Finally, since ν is absolutely continuous with respect to the Lebesgue measure we have ν(∂Ω) = 0 and the result follows.

Step 3 : We prove that div -→ σ = 0 L d -almost everywhere. Thanks to the previous step, we can

write ν = - → σ L d . Let h ∈ C ∞ c (Ω, R). For all x ∈ Γ 1 n ∪ Γ 2 n , let df n (x)
be the amount of water that appears at x according to the stream f n :

df n (x) = n y∈Z d n : e= x,y ∈E d n f n (e) • -→ yx . (2.6)
We have that f n satisfies the node law at x if and only if df n (x) = 0. We recall that -→ yx 2 = 1/n, this accounts for the n factor in the expression above. The function df n corresponds to a discrete divergence. Since f n satisfies the node law, df n is null on

Ω n \ (Γ 1 n ∪ Γ 2 n ).
We state here the equality obtained in [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF] just after equality (4.6):

R d - → ∇h • d - → µ n = - 1 n d-1 x∈Γ 1 n ∪Γ 2 n h(x) df n (x) + α n (h, f n , Ω) n d with lim n→∞ α n (h, f n , Ω) n d = 0 .
This equality is not difficult to obtain, it uses the fact that the stream f n has a null discrete divergence to control the divergence of the limiting object -→ σ . The proof of this result may be found in Proposition

4.5 in [9]. Notice that since h ∈ C ∞ c (Ω, R), h is null on Γ 1 n ∪ Γ 2
n , for all n, and

lim n→∞ R d - → ∇h • d - → µ n = 0 . Since - → ∇h ∈ C ∞ c (Ω, R), by Portmanteau theorem, we have R d h div - → σ dL d = R d - → σ • - → ∇h dL d = lim n→∞ R d - → ∇h • d - → µ n = 0 .
This yields the result.

Step 4 : We prove that -→ σ • -→ n Ω = 0 H d-1 -almost everywhere on Γ\(Γ 1 ∪Γ 2 ). Thanks to inequality (4.8) in the proof of the Corollary 2 in [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF],

- → σ • - → n Ω is an element of L ∞ (Γ, H d-1 ) characterized by ∀u ∈ C ∞ c (R d , R) Γ ( - → σ • - → n Ω )u dH d-1 = R d - → σ • - → ∇udL d . (2.7) Let u ∈ C ∞ c ((Γ 1 ∪ Γ 2 ) c , R) .
As in the previous step, we have

lim n→∞ R d - → ∇u • d - → µ n = lim n→∞ - 1 n d-1 x∈Γ 1 n ∪Γ 2 n u(x) df n (x) + α n (h, f n , Ω) n d . Since u is null on Γ 1 n ∪ Γ 2 n for n large enough, we have lim n→∞ R d - → ∇u • d - → µ n = 0 .
Finally, using Portmanteau theorem we have

Γ ( - → σ • - → n Ω )u dH d-1 = R d - → σ • - → ∇u dL d = lim n→∞ R d - → ∇u • d - → µ n = 0 .
This ends the proof.

3 Technical lemmas

Mixing

This section is only geometrical and does not contain any randomness. The aim of this section is to prove that we can reconnect two different streams if the incoming flow coincides with the outcoming flow. Namely, if we consider two families of inputs and outputs such that the sum of the inputs is equal to the sum of the outputs, we can connect the inputs with the outputs. To connect the streams, we are going to give an algorithm that enables to build a stream that connects the inputs to the outputs. To lighten the notations, all the lemmas of this section are stated and proved in Z d instead of Z d n . Lemma 3.1 (Mixing). Let M > 0, n ≥ 1. For any two sequences of real numbers (f in (y), y ∈ {1, . . . , n} d-1 ) and (f out (y), y ∈ {1, . . . , n} d-1 ) satisfying

∀y ∈ {1, . . . , n} d-1 |f in (y)| ≤ M , |f out (y)| ≤ M and y∈{1,...,n} d-1 f in (y) = y∈{1,...,n} d-1 f out (y) ,
for any m ≥ 2(d -1)n, there exists a stream f :

E d → R d such that: • for each edge e / ∈ [0, m[×[1, n] d-1
(we recall that e belong to a set if its left endpoint belong to this set), we have f (e) = 0,

• for each e ∈ E d we have f (e) 2 ≤ M , • for each y ∈ {1, . . . , n} d-1 , we have f ( (0, y), (1, y) ) = f in (y) - → e 1 and f ( (m -1, y), (m, y) ) = f out (y) - → e 1 , • for each vertex v ∈ Z d \ (({0} × {1, . . . , n} d-1 ) ∪ ({m} × {1, . . . , n} d-1
)) the node law is respected. Moreover, if the outputs are uniform, i.e,

∀y ∈ {1, . . . , n} d-1 f out (y) = 1 n d-1 z∈{1,...,n} d-1 f in (z)
then the same result holds for any m ≥ (d -1)n.

Before proving this lemma, we need to prove that we can reconnect streams in the particular case of the dimension 2 with uniform outputs. We build the stream by an algorithm, this algorithm will be used in other proofs of this section.

Lemma 3.2 (Mixing in dimension 2

). Let M > 0, n ≥ 1. For any sequence of real number (f in (j), j = 1, . . . , n) satisfying ∀j ∈ {1, . . . , n}

|f in (j)| ≤ M ,
there exists a stream f :

E 2 → R 2 (i) for each edge e / ∈ [0, n[×[1, n] we have f (e) = 0 , (ii) for each e ∈ E 2 we have f (e) 2 ≤ M , (iii) for each j ∈ {1, . . . , n}, we have f (e j ) = f in (j) - → e 1 and f (e j + n - → e 1 ) = 1 n n i=1 f in (i) - → e 1 ,
where e j = (0, j), (1, j) and x, y

+ k - → e 1 = x + k - → e 1 , y + k - → e 1 , (iv) for each vertex v ∈ Z 2 \ (({0} × {1, . . . , n}) ∪ ({n} × {1, . . . , n}))
, the node law is respected.

Proof. Up to multiplying by -1 all the inputs, we can always assume that

n i=1 f in (i) ≥ 0 .
We set

β = 1 n n i=1 f in (i) .
We start by sending the minimum between β and f in (i) through straight lines:

f (0) = n i=1 min(f in (i), β) n-1 k=0 - → e 1 1 ei+k - → e1 .
We are going to perform an algorithm starting with the stream f (0) to build a stream f satisfying all the conditions of the lemma. At any step of the algorithm, f will satisfy condition (iv) but also the following conditions:

(a) The vertical edges in the column n -i are only used by the source i ∈ {1, . . . , n}:

∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n -1} f ( (n -i, j), (n -i, j + 1) ) 2 ≤ f (e i ) 2 1 fin(i)>β . (b) If f in (i) ≤ β then the flow through the line i in the direction - → e 1 is non-decreasing: ∀i ∈ {1, . . . , n} s.t. f in (i) < β ∀j < k ∈ {1, . . . , n -1} f in (i) = f (e i ) • - → e 1 ≤ f (e i + j - → e 1 ) • - → e 1 ≤ f (e i + k - → e 1 ) • - → e 1 ≤ β . (c) If f in (i) > β then the flow through the line i in the direction - → e 1 is non-increasing: ∀i ∈ {1, . . . , n} s.t. f in (i) > β ∀j < k ∈ {1, . . . , n -1} f in (i) ≥ f (e i ) • - → e 1 ≥ f (e i + j - → e 1 ) • - → e 1 ≥ f (e i + k - → e 1 ) • - → e 1 ≥ f (e i + n - → e 1 ) • - → e 1 = β .
We set f = f (0) . It is clear that the stream f satisfies the node law (iv) and conditions (a), (b) and (c). Let us assume there exists i such that

f (e i ) 2 < |f in (i)| .
We consider the smallest integer i such that the previous inequality is satisfied. Since

f satisfies condition (b), necessarily f in (i) > β (if not we have f (e i ) 2 = |f in (i)|)).By condition (c), we have f (e i ) • - → e 1 ≥ 0 and so f (e i ) 2 = f (e i ) • - → e 1 < f in (i).
Since f satisfies condition (iv), it yields by the node law

n k=1 f (e k + n - → e 1 ) • - → e 1 = n k=1 f (e k ) • - → e 1 < n k=1 f in (k) = nβ .
Then, there exists j such that f (e j + n -→ e 1 ) • -→ e 1 < β .

We pick the smallest integer j such that the previous inequality holds. By condition (c), we have f in (j) < β. We set

γ i,j = n-1-i k=0 - → e 1 1 ei+k - → e1 + (j-i)+-1 k=-(j-i)- sign(j -i) - → e 2 1 (n-i,i+k),(n-i,i+k+1) + n-1 k=n-i - → e 1 1 ej +k - → e1 .
Note that γ i,j is a stream, i.e., a function from E 2 to R 2 . We can associate with γ i,j an oriented path corresponding to the path the water takes to go from source i to sink j for the stream γ i,j (see figure 3).

- → e 1 - → e 2 i j n -i
Figure 3 -The path associated with γ i,j for j > i

We set

f = f + min (f in (i) -f (e i ) 2 , β -f (e j + n - → e 1 ) • - → e 1 ) γ i,j .
It is clear that f satisfies condition (iv). We have to check that the conditions (a), (b) and (c) are still satisfied for f . Note that we have

m i,j := min (f in (i) -f (e i ) 2 , β -f (e j + n - → e 1 ) • - → e 1 ) > 0 .
We start by checking if the condition (a) is satisfied: for any k ∈ {1, . . . , n -1}, we have

f ( (n -i, k), (n -i, k + 1) ) 2 ≤ f ( (n -i, k), (n -i, k + 1) ) 2 + m i,j ≤ f (e i ) 2 + m i,j = f (e i ) • - → e 1 + m i,j = f (e i ) • - → e 1 = f (e i ) 2 .
We have

f (e i ) • - → e 1 = f (e i ) • - → e 1 + m i,j = f (e i ) 2 + m i,j ≤ f in (i) .
Moreover, it is clear that the flow through the line i in the direction -→ e 1 is non-increasing for f since it was the case for f . Furthermore, we have f

(e i + n - → e 1 ) • - → e 1 = f (e i + n - → e 1 ) • - → e 1 = β.
Hence, the stream f satisfies condition (c). Since the flow through the line j is non-decreasing for f , it is easy to check that it is also true for f . Moreover, we have by definition of m i,j

f (e j + n - → e 1 ) • - → e 1 = f (e j + n - → e 1 ) • - → e 1 + m i,j ≤ β and f (e j ) • - → e 1 = f (e j ) • - → e 1 = f in (j) .
It follows that f also satisfies condition (b). Since after each step of the algorithm the number of such couples (i, j) is decreasing, the algorithm will eventually end. Let us assume there exists no such i. Therefore, we have

n i=1 f (e i ) • - → e 1 = n i=1 f in (i) .
By the node law again, we have

n i=1 f (e i + n - → e 1 ) • - → e 1 = n i=1 f in (i) = nβ
and by conditions (b) and (c), it follows that

∀j ∈ {1, . . . , n} f (e j + n - → e 1 ) = β - → e 1 .
This yields property (iii). At the end of the algorithm, the stream f satisfies conditions (i), (ii), (iii) and (iv).

Proof of lemma 3.1. We first prove the result for uniform outputs, that is, for any family (f in (y), y ∈ {1, . . . , n} d-1 ) satisfying for any y ∈ {1, . . . , n} 1 satisfying all the requirements in the statement of lemma 3.1. We prove this result by induction on the dimension. The result holds for the dimension 2 thanks to lemma 3.2. Let us now consider d ≥ 3 and assume the result holds for the dimension d -1. Consider a family of inputs bounded by M : (f in (y), y ∈ {1, . . . , n} d-1 ). Using the induction hypothesis for the dimension d -1, for each i ∈ {1, . . . , n}, we can build a stream f

d-1 |f in (y)| ≤ M , if we set ∀y ∈ {1, . . . , n} d-1 f out (y) = 1 n d-1 w∈{1,...,n} d-1 f in (w) , there exists a stream in [0, (d -1)n[×[1, n] d-
(i) d-1 in [0, (d -2)n[×{i} × [1, n] d-2 given the inputs (f in (i, z), z ∈ {1, . . . , n} d-2
) and the uniform outputs equal to

∀z ∈ {1, . . . , n} d-2 g(i, z) = 1 n d-2 z∈{1,...,n} d-2 f in (i, z) .

It is clear that the streams f (i)

d-1 are defined on disjoint sets of edges. Finally, for each x ∈ {1, . . . , n} d-2 , using lemma 3.2, we denote by f

(x) 2 the stream in [0, n[×[1, n] × {x} with inputs (g(i, x), i = 1, . . . , n) and uniform output equal to 1 n n i=1 g(i, x) = 1 n d-1 n i=1 z∈{1,...,n} d-2 f in (i, z) = 1 n d-1 w∈{1,...,n} d-1 f in (w) . The stream f (x) 2
are also defined on disjoint set of edges. Finally, the stream

g = n i=1 f (i) d-1 + x∈{1,...,n} d-2 f (x) 2 (• -(d -2)n - → e 1 ) is defined on [0, (d -1)n[×[1, n] d-1
, g(e) 2 ≤ M for any e and g mixes uniformly the inputs since

∀y ∈ {1, . . . , n} d-1 g( ((d -1)n -1, y), ((d -1)n, y) ) = 1 n d-1 w∈{1,...,n} d-1 f in (w) .
It follows that the result holds for the dimension d. This concludes the induction.

Let d ≥ 2, let us now consider two families (f in (y)) y and (f out (y)) y of arbitrary inputs and outputs that satisfy the conditions in the statement of the lemma. Let 1 with inputs (f out (y)) y and uniform outputs. Denote by S the reflexion with regards to the hyperplane

f i be the stream in [0, (d -1)n[×[1, n] d-1 with inputs (f in (y)) y and uniform outputs. Let f o be the stream in [0, (d -1)n[×[1, n] d-
{x ∈ R d , x 1 = 0}, i.e., ∀(x 1 , . . . , x d ) ∈ R d S(x 1 , x 2 , . . . , x d ) = (-x 1 , x 2 , . . . , x d ) .
We denote by Sf o the symmetric of the stream f o by S:

∀e ∈ E d Sf o (e) = S(f o (S(e)))
where for e = x, y the edge S(e) corresponds to S(x), S(y) . Note that for any edge e parallel to -→ e 1 , we have f o (e) = a -→ e 1 with a ∈ R and

Sf o (S(e)) = S(f o (S(S(e)))) = S(f o (e)) = -a - → e 1 = -f o (e) .
We have for y ∈ {1, . . . , n} d-1 , 

f i ( ((d -1)n -1, y), ((d -1)n, y) ) = 1 n d-1 y∈{1,...,n} d-1 f in (y) = 1 n d-1 y∈{1,...,n} d-1 f out (y) = f o ( ((d -1)n -1, y), ((d -1)n, y) ) = -Sf o ( (-(d -1)n, y), (-(d -1)n + 1, y) ) . It follows that the stream g = f i -Sf o (• -(2(d -1)n -1) - → e 
f out (y) - → e 1 1 (k-1,y),(k,y) .
We will need a special result of mixing in the case where the non-null inputs and outputs are regularly spaced in the lattice. Namely, there exists an integer K ≥ 1 such that any input or output whose index does not belong to KZ d-1 ∩ [1, n] d-1 is null. In that case, we want to prove that we do not use a lot of edges to reconnect the inputs with the outputs. For any integer K ≥ 1, we denote by E d K the following set of edges:

E d K = e = x, y ∈ E d : y -x = - → e 1 , ∀j = 1 x j ∈ KZ ∪ e ∈ E d : ∃z ∈ Z ∃x, y ∈ KZ d-1 s.t. x -y 1 = K and e ⊂ [(z, x), (z, y)] . Lemma 3.3. Let d ≥ 2, M > 0, n ≥ 1.
There exists a positive integer c d such that for any integer

K satisfying K ≥ c d , for any two (f in (y), y ∈ {1, . . . , n} d-1 ∩ KZ d-1 ) and (f out (y), y ∈ {1, . . . , n} d-1 ∩ KZ d-1 ) sequences of real numbers satisfying ∀y ∈ {1, . . . , n} d-1 ∩ KZ d-1 |f in (y)| ≤ M , |f out (y)| ≤ M and y∈{1,...,n} d-1 ∩KZ d-1 f in (y) = y∈{1,...,n} d-1 ∩KZ d-1 f out (y) ,
there exists a stream f :

E d → R d such that • for each e / ∈ E d K ∩ [0, n[×[1, n] d-1 we have f (e) = 0, • for each e ∈ E d we have f (e) 2 ≤ M , • for each y ∈ {1, . . . , n} d-1 ∩KZ d-1 , we have f ( (0, y), (1, y) ) = f in (y) - → e 1 and f ( (n-1, y), (n, y) ) = f out (y) - → e 1 , • for each vertex v ∈ Z d \ (({0} × ({1, . . . , n} d-1 ∩ KZ d-1 )) ∪ ({n} × ({1, . . . , n} d-1 ∩ KZ d-1 ))) the node law is respected. Moreover, we have {e ∈ E d : f (e) = 0} ≤ E d K ∩ [0, n[×[1, n] d-1 ≤ 3d K d-2 n d .
Proof of lemma 3.3. Let c d be an integer we will choose later. Let K ≥ c d . Let us consider the following bijection π between the lattice Z × KZ d-1 and Z d defined as follows

∀x ∈ Z ∀y ∈ Z d-1 π((x, Ky)) = (x, y) .
Therefore, the problem boils down to finding a stream that joins the inputs (f in (Ky), y ∈ {1, . . . , n 0 } d-1 ) with the outputs (f out (Ky), y ∈ {1, . . . ,

n 0 } d-1 ) in [0, n[×[1, n 0 ] d-1 where n 0 = n/K . Note that n ≥ Kn 0 ≥ c d n 0 . By setting c d = 2(d -1)
, this ensures that we can apply lemma 3.1. We obtain a

stream f n in [0, n[×[1, n 0 ] d-1 ∩ E d that
satisfies all the properties stated in the lemma 3.1. It remains to build upon f n a stream f n in the original lattice. To do so, we set

∀e = x, y ∈ Z d ∀ e = w 1 , w 2 s.t. [w 1 , w 2 ] ⊂ [π -1 (x), π -1 (y)] f n ( e) = f n (e) .
It is easy to check that the stream f n is supported on

E d K ∩ [0, n[×[1, n] d-1
and that it satisfies all the properties stated in the lemma 3.3. It remains to upper-bound the quantity

|E d K ∩ [0, n[×[1, n] d-1 |. We have |E d K ∩ [0, n[×[1, n] d-1 | ≤ n |KZ d-1 ∩ [1, n] d-1 | + n |KZ d-1 ∩ [1, n] d-1 |2dK ≤ n n K d-1 + 2dKn n K d-1 ≤ 3d K d-2 n d .
This yields the result.

In what follows, we will need the following lemma. This lemma gives a precise description on the way the edges are used. The hypothesis of this lemma may seem strange but should be more clear in its context of application (see proofs of lemma 4.8 and proposition 5.3).

Lemma 3.4. Let d ≥ 2, M > 0, ε > 0 and n ≥ 1. For any sequence of real number (f in (y), y ∈ {1, . . . , n} d-1 ) satisfying ∀y ∈ {1, . . . , n} d-1 -M ≤ f in (y) ≤ ε and ∀i ∈{0, . . . , d -2} ∀y ∈ {1, . . . , n} i x∈{1,...,n} d-1-i f in (y, x) ≥ 0 or ∀x, z ∈ {1, . . . , n} d-1-i |f in (y, x) -f in (y, z)| ≤ ε ,
there exists a stream f :

E d → R d such that • for each e / ∈ [0, (d -1)n[×[1, n] d we have f (e) = 0; • for each e ∈ E d , if e is parallel to - → e 1 , then we have -M ≤ f (e) • - → e 1 ≤ ε, otherwise f (e) 2 ≤ ε;
• for each y ∈ {1, . . . , n} d-1 , we have f ( (0, y), (1, y)

) = f in (y) - → e 1 and f ( ((d -1)n -1, y), ((d -1)n, y) ) = 1 n d-1 z∈{1,...,n} d-1 f in (z) - → e 1 ; • for each vertex v ∈ Z d \ (({0} × ({1, . . . , n} d-1 )) ∪ ({(d -1)n} × ({1, . . . , n} d-1
))) the node law is respected.

Proof. We prove this result by induction on the dimension. For d = 2. Let (f in (j), 1 ≤ j ≤ n) be a family that satisfies the conditions stated in the lemma:

∀ j ∈ {1, . . . , n} -M ≤ f in (j) ≤ ε and β = n k=1 f in (k) ≥ 0 or ∀k, j ∈ {1, . . . , n} |f in (k) -f in (j)| ≤ ε .
If β ≥ 0, we apply directly the algorithm in the proof of lemma 3.2 to obtain a stream f . If β < 0, then ∀k, j ∈ {1, . . . , n} |f in (k) -f in (j)| ≤ ε and we set α = min{f in (j) : 1 ≤ j ≤ n}. It follows that for any j ∈ {1, . . . , n}, we have f in (j) -α ∈ [0, ε], we apply the lemma 3.2 to the sequence of real numbers (f in (j) -α, j = 1, . . . , n) to obtain a stream g in [0, n[× [1, n], finally we set

f = g + n i=1 α n-1 k=0 - → e 1 1 ei+k - → e1 .
In both cases, the stream f we obtain satisfies all the required properties: if β ≥ 0, due to condition (a), only the inputs i ∈ {1, . . . , n} such that 0 Let us assume the result holds for d -1 where d ≥ 3. Let (f in (y), y ∈ {1, . . . , n} d-1 ) be a family that satisfies the condition stated in the lemma 3.4. For i ∈ {1, . . . , n}, it is easy to check that the family (f in (i, x), x ∈ {1, . . . , n} d-2 ) also satisfies the conditions of the lemma 3.4. By induction hypothesis, there exists a stream f

≤ β ≤ f in (i) ≤ ε can
(i) (d-1) in [0, (d -2)n[×{i} × [1, n] d-2 that
satisfies all the conditions of the lemma 3.4. We build the family g as follows

∀x ∈ {1, . . . , n} d-2 g(i, x) = f (i) (d-1) ( ((d-2)n-1, i, x), ((d-2)n, i, x) )• - → e 1 = 1 n d-2 z∈{1,...,n} d-2 f in (i, z) . It is clear that for any y ∈ {1, . . . , n} d-1 , g(y) ∈ [-M, ε]. Besides, we have ∀x ∈ {1, . . . , n} d-2 n k=1 g(k, x) = y∈{1,...,n} d-1 f in (y) .
By the properties of the family (f in (y), y ∈ {1, . . . , n} d-1 ) we have for any

x ∈ {1, . . . , n} d-2 n k=1 g(k, x) ≥ 0 or ∀y, z ∈ {1, . . . , n} d-1 |f in (y) -f in (z)| ≤ ε .
If n k=1 g(k, x) < 0, it follows that for any k, j ∈ {1, . . . , n}, we have |g(k, x) -g(j, x)| ≤ ε. In both cases, we can apply the result for the dimension 2: we denote by f

(x) 2 the stream in [0, n[×[1, n] × {x} with inputs (g(i, x), i = 1, . . . , n).
We can check as in the proof of lemma 3.1 that the stream

n i=1 f (i) (d-1) + x∈{1,...,n} d-2 f (x) 2 (• -(d -2)n - → e 1 )
satisfies all the required conditions.

Decomposition of a stream

In all this section, we consider (Ω, Γ 1 , Γ 2 ) that satisfy hypothesis 2. Let n ≥ 1. We say that -→ γ = ( -→ g 1 , . . . , -→ g r ) is an oriented self-avoiding path if there exists r + 1 distinct points x 1 , . . . , x r+1 ∈ E d n such that for any i ∈ {1, . . . , r}, -

→ g i = x i , x i+1 ∈ - → E d n .
Lemma 3.5 (Decomposition of a stream). Let f n be a stream inside Ω that satisfies the node law everywhere except points in Γ 1 n ∪ Γ 2 n . There exists a finite set of self-avoiding oriented path -→ Γ (that may be empty) such that for any -→ γ ∈ -→ Γ , the starting point and the ending point belong to

Γ 1 n ∪ Γ 2 n , all the other vertices in - → γ belong to Ω n \ (Γ 1 n ∪ Γ 2 n ). To each oriented path - → γ ∈ - → Γ we can associate a positive real number p( - → γ ) such that f n = - → γ ∈ - → Γ p( - → γ ) x,y ∈ - → γ n -→ xy1 x,y .
Moreover, we have

∀ - → γ ∈ - → Γ ∀ - → e = x, y ∈ - → γ f n (e) • -→ xy > 0 .
Proof. We are going to perform an algorithm to build iteratively the couple (

- → Γ , (p( - → γ )) - → γ ∈ - → Γ )
. We set

f n = - → γ ∈ - → Γ p( - → γ ) x,y ∈ - → γ n -→ xy1 x,y
and f res n = f n -f n . At any step of the algorithm, we have

∀ - → γ ∈ - → Γ ∀ - → e = x, y ∈ - → γ f n (e) • -→ xy ≥ f n (e) • -→ xy > 0 . (3.1)
Moreover, for any -→ γ ∈ -→ Γ , the path -→ γ has both of its endpoints in Γ 1 n ∪ Γ 2 n and all the other vertices in -→ γ belong to Ω n \ (Γ 1 n ∪ Γ 2 n ). Consequently, at any step of the algorithm, the stream f res n satisfies the node law for any point in starting from z and ending at x with vertices in Ω n such that the last edge of -→ γ 0 is y, x and for any -→ e 0 = w 0 , w 1 ∈ -→ γ 0 , we have f res n (e 0 ) • ---→ w 0 w 1 > 0. Note that, up to removing a section of -→ γ 0 , we can always assume that all the vertices of -→ γ 0 except its two endpoints are in

Z d n \ (Γ 1 n ∪ Γ 2 n ). We start with - → Γ = ∅. Let x ∈ Γ 1 n ∪ Γ 2 n and y ∈ Ω ∩ Z d n such that e = x,
Ω n \ (Γ 1 n ∪ Γ 2 n ).
If it is not the case, we denote by w the first vertex in Γ 1 n ∪ Γ 2 n along the path -→ γ 0 starting from x and we replace -→ γ 0 by the section of -→ γ 0 between the vertices w and

x.

Besides, we have

m( - → γ 0 ) = inf {f res n (e) • (n ---→ w 0 w 1 ) : - → e = w 0 , w 1 ∈ - → γ 0 } > 0 . Let - → e = w 0 , w 1 ∈ - → γ 0 . By construction, we have f res n (e) • ---→ w 0 w 1 > 0 and f n (e) • ---→ w 0 w 1 > f n (e) • ---→ w 0 w 1 . Hence, w 1 , w 0 cannot belong to one of the - → γ in - → Γ since it would contradict (3.1). Necessarily, we have f n (e) • ---→ w 0 w 1 ≥ 0. It yields that 0 ≤   f n + m( - → γ 0 ) x0,y0 ∈ - → γ 0 n --→ x 0 y 0 1 x0,y0   (e) • ---→ w 0 w 1 = f n (e) • ---→ w 0 w 1 + 1 n m( - → γ 0 ) ≤ ( f n + f res n )(e) • ---→ w 0 w 1 ≤ f n (e) • ---→ w 0 w 1 .
We add ( - 

→ γ 0 , m( - → γ 0 )) to ( - → Γ , (p( - → γ ) - → γ ∈ - → Γ )
f n = f n = - → γ ∈ - → Γ p( - → γ ) x,y ∈ - → γ n -→ xy1 x,y .
This concludes the proof.

Construction and convexity of the elementary rate function

In this section, we build the elementary rate function I that is the basic brick to build the rate function I. We start by proving preliminary lemmas that we need in order to prove theorem 1.1 but also theorem 1.5

Preliminary lemmas

Before proving theorem 1.1, we are going to prove that we can slightly modify a stream f n ∈ S n (C) without paying too much probability such that the stream is well-behaved in the sense that at a mesoscopic level for each face of the cube C the stream spreads uniformly.

We recall that ( -→ e 1 , . . . , -→ e d ) denotes the oriented canonical basis of R d . For i ∈ {1, . . . , d}, we denote by C + i and C - i the two faces of C = [-1/2, 1/2[ d associated with the vector -→ e i that is

C - i = - 1 2 , 1 2 i-1 × - 1 2 × - 1 2 , 1 2 
d-i and C + i = - 1 2 , 1 2 i-1 × 1 2 × - 1 2 , 1 2 
d-i
.

Let i ∈ {1, . . . , d} and let A be an hyperrectangle normal to -→ e i . We denote by E i,+ n [A] and E i,- n [A] the following set of edges (see figure 4):

E i,+ n [A] = e = x, x + - → e i n ∈ E d n : x, x + - → e i n ∩ A = ∅ (4.1)
and

E i,- n [A] = e = x, x + - → e i n ∈ E d n : x - - → e i n , x ∩ A = ∅ . (4.
2)

The choice of the definitions of Let m ≥ 1. We partition all the faces of C in hypersquares of side-length 1/m. We denote P + i (m) and P - i (m) the following sets (see figure 5)

E i,- n and E i,+ n is to ensure that for A ⊂ C - i and B ⊂ C + i , we have E i,- n [A] ⊂ E d n ∩ C and E i,+ n [B] ⊂ E d n ∩ C. A B E 1,+ n [B] E 1,- n [A] - → e 1 - → e 2
P - i (m) =        - 1 2 , - 1 2 + 1 m i-1 × - 1 2 × - 1 2 , - 1 2 + 1 m d-i + k=1,...,d k =i a k m - → e k : a k ∈ {0, . . . , m -1}, k ∈ {1, . . . , d} \ {i}        (4.3)
and

P + i (m) =        - 1 2 , - 1 2 + 1 m i-1 × 1 2 × - 1 2 , - 1 2 + 1 m d-i + k=1,...,d k =i a k m - → e k : a k ∈ {0, . . . , m -1}, k ∈ {1, . . . , d} \ {i}        . (4.4)
Note that for A ∈ P - i (m), -→ e i is normal to A. The cube splits into m d-1 tubes according to the direction -→ e i :

C ∪ C + i = A∈P - i (m) cyl(A, 1, - → e i ) .
Note that for A ∈ P - i (m) ∪ P + i (m), we have

H d-1 (A) = 1/m d-1 . Let f n ∈ S n (C). For ∈ {+, -} , 1 m
Elements of 

P + 1 (m) C - → e 1 - → e 2 - → e 3
ψ i (f n , A) = e∈E i, n [A] f n (e) • - → e i .
Note that the intensity of the stream through a face is not uniform at the mescopic level. In the following lemma, we prove that there exists a repartition at a mesoscopic level for the intensity of the stream through the faces of C that is more likely. 

(λ + A , A ∈ ∪ d i=1 P + i (m)), (λ - A , A ∈ ∪ d i=1 P - i (m)), that satisfy ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) λ A -sv i H d-1 (A)n d-1 ≤ κ d ε α m d-1 n d-1 (4.5)
and

A∈∪ d i=1 P + i (m) λ + A = A∈∪ d i=1 P - i (m) λ - A (4.6) such that lim inf ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α = lim ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε and lim inf ε→0 lim inf n→∞ 1 n d log P ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α = lim ε→0 lim inf n→∞ 1 n d log P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε .
Note that in the statement of this lemma, we cannot chose the families (λ + A ) and (λ - A ), we only know that these families exist. Moreover, notethat these families depend on n and oε. Actually, if we consider families that satisfy condition (4.5) and (4.6), we can prove the same result for these families by slightly modifying the environment to create a new stream. The following lemma, which is an improvement of lemma 4.1, will be useful in what follows. We postpone its proof to the end of the proof of lemma 4.1. 

(β + A , A ∈ ∪ d i=1 P + i (m)), (β - A , A ∈ ∪ d i=1 P - i (m)) (not
∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = (1 -ε α/4 )β A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α0   = lim ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε and lim inf ε→0 lim inf n→∞ 1 n d log P   ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = (1 -ε α/4 )β A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α0   = lim ε→0 lim inf n→∞ 1 n d log P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε
where α 0 is a constant depending on α and d.

Proof of lemma 4.1. The proof is divided into three steps. In the first step, we prove that if

f n ∈ S n (C) satisfies d - → µ n (f n ), s - → v 1 C L d ≤ ε,
then the flow for f n through any tube cyl(A, 1, -→ e i ) for A ∈ P - i (m) is close to the value of the flow through this tube for s -→ v . In a second step, we modify the stream in such a way that the corresponding flows through the tubes are in √ εZ. This ensures that the possible values the flow can take at a mesoscopic level belong to a finite deterministic set. Finally, we do a pigeonhole principle to prove that there exists a deterministic set of possible values for the flows through the tubes that can be observed with a large enough probability.

Let

n ≥ 1. Let us consider ω ∈ ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε . On the configuration ω, we choose a stream f n (ω) such that d - → µ n (f n ), s - → v 1 C L d ≤ ε.
If there are several possible choices, we select one according to a deterministic rule. For short, we write -→ µ n for -→ µ n (f n ).

Step 1: Control the incoming and outcoming flow in the tubes. In this step we use some tools from [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF]. The aim is now to show that the strength of the stream f n that flows through

A ∈ P + i (m) is close to A s - → v • - → e i dH d-1 (x) n d-1 = sv i H d-1 (A) n d-1 .
In [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF] (more precisely in the display equality after inequality (4.18)), the authors define the following flow through the bottom half of the cylinder cyl(A, h) for h > 0:

Ψ( - → µ n , cyl(A, h), - → e i ) = e= x,y ∈E d n :e⊂cyl(A,h), x∈B (A,h), y / ∈B (A,h) f n (e) • (n -→ xy)
where we recall that T (A, h) and B (A, h) were defined in equalities (1.4) and (1.5). It is easy to check that the set of edges

E i,+ n [A] is a cutset from B (A, h) to T (A, h) in cyl(A, h)
which is minimal for the inclusion. By the node law, it follows that

Ψ( - → µ n , cyl(A, h), - → e i ) = ψ + i (f n , A) .
We refer to equation (4.20) in [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF] for more details about this fact. Note that both expressions only depend on edges that have their left endpoint in cyl(A, h, --→ e i ) ⊂ C.

The value of the streams outside this set has no importance in the estimation made below. Therefore, we can use the estimates proven in proposition 4.5 in [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF] and the expression of h 0 given just after the display inequality (4.24). There exists C(d) > 0 depending on d such that

∀η > 0 ∀h ≤ η C(d)M m 1 h cyl(A,h,-- → ei ) - → e i • d - → µ n (f n ) - ψ + i (f n , A) n d-1 ≤ η .
Hence, we have

ψ + i (f n , A) n d-1 -s - → v • - → e i H d-1 (A) ≤ ψ + i (f n , A) n d-1 - 1 h cyl(A,h,-- → ei ) - → e i • d - → µ n (f n ) + 1 h cyl(A,h,-- → ei ) - → e i • d - → µ n (f n ) - 1 h cyl(A,h,-- → ei ) s - → v • - → e i dL d (x) ≤ η + 1 h - → µ n (cyl(A, h, -- → e i )) -s - → v L d (cyl(A, h, -- → e i )) 2 .
We choose h in such a way that 1/mh ∈ Z: we set

h = 1 m M C(d) η -1
where x denotes the ceil of the real number x. We have

h ≤ 1 m η M C(d)
.

Write h = λ 2 j with j ≥ 1 and λ ∈ [1, 2]. Since 1/mh ∈ Z, there exists x ∈ [0, 1] d such that cyl(A, h, -- → e i ) \ A = Q∈∆ j λ (Q+x)⊂cyl(A,h,-- → ei ) (Q + x) .
Hence, we have for n large enough depending on ε and M

- → µ n (cyl(A, h, -- → e i )) -s - → v L d (cyl(A, h, -- → e i )) 2 ≤ - → µ n (cyl(A, h, -- → e i ) \ A) -s - → v L d (cyl(A, h, -- → e i ) \ A) 2 + - → µ n (A) 2 ≤ Q∈∆ j λ - → µ n (Q + x) -s - → v L d (Q) 2 + M nm d-1 ≤ 2 j d( - → µ n , s - → v 1 C L d ) + M nm d-1 ≤ 2 λ h ε .
It yields that

ψ + i (f n , A) n d-1 -s - → v • - → e i H d-1 (A) ≤ η + 2λε h 2 ≤ 1 m d-1 ηm d-1 + 2λε M C(d) η 2 m d+1 .
Set η = 1 m d , we have

ψ + i (f n , A) n d-1 -s - → v • - → e i H d-1 (A) ≤ 1 m d-1 1 m + 8M 2 C(d) 2 εm 3d+1 . Setting m = ε -α where α = 1 2(3d + 1) (4.7)
where x denotes the integer part of the real number x. Consequently, there exists κ d depending on d and M such that

ψ + i (f n , A) n d-1 -s - → v • - → e i H d-1 (A) ≤ κ d ε α m d-1 . (4.8)
By the same arguments, we can prove the same result for A ∈ P - i (m).

Step 2: Modify the stream in such a way the flow is in √ εZ in each tube. The aim is now to correct the stream so that ψ i (A, f n ) ∈ √ εZ for i = 1, . . . , d, ∈ {+, -}, A ∈ P i (m). Using the arguments of the proof of lemma 3.5, there exists -→ Γ a set of self-avoiding oriented paths in C such that for any path -→ γ ∈ -→ Γ only its first and last edges belong to

∪ i=1,...,d E i,- n [C - i ] ∪ E i,+ n [C + i ],
and we can associate a positive real number p( -→ γ ) such that

f n = - → γ ∈ - → Γ p( - → γ ) - → e = x,y ∈ - → γ n -→ xy1 e and ∀ - → γ ∈ - → Γ ∀ - → e = x, y ∈ - → γ f n (e) • -→ xy ≥ 0 .
For i, j ∈ {1, . . . , d}, , • ∈ {+, -}, A 1 ∈ P i (m) and A 2 ∈ P • j (m), we set

g n [A 1 , A 2 ] = - → γ ∈ - → Γ : γ f ∈E i, n [A1],γ l ∈E i,• n [A2] p( - → γ ) - → e = x,y ∈ - → γ n -→ xy1 e .
where γ f (respectively γ l ) corresponds to the first (resp. last) edge of -→ γ . Hence, we have

f n = A1∈∪ d i=1 P + i (m)∪P - i (m) A2∈∪ d k=1 P + k (m)∪P - k (m) g n [A 1 , A 2 ] . On the configuration ω, g n [A 1 , A 2 ] ∈ S n (C). Moreover, we have ∀A 1 , A 2 ∈ ∪ d i=1 P + i (m) ∪ P - i (m) ∀e ∈ E d n f n (e) • g n [A 1 , A 2 ](e) ≥ 0 .
Since this decomposition is not necessarily unique, we choose one according to a deterministic rule. Let t be a real number, we define

proj(t, ε) = sign(t) √ ε |t| √ ε
where sign(t) corresponds to the sign of t. We define f n in the following way

f n = 1≤i,j≤d ,•∈{+,-} A1∈P i (m) A2∈P • j (m) proj ψ i (g n [A 1 , A 2 ], A 1 ), ε ψ i (g n [A 1 , A 2 ], A 1 ) g n [A 1 , A 2 ]1 ψ i (gn[A1,A2],A1) =0 .
It is easy to check that on the configuration ω, we have

f n ∈ S n (C) because we have 0 ≤ proj ψ i (g n [A 1 , A 2 ], A 1 )), ε ψ i (g n [A 1 , A 2 ], A 1 ) ≤ 1 .
Moreover, for i ∈ {1, . . . , d}, ∈ {+, -} and A 1 ∈ P i (m), we have

ψ i ( f n , A 1 ) = A2∈∪ d k=1 P + k (m)∪P - k (m) proj ψ i (g n [A 1 , A 2 ], A 1 )), ε ψ i (g n [A 1 , A 2 ], A 1 ) ψ i (g n [A 1 , A 2 ], A 1 )1 ψ i (gn[A1,A2],A1) =0 = A2∈∪ d k=1 P + k (m)∪P - k (m) proj ψ i (g n [A 1 , A 2 ], A 1 )), ε ∈ √ εZ and since ∀t ∈ R |t -proj(t, ε)| ≤ √ ε we have ψ i ( f n , A 1 ) -ψ i (f n , A 1 ) ≤ card ∪ d k=1 P + k (m) ∪ P - k (m) √ ε ≤ 2dm d-1 √ ε .
It follows that for n large enough (depending on ε) using inequality (4.8), we have

ψ i ( f n , A 1 ) -sv i H d-1 (A 1 )n d-1 ≤ ψ i ( f n , A 1 ) -ψ i (f n , A 1 ) + ψ i (f n , A 1 ) -sv i H d-1 (A 1 )n d-1 ≤ 2κ d ε α m d-1 n d-1 . (4.9) Let us compute the distance d( - → µ n ( f n ), - → µ n (f n )). Let x ∈ [-1, 1[ d , λ ∈ [1, 2], let k ≥ 1, let Q ∈ ∆ k λ such that Q ∩ C = ∅, we have - → µ n (f n )(Q + x) -- → µ n ( f n )(Q + x) 2 ≤ 1≤i,j≤d ,•∈{+,-} A1∈P i (m) A2∈P • j (m) 1 - proj(ψ i (g n [A 1 , A 2 ], A 1 ), ε) ψ i (g n [A 1 , A 2 ], A 1 ) - → µ n (g n [A 1 , A 2 ])(Q + x) 2 1 ψ i (gn[A1,A2],A1) =0 ≤ 1≤i,j≤d ,•∈{+,-} A1∈P i (m) A2∈P • j (m) √ ε ψ i (g n [A 1 , A 2 ], A 1 ) - → µ n (g n [A 1 , A 2 ])(Q + x) 2 1 ψ i (gn[A1,A2],A1) =0 .
Besides, we have by construction:

ψ i (g n [A 1 , A 2 ], A 1 ) = - → γ ∈ - → Γ : γ f ∈E i, n [A1],γ l ∈E j,• n [A2] p( - → γ ) ≥ 0
and since the path -→ γ is self-avoiding, we have for n large enough

Q∈∆ k λ - → µ n (g n [A 1 , A 2 ])(Q + x) 2 ≤ Q∈∆ k λ - → γ ∈ - → Γ : γ f ∈E i, n [A1],γ l ∈E j,• n [A2] p( - → γ ) | - → γ ∩ (Q + x)| n d ≤ - → γ ∈ - → Γ : γ f ∈E i, n [A1],γ l ∈E j,• n [A2] p( - → γ ) | - → γ ∩ C| n d = dψ i (g n [A 1 , A 2 ], A 1 )
where we use that

|{e ∈ E d n : e ∈ C}| = |{e = x, y ∈ E d n : x ∈ C, ∃i ∈ {1, . . . , d} n -→ xy = - → e i }| = d|C ∩ Z d n | = dn d .
It follows that

Q∈∆ k λ - → µ n (f n )(Q + x) -- → µ n ( f n )(Q + x) 2 ≤ √ ε 1≤i,j≤d ,•∈{+,-} A1∈P i (m) A2∈P • j (m) d ≤ d √ ε(2dm d-1 ) 2 and d( - → µ n ( f n ), - → µ n (f n )) = sup x∈[0,1] d sup λ∈[1,2] ∞ k=0 1 2 k Q∈∆ k λ - → µ n (f n )(Q + x) -- → µ n ( f n )(Q + x) 2 ≤ 8d 3 √ εm 2(d-1) ≤ 8d 3 √ ε ε -d-1 3d+1 .
Hence, we have for n large enough

d( - → µ n ( f n ), s - → v 1 C L d ) ≤ d( - → µ n (f n ), s - → v 1 C L d ) + d( - → µ n ( f n ), - → µ n (f n )) ≤ ε + 8d 3 ε d+3 2(3d+1) .
Finally, for ε small enough depending on d, for n large enough depending on d and ε, we have

d( - → µ n ( f n ), s - → v 1 C L d ) ≤ ε α .
Step 3: Do a pigeonhole principle for possible values of ψ i ( f n , A). We would like to project ψ i ( f n , A) on the possible values it can take for i = 1, . . . , d and A ∈ P + i (m) ∪ P - i (m). Note that the two families (ψ i ( f n , A), i = 1, . . . , d, A ∈ P + i (m)) and (ψ i ( f n , A), i = 1, . . . , d, A ∈ P - i (m)) satisfy the conditions (4.5) and (4.6). Since ψ i ( f n , A) satisfies inequality (4.9), for n large enough, there are at most 4κ d ε α n d-1 /(m d-1 √ ε) possible values for ψ i ( f n , A). It follows that by a pigeonhole principle, there exist two deterministic families (λ + A , A ∈ ∪ d i=1 P + i (m)) and (λ - A , A ∈ ∪ d i=1 P - i (m)) of real numbers in √ εZ that satisfies the condition (4.5) depending on n and ε and such that

P ∃ f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i ( f n , A) = λ A and d - → µ n ( f n ), s - → v 1 C L d ≤ ε α ≥ m d-1 √ ε 4κ d ε α n d-1 2dm d-1 P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε . (4.10)
The families (λ + A ) A and (λ - A ) A satisfy the condition (4.6) since f n satisfies the node law. Hence, we have by taking the limsup in n and then the liminf in ε in inequality (4.10)

lim inf ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α ≥ lim ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε . (4.11)
Moreover, we have for all n ≥ 1

P ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α ≤ P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε α . It follows that lim inf ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α ≤ lim ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε α . (4.12)
Combining inequalities (4.11) and (4.12) we obtain the equality. We can do the same computations by taking the liminf in n instead of the limsup. The result follows.

Proof of lemma 4.2. Let ε > 0. Let m = ε -α and (λ + A , A ∈ ∪ d i=1 P + i (m)) and (λ - A , A ∈ ∪ d i=1 P - i (m)) be the two families of real numbers in √ εZ defined in lemma 4.1. We consider the event

E = ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α .
From now on, f n stands for a stream that satisfies the requirements stated in the previous event. If there are several possible choices, we select one according to a deterministic rule. We consider two families of real numbers (β

+ A , A ∈ ∪ d i=1 P + i (m)) and (β - A , A ∈ ∪ d i=1 P - i (m)
) that satisfy conditions (4.5) and (4.6) (these families are not necessarily in √ εZ). The aim is now to correct the stream by modifying slightly the environment so that we obtain a stream f n ∈ S n (C) that satisfies

∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i ( f n , A) = (1 -ε α/4 )β A .
Since both families satisfy condition (4.5), we have

∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) |λ A -β A | ≤ 2κ d ε α m d-1 n d-1 . (4.13)
We set

K = 1 2κ d ε α/2 1/(d-1)
.

(4.14)

For ∈ {+, -}, i ∈ {1, . . . , d} and A ∈ P i (m), we denote by V A the following set

V A = {x ∈ C : {x λ - → e i : λ ∈ [0, 1/n[} ∩ A = ∅, ∀j = i x j ∈ KZ/n} .
We set

V i = A∈P i V A .
Let us define the function w i on V + i ∪ V - i as follows:

∀A ∈ P i (m) ∀x ∈ V A w i (x) = β A -λ A |V A | .
Hence, we have using (4.13) and (4.14)

∀x ∈ V A |w i (x)| ≤ 2κ d ε α m d-1 n d-1 m d-1 K d-1 n d-1 ≤ ε α/2 . ( 4.15) 
For i = 1, . . . , d, we denote by µ i the following quantity:

µ i = A∈P i (m) β A -λ A .
The quantity µ i corresponds to the difference between the flow through C i for f n and the flow we would like to obtain. Since both families satisfy condition (4.6), then we have

d i=1 µ - i = d i=1 µ + i .
We split the 2d faces of C into three categories: the faces F in where there is an excess of flow, the faces F out where there is a default of flow and the faces F 0 where the difference of flow is null, i.e.,

F in = {C - i : µ - i > 0, i = 1, . . . , d} ∪ {C + i : µ + i < 0, i = 1, . . . , d}; F out = {C - i : µ - i < 0, i = 1, . . . , d} ∪ {C + i : µ + i > 0, i = 1, . . . , d} and F 0 = {C i : µ i = 0, i = 1, . . . , d} .
By the node law, we have

C i ∈Fin |µ i | = C j ∈Fout |µ j |
For any i ∈ {1, . . . , d}, we define the function

p i : R d → R d-1 as ∀x = (x 1 , . . . , x d ) ∈ R d p i (x) = (x 1 , . . . , x i-1 , x i+1 , . . . , x d ) . (4.16)
Let us assume C - i ∈ F 0 . We denote by f res n [C - i ], the stream given by lemma 3.3 associated with the families

  f in (p i (x)) = w i (x), x ∈ A∈P - i (m) V A  
and the null family (that corresponds here to uniform outputs)

f out (p i (x)) = 0, x ∈ V + i in the direction - → e i .
The number of edges on which the stream is not null is at most 3dn d /K d-2 and for each edge e ∈ E d , f res n [C - i ](e) 2 ≤ ε α/2 by (4.15). We can do the same thing for C + i ∈ F 0 in the direction --→ e i with the families of null inputs

f in (p i (x)) = 0, x ∈ V + i and for outputs f out (p i (x)) = w i (x), x ∈ V - i .
We obtain a stream

f res n [C + i ]. Let us now consider C - i ∈ F in and C + j ∈ F out . Let α > 0 such that α ≤ |µ - i |, |µ + j |.
Let us first assume that i = j. We denote by f res n [C - i , C + i , α] the stream given by lemma 3.3 in the direction -→ e i with the families of inputs

f in (p i (x)) = α |µ - i | w i (x), x ∈ V - i
and the family of outputs

f out (p i (x)) = α |µ + i | w i (x), x ∈ V + i .
It remains to deal with the case i = j. Let us call τ i,j the bijection that inverts the i th coordinate with the j th one. Notice that τ i,j (V - i ) = V - j . We can build a family of pairwise disjoint oriented paths ( -→ γ x , x ∈ V - i ) of length at most 2n, such that for x ∈ V - i the path -→ γ x joins x to τ i,j (x) in C (see figure 6):

- → γ x = xj -xi-1 k=0 - → e i 1 x+k - → ei /n,x+(k+1) - → ei /n - xj -xi-1 k=0 - → e j 1 x+(xj -xi) - → ei /n+k - → ej /n,x+(xj -xi) - → ei /n+(k+1) - → ej /n .
-→ γ x represents in fact the stream of intensity 1 through this oriented path.

- → e 1 - → e 2 x ∈ V - 1 τ 1,2 (x) ∈ V - 2 - → γ x κ Figure 6 -The path - → γ x for x ∈ V - 1 
By lemma 3.3, we can build a stream g i,j n in the direction -→ e j with the family of inputs

f in (p j (x)) = α |µ - i | w i (τ -1 i,j (x)), x ∈ V - j
and the family of outputs

f out (p j (x)) = α |µ + j | w j (x), x ∈ V + j .
Finally, we set

f res n [C - i , C + j , α] = g i,j n + x∈V - i α |µ - i | w i (x) - → γ x .
We have

x∈V - i | - → γ x | ≤ 2n|V - i | ≤ 2n n d-1 K d-1 ≤ 2 n d K d-1 .
Hence, using the previous inequality and lemma 3.3, we have that the stream 2 for ε small enough depending on d. Moreover, for each edge e ∈ C, we have

f res n [C - i , C + j , α] is supported by at most 2n d /K d-1 + 3dn d /K d-2 ≤ 4dn d /K d-
f res n [C - i , C + j , α](e) 2 ≤ 2ε α/2
. By symmetry, the same construction holds for any C i ∈ F in and C j ∈ F out .

The aim is now to build a residual stream

f res n such that ∀i ∈ {1, . . . , d} ∀ ∈ {-, +} ∀A ∈ P i (m) ψ i (f res n , A) = β A -λ A .
We do the following algorithm to build this stream.

Algorithm 1 Build the stream f res n f res n ← 0 for i = 1, . . . , d, • = -, + do if C • i ∈ F 0 then f res n ← f res n + f res n [C • i ] end if end for for i = 1, . . . , d, • = -, + do if C • i ∈ F in then while |ψ • i (f res n , C • i )| < |µ • i | do By the node law, there exists C j ∈ F out such that |ψ j (f res n , C j )| < |µ j | .
We set α = min(|µ

• i | -|ψ • i (f res n , C • i )|, |µ j | -|ψ j (f res n , C j )|). f res n ← f res n + f res n [C • i , C j , α] end while end if end for return f res n .
The number of steps of this algorithm is at most (2d) 2 . Finally, the stream f res n has its support included in a set Γ such that

|Γ| ≤ κ d K d-2 n d
where κ d depends only on the dimension. Moreover, each edge e ∈ Γ is used a most twice at each step, hence we have

f res n (e) 2 ≤ 2(2d) 2 ε α/2 ≤ 8d 2 ε α/2 .
(4.17)

We set

f n = (1 -ε α/4 )(f n + f res n
) . This ensures that for ε small enough depending on s and d, on the event {∀e ∈ Γ t(e) ≥ s/(2d)}, we have f n ∈ S n (C). Indeed, for e ∈ Γ, we have

f n (e) 2 ≤ (1 -ε α/4 )( f n (e) 2 + 8d 2 ε α/2 ) ≤ (1 -ε α/4 ) 1 + 16d 3 ε α/2 s t(e) ≤ t(e)
for ε small enough depending on d ans s. Doing so we obtain

∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i ( f n , A) = (1 -ε α/4 )(ψ i (f n , A) + β A -λ A ) = (1 -ε α/4 )β A
where we recall that ψ i (f n , A) = λ A . Moreover, using inequality (4.17) and the expression of K in terms of ε given by (4.14), we obtain for n large enough depending on d 1) .

d( - → µ n ( f n ), s - → v 1 C L d ) ≤ d( - → µ n (f n ), s - → v 1 C L d ) + 2ε α/4 n d e∈E d n ∩C f n (e) 2 + 2 n d e∈E d n ∩C f res n (e) 2 ≤ ε α + 6dε α/4 M + 16d 2 ε α/2 |Γ| n d ≤ ε α + 6dε α/4 M + 16d 2 K d ε α/2 K d-2 ≤ Kε α 2 (1-d-2 d-1 ) = Kε α 2(d-1) ≤ ε α 4(d-
where K depends on M and d and the last inequalities holds for ε small enough depending on d. We set

α 0 = α 4(d -1) . (4.18)
On the following event

E ∩ E =    ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α ,    ∩ ∀e ∈ Γ t(e) ≥ s 2d ,
the stream f n is admissible since it satisfies the capacity constraint. Using the fact that the two events E and E are increasing (requiring large capacities will always help to obtain a given stream), we have by FKG inequality

P ∃ f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i ( f n , A) = (1 -ε α/4 )β A and d - → µ n ( f n ), s - → v 1 C L d ≤ ε α0 ≥ P      ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α    ∩ ∀e ∈ Γ t(e) ≥ s 2d   ≥ P ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α × P ∀e ∈ Γ t(e) ≥ s 2d . (4.19)
Using the independence of the capacities, we get 

P ∀e ∈ Γ t(e) ≥ s 2d ≥ G s 2d , +∞ |Γ| ≥ G s 2d , +∞ κ d n d /K d-2 . ( 4 
∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = (1 -ε α/4 )β A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α0 ≥ lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = λ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α + κ d K d-2 log G s 2d , +∞
where we recall that K goes to infinity when ε goes to 0. Finally, by lemma 4.1, we obtain by letting ε goes to 0 and choosing a fixed s ≤ 2dM :

lim inf ε→0 lim sup n→∞ 1 n d log P   ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = (1 -ε α/4 )β A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α0   ≥ lim ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε .
Moreover, we have lim inf

ε→0 lim sup n→∞ 1 n d log P   ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = (1 -ε α/4 )β A and d - → µ n (f n ), s - → v 1 C L d ≤ ε α0   ≤ lim ε→0 lim sup n→∞ 1 n d log P ∃f n ∈ S n (C) : d - → µ n (f n ), s - → v 1 C L d ≤ ε α0 .
This yields the result. The same result holds for the liminf.

Definition 4.3. Let s > 0 and -→ v ∈ S d-1 . Let π be an homothety of R d (see (1.6)). We will say that

f n ∈ S n (π(C)) is (ε, s - → v ,π)-well-behaved if ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , π(A)) = (1 -ε α/4 )(s - → v • - → e i ) H d-1 (π(A))n d-1 .
If π = Id, we will write (ε, s -→ v )-well-behaved instead of (ε, s -→ v , Id)-well-behaved. Let (x i ) i∈I be the points in pZ d N ∩ (1 -p/N )C. Any two distinct points x i and x j , i, j ∈ I, are at distance at least p/N from each other. We set

Definition and existence of the elementary rate function

π i = π xi, n N , for i ∈ I
where we recall that π xi,n/N was defined in (1.6). We have

π i (C) = x i + C . The family (π i (C)) i∈I is a disjoint collection of translates of C such that ∀i ∈ I π i (C) ⊂ C .
We define the set Cor = C \ ∪ i∈I π i (C). The set Cor represents the "corridor", this space will allow the streams in different π i (C) to be connected altogether (see figure 7). It is easy to check that π

i (Z d n ) = Z d N
and so that π i induces a bijection from E d n to E d N . We write

E i = ∃f N ∈ S N (π i (C)) (ε, s - → v , π i )-well-behaved : d - → µ N (f N )1 πi(C) , s - → v 1 πi(C) L d ≤ 4 n d N d ε α0
where α 0 was defined in (4.18). On the event E i , we will denote by f

(i)
N a well-behaved stream satisfying the property described in E i (chosen according to a deterministic rule if there is more than one such stream). We denote by Cor N the edges in E d N whose left endpoints are in Cor:

Cor N = x, y ∈ E d N : x ∈ Cor and ∃i ∈ {1, . . . , d} -→ xy = - → e i N .
Let us denote by F the event

F = { ∀e ∈ Cor N t(e) ≥ M -H(ε)}
where H : R + → R + is a function we will chose later in such a way lim ε→0 H(ε) = 0. We aim to prove that on the event F ∩ i∈I E i , we can build a stream f N ∈ S N (C) such that f N coincides with f

(i) N on the cubes π i (C), i ∈ I and ∀e ∈ E d N ∩ Cor f N (e) 2 ≤ M -H(ε) .
Step 2: Reconnecting streams in the different cubes. We now explain how to reconnect the streams in the different cubes. Let i, j ∈ I such that x i -x j 1 = p/N . There exists l ∈ {1, . . . , d} such that

x j = p N - → e l + x i .
Note that for all A ∈ P + l (m), we have on the event We can therefore apply lemma 3.1 to connect these two streams using only edges in the cylinder cyl(π i (A), (p -n)/N, -→ e l ) (see figure 8) since (p -n)/N ≥ 2(d -1)/(N m). We denote by f mix,i,j,A N the corresponding stream. Note that each edge in the corridor is used at most once by the streams f mix,i,j,A N . We set

E i ∩ E j ψ + l f (i) N , π i (A) = (1 -ε α/4 )(s - → v • - → e l ) H d-1 (π i (A))n d-1 = ψ - l f (j) N , π j (A -- → e l ) . x i x j n N n N p-n N π i (A) π j (A -- → e l ) - → e l cyl π i (A), p-n N , - → e l
f mix,i,j N = A∈P + l (m)
f mix,i,j,A N .

For i ∈ I, ∈ {+, -} such that there exists l ∈ {1, . . . , d} with x i p/N -→ e l / ∈ {x j , j ∈ I}, we have to connect the stream f 

g i,l,+ N = e∈E l,+ N [πi(C + l )] f (i) N (e) p-n k=1 1 e+k - → e l N 1 e+k - → e l N ∈C
and

g i,l,- N = e∈E l,- N [πi(C - l )] f (i) N (e) p-n k=1 1 e-k - → e l N 1 e-k - → e l N ∈C
where for an edge e = x, y ∈ E d N for z ∈ Z d N , we denote by e + z the edge x + z, y

+ z ∈ E d N . Finally, we set f N = i∈I f (i) N + (i,j)∈I 2 : xi-xj 1 = p N f mix,i,j N + i∈I l=1,...,d, ∈{+,-}: xi p N - → e l / ∈{xj ,j∈I} g i,l, N .
By construction, f N coincides with f

(i)
N on all C + x i for i ∈ I. But, the value of f N (e) 2 may exceed M -H(ε) for edges in the corridor. To fix this issue we consider the stream

f N = (1 -H(ε)/M )f N . On the event F ∩ i∈I E i , the stream f N is in S N (C). Conclusion. Using lemma 2.6, we obtain d( - → µ N (f N ), s - → v 1 C L d ) ≤ i∈I d( - → µ N (f (i) N ), s - → v 1 πi(C) L d ) + d( - → µ N (f N )1 Cor , s - → v 1 Cor L d ) ≤ 4|I| n d N d ε α0 + 2sL d (Cor) + 2M |Cor N | N d . (4.21)
Moreover, we have

|I| ≤ N d n(1 + 2d/m) d ≤ N d n d (4.22)
and since (1

-2p/N )C ⊂ ∪ i∈I (x i + (p/N )C), it follows that |I| ≥ 1 -2p/N p/N d = N n(1 + 2d/m) -2 d ≥ N n(1 + 2d/m) -2 d and L d (Cor) ≤ 1 - n d N d |I| ≤ 1 - 1 1 + 2d/m -2 n N d . ( 4 

.23)

We have using proposition 1.7, for N large enough depending on d and ε and n

|Cor N | ≤ 2d L d (V 2 (Cor, d/N )) 1/N d ≤ 2d L d (Cor) + L d (V 2 (∂Cor, d/N )) N d ≤ 2d L d (Cor) + 4d N H d-1 (∂Cor) N d . (4.24)
We also have using inequality (4.22) 

H d-1 (∂Cor) ≤ H d-1 (∂C) + i∈I H d-1 (∂(π i (C)) ≤ 2d + 2d|I| n N d-1 ≤ 2d + 2d N n . ( 4 
E i , that d( - → µ N (f N ), s - → v 1 C L d ) ≤ g(ε) (4.26)
where g : R + → R + is a function such that lim ε→0 g(ε) = 0. It follows that for N large enough

d( - → µ N ( f N ), s - → v 1 C L d ) ≤ d( - → µ N ( f N ), - → µ N (f N )) + d( - → µ N (f N ), s - → v 1 C L d ) ≤ 2H(ε) M N d e∈E d N ∩C f N (e) 2 + g(ε) ≤ 2d H(ε) M + g(ε) (4.27)
where we recall that |E d N ∩ C| = dN d . Hence, using the independence and inequality (4.22), we obtain

1 N d log P ∃f N ∈ S N (C) : d( - → µ N (f N ), s - → v 1 C L d ) ≤ g(ε) + 2d H(ε) M ≥ 1 N d log P F ∩ i∈I E i = 1 N d log P(F) + 1 N d |I| log P(E 1 ) ≥ |Cor N | N d log G([M -H(ε), M ]) + 1 n d log P(E 1 ) . (4.28)
We define H(ε) as follows:

H(ε) = inf a > 0 : G([M -a, M ]) ≥ 1 - 1 1 + 2d/m d . (4.29)
We recall that m = ε -α . It is clear that H is non-decreasing. We denote by l = lim ε→0 H(ε). Let us assume that l > 0. By defintion of H it follows that Hence, l = 0. Thanks to inequality (4.23) and by definition of H, we have

∀ε > 0 G([M -l/2, M ]) < 1 - 1 1 + 2d/m
1 - 1 1 + 2d/m d log 1 - 1 1 + 2d/m d ≤ lim inf N →∞ L d (Cor) log G([M -H(ε), M ]) ≤ 0 . Since lim ε→0 1 - 1 1 + 2d/m d log 1 - 1 1 + 2d/m d = 0 , it follows that lim ε→0 lim inf N →∞ L d (Cor) log G([M -H(ε), M ]) = 0 . (4.30)
We admit the following result, we postpone its proof (see lemma 4.4 below).

P(E i ) = P ∃f N ∈ S N (π i (C)) (ε, s - → v , π i )-well-behaved : d - → µ N (f N ), s - → v 1 πi(C) L d ) ≤ 4 n d N d ε α0 ≥ P(∃f n ∈ S n (C) (ε, s - → v )-well-behaved : d( - → µ n (f n ), s - → v 1 C L d ) ≤ ε α0 ) . (4.31) For f n ∈ S n (C) (ε, s - → v )-well-behaved, we have ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = (1 -ε α/4 )(s - → v • - → e i ) H d-1 (A)n d-1 .
The families ((s

- → v • - → e i ) H d-1 (A)n d-1 , A ∈ ∪ d i=1 P - i (m)) and ((s - → v • - → e i ) H d-1 (A)n d-1 , A ∈ ∪ d i=1 P + i (m)
) clearly satisfy conditions (4.5) and (4.6). Hence, by applying lemma 4.2, we obtain lim inf

ε→0 lim sup n→∞ 1 n d log P(∃f n ∈ S n (C) (ε, s - → v )-well-behaved : d( - → µ n (f n ), s - → v 1 C L d ) ≤ ε α0 ) = lim ε→0 lim sup n→∞ 1 n d log P(∃f n ∈ S n (C) : d( - → µ n (f n ), s - → v 1 C L d ) ≤ ε) . (4.32)
Using inequalities (4.24), (4.28) and (4.31), by taking first the liminf in N and then the limsup in n we obtain lim inf

N →∞ 1 N d log P ∃f N ∈ S N (C) : d( - → µ N (f N ), s - → v 1 C L d ) ≤ g(ε) + 2d H(ε) M ≥ lim inf N →∞ 2dL d (Cor) log G([M -H(ε), M ]) + lim sup n→∞ 1 n d log P(∃f n ∈ S n (C) (ε, s - → v )-well-behaved : d( - → µ n (f n ), s - → v 1 C L d ) ≤ ε α0 ) .
Finally, taking the limit when ε goes to 0 in the previous inequality (the probability are non-decreasing in ε) and using equalities (4.30), (4.31) and (4.32), we obtain

lim ε→0 lim inf N →∞ 1 N d log P(∃f N ∈ S N (C) : d( - → µ N (f N ), s - → v 1 C L d ) ≤ ε) ≥ lim ε→0 lim sup n→∞ 1 n d log P(∃f n ∈ S n (C) : d( - → µ n (f n ), s - → v 1 C L d ) ≤ ε) .
This yields the result.

The following lemma proves inequality (4.31) in a slightly more general setting.

Lemma 4.4 (Scaling and Translation

). Let - → v ∈ S d-1 and s > 0. Let ε > 0. Let m ∈ N. Let N ≥ n ≥ 1. Let (ρ + A , A ∈ ∪ d i=1 P + i (m)) and (ρ - A , A ∈ ∪ d i=1 P - i (m)

) be two families of real numbers (potentially depending on ε, n and N

). Let x ∈ Z d N . Set δ = n/N . Then π x,δ (Z d n ) = Z d N : π x,δ induces a bijection from E d
n to E d N (we refer to (1.6) for the definition of π x,δ ). Then, we have

P ∃f n ∈ S n (C) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = ρ A and d - → µ n (f n ), s - → v 1 C L d ≤ ε ≤ P ∃f N ∈ S N (π x,δ (C)) : ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f N , π x,δ (A)) = ρ A and d - → µ N (f N ), s - → v 1 π x,δ (C) L d ≤ 4δ d ε . Proof. First notice that for y ∈ Z d n , we have π x,δ (y) = ny/N + x ∈ Z d N . Then, π x,δ induces a bijection from E d n to E d N . Let us consider ω ∈ (R + ) E d n a configuration for which there exists f n ∈ S n (C) such that d - → µ n (f n ), s - → v 1 C L d ≤ ε and ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , A) = ρ A .
Let f n = f n (ω) be such a stream in the configuration ω and define -→

µ n = - → µ n (f n ). We aim to prove that on the configuration ω • π -1 x,δ the stream f n • π -1 x,δ belongs to S N (π x,δ (C)), satisfies ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n • π -1 x,δ , π x,δ (A)) = ρ A and d - → µ N (f n • π -1 x,δ ), s - → v 1 π x,δ (C) L d ≤ 4δ d ε .
We set

- → µ N = - → µ N (f n • π -1 x,δ ) = 1 N d e∈E d N f n • π -1 x,δ (e)δ c(e) .
It is clear that

f n • π -1 x,δ ∈ S N (π x,δ (C)) for the configuration ω • π -1
x,δ . Moreover, we have for A ∈ P i (m)

ψ i (f n • π -1 x,δ , π x,δ (A))) = e∈E i, N [π x,δ (A)] f n (π -1 x,δ (e)) • - → e i = e∈E i, n [A] f n (e) • - → e i = ψ i (f n , A) = ρ A . It remains to compute the distance d - → µ N , s - → v 1 π x,δ (C) L d . Let λ ∈ [1, 2], y ∈ [0, 1] d . Let j ≥ 1 such that 2 j < λ N n ≤ 2 j+1 . Let λ ∈ [1, 2] such that λ N n = λ 2 j . Let z ∈ [-1, 1[ d such that N n (y -x) ∈ (z + λ Z d ). Let k ≥ j. Let Q ∈ ∆ k λ , set B = Q + y, we have π -1 x,δ (B) = N n (B -x) = N n Q + N n (y -x) . Since N n (y -x) ∈ (z + λ Z d ) ⊂ (z + λ 2 j-k Z d ), it yields that π -1 x,δ (B) ∈ z + ∆ k-j λ .
We have by change of variable

L d (B ∩ π x,δ (C)) = B∩π x,δ (C) dL d (y) = n d N d π -1 x,δ (B)∩C dL d (y) = n d N d L d (π -1 x,δ (B) ∩ C) .
It follows that for B ∈ (y + ∆ k λ ), we have

- → µ N (B) -s - → v L d (B ∩ π x,δ (C)) 2 = n d N d - → µ n (π -1 x,δ (B)) -s - → v L d (π -1 x,δ (B) ∩ C) 2 where π -1 x,δ (B) ∈ (z + ∆ k-j λ )
. Hence, we have

B∈(y+∆ k λ ) - → µ N (B) -s - → v L d (B ∩ π x,δ (C)) 2 = B∈(z+∆ k-j λ ) n d N d - → µ n ( B) -s - → v L d ( B ∩ C) 2 .
Besides, for k < j, we have by triangular inequality

Q∈(y+∆ k λ ) - → µ N (Q) -s - → v L d (Q ∩ π x,δ (C)) 2 ≤ Q∈(y+∆ j λ ) - → µ N (Q) -s - → v L d (Q ∩ π x,δ (C)) 2 = Q ∈(z+∆ 0 λ ) n d N d - → µ N (Q ) -s - → v L d (Q ∩ C) 2 .
Combining the two previous inequalities, it follows that

∞ k=0 1 2 k Q∈(y+∆ k λ ) - → µ N (Q) -s - → v L d (Q ∩ π x,δ (C)) 2 ≤ n d N d j-1 k=0 1 2 k Q ∈(z+∆ 0 λ ) - → µ N (Q ) -s - → v L d (Q ∩ C) 2 + n d N d ∞ k=j 1 2 k Q∈(z+∆ k-j λ ) - → µ n (Q) -s - → v L d (Q ∩ C) 2 ≤ 2 n d N d Q∈(z+∆ 0 λ ) - → µ N (Q) -s - → v L d (Q ∩ C) 2 + 2 -j n d N d ∞ k=0 1 2 k Q∈(z+∆ k λ ) - → µ n (Q) -s - → v L d (Q ∩ C) 2 ≤ n d N d 2 + λ λ n N d( - → µ n , s - → v 1 C L d ) ≤ 4 n d N d ε .
Hence, it yields that on the configuration ω

• π -1 x,δ , d( - → µ N (g N ), s - → v 1 δC+x L d ) ≤ 4δ d ε
and the result follows.

Lower semi-continuity

In this section, we prove that the map I is lower semi-continuous on R d .

Proposition 4.5. The map I is lower semi-continuous on R d .

Proof of proposition 4.5.

Let - → v ∈ R d and let ( - → v p ) p≥1 be a sequence such that lim p→∞ - → v p = - → v . Let us first assume that I( - → v ) < ∞. Let δ > 0. Let ε 0 = ε 0 (δ) > 0 such that ∀ε ≤ ε 0 -lim sup n→∞ 1 n d log P(∃f n ∈ S n (C) : d( - → µ n (f n ), - → v 1 C L d ) ≤ ε) ≥ I( - → v ) -δ .
Let p 0 ≥ 1 be such that for any

p ≥ p 0 , - → v -- → v p 2 ≤ ε 0 /4. Using lemma 2.3, it yields that d( - → µ n (f n ), - → v 1 C L d ) ≤ d( - → µ n (f n ), - → v p 1 C L d ) + 2 - → v -- → v p 2 ≤ d( - → µ n (f n ), - → v p 1 C L d ) + ε 0 2 ,
and

∀ε ≤ ε 0 ∀p ≥ p 0 -lim sup n→∞ 1 n d log P(∃f n ∈ S n (C) : d( - → µ n (f n ), - → v 1 C L d ) ≤ ε 0 ) ≤ -lim sup n→∞ 1 n d log P(∃f n ∈ S n (C) : d( - → µ n (f n ), - → v p 1 C L d ) ≤ ε/4) .
It follows that

∀ε ≤ ε 0 ∀p ≥ p 0 -lim sup n→∞ 1 n d log P(∃f n ∈ S n (C) : d( - → µ n (f n ), - → v p 1 C L d ) ≤ ε/4) ≥ I( - → v ) -δ .
By letting first ε goes to 0 and then taking the liminf in p, we obtain

lim inf p→∞ I( - → v p ) ≥ I( - → v ) -δ .
Since the previous inequality holds for any δ > 0, it follows that

lim inf p→∞ I( - → v p ) ≥ I( - → v ) .
Let us now assume that I( -→ v ) = +∞. By the same reasoning, we can prove that for any M > 0,

lim inf p→∞ I( - → v p ) ≥ M .
It follows that lim inf p→∞ I( -→ v p ) = I( -→ v ) = +∞. This yields the proof.

Convexity

In this subsection, we aim to prove that the map I is convex, this property will allow us to obtain regularity properties on I. 

→ R + ∪ {+∞} is convex, that is ∀λ ∈ [0, 1] ∀ - → v 1 , - → v 2 ∈ R d I(λ - → v 1 + (1 -λ) - → v 2 ) ≤ λI( - → v 1 ) + (1 -λ)I( - → v 2 ) .
Let us define D I as the set of points where I is finite, that is,

D I = x ∈ R d : I(x) < +∞ .
It is easy to check thanks to theorem 4.6, that the set D I is convex. From theorem 4.6, we can deduce the following proposition that is a corollary of Theorem 6.7.(i) in [START_REF] Evans | Measure theory and fine properties of functions[END_REF].

Proposition 4.7. The map I is continuous on DI .

Let C be the cube of side-length 1/n centered at 0, that is

C = - 1 2n , 1 2n d .
For any edge e ∈ E d n , write P(e) the dual of the edge e, i.e., the hypersquare of dimension d -1 of side-length 1/n, orthogonal to e and centered at the center of e. Let -

→ v ∈ S d-1 , s ∈ [0, M ], h > 0,
and A be an hyperrectangle of R d such that -→ v is not contained in an hyperplane parallel to A. We need to define a new set of admissible streams S n (cyl(A, h, -→ v ), s -→ v ) that is defined only in the interior of cyl(A, h, -→ v ) and have prescribed values near the boundary of cyl(A, h, -→ v ). Let g : R + → [0, 1] be a function such that lim

ε→0 g(ε) = 1 . A stream f n is in S n (cyl(A, h - → v ), s - → v , g(ε)) if -The stream respects the capacity constraint:∀e ∈ E d n f n (e) ≤ t(e).
-The stream is null outside the cylinder:

∀e ∈ E d n P(e) ⊂ cyl(A, h, - → v ) =⇒ f n (e) = 0.
-The values of the stream for edges closed to the boundary are prescribed by the continuous stream s -→ v : ∀e = x, y such that ((x + C) ∪ (y + C)) ⊂ cyl(A, h, -→ v ) and P(e) ⊂ cyl(A, h, -→ v ), we have

f n (e) = g(ε)n 2 (s - → v • -→ xy) -→ xy.
-The node law is respected for any

x ∈ Z d n such that (x + C) ⊂ cyl(A, h, s - → v ) .
To prove theorem 4.6, we need first to prove the following lemma. This lemma controls the probability of having a constant stream s -→ v in a cylinder oriented in the direction -→ v . such that we have

-lim inf ε→0 lim sup n→∞ 1 n d log P (E n (cyl(A, h, - → v ), s - → v , g 0 (ε), g 1 (ε))) ≤ L d (cyl(A, h, - → v ))I(s - → v )
where

E n (cyl(A, h, - → v ), s - → v , g 0 (ε), g 1 (ε)) = ∃f n ∈ S n (cyl(A, h, - → v ), s - → v , g 1 (ε)) : d - → µ n (f n ), s - → v 1 cyl(A,h, - → v ) L d ≤ g 0 (ε)L d (cyl(A, h, - → v )) .
Proof of lemma 4.8. To prove lemma 4.8, we proceed similarly as in the proof of theorem 1.1. We pave the cylinder with small cubes, we consider streams in these small cubes and we try to reconnect these streams using the corridor. The main difference with the proof of theorem 1.1 is that we require that edges close to the boundary of the cylinder have a prescribed value. This prescribed value corresponds to a discretized version of the continuous stream s -→ v .

Here M > 0 denotes the supremum of the support of G. Without loss of generality, we can assume that for any i ∈ {1, . . . , d}, -

→ v • - → e i = v i ≥ 0.
Step 1: Paving cyl(A, h, -→ v ) with cubes. Let m = ε -α where α was defined in (4.7). We set

κ = m n nε m .
Hence we have nκ ∈ Z, nκ(1 + 2d/m) ∈ Z and lim n→∞ κ = ε. Write

E = κ 1 + 2d m C .
We want to cover cyl(A, h, -→ v ) by translates of E. Let T(cyl(A, h, -→ v )) be the following set of translates of E contained in cyl(A, h, -→ v ):

T(cyl(A, h, - → v )) = x ∈ κ(1 + 2d/m)Z d : (E + x) ⊂ (cyl(A, h, - → v ) \ V ∞ (∂ cyl(A, h, - → v ), dκ)) .
Write Cor the following set

Cor = cyl(A, h, - → v ) \ x∈T(cyl(A,h, - → v )) π x,κ (C)
and the set of edges Cor n whose left endpoint is in Cor:

Cor n = x, y ∈ E d n : x ∈ Cor and ∃i ∈ {1, . . . , d} -→ xy = - → e i n .
For x ∈ T(cyl(A, h, -→ v ))) we write

E x = ∃f n ∈ S n (π x,κ (C)) (ε, s - → v , π x,κ )-well-behaved : d - → µ n (f n ), s - → v 1 πx,κ(C) L d ≤ 4ε α0 κ d .
On the event E x , we will denote by

f x n a (ε, s - → v , π x,κ )-well-behaved stream satisfying d - → µ n (f n ), s - → v 1 πx,κ(C) L d ≤ 4ε α0 κ d
(chosen according to a deterministic rule if there is more than one). Let us denote by F the event

F = { ∀e ∈ Cor n t(e) ≥ M -H(ε)}
where H(ε) ≥ 0 will be defined later in a similar way than in (4.29). The function H satisfies lim ε→0 H(ε) = 0. We aim to prove, that on the event

F ∩ x∈T(cyl(A,h, - → v ))) E x , we can build a stream f n ∈ S n cyl(A, h, - → v ), s - → v , (1 -H(ε))(1 -ε α/4 ) such that f n coincides with f x n on π x,κ (C), for x ∈ T(cyl(A, h, - → v )).
Step 2: Construction of the stream inside ∪ x∈T(cyl(A,h, - → v )) (x + E). By lemma 3.1, for any x ∈ T(cyl(A, h, -→ v )), for any i ∈ {1, . . . , d}, for any ∈ {+, -}, for any A 0 ∈ P i (m), there exists a stream

f x,A0 n in cyl(π x,κ (A 0 ), κd/m, - → e i ) such that ∀e ∈ E i, n [π x,κ (A 0 )] f x,A0 n e - → e i n = f x n (e) and ∀e ∈ E i, n π x,κ A 0 d m - → e i f x,A0 n (e) = ψ i (f x n , π x,κ (A 0 )) |E i, n [π x,κ (A 0 )]| .
This stream mix the inputs in such a way the outputs are uniform. We set f prel n the stream inside

∪ x∈T(cyl(A,h, - → v )) (x + E) as f prel n = x∈T(cyl(A,h, - → v ))   f x n + A0∈∪iP + i (m)∪P - i (m) f x,A0 n   .
For any

x 1 , x 2 ∈ T(cyl(A, h, - → v )) such that x 2 = x 1 + κ(1 + 2d/m) - → e i , we have on the event E x1 ∩ E x2 ∀A 0 ∈ P + i (m) ψ + i (f x1 n , π x1,κ (A 0 )) = (1 -ε α/4 )sv i H d-1 (π x,κ (A 0 ))n d-1 = ψ - i (f x2 n , π x2,κ (A 0 -- → e i )) .
Moreover, since 2κd/m ∈ Z n , it follows that:

|E i, n [π x,κ (A 0 )]| = E i, n π x,κ (A 0 ) + 2 κd m - → e i .
Combining the two latter equalities, we obtain that

∀e ∈ E i, n π x1,κ A 0 d m - → e i f x1,A0 n (e) = f x2,A0-- → ei n e + - → e i n .
The latter equality ensures that the streams f

x1,A0 n and f x2,A0-- → ei n
glue well together and so that the node law is satisfied everywhere inside

∪ x∈T(cyl(A,h, - → v )) (x + E). It remains to extend f prel n to cyl(A, h, - → v ) \ ∪ x∈T(cyl(A,h, - → v )) (x + E)
in such a way that we respect the boundary conditions. To do so, we define a discretized version f disc n of the continuous stream s -→ v . Since the stream f disc n will not perfectly match with the boundary conditions of f prel n , we will also need to build a stream that corrects the differences on the boundary.

Step 3: Construction of a discrete stream from the continuous one. Let x ∈ T(cyl(A, h, -→ v ).

Let i ∈ {1, . . . , d} and ∈ {+, -}, let us compute

|E i, n [π x,κ(1+2d/m) (C i )]|.
By symmetry of the lattice and since

x ∈ κ(1 + 2d/m)Z d ⊂ Z d n , it is equal to |E 1,+ n [κ(1 + 2d/m)C + 1 ]| = κ d-1 (1 + 2d/m) d-1 n d-1 since nκ(1+2d/m) ∈ Z. We consider the following stream f disc n that is the discretized version of s - → v 1 cyl(A,h, - → v ) defined by ∀e = x, y ∈ E d n such that P(e) ⊂ cyl(A, h, - → v ) f disc n (e) = (1 + 2d/m) -(d-1) (1 -ε α/4 )n 2 (s - → v • -→ xy) -→ xy .
In particular, if -→ xy = -→ e i /n, for i ∈ {1, . . . , d}, we have

f disc n (e) = (1 + 2d/m) -(d-1) (1 -ε α/4 )sv i - → e i .
Hence, we have for

x ∈ T(cyl(A, h, - → v ), i ∈ {1, . . . , d}, ∈ {+, -} ψ i (f disc n , π x,κ(1+2d/m) (C i )) = (1 + 2d/m) -(d-1) (1 -ε α/4 )sv i |E i, n [π x,κ(1+2d/m) (C i )]| = (1 -ε α/4 )sv i κ d-1 n d-1 = A0∈P i (m) ψ i (f x n , π x,κ (A 0 )) = ψ i (f x n , π x,κ (C i )) = ψ i (f prel n , π x,κ(1+2d/m) (C i )) . (4.33) Let w ∈ Z d n such that w + C ⊂ cyl(A, h, - → v ), we have y∈Z d n : e= w,y ∈E d n f disc n (e) • (n -→ wy) = (1 + 2d/m) -(d-1) (1 -ε α/4 )n y∈Z d n : e= w,y ∈E d n (s - → v • -→ wy) = 0
and the node law is satisfied at w for the stream f disc n .

Step 4: Gluing the streams and correcting the differences. Let us now consider x ∈ T(cyl(A, h, -→ v ))

such that there exists i ∈ {1, . . . , d} and ∈ {-, +} such that x κ(1

+ 2d/m) - → e i / ∈ T(cyl(A, h, - → v )). Let us denote by ∂ int T(cyl(A, h, - → v )) such x, i.e., ∂ int T(cyl(A, h, - → v )) = x ∈ T(cyl(A, h, - → v )) : ∃i ∈ {1, . . . , d}, ∈ {+, -} x κ(1 + 2d/m) - → e i / ∈ T(cyl(A, h, - → v ))
and for such an x, let us denote by E κ (x) the set of faces of π x,κ(1+2d/m) (C) that are "external", i.e.,

E κ (x) = π x,κ(1+2d/m) (C i ) : x κ(1 + 2d/m) - → e i / ∈ T(cyl(A, h, - → v )), i ∈ {1, . . . , d}, ∈ {-, +} .
For those faces, we need to correct the stream f prel n to be able to glue it with the discretized version

f disc n . Let us consider F 0 = κ(1 + 2d/m)(C i + x) ∈ E κ (x)
. By equality (4.33), we have

ψ i (f disc n , F 0 ) = ψ i (f prel n , F 0 ) . (4.34) We have ∀e ∈ E i, n [F 0 ] f disc n (e) = (1 + 2d/m) -(d-1) (1 -ε α/4 )sv i - → e i , ∀e ∈ E i, n [κ(C i + x d/m - → e i )] f prel n (e) = (1 -ε α/4 )sv i - → e i . It follows that for e ∈ E i, n [κ(C i + x d/m - → e i )], we have (-f disc n (e) + f prel n (e)) • - → e i = (1 -ε α/4 ) 1 -1 + 2d m -(d-1) sv i ≤ 4 d 2 m M ≤ 8d 2 M ε α (4.35)
for small enough ε depending on d.

For e ∈ E i, n [F 0 ] \ E i, n [κ(C i + x d/m - → e i )], we have f prel n (e) = 0 thus (-f disc n (e) + f prel n (e)) • - → e i = -(1 -ε α/4 ) 1 + 2 d m -(d-1) sv i ≥ -sv i . (4.36)
We can indexed the edges of E i, n [F 0 ] following the order given by the canonical basis such that to each edge e we can associate its index ζ(e) ∈ {1, . . . , κ(1 + 2d/m)n} d-1 . More precisely, we set

∀e ∈ E i, n [F 0 ] ζ(e) = np i (c(e)) + κ(1 + 2d/m)n 2 + 1 j∈{1,...,d}\{i} - → e j
where we recall that the definition of p i was given in (4.16). It is easy to check that ζ(e) ∈ {1, . . . , κ(1

+ 2d/m)n} d-1 (we recall that κ(1 + 2d/m)n ∈ Z). Set for any e ∈ E i, n [F 0 ], f in (ζ(e)) = (-f disc n (e) + f prel n (e)) • - → e i . If e is such that ζ(e) ∈ {κdn/m + 1, κ(1 + d/m)n} d-1 , then f in (ζ(e)) = (1 -ε α/4 ) 1 -1 + 2d m -(d-1) sv i .
Otherwise, we have

f in (ζ(e)) = -(1 -ε α/4 ) 1 + 2d m -(d-1)
sv i .

To apply lemma 3.4, we have to check that the sequence (f in (y), y ∈ {1, . . . , κ(1 + 2d/m)n} d-1 ) satisfies the conditions stated in the lemma. First note that thanks to equality (4.34), we have 

+ 2d/m)n} d-1 -M ≤ f in (y) ≤ 8d 2 M ε α . Let l ∈ {1, . . . , d -2} and x ∈ {1, . . . , κ(1 + 2d/m)n} l , if x / ∈ {κdn/m + 1, . . . , κ(1 + d/m)n} l then for any y ∈ {1, . . . , κ(1 + 2d/m)n} d-1-l , we have f in (x, y) = -(1 -ε α/4 ) 1 + 2d m -(d-1) sv i . If x ∈ {κdn/m + 1, . . . , κ(1 + d/m)n} l , then we have y∈{1,...,κ(1+2d/m)n} d-1-l f in (x, y) = κdn m , . . . , κ 1 + d m n d-1-l 1 -1 + 2d m -(d-1) (1 -ε α/4 )sv i -1, . . . , κ 1 + 2d m n d-1-l \ κdn m , . . . , κ 1 + d m n d-1-l 1 + 2d m -(d-1) (1 -ε α/4 )sv i = 1 -1 + 2d m -(d-1) - 1 + 2d m d-1-l -1 1 + 2d m -(d-1) (1 -ε α/4 )sv i (κn) d-1-l = 1 -1 + 2d m -l (1 -ε α/4 )sv i (κn) d-1-l ≥ 0 .
It follows that the conditions to apply lemma 3.4 are satisfied. By lemma 3.4, there exists a stream

g x,F0 n in cyl(F 0 , (d -1)κ(1 + 2d/m), - → e i ) ⊂ cyl(A, h, - → v ) such that ∀e ∈ E i, n [F 0 ] g x,F0 n e - → e i n = -f disc n (e) + f prel n (e) and ∀e ∈ E i, n [F 0 (d -1)κ(1 + 2d/m) - → e i ] g x,F0
n (e) = 0 . n

(e) • - → e i ∈ [-sv i , 8d 2 M ε α ]
and for edge e parallel to -→ e j with j = i:

g x,F0 n (e) 2 ≤ 8d 2 M ε α .
Finally, we build f n as follows: for any e ∈ cyl(A, h,

- → v ) ∩ E d n f n (e) = f prel n (e) if e ∈ E d n ∩ ∪ x∈T(cyl(A,h, - → v ) π x,κ(1+2d/m) (C) f disc n (e) + x∈∂ int T(cyl(A,h, - → v )) F0∈Eκ(x) g x,F0 n (e) otherwise.
The node law is satisfied everywhere inside cyl(A, h, -→ v ). Note that by construction of T(cyl(A, h, -→ v )), each e ∈ cyl(F 0 , (d -1)κ, -→ e i ) belongs at most to d such cylinder (one for each direction): for each j ∈ {1, . . . , d} there exists at most one

• ∈ {+, -} and y ∈ ∂ int (T cyl(A, h, - → v )) such that F 1 = π y,κ(1+2d/m) (C • i ) ∈ E κ (y) and e ∈ cyl(F 1 , (d -1)κ, • - → e i ). It follows that for any e ∈ cyl(A, h, - → v ), we have f n (e) 2 ≤ M + 8d 3 M ε α .
On the event F, the stream

f n = (1 -ε α/4 )(1 -H(ε)/M )
f n respects the capacity constraint for ε small enough depending on d. Indeed, we have for ε small enough depending on d,

f n (e) 2 ≤ (1 -ε α/4 )(1 + 8d 3 ε α )(M -H(ε)) ≤ M -H(ε) . On the event F ∩ ∩ x∈T(cyl(A,h, - → v ))) E x , we have that f n ∈ S n (cyl(A, h, - → v ), s - → v , g 1 (ε)) for n large enough
where

g 1 (ε) = 1 + 2d m -(d-1) 1 - H(ε) M (1 -ε α/4 ) 2 .

Conclusion. Using lemma 2.6, on the event ∩ x∈T(cyl(

A,h, - → v )) E x , we have d( - → µ n ( f n ), s - → v 1 cyl(A,h, - → v ) L d ) ≤ d( - → µ n ( f n ), - → µ n (f n )) + d( - → µ n (f n ), s - → v 1 cyl(A,h, - → v ) L d ) ≤ 2 1 -(1 -ε α/4 )(1 -H(ε)/M ) 1 n d e∈E d n :c(e)∈cyl(A,h, - → v ) f n (e) 2 + d( - → µ n (f n )1 Cor , s - → v 1 Cor L d ) + x∈T(cyl(A,h, - → v )) d( - → µ n (f x n ), s - → v 1 πx,κ(C) L d ) ≤ ε α/4 + H(ε) M (1 + ε α/4 ) 4dM L d (V 2 (cyl(A, h, - → v ), d/n)) + 2M |Cor n | n d + 2dM L d (Cor) + 4ε α0 L d (cyl(A, h, - → v )) . (4.37)
We have for n large enough depending on A and h that

L d (V 2 (cyl(A, h, - → v ), d/n)) ≤ 2L d (cyl(A, h, - → v )) . (4.38)
Let us estimate the size of H d-1 (∂Cor):

H d-1 (∂Cor) ≤ H d-1 (∂ cyl(A, h, - → v )) + |T(cyl(A, h, - → v ))|H d-1 (∂(κC)) ≤ H d-1 (∂ cyl(A, h, - → v )) + L d (cyl(A, h, - → v )) κ d 2dκ d-1 ≤ H d-1 (∂ cyl(A, h, - → v )) + 2d L d (cyl(A, h, - → v )) κ (4.39)
By doing similar computations than in (4.24), we have

|Cor n | ≤ 2d L d (Cor) + 2d n H d-1 (∂Cor) n d . ( 4.40) 
Let us upper-bound the volume of the corridor for n large enough depending on ε:

L d (Cor) ≤ |T(cyl(A, h, - → v ))|L d κ 1 + 2d m C \ κC + L d V 2 (∂ cyl(A, h, - → v ), d 2 κ) ≤ L d (cyl(A, h, - → v )) κ d (1 + 2d/m) d κ d 1 + 2d m d -1 + 4d 2 κH d-1 (∂ cyl(A, h, - → v )) ≤ 2 d+1 m dL d (cyl(A, h, - → v )) + 4d 2 κH d-1 (∂ cyl(A, h, - → v )) ≤ 2 d+2 dε α0 L d (cyl(A, h, - → v )) + 8d 2 εH d-1 (∂ cyl(A, h, - → v ))
where in the second inequality we use proposition 1.7 for κ small and in the last inequality we use the fact that κ goes to ε when n goes to infinity. We detail here an inequality, we used in the previous inequality and that we will use again in what follows. For x ∈ [0, 1], we have

(1 + x) d -1 = d k=1 d k x k ≤ x d k=1 d k ≤ 2 d x . ( 4.41) 
Finally, for ε small enough depending on A and h, we have

L d (Cor) ≤ 2 d+3 dε α0 L d (cyl(A, h, - → v )) . (4.42)
For ε small enough depending on A and h, for n large enough depending on ε, using inequalities (4.37), (4.38), (4.39), (4.40) and (4.42), we have

d( - → µ n ( f n ), s - → v 1 cyl(A,h, - → v ) L d ) ≤ g 0 (ε)L d (cyl(A, h, - → v ))
where

g 0 (ε) = 8dM ε α/4 + H(ε) M (1 + ε α/4 ) + 2 d+6 ε α0 d 2 M + 4ε α0 .
Finally, we have

P   F ∩ x∈T(cyl(A,h, - → v )) E x   ≤ P(E n (cyl(A, h, - → v ), s - → v , g 0 (ε), g 1 (ε))) .
Using the independence, we have

P(F) x∈T(cyl(A,h, - → v )) P(E x ) ≤ P(E n (cyl(A, h, - → v ), s - → v , g 0 (ε), g 1 (ε))) . (4.43)
We have nκ(1 + 2d/m) ∈ N. Therefore, for any x ∈ T(cyl(A, h, -→ v )) we have x ∈ Z d n . Hence, if we set n 0 = nκ, the application π x,n0/n is a bijection from E d n0 to E d n . We can apply lemma 4.4:

P(E x ) ≥ P ∃f n0 ∈ S n0 (C) (ε, s - → v )-well-behaved : d( - → µ n0 (f n0 ), s - → v 1 C L d ) ≤ ε α0 (4.44)
and we have using lemma 4.2 and theorem 1.1

lim ε→0 lim sup n→∞ 1 n d κ d log P(E x ) ≥ -I(s - → v ) . (4.45)
Besides, using inequality (4.45), we have

lim ε→0 lim sup n→∞ 1 n d x∈T(cyl(A,h, - → v )) log P(E x ) = lim ε→0 lim sup n→∞ 1 n d |T(cyl(A, h, - → v ))| log P(E x0 ) ≥ lim ε→0 lim sup n→∞ 1 n d L d (cyl(A, h, - → v )) κ d (1 + 2d/m) d log P(E x0 ) ≥ -L d (cyl(A, h, - → v ))I(s - → v ) (4.46)
where

x 0 ∈ T(cyl(A, h, - → v ))
. Besides, we have lim sup

n→∞ 1 n d P(F) = lim sup n→∞ |Cor n | n d log G([M -H(ε), M ]) .
Hence, we can define the function H as in equality (4.29), using the control of the volume of the corridor (4.42):

H(ε) = inf a > 0 : G([M -a, M ]) ≥ 2 d+3 dε α0 L d (cyl(A, h, - → v ) . (4.47)
and since M is the supremum of the support of G with the same arguments as in the proof of theorem 1.1, we can prove that H(ε) goes to 0 when ε goes to 0 and 

lim ε→0 lim sup n→∞ L d (Cor) log G([M -H(ε), M ]) = 0 .
d P(E n (cyl(A, h, - → v ), s - → v , g 0 (ε), g 1 (ε))) ≥ -L d (cyl(A, h, - → v ))I(s - → v ) .
The result follows.

Proof of theorem 4.6. We have to treat separately the case where -

→ v 1 = ± - → v 2 . • First Case - → v 1 = ± - → v 2 .
Let λ ∈ [0, 1] and l > 0 be a small real number, in particular, we have l < 1.

Let -→ v ∈ S d-1 and s 1 , s 2 ∈ R. Without any loss of generality, we can assume that -

→ v • - → e d = 0. Let C λ 1
and C λ 2 be the following sets (see figure 9)

C λ 1 = cyl [0, λl 2 ] × [0, l 2 ] d-2 × {0}, l 2 , - → v and C λ 2 = cyl [λl 2 , l 2 ] × [0, l 2 ] d-2 × {0}, l 2 , - → v .
We pave C with translates of

C λ = C λ 1 ∪ C λ 2 .
Note that we have

L d (C λ 1 ) = λL d (C λ ) and L d (C λ 2 ) = (1 -λ)L d (C λ ) .
We consider the following set T of translated of C λ :

T = C λ + d-1 i=1 k i l 2-→ e i + k d l 2-→ v : (k 1 , . . . , k d ) ∈ Z d .
Let T(C) be the following set

T(C) = {F ∈ T : F ∩ C = ∅} . λl 2 (1 -λ)l 2 l 2 l 2-→ v - → e 1 - → e 2 - → e 3 C λ 1 C λ 2 Figure 9 -Representation of C λ (d = 3)
Let g 0 and g 1 be the functions defined in lemma 4.8. For F = C λ + x ∈ T(C), we denote by G F the following event (see the definition of E n in lemma 4.8)

G F = E n (C λ 1 + x, s 1 - → v , g 0 (ε), g 1 (ε)) ∩ E n (C λ 2 + x, s 2 - → v , g 0 (ε), g 1 (ε)) .
In other words, on the event G F we suppose the existence of a stream similar to

s 1 - → v in C λ 1 +x (respectively to s 2 - → v in C λ 2 + x).
We denote by f 1,F n and f 2,F n the streams corresponding to these events (chosen according to a deterministic rule). We denote by B the following set of edges:

B =    e ∈ E d n ∩ C : P(e) ∩ F =x+C λ ∈T(C) (x + ∂C λ 1 ) ∪ (x + ∂C λ 2 ) = ∅    .
We denote by F the following event

F = { ∀e ∈ B t(e) ≥ g 1 (ε) max(|s 1 |, |s 2 |) - → v ∞ } .
On the event F ∩ ∩ F ∈T(C) G F , we claim that there exists a stream f n ∈ S n (C) obtained by concatenating all the streams (f

1,F n , f 2,F n ) such that d( - → µ n (f n ), (λs 1 + (1 -λ)s 2 ) - → v 1 C ) ≤ K 1 l + g 0 (ε)
where K 1 is a positive constant depending only on M and d. Set

- → σ = F =(C λ +z)∈T(C) (s 1 1 C λ 1 +z + s 2 1 C λ 2 +z ) - → v .
Note that sets in T(C) have pairwise disjoint interiors and C ⊂ ∪ F ∈T(C) F . We build f n as follows: for any e = y, w

∈ E d n ∩ C f n (e) =      f 1,C λ +x n (e) if P(e) ⊂ C λ 1 + x, C λ + x ∈ T(C) f 2,C λ +x n (e) if P(e) ⊂ C λ 2 + x, C λ + x ∈ T(C) g 1 (ε)n d-1 P(e) - → σ (u) • (n -→ yw) dH d-1 (u) n -→ yw if e ∈ B.
It remains to check that f n satisfies the node law everywhere in C.

Remember that C = [-1/(2n), 1/(2n)] d . By construction of f n , if w ∈ Z d n is such that (w + C) ⊂ (x + C λ i ) for i = 1, 2 and x such that (x + C λ ) ∈ T(C) then since f i,C λ +x n satisfies the node law at w it is also true for the stream f n . Let w ∈ Z d n such that (w + C) ∩ x:x+C λ ∈T(C) (x + (∂C λ 1 ∪ ∂C λ 2 )) = ∅ . • Let us first assume that (Q + x) ⊂ C then ν(Q + x) -ν(Q + x) 2 ≤ z:(C λ +z)⊂(Q+x) ν(C λ + z) -ν(C λ + z) 2 + z:(C λ +z)∩(∂Q+x) =∅ ν((Q + x) ∩ (C λ + z)) -ν((Q + x) ∩ (C λ + z)) 2 ≤ z:(C λ +z)∩(∂Q+x) =∅ 2(|s 1 | + |s 2 |)L d (C λ ) .
Moreover, using lemma 2.4, we have that T is a paving and diam

(C λ ) ≤ dl 2 ≤ ε C β2 -k , it follows that z : (C λ + z) ∩ (∂Q + x) = ∅ ≤ 4 H d-1 (∂Q) L d (C λ ) diam(C λ ) .
Finally, we get

ν(Q + x) -ν(Q + x) 2 ≤ 8(|s 1 | + |s 2 |)dl 2 H d-1 (∂Q) . ( 4.50) 
• Let us assume now that (Q + x) ∩ ∂C = ∅. Thus, we have

ν(Q + x) -ν(Q + x) 2 ≤ z:(C λ +z)⊂(Q+x)∩C ν(C λ + z) -ν(C λ + z) 2 + z:(C λ +z)∩∂((Q+x)∩C) =∅ ν((Q + x) ∩ (C λ + z)) -ν((Q + x) ∩ (C λ + z)) 2 ≤ z:(C λ +z)∩∂((Q+x)∩C) =∅ 2(|s 1 | + |s 2 |)L d ((Q + x) ∩ C ∩ (C λ + z))
where we used in the last inequality that ν and ν are null outside C. It follows that

Q∈∆ k β :(Q+x)∩∂C =∅ ν(Q + x) -ν(Q + x) 2 ≤ Q∈∆ k β : (Q+x)∩∂C =∅ z:(C λ +z)∩∂((Q+x)∩C) =∅ 2(|s 1 | + |s 2 |)L d ((Q + x) ∩ C ∩ (C λ + z)) ≤ Q∈∆ k β : (Q+x)∩∂C =∅ z:(C λ +z)∩∂C =∅ 2(|s 1 | + |s 2 |)L d ((Q + x) ∩ C ∩ (C λ + z)) + Q∈∆ k β : (Q+x)∩∂C =∅ z:(C λ +z)∩∂(Q+x)) =∅ 2(|s 1 | + |s 2 |)L d ((Q + x) ∩ C ∩ (C λ + z)) ≤ z : (C λ + z) ∩ ∂C = ∅ 2(|s 1 | + |s 2 |)L d (C λ ) + Q∈∆ k β : (Q+x)∩∂C =∅ z : (C λ + z) ∩ ∂(Q + x) = ∅ 2(|s 1 | + |s 2 |)L d (C λ ) .
Using again lemma 2.4, we obtain

Q∈∆ k β :(Q+x)∩∂C =∅ ν(Q + x) -ν(Q + x) 2 ≤ 8(|s 1 | + |s 2 |)(diam C λ ) H d-1 (∂C) + |{Q ∈ ∆ k β : (Q + x) ∩ ∂C = ∅}|H d-1 (∂Q) . ( 4.51) 
Combining inequalities (4.50) and (4.51), it follows that

Q∈∆ k β ν(Q + x) -ν(Q + x) 2 ≤ Q∈∆ k β : (Q+x)⊂C ν(Q + x) -ν(Q + x) 2 + Q∈∆ k β : (Q+x)∩∂C =∅ ν(Q + x) -ν(Q + x) 2 ≤ 8(|s 1 | + |s 2 |)dl 2 |{Q ∈ ∆ k β : (Q + x) ∩ C = ∅}|H d-1 (∂Q) + H d-1 (∂C) ≤ 8(|s 1 | + |s 2 |)dl 2 L d (3C) (β2 -k ) d 2d(β2 -k ) d-1 + 2d ≤ 8(|s 1 | + |s 2 |)dl 2 2 3 d d2 k + 2d ≤ C d (|s 1 | + |s 2 |)l
where in the last inequality we use the fact that 2 k ≤ ε C /d/l and where C d is a positive constant depending only on d. It follows that

∞ k=1 1 2 k Q∈∆ k β ν(Q + x) -ν(Q + x) 2 ≤ k:2 -k ≥l √ d/ε C 1 2 k Q∈∆ k β ν(Q + x) -ν(Q + x) 2 + k:2 -k <l √ d/ε C 1 2 k Q∈∆ k β ν(Q + x) -ν(Q + x) 2 ≤ 2C d (|s 1 | + |s 2 |)l + 2(|s 1 | + |s 2 |) k:2 -k <l √ d/ε C 1 2 k Q∈∆ k β : (Q+x)∩C =∅ L d (Q) ≤ 2C d (|s 1 | + |s 2 |)l + 2(|s 1 | + |s 2 |) k:2 -k <l √ d/ε C 1 2 k L d (3C) ≤ 23 d C d + 2 d ε C (|s 1 | + |s 2 |)l .
Consequently, we have

d(ν, ν) ≤ 2 C d + 23 d d ε C (|s 1 | + |s 2 |)l .
Let us now compute the distance d( -→ µ n , ν). Using lemma 2.6 and lemma 2.4, on the event

F ∩∩ F ∈T(C) G F we have d( - → µ n , ν) ≤ F =(w+C λ )∈T:F ⊂C d( - → µ n 1 w+C λ 1 , s 1 - → v 1 w+C λ 1 L d ) + d( - → µ n 1 w+C λ 2 , s 2 - → v 1 w+C λ 2 L d ) + F =(w+C λ )∈T:F ∩∂C =∅ 4(|s 1 | + |s 2 |)L d (C λ ) ≤ F =(w+C λ )∈T:F ⊂C g 0 (ε)L d (C λ ) + 16d(|s 1 | + |s 2 |)H d-1 (∂C)l 2 ≤ g 0 (ε) + 16d 2 l 2 (|s 1 | + |s 2 |) . Note that if I(s 1 - → v ), I(s 2 - → v
) are finite then necessarily for any ε > 0, then we have

P(t(e) ≥ g 1 (ε) max(|s 1 |, |s 2 |) v ∞ ) > 0 .
Indeed, let us assume that P(t(e) ≥ g

1 (ε 0 )|s 1 | v ∞ ) = 0 for some ε 0 > 0 and I(s 1 - → v ) < ∞, thanks to theorem 1.1, we have ∀ε > 0 lim inf n→∞ 1 n d log P(∃f n ∈ S n (C) : d - → µ n (f n ), s 1 - → v 1 C L d ) ≤ ε) ≥ -I(s 1 - → v ) .
By doing the same reasoning of proposition 2.7, we can extract a subsequence and choose a sequence of configurations

(ω n ) n≥1 such that - → µ n (f n )(ω n ) weakly converges towards s 1 - → v 1 C L d . Let i ∈ {1, . . . , d} such that |v i | = v ∞ .
Without loss of generality, we can assume that v i ≥ 0 and s 1 ≥ 0. Then for any e ∈ E d n we have

f n (e) • - → e i ≤ g 1 (ε 0 )s 1 v i and C - → µ n (f n )(ω n ) • - → e i dL d ≤ g 1 (ε 0 )s 1 v i < C s 1 - → v • - → e i dL d .
This is a contradiction, it follows that if

I(s 1 - → v ) is finite then P(t(e) ≥ g 1 (ε 0 )|s 1 | v ∞ ) > 0.
On the event ∩ F ∈T(C) G F ∩ F, there exists

f n ∈ S n (C) such that d( - → µ n (f n ), ν) ≤ d( - → µ n (f n ), ν) + d( ν, ν) ≤ g 0 (ε) + K 1 l
where K 1 is a constant depending only on d, s 1 and s 2 . It follows that for ε small enough depending on

l P ∩ F ∈T(C) G F ∩ F ≤ P ∃f n ∈ S n (C) : d( - → µ n (f n ), (λs 1 + (1 -λ)s 2 ) - → v 1 C L d ) ≤ 2K 1 l .
Notice that |B|/n d goes to 0 when n goes to infinity, it follows that lim sup

n→∞ 1 n d log P(F) = lim sup n→∞ 1 n d |B| log P t(e) ≥ g 1 (ε) max(|s 1 |, |s 2 |) v ∞ = 0 . (4.52)
We have for F ∈ T(C), using the independence:

P(G F ) = P(E n (C λ 1 + x, s 1 - → v , g 0 (ε), g 1 (ε)))P(E n (C λ 2 + x, s 2 - → v , g 0 (ε), g 1 (ε))) .
By lemma 4.8, we obtain

-lim inf ε→0 lim sup n→∞ 1 n d log P(G F ) ≤ (λI(s 1 - → v ) + (1 -λ)I(s 2 - → v ))L d (C λ ) . (4.53)
Since the events (G F , F ∈ T(C)) and F are independent and using (4.52), we have where F 0 ∈ T(C). Since the previous result holds for any ε small enough depending on l, inequality (4.53) yields

-lim sup n→∞ 1 n d log P (∃f n ∈ S n (C) : d( - → µ n (f n ), (λs 1 + (1 -λ)s 2 ) - → v ) ≤ 2K 1 l) ≤ -|T(C)| lim sup
-lim sup n→∞ 1 n d log P (∃f n ∈ S n (C) : d( - → µ n (f n ), (λs 1 + (1 -λ)s 2 ) - → v ) ≤ 2K 1 l) ≤ |T(C)|(λI(s 1 - → v ) + (1 -λ)I(s 2 - → v ))L d (C λ ) .
Besides, we have

|T(C)| ≤ L d ((1 + 2l 2 )C) L d (C λ ) .
Hence, we obtain

-lim sup n→∞ 1 n d log P (∃f n ∈ S n (C) : d( - → µ n (f n ), (λs 1 + (1 -λ)s 2 ) - → v ) ≤ 2K 1 l) ≤ (1 + 2l 2 ) d (λI(s 1 - → v ) + (1 -λ)I(s 2 - → v )) .
By letting l go to 0 (the left hand side is non-decreasing in l), we obtain

-lim l→0 lim sup n→∞ 1 n d P (∃f n ∈ S n (C) : d( - → µ n (f n ), (λs 1 + (1 -λ)s 2 ) - → v ) ≤ 2K 1 l) ≤ λI(s 1 - → v ) + (1 -λ)I(s 2 - → v ) .
The result follows.

• Second Case:

Let λ ∈ [0, 1] and l ∈ [0, 1]. Let - → v 1 , - → v 2 ∈ S d-1 such that - → v 1 = ± - → v 2 and s 1 , s 2 > 0.
We claim that there exists -

→ n ∈ S d-1 such that s 1 - → v 1 • - → n = s 2 - → v 2 • - → n = 0. Indeed, we can complete - → v = s 1 - → v 1 -s 2 - → v 2 into a normal basis ( - → v , - → f 2 , . . . , - → f d ) of R d where - → f 2 , . . . , - → f d are in S d-1 . There exists i ∈ {2, . . . , d} such that - → v 1 • - → f i = 0. If not, we have ∀i ∈ {2, . . . , d} - → v 1 • - → f i = 0
and there exists λ ∈ R such that we have -

→ v 1 = λ(s 1 - → v 1 -s 2 - → v 2 ). This is a contradiction with - → v 1 = ± - → v 2 .
Hence, the vector -→ n corresponds to the 

- → f i such that - → v 1 • - → f i = 0 (if there are several choices we pick - → f i with the smallest i). Since ( - → v , - → f 2 , . . . , - → f d ) is a normal basis, we have - → v • - → n = s 1 - → v 1 • - → n -s 2 - → v 2 • - → n = 0 . - → n λl 2-→ v 1 (1 -λ)l 2-→ v 2 A E 1 E 2
. , - → g d-1 , - → n ) is [0, l 2 ] d-1 × {0}
. Let E 1 , E 2 and E be the following sets (see figure 10)

E 1 = cyl(A, λl 2 , - → v 1 ), E 2 = cyl(A, (1 -λ)l 2 , -- → v 2 ) and E = E 1 ∪ E 2 .
We have L d (E 1 ) = λl 2d and L d (E 2 ) = (1 -λ)l 2d . We consider the following set T of translated of E:

T = E + d-1 i=1 k i l 2-→ g i + k d l 2 (λ - → v 1 + (1 -λ) - → v 2 ) : (k 1 , . . . , k d ) ∈ Z d .
Let T(C) be the following set

T(C) = {F ∈ T : F ∩ C = ∅} .
Let F ∈ T(C) write F = E + x. We denote by F F the following event

F F = E n (cyl(A, λl 2 , - → v 1 ) + x, s 1 - → v 1 , g 0 (ε), g 1 (ε)) ∩ E n (cyl(A, (1 -λ)l 2 , -- → v 2 ) + x, s 2 - → v 2 , g 0 (ε), g 1 (ε))
where g 0 and g 1 are the functions defined in lemma 4.8. On F F , we denote by f 1,F n and f 2,F n the streams corresponding to these events (chosen according to a deterministic rule if there are several possible choices). We denote by B the following set of edges:

B =    e ∈ E d n ∩ C : P(e) ∩ F =x+E∈T(C) (x + ∂ cyl(A, λl 2 , - → v 1 )) ∪ (x + ∂ cyl(A, (1 -λ)l 2 , -- → v 2 )) = ∅    .
Using proposition 1.7, it follows that for n large enough depending on Q

- → µ n ((Q + z) ∩ C) -- → v L d ((Q + z) ∩ C) 2 ≤ |Z d n ∩ (Q + z) ∩ C| n d -L d ((Q + z) ∩ C) - → v 2 + 2d |Z d n ∩ V ∞ (∂((Q + z) ∩ C), 1/n)| n d - → v ∞ ≤ L d (V 2 (∂((Q + z) ∩ C), d/n))( - → v 2 + 2d - → v ∞ ) ≤ 4d n H d-1 (∂((Q + z) ∩ C)( - → v 2 + 2d - → v ∞ )
and

Q∈(z+∆ λ k ) - → µ n (Q ∩ C) -- → v L d (Q ∩ C) 2 ≤ 4d n H d-1 (∂C) + L d (2C) L d (Q) H d-1 (∂Q) ( - → v 2 + 2d - → v ∞ ) ≤ 4d n (2d + 2 d 2d2 k )( - → v 2 + 2d - → v ∞ ) Let k 0 ≥ 1 be the smallest integer such that 10dM 2 -k0 ≤ ε/2 .
With this choice of k 0 , we have for n large enough

∞ k=k0 1 2 k Q∈(z+∆ λ k ) - → µ n (Q ∩ C) -- → v L d (Q ∩ C) 2 ≤ ∞ k=k0 1 2 k 5dM = 10dM 2 -k0 ≤ ε/2
We can choose n large enough depending on ε and k 0 such that

k0-1 k=0 1 2 k 4d n (2d + 2 d 2d2 k )( - → v 2 + 2d - → v ∞ ) ≤ ε 2 .
It follows that for n large enough depending on ε, we have

d( - → µ n (f disc n ), - → v 1 C L d ) ≤ ε .
Note that on the event {∀e ∈ C t(e) ≥ -→ v ∞ }, the stream f disc n belongs to S n (C). We recall that

|{e ∈ E d n : e ∈ C}| = |{e = x, y ∈ E d n : x ∈ C, ∃i ∈ {1, . . . , d} n -→ xy = - → e i }| = d|C ∩ Z d n | = dn d .
Using the independence of the family (t(e)) e∈E d n , it follows that for n large enough depending on ε

- 1 n d log P(∃f n ∈ S n (C) : d( - → µ n (f n ), - → v 1 C L d ) ≤ ε) ≤ - 1 n d log P(∀e ∈ C t(e) ≥ - → v ∞ ) = -d log G([ - → v ∞ , M ]) (4.54)
Finally, by taking first the limsup in n and then letting ε goes to 0 in the previous inequality, we obtain that

I( - → v ) ≤ -d log G([ - → v ∞ , M ]) .
This yields the proof.

Upper large deviations for the stream in a domain

The aim of this section is to prove that the function I (defined in (1.2)), build from the elementary rate function I, is the rate function corresponding to the probability that a stream f n ∈ S n (Γ 1 , Γ 2 , Ω) is close to some continuous stream -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω). This is the purpose of theorem 1.5.

We will need to approximate -→ σ by a regular vector field.

Approximation by a regular stream

Define the function η ∈ C ∞ c (R d , R) by η(x) = c exp 1 x 2-1 if x 2 < 1 0 if x 2 ≥ 1
where the constant c > 0 is adjusted such that R d η(x)dx = 1. For any n ≥ 1, we denote by K n the following function

∀x ∈ R d K n (x) = n d η(nx) .
(5.1)

The sequence (K n ) n≥1 is a sequence of mollifiers. Note that since for any x ∈ Ω we have

I( - → σ (x)) ≥ 0, it follows that I( - → σ ) = I( - → σ )) L 1 and x → I( - → σ (x)) ∈ L 1 (R d → R, L d ). Proposition 5.1. Let - → σ ∈ Σ(Γ 1 , Γ 2 , Ω) such that I( - → σ ) < ∞. Let (K n ) n≥1
be the sequence as defined in (5.1). We have

lim n→∞ I( - → σ * K n ) = I( - → σ )
where * denotes the convolution operator.

Proof. Let n ≥ 1. Write -→ σ n = -→ σ * K n . By classical properties (see for instance theorem 4.1. in [START_REF] Evans | Measure theory and fine properties of functions[END_REF]), we have (5.3)

∀p ≥ 1 lim n→∞ - → σ n = - → σ in L p (5.
Besides, using the fact that I is convex (theorem 4.6) and Jensen's inequality, we have

I( - → σ n ) = Ω I R d - → σ (x -y)K n (y)dL d (y) dL d (x) ≤ Ω R d I( - → σ (x -y))K n (y)dL d (y)dL d (x) .
Hence, it yields

I( - → σ n ) -I( - → σ ) ≤ Ω (I( - → σ ) K n )(x) -I( - → σ (x))dL d (x) ≤ Ω |(I( - → σ ) * K n )(x) -I( - → σ (x))|dL d (x) = I( - → σ ) * K n -I( - → σ ) L 1 . (5.4) Since x → I( - → σ (x)) ∈ L 1 (R d → R, L d ), it follows that lim n→∞ I( - → σ ) * K n -I( - → σ ) L 1 = 0
and by inequality (5.4)

lim sup n→∞ I( - → σ n ) ≤ I( - → σ ) . (5.5)
The result follows by combining inequalities (5.3) and (5.5).

Proof of proposition 5.3

Let us explain the strategy of the proof of proposition 5.3. The general idea of this proof is to build a discrete stream that is close to -→ σ by reconnecting constant streams in cubes. To do so, we need to work with regular continuous streams that are close to -→ σ . However, we cannot use the regularization sequence directly on -→ σ since -→ σ K p do not have null divergence close to the sources and the sinks. To avoid this issue, we first need to build a prolongated version -→ σ of -→ σ defined in an extended version of Ω where the sources and the sinks have been pushed away. Doing so ensures that -→ σ p = -→ σ K p has null divergence almost everywhere on Ω.

Next, we till Ω into small cubes (B i ) i∈J centered at (x i ) i∈J such that -→ σ p ≈ -→ σ p (x i ) on B i for any i ∈ J. We consider the family of elementary events: in each cube B i there exists a discrete stream f

(i) n
close to the constant continuous stream -→ σ p (x i )1 Bi . We use again corridors to reconnect these streams altogether and create a stream f n , where outside the cubes and their corridors in Ω \ ∪ i∈J B i , the stream f n coincides with the discretized version of the stream -→ σ p (defined as in the proof of lemma 4.8). Note that unlike the proof of theorem 1.1, where the node law at the macroscopic level was straightforward (because the continuous stream was constant and so the flow through the adjacent faces always match), here the stream -→ σ p is not constant and so the node law at the macroscopic level is harder to get. A major difficulty of this proof is to build -→ σ in such away we can build a discretized version of -→ σ p that belongs in S M n (Γ 1 , Γ 2 , Ω). The aim of the following proposition is to push away the sink and source for -→ σ . We postpone its proof until the section 5.3.

Proposition 5.5 (Prolongation of a continuous stream). Let

- → σ ∈ Σ(Γ 1 , Γ 2 , Ω)∩Σ M (Γ 1 , Γ 2 , Ω) (we recall that Σ M (Γ 1 , Γ 2 , Ω) was defined in (2.3)) such that I( - → σ ) < ∞. For any η > 0, there exist ρ = ρ(η) > 0 and Ω, Γ 1 , Γ 2 and - → σ ∈ Σ( Γ 1 , Γ 2 , Ω) such that -Ω ⊂ Ω, Γ 1 ∪ Γ 2 ⊂ ∂ Ω, d 2 ( Γ 1 ∪ Γ 2 , Γ) = ρ and ( Ω \ Ω) ∩ V 2 (Γ \ (Γ 1 ∪ Γ 2 ), ρ/2) = ∅ (see figure 11) -- → σ -- → σ 1 Ω L 1 ≤ η and I( - → σ 1 Ω ) ≤ I( - → σ ) + η . Figure 11 -Example of possible ( Ω, Γ 1 , Γ 2 ) Proof of proposition 5.3. Let - → σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2 , Ω). If I( - → σ ) = ∞, the result is straightfor- ward. Let us assume that I( - → σ ) < ∞.
Let η > 0. Let ρ, Ω, Γ 1 , Γ 2 and -→ σ be as in the statement of proposition 5.5.

Step 1. Approximation of -→ σ by a regular function. Let (K p ) p≥1 be the sequence of mollifiers (defined in (5.1)). Write -

→ σ p = - → σ * K p . We have - → σ p ∈ C ∞ (R d , R d ). Let p ≥ 4/ρ. We claim that ∀x ∈ V 2 (Ω, ρ/2) div - → σ p (x) = 0 . Since - → σ ∈ Σ( Γ 1 , Γ 2 , Ω), we have (see remark 13 in [9]) div - → σ = -( - → σ • - → n Ω )H d-1 | ∂ Ω = -( - → σ • - → n Ω )H d-1 | Γ 1 ∪ Γ 2 . Let h ∈ C ∞ c (R d , R). We get R d h div - → σ p dL d = - R d - → σ p • - → ∇hdL d = - R d R d K p (y) - → σ (x -y) • - → ∇h(x)dL d (y)dL d (x) = - R d R d K p (y) - → σ (z) • - → ∇h(z + y)dL d (y)dL d (z) . Since h ∈ C ∞ c (R d , R), we have for L d -almost every y ∈ R d R d K p (y) - → ∇h(z + y)dL d (y) = - → ∇ R d K p (y)h(z + y)dL d (y) = - → ∇(K p * h)(z) .
It follows that

R d h div - → σ p dL d = R d K p * h div - → σ dL d = - Γ 1 ∪ Γ 2 ( - → σ • - → n Ω )K p * h dH d-1 .
Hence, if h has its support included in V 2 (Ω, ρ/2), the function K p * h has its support included in V 2 (Ω, 3ρ/4). For any x ∈ Γ 1 ∪ Γ 2 , we have K p * h(x) = 0 and

R d h div - → σ p dL d = 0 . It follows that div - → σ p = 0 on V 2 (Ω, Moreover, since for i = 1, . . . , d we have | - → σ (x) • - → e i | ≤ M for L d -almost every x in V 2 (Ω, ρ), we have | - → σ p (x) • - → e i | ≤ M for L d -almost every x in V 2 (Ω, ρ/2).
For p large enough, by proposition 5.1, we have

I( - → σ p ) < ∞. Let n ≥ 1.
Let ε > 0. The function -→ σ p is uniformly continuous on Ω, that is there exists

δ = δ(ε) > 0 such that ∀x, y ∈ Ω x -y 2 ≤ δ =⇒ - → σ p (x) -- → σ p (y) 2 ≤ ε . (5.13)
In what follows, m = ε -α where α = (2(3d + 1)) -1 was defined in (4.7), κ = κ(m, n, δ) must satisfy κ ≤ δ(ε)/(2d), we set

κ = 2m n nδ 4dm .
We have nκ ∈ N and nκ(1 + 2d/m)/2 ∈ N. Besides, we get by definition of κ

lim n→∞ κ(n) = δ 2d .
We divide Ω into small cubes of side-length κ(1 + 2d/m). Write M κ the set of the centers of the cubes of side-length κ(1 + 2d/m) included in Ω, that is

M κ = x ∈ κ 1 + 2d m Z d : π x,κ(1+2d/m) (C) ⊂ Ω \ V ∞ (∂Ω, dκ) .
We define ∂ int M κ as the centers of the cubes in M κ that are in the boundary of M κ , i.e.,

∂ int M κ = x ∈ M κ : ∃y ∈ κ 1 + 2d m Z d , y -x ∞ = κ 1 + 2d m , y / ∈ M κ .
We denote by -→ σ κ p the approximation of -→ σ p at scale κ defined as follow

- → σ κ p = x∈Mκ - → σ p (x)1 π x,κ(1+2d/m) (C) . Note that Ω \ V 2 (∂Ω, d(d + 2)κ) ⊂ Ω \ V ∞ (∂Ω, (d + 2)κ) ⊂ x∈Mκ π x,κ(1+2d/m) (C) .
(5.14)

Thanks to (5.13) and proposition 1.7, we have for κ small enough depending on Ω

- → σ κ p -- → σ p 1 Ω L 1 ≤ εL d (Ω) + 2dM L d (V 2 (∂Ω, d(d + 2)κ)) ≤ εL d (Ω) + 10d 3 M H d-1 (Γ)κ .
(5.15)

Step 2. Prove that -

→ σ p • - → n Ω = 0 H d-1 -almost everywhere on ∂ Ω ∩ V 2 ( Γ 1 ∪ Γ 2 , ρ/2) c . Let u ∈ C ∞ c (R d , R)
, by inequality (2.7), we have

∂ Ω ( - → σ p • - → n Ω )u dH d-1 = R d - → σ p • - → ∇udL d = R d R d - → σ (x -y) • - → ∇u(x) K p (y)dL d (y)dL d (x) . Since u ∈ C ∞ c (R d , R), there exist a bounded subset F u of R d and a constant C u > 0 such that ∀x ∈ R d - → ∇u(x) 2 ≤ C u 1 x∈Fu .
We have

R d R d | - → σ (x -y) • - → ∇u(x)K p (y)|dL d (y)dL d (x) ≤ R d R d 2dM C u K p (y)1 x∈Fu dL d (y)dL d (x) = 2dM C u L d (F u ) < ∞ .
Hence, we can apply Fubini Tonelli theorem

∂ Ω ( - → σ p • - → n Ω )u dH d-1 = R d R d - → σ (x -y) • - → ∇u(x)K p (y)dL d (x)dL d (y) = R d K p (y) R d - → σ (z) • - → ∇u(z + y)dL d (z)dL d (y) = R d K p (y) ∂ Ω ( - → σ • - → n Ω )(x)u(x + y)dH d-1 (x)dL d (y) Since |( - → σ • - → n Ω )(x)| ≤ 2dM
, we can again apply Fubini Tonelli theorem:

∂ Ω ( - → σ p • - → n Ω )u dH d-1 = ∂ Ω ( - → σ • - → n Ω )(x) R d u(x + y)K p (y)dL d (y) dH d-1 (x) = Γ 1 ∪ Γ 2 ( - → σ • - → n Ω )(x)(K p * u)(x)dH d-1 (x) . (5.16) We recall that 1/p ≤ ρ/4. Let u ∈ C ∞ c (V 2 ( Γ 1 ∪ Γ 2 , ρ/2) c , R). Then, K p * u has its support included in V 2 ( Γ 1 ∪ Γ 2 , ρ/4) c and ∂ Ω ( - → σ p • - → n Ω )u dH d-1 = 0 . It follows that - → σ p • - → n Ω = 0 H d-1 -almost everywhere on ∂ Ω ∩ V 2 ( Γ 1 ∪ Γ 2 , ρ/2) c
(5.17)

Step 3. Construction of a stream in

∪ x∈Mκ π x,κ(1+2d/m) (C) close to - → σ . Set z 0 = - 1 2n , . . . , - 1 2n . 
We denote by E κ (x) the following event:

E κ (x) =      ∃f n ∈ S n (π x,κ (C)) : d( - → µ n (f n ), - → σ p (x)1 πx,κ(C) ) ≤ 12ε α0 κ d , ∀ ∈ {+, -} ∀i ∈ {1, . . . , d} ∀A ∈ P i (m) ψ i (f n , π x,κ (A)) = (1 -ε α/4 ) πx+z 0 ,2υ (C i ) - → σ p (y) • - → e i dH d-1 (y) n d-1 m d-1     
we recall that P - i (m) and P + i (m) were defined in (4.3) and (4.4) and α 0 in (4.18). The choice of z 0 is to compensate the shift due to integrating over the plaquettes. This choice will be clear in the next step. Let f x n be a stream that satisfies the conditions of the event E κ (x) (if there are several possible choices, we choose according to a deterministic rule). Let x ∈ M κ , we have on the event E κ (x) that for any i ∈ {1, . . . , d} and ∈ {+, -}:

ψ i (f x n , π x,κ (C i )) = A∈P i (m) ψ i (f x n , π x,κ (A)) = (1 -ε α/4 ) πx+z 0 ,2υ (C i ) - → σ p (y) • - → e i dH d-1 (y) n d-1 .
We define the corridor Cor as follows:

Cor = Ω \ x∈Mκ π x,κ (C) .
We proceed similarly as in the proof of lemma 4.8. Let ∈ {+, -}, x ∈ M κ , i ∈ {1, . . . , d} such that x + κ(1+d/m) -→ e i ∈ M κ . For ∀A ∈ P i (m), by lemma 3.1, there exists a stream f

x,A n in cyl(π x,κ (A), κd/m, - → e i ) such that ∀e ∈ E i, n [π x,κ (A)] f x,A n e - → e i n = f x n (e) and ∀e ∈ E i, n π x,κ A d m - → e i f x,A n (e) = ψ i (f x n , π x,κ (A)) |E i, n [π x,κ (A)]| . If x + κ(1 + d/m) - → e i / ∈ M κ , by lemma 3.1, there exists a stream f x,A n in cyl(π x,κ (A), κd/m -1/n, - → e i ) such that ∀e ∈ E i,+ n [π x,κ (A)] f x,A n e + - → e i n = f x n (e) and ∀e ∈ E i,+ n π x,κ A + d m - → e i - 1 n - → e i f x,A n (e) = ψ i (f x n , π x,κ (A)) |E +, n [π x,κ (A)]| .
This stream mixes the inputs in such a way the outputs are uniform. We build

f prel n in ∪ x∈Mκ π x,κ(1+2d/m) (C) as follows f prel n = x∈Mκ   f x n + A∈∪ i=1,...,d P + i (m)∪P - i (m) f x,A n   . (5.18)
We claim that on the event ∩ x∈Mκ E κ (x),the stream f prel n satisfies the node law everywhere inside ∪ x∈Mκ π x,κ(1+2d/m) (C). Indeed, for any x, y ∈ M κ such that x -y 1 = κ(1 + 2d/m), we can write without loss of generality y -x = κ(1+2d/m) -→ e i . On the event E κ (x)∩E κ (y), we have for any A ∈ P + i (m)

ψ + i (f x n , π x,κ (A)) = (1-ε α/4 ) π x+z 0 ,κ(1+2d/m) (C + i ) - → σ p (y) • - → e i dH d-1 (y) n d-1 m d-1 = ψ - i (f y n , π y,κ (A -- → e i ))
.

The latter equality combined with the fact that

|E i,+ n [π x,κ (A)]| = |E i,- n [π y,κ (A-- → e i )]| (since E i,+ n [π x,κ (A)] = E i,- n [π y,κ (A -- → e i )]
+ 2κd/m -→ e i and 2κd/m ∈ Z n ) ensures that the node law is satisfied along the common face of π x,κ(1+2d/m) (C) and π y,κ(1+2d/m) (C). At this stage, we have constructed the stream inside the cubes π x,κ(1+2d/m) (C), for x ∈ M κ . The remaining part is the most technical part of the proof. The aim is to prolongate this stream in Ω \ ∪ x∈Mκ π y,κ(1+2d/m) (C) in such a way the node law is respected everywhere except in Γ 1 n ∪ Γ 2 n . To do so, we are going to build the discretized version -→ σ disc p of -→ σ p . Note that -→ σ p have been built in such a way that its discretized version is in S M n (Γ 1 , Γ 2 , Ω). We have the stream f prel n in the cubes and the stream -→ σ disc p outside the cubes. At this point the node law is not respected inside Ω along the common faces. For these common faces, the stream f prel n has been built in such a way that its flow match with the flow of -→ σ disc p . However, the inputs and the outputs do not perfectly match. We need to correct this difference by doing a mixing, but without corridor. This is the most technical part of the proof.

Step 4. Construction of a discrete stream. We recall that C is the cube of side-length 1/n centered at 0, that is

C = - 1 2n , 1 2n d .
We consider the following stream -→ σ disc p that is the discretized version of -→ σ p defined as follows: for any i ∈ {1, . . . , d}, for any e = x, y

∈ E d n such that x, y ∈ Ω n and -→ xy = - → e i /n , - → σ disc p (e) = (1 -ε α/4 )n d-1 P(e) - → σ p (u) • - → e i 1 Ω dH d-1 (u) - → e i . Let x ∈ Ω n \ (Γ 1 n ∪ Γ 2 n ).
We want to prove that -→ σ disc p satisfies the node law at x. We distinguish several cases. Case 1. We have x + C ⊂ Ω. Since div -→ σ p = 0 on Ω, we obtain by applying Gauss-Green theorem to

- → σ p in x + C: x+∂C - → σ p (u) • - → n x+C (u)dH d-1 (u) = y∈Z d n : x,y ∈E d n P( x,y ) - → σ p (u) • (n -→ xy) dH d-1 (u) = 0 . It follows that - → σ disc p satisfies the node-law at x. Case 2. We have (x + C) ∩ Γ = ∅. The amount of water d - → σ disc p (x) created at x for the stream - → σ disc p is equal to d - → σ disc p (x) = (1 -ε α/4 )n d-1 y∈Ωn: x,y ∈E d n P(e) - → σ p • (n -→ yx)1 Ω dH d-1
We claim that for any y / ∈ Ω n such that x, y ∈ E d n , we have P(e) ∩ Ω = ∅. We distinguish two cases. -Let us assume ( 

x + C) ∩ (Γ 1 ∪ Γ 2 ) = ∅. If there exists y / ∈ Ω n such that x, y ∈ E d n then x ∈ Γ 1 n ∪ Γ 2
- → σ disc p (x) = (1 -ε α/4 )n d-1 y∈Z d n : x,y ∈E d n P(e) - → σ p • (n -→ yx)1 Ω dH d-1 .
By applying the Gauss-Green theorem to -→ σ p in (x + C) ∩ Ω, we have

- y∈Z d n : x,y ∈E d n P(e) - → σ p • (n -→ yx)1 Ω dH d-1 + (∂ Ω∩C)\∂C - → σ p • - → n Ω dH d-1 = 0 .
Using equality (5.17 We conclude that -→ σ disc p satisfies the node law at x for any x ∈ Ω n \ (Γ 

(x) = κ 1 + 2d m C i + x : x κ 1 + 2d m - → e i / ∈ M κ , i ∈ {1, . . . , d}, ∈ {-, +} .
For those faces, the stream f prel n (defined in (5.18)) does not perfectly coincide with the discretized version of -→ σ p but their flow match. To overcome this issue, we are going to build a stream that corrects these differences. We here want to mix, but without using a corridor. This means that we need to be particularly cautious that the stream we build does not exceed the capacity constraint. Let us first consider

F 0 = x + κ(1 + 2d/m)C - i ∈ E κ (x) ⊂ Ω.
We recall that P(e) denote the dual of the edge e. Set υ = κ(1 + 2d/m)/2. Since nυ ∈ N and x ∈ Z d n , we have

F 0 + z 0 = -υ - 1 2n , υ - 1 2n i-1 × -υ - 1 2n × -υ - 1 2n , υ - 1 2n d-i + x = x∈F0∩Z d n P x - 1 n - → e i , x = e∈E i,+ n [F0]
P(e) .

It follows that

ψ - i (f prel n , F 0 ) = (1 -ε α/4 ) F0+z0 - → σ p (y) • - → e i dH d-1 (y) n d-1 = (1 -ε α/4 )    ∪ e∈E i,+ n [F 0 ] P(e) - → σ p (y) • - → e i dH d-1 (y)    n d-1 = ψ + i ( - → σ disc p , F 0 ) . ( 5.19) 
Let us now consider the case where

F 0 = x + κ(1 + 2d/m)C + i ∈ E κ (x) ⊂ Ω. We have F 0 + z 0 = -υ - 1 2n , υ - 1 2n i-1 × υ - 1 2n × -υ - 1 2n , υ - 1 2n d-i = x∈(F0-1 n - → ei )∩Z d n P x, x + 1 n - → e i = e∈E i,- n [F0-1 n - → ei ]
P(e) .

It follows that

ψ + i f prel n , F 0 - 1 n - → e i = (1 -ε α/4 ) F0+z0 - → σ p (y) • - → e i dH d-1 (y) n d-1 = (1 -ε α/4 )    ∪ e∈E i,- n [F 0 -1 n - → e i ] P(e) - → σ p (y) • - → e i dH d-1 (y)    n d-1 = ψ + i ( - → σ disc p , F 0 - 1 n - → e i ) .
(5.20)

We refer to figure 12 for the illustration of the choice of z 0 .

Figure 12 -Choice of z 0 . The edges in bold represent edges where we will affect the value given by -→ σ disc p .

• Let us first assume that -→ σ p (x) • -→ e i ≥ 0. Up to a translation of -1/n -→ e i the case + is treated in the same way as the case -. To avoid cumbersome notations, we only treat the case where = -but by seak of generality we do not replace by -. We have

∀e ∈ E i, n κ C i d m - → e i + x f prel n (e) = 1 -ε α/4 κ d-1 F0+z0 - → σ p (y) • - → e i dH d-1 (y) - → e i .
Besides, using (5.13), we have

1 κ d-1 F0+z0 - → σ p (y) • - → e i dH d-1 (y) -1 + 2d m d-1 - → σ p (x) • - → e i ≤ ε 1 + 2d m d-1
and

n d-1 P(e) - → σ p (u) • - → e i dH d-1 (u) -- → σ p (x) • - → e i ≤ ε . It follows that for any e ∈ E i, n κ C i d m - → e i + x (1 -ε α/4 ) 1 + 2d m d-1 ( - → σ p (x) • - → e i -ε) ≤ f prel n (e) • - → e i ≤ (1 -ε α/4 ) 1 + 2d m d-1 ( - → σ p (x) • - → e i + ε) (5.21)
and for any e 

∈ E i, n [F 0 ] (1 -ε α/4 )(-- → σ p (x) • - → e i -ε) ≤ -- → σ disc p (e) • - → e i ≤ (1 -ε α/4 )(-- → σ p (x) • - → e i + ε) . ( 5 
(e)) • - → e i ≤ (1 -ε α/4 ) 1 + 1 + 2d m d-1 ε + 1 + 2d m d-1 -1 - → σ p (x) • - → e i ≤ 2 d ε + 2 d-1 2d m M ≤ 2 d+1 dM ε α
for small enough ε depending on d and M where we recall that m = ε -α . Moreover, we have

(-- → σ disc p (e) + f prel n (e)) • - → e i ≥ (1 -ε α/4 ) 1 + 2d m d-1 -1 - → σ p (x) • - → e i -2 d ε ≥ -2 d ε ≥ -M for ε small enough depending on M . For e ∈ E i, n [F 0 ] \ E i, n κ C i d m - → e i + x , we have f prel n (e) = 0, (-- → σ disc p (e) + f prel n (e)) • - → e i = -- → σ disc p (e) • - → e i = -(1 -ε α/4 )n d-1 P(e) - → σ p (u) • - → e i dH d-1 (u) ≥ -M
and using inequality (5.22)

(-- → σ disc p (e) + f prel n (e)) • - → e i = -- → σ disc p (e) • - → e i ≤ (1 -ε α/4 )(-- → σ p (x) • - → e i + ε) ≤ ε .
We recall that we assume here that -→ σ p (x) • -→ e i ≥ 0.

We can index the edges of E i, n [F 0 ] by {1, . . . , κ(1 + 2d/m)n} d-1 . We recall the definition of p i in (4.16). We set

∀e ∈ E i, n [F 0 ] ζ(e) = np i (c(e)) + κ(1 + 2d/m)n 2 + 1 j∈{1,...,d}\{i} p i ( - → e j ) .
It is easy to check that ζ(e) ∈ {1, . . . , κ(1

+ 2d/m)n} d-1 (we recall that κ(1 + 2d/m)n ∈ Z). Set for any e in E i, n [F 0 ] f in (ζ(e)) = (-- → σ disc p (e) + f prel n (e)) - → e i .
If f in (y) = 0 .

By (5.13), we have

∀e 0 , e 1 ∈ E i, n [F 0 ] | - → σ disc p (e 0 ) • - → e i -- → σ disc p (e 1 ) • - → e i | ≤ ε . (5.23)
We distinguish two cases. We assume that 0 ≤ -→ σ p (x) • -→ e i ≤ 2 d ε 1-α . In that case, for any e 0 ∈ E i, n [F 0 ], using (5.21), we have

|f prel n (e 0 ) • - → e i | ≤ 2 d-1 (2 d ε 1-α + ε). It follows that for any y, z ∈ {1, . . . , κ(1 + 2d/m)n} d-1 , we have |f in (y) -f in (z)| ≤ ε + 2 d (2 d ε 1-α + ε) ≤ ε α
for ε small enough depending on d where we recall that α < 1/2 (see (4.7)). We assume that -

→ σ p (x)• - → e i ≥ 2 d ε 1-α ≥ 2 d εm. Let l ∈ {1, . . . , d-2} and u ∈ {1, . . . , κ(1+2d/m)n} l , if u / ∈ {κdn/m + 1, κ(1 + d/m)n} l then we have ∀y ∈ 1, . . . , κ 1 + 2d m n d-1-l f in (u, y) = -- → σ disc p (ζ -1 (u, y)))
and using (5.23), we have

∀y 0 , y 1 ∈ 1, . . . , κ 1 + 2d m n d-1-l |f in (u, y 0 ) -f in (u, y 1 )| ≤ ε .
If u ∈ {κdn/m + 1, κ(1 + d/m)n} l using inequalities (5.21) and (5.22)

y∈{1,...,κ(1+2d/m)n} d-1-l f in (u, y) = - y∈{1,...,κ(1+2d/m)n} d-1-l - → σ disc p (ζ -1 (u, y)) • - → e i + y∈{κdn/m,...,κ(1+d/m)n} d-1-l f prel n (ζ -1 (u, y)) • - → e i ≥ (1 -ε α/4 ) (-- → σ p (x) • - → e i -ε) 1 + 2d m d-1-l + 1 + 2d m d-1 ( - → σ p (x) • - → e i -ε) (κn) d-1-l = (1 -ε α/4 ) - → σ p (x) • - → e i 1 + 2d m l -1 -ε 1 + 1 + 2d m l (κn) d-1-l 1 + 2d m d-1-l ≥ (1 -ε α/4 ) 2d m - → σ p (x) • - → e i -2 d-1 ε (κn) d-1-l ≥ (1 -ε α/4 )(2 d+1 d -2 d-1 )ε ≥ 0 .
In both cases, the conditions to apply lemma 3.4 are fulfilled. By lemma 3.4, there exists a stream g

x,F0 n in cyl(F 0 , (d -1)κ(1 + 2d/m), - → e i ) ⊂ Ω such that ∀e ∈ E i, n [F 0 ] g x,F0 n e - → e i n = -- → σ disc p (e) + f prel n (e) .
The stream g x,F0 n satisfies the node law everywhere except for points in Z d n ∩ F 0 . Moreover, we have for any edge e ∈ E d n ∩ cyl(F 0 , (d -1)κ, -→ e i ) parallel to -→ e i :

g x,F0 n (e) • - → e i ∈ [-M, 2 d+1 dM ε α ]
and by (5.13)

g x,F0 n (e) • - → e i + - → σ disc p (e) • - → e i ≥ -M + - → σ p (x) • - → e i -ε ≥ -M -ε and g x,F0 n (e) • - → e i + - → σ disc p (e) • - → e i ≤ M + ε + 2 d+1 dM ε α .
For an edge e parallel to -→ e j with j = i:

g x,F0
n (e) 2 ≤ 2 d+1 dM ε α .

• Let us assume that -→ σ p (x) • -→ e i < 0. Hence, we have (--→ σ p (x)) • -→ e i ≥ 0. We can apply the previous case for --→ σ disc p and -f prel n . Then, we multiply by -1 the stream we obtained. We end up with a discrete stream g

x,F0 n in cyl(F 0 , (d -1)κ(1 + 2d/m), - → e i ) ⊂ Ω such that ∀e ∈ E i, n [F 0 ] g x,F0 n e - → e i n = -- → σ disc p (e) + f prel n (e) .
Moreover, we have for any edge e ∈ E d n ∩ cyl(F 0 , (d -1)κ, -→ e i ) parallel to -→ e i :

g x,F0 n (e) • - → e i ∈ [-2 d+1 dM ε α , M ]
and by (5.13)

g x,F0 n (e) • - → e i + - → σ disc p (e) • - → e i ≤ M + - → σ p (x) • - → e i + ε ≤ M + ε and g x,F0 n (e) • - → e i + - → σ disc p (e) • - → e i ≥ -M -ε -2 d+1 dM ε α .
For an edge e parallel to -→ e j with j = i:

g x,F0 n (e) 2 ≤ 2 d+1 dM ε α . Finally, we build f n ∈ S n (Γ 1 , Γ 2 , Ω) as follows ∀e = w, z ∈ Ω ∩ E d n f n (e) = f prel n (e) if w, z ∈ ∪ Q∈Mκ Q - → σ disc p (e) + x∈∂ int Mκ F ∈Eκ(x) g x,F
n (e) otherwise.

The node law is satisfied everywhere in Ω n for f n . Note that by construction of M κ each e ∈ cyl(F 0 , (d -1)κ(1 + 2d/m), -→ e i ) belongs at most to 2d such cylinder (one for each direction): for each j ∈ {1, . . . , d} there exists at most one • ∈ {+, -} and y

∈ ∂ int M κ such that F 1 = π y,κ(1+2d/m) (C • i ) ∈ E κ (y) and e ∈ cyl(F 1 , (d -1)κ(1 + 2d/m), • - → e i ).
Indeed, let us assume there exists x, y ∈ ∂ int M κ with κ(1

+ 2d/m)C + i + x ∈ E κ (x) and κ(1 + 2d/m)C - i + y ∈ E κ (y) such that e ∈ cyl κ 1 + 2d m C + i + x - 1 n - → e i , (d -1)κ 1 + 2d m , - → e i ∩ cyl κ 1 + 2d m C - i + y, (d -1)κ 1 + 2d m , -- → e i .
It 

f n (e) 2 ≤ M + 2 d+1 d 2 M ε α + ε ≤ M (1 + ε α/2 )
for ε small enough depending on d and M . Conclusion. By proposition 1.7 and (5.14), we have for κ small enough depending on Ω,

L d (Cor) ≤ L d (V 2 (∂Ω, 2d 2 κ)) + L d (Ω) κ d κ d 1 + 2d m d - 1 
≤ 8H d-1 (∂Ω)d 2 κ + L d (Ω)2 d+1 d m ≤ 8H d-1 (∂Ω)dδ(ε) + L d (Ω)2 d+1 d m(ε)
where we use (4.41) in the second inequality. We recall that δ(ε) and 1/m(ε) goes to 0 when ε goes to 0, we recall that δ(ε) depends on p. We set

H(ε) = inf a > 0 : G([M -a, M ] ≤ 8H d-1 (∂Ω)dδ(ε) + L d (Ω)2 d+1 d m(ε) .
We can prove as in the proof of theorem 1.1 equality (4.30), that lim ε→0 H(ε) = 0 and for any p ≥ 1

lim ε→0 lim sup n→∞ L d (Cor) log G([M -H(ε), M ]) = 0 . (5.24)
Besides, we have

H d-1 (∂Cor) ≤ |M κ |2dκ d-1 + H d-1 (∂Ω) ≤ L d (Ω) 2d κ + H d-1 (∂Ω) .
Using an inequality similar to (4.24), it follows that for n large enough (depending on ε)

|{e ∈ E d n : e ∈ Cor}| ≤ 3dn d L d (Cor) . (5.25) We set f n = (1 -ε α/2 )(1 -H(ε)/M )f n .
Hence for any e ∈ Ω, we have

f n (e) 2 ≤ (1 -ε α/2 ) 1 - H(ε) M M (1 + ε α/2 ) ≤ M -H(ε) .
We can therefore use reverse Fatou lemma for a fixed ε, we obtain lim sup

n→∞ x∈Mκ - 1 n d log P(E κ (x)) ≤ Ω lim sup n→∞ - 1 n d 0 log P(E κ (c(x))1 ∪ w∈Mκ πw,κ(C) (x)dL d (x) ≤ Ω lim sup n0→∞ - 1 n d 0 log P(E κ (c(x))1 ∪ w∈Mκ πw,κ(C) (x)dL d (x) .
Using inequality (5.31), we have

lim sup n0→∞ - 1 n d 0 log P(E κ (c(x)) ≤ lim sup n0→∞ - 1 n d 0 log P ∃f n0 ∈ S n0 (C) : d - → µ n0 (f n0 ), - → σ p (x)1 C L d ≤ ε -κ d log G M √ 2d , +∞ ≤ I( - → σ p (x)) -κ d log G M 2d , +∞
and the right hand side is integrable on Ω, we can use again the reverse Fatou lemma, we obtain lim sup

→0 lim sup n→∞ x∈Mκ - 1 n d log P(E κ (x)) ≤ Ω lim sup ε→0 lim sup n0→∞ - 1 n d 0 log P(E κ (c(x))1 ∪ w∈Mκ πw,κ(C) (x)dL d (x) .
Combining inequalities (5.30) and (5.29), we obtain lim sup The result follows by letting η go to 0.

→0 lim sup n→∞ x∈Mκ - 1 n d log P(E κ (x)) ≤ Ω I( - → σ p (x))dL d (x) = I( - → σ p ) . ( 5 

Proof of proposition 5.5

Proof of proposition 5.5. Let -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2 , Ω) such that I( -→ σ ) < ∞. By hypothesis 2, there exist S 1 , . . . , S l hypersurfaces of class C 1 such that Γ ⊂ ∪ i=1,...,l S i .

Step 1. Decomposition of -→ σ . Let p ≥ 1. We denote by N p the following subset of Γ. --→ σ (p),res is negligible in some sense.

N p = (Γ ∩ V 2 (∂ Γ Γ 1 ∪ ∂ Γ Γ 2 ∪ i=1,...,l ∂ Γ (S i ∩ Γ), 1/p)) ∪
R d and null trace on Γ. We set -→ σ (p),res = -→ σ --→ σ (p) . By following the arguments steps 3 and 4 in the proof of lemma 2.8 and proposition 1.7, we have for any u ∈ C ∞ c (R d , R),

R d - → σ (p),res • - → ∇udL d = lim n→∞ - 1 n d-1 x∈(Γ 1 n ∪Γ 2 n )∩V2(Np,d/n) u(x) df n (x) ≤ dM u ∞ lim n→∞ n |Z d n ∩ V 2 (N p , d/n)| n d ≤ dM u ∞ lim n→∞ nL d (V 2 (N p , 2d/n)) ≤ 8d 2 M u ∞ H d-1 (N p ) .
Besides, since the manifolds intersect transversally for i = j ∈ {1, . . . , l} the intersection S i ∩ S j is a submanifold of codimension 2 (see for instance chapter 1 paragraph 5 in [START_REF] Guillemin | Differential topology[END_REF]). It follows that H d-1 (S i ∩S j ) = 0 and We have

H d-1 (∂ Γ (S i ∩ Γ)) ≤ j =i
R d ( - → σ (p),res -- → σ + - → σ 0 ) • - → ∇udL d = R d ( - → σ 0 -- → σ (p) ) • - → ∇udL d ≤ - → ∇u L ∞ - → σ 0 -- → σ (p) L 1 .
It follows that for any u ∈ C ∞ c (R d , R),

lim p→∞ R d - → σ (p),res • - → ∇udL d = R d ( - → σ -- → σ 0 ) • - → ∇udL d = 0 .
Hence, we have div( -→ σ --→ σ 0 ) = 0 L d -almost everywhere on Ω. Furthermore, by equality (2.7), we get

R d ( - → σ -- → σ 0 ) • - → ∇udL d = Γ ( - → σ -- → σ 0 ) • - → n Ω udH d-1 .
Finally, for any u ∈ C ∞ c (R d , R), we have

Γ (( - → σ -- → σ 0 ) • - → n Ω )udH d-1 = 0 .
Step 2. Prolongation of the discrete stream. Let r 0 > 0 we will choose later. We define the prolongated version f where π i (x) ∈ Γ is the intersection between Γ and {x + λ -→ e i , λ ∈ R}, if there are several intersection points, we pick the closest from x. Note that it may exist two disjoint points x and y in Γ 1 n ∪ Γ 2 n such that π i (x) = π i (y). However, this is not an issue since by definition of S M n (Γ 1 , Γ 2 , Ω), we have f We prove that the stream does not exceed the capacity constraint. Let e be an edge in the support of f Step 3. We prove that the prolongated discrete stream converges towards a continuous stream in an extended version of Ω. We claim that the node law is satisfied for f (p) n at any point in V 2 (Ω, r 0 /2p). We prove this result by contradiction. Assume there exists a point w ∈ V 2 (Ω, r 0 /2p) where the node law is not satisfied (see figure 16). Necessarily, w / ∈ Ω n and there exists y ∈ Γ such that w = y + t 0 -→ n Ω (y) with t 0 ≤ r 0 /2p (see figure 16. Since the node law is not respected only at the end of a Before proving this proposition, we prove the following lemma. As a result we have lim n→∞ 1 n d log P(φ n (Γ 1 , Γ 2 , Ω) ≥ λn d-1 ) = -J(λ) . Using theorems 1.17 and 1.18, and the continuity of J, we have that J(λ) > 0 if and only if λ > φ Ω . Let us prove that J is increasing on [φ Ω , λ max [. Let λ, λ ∈ [φ Ω , λ max [ such that λ < λ . There exists α ∈]0, 1[ such that λ = (1 -α)φ Ω + αλ .

Using the convexity of J, we have J(λ) ≤ (1 -α)J(φ Ω ) + αJ(λ ) = αJ(λ ) < J(λ ) .

The result follows.

Proof of theorem 1.4. We recall that J u was defined in (1.3).

• Lower bound. We prove the local lower bound:

∀λ ≥ 0 ∀ε > 0 lim inf n→∞ 1 n d log P φ n (Γ 1 , Γ 2 , Ω) n d-1 ∈]λ -ε, λ + ε[ ≥ -J u (λ) .
Let λ > 0 and ε > 0. If J u (λ) = +∞, there is nothing to prove. If λ min ≤ λ < φ Ω such that J u (λ) < ∞, we have by theorem 1. Let us now assume that λ ≥ φ Ω . We have

P φ n (Γ 1 , Γ 2 , Ω) n d-1 ∈]λ -ε, λ + ε[ ≥ P φ n (Γ 1 , Γ 2 , Ω) n d-1 ≥ λ -P φ n (Γ 1 , Γ 2 , Ω) n d-1 ≥ λ + ε .
Since J(λ) < J(λ + ε), by lemma 6.1, it leads to lim inf

n→∞ 1 n d log P φ n (Γ 1 , Γ 2 , Ω) n d-1 ∈]λ -ε, λ + ε[ ≥ -J(λ) = -J u (λ) .
• Upper bound. We have to prove that for all closed subset F of R + lim sup

n→∞ 1 n d log P φ n (Γ 1 , Γ 2 , Ω) n d-1 ∈ F ≤ -inf F J u . (6.9)
Let F be a closed subset of R + . We consider F 1 = F ∩ [0, φ Ω ] and F 2 = F ∩ [φ Ω , +∞[. Let us first assume that F 1 = ∅. Let f 1 = sup F 1 . We distinguish two cases.

-We assume f 1 ≥ λ min . Then by proposition 6.5, we have inf F J u = 0 and inequality (6.9) is trivially satisfied.

  y∈Z d n : e= x,y ∈E d n f n (e) • -→ xy = 0 .

n→∞ 1 n

 1 d log P n (A) ≤ lim sup n→∞ 1 n d log P n (A) ≤ -inf I(ν) : ν ∈ A .

Theorem 1 . 19 .Remark 1 . 20 .

 119120 Let d = 2. Let b > 0, let G be a probability distribution with support [0, b] and a continuous density. Then for ε ∈]0, b -µ( -→ e 1 )[ there exists r ∈]0, +∞[ depending on ε and G such that lim n→∞ -log P(T (0, n -→ e 1 ) ≥ (µ( -→ e 1 ) + ε)n) Their proof strategy also holds for d ≥ 2 and for tilted directions.

c d κ κ Figure 2 - 1 . 4 . 2

 κ2142 Figure 2 -Connecting streams in cubes at mesoscopic level

  1 ) connects the inputs with the outputs in [0, 2(d -1)n[×[1, n] d-1 and satisfies all the properties stated in the lemma. If m > 2(d -1)n, we extend the stream outside [0, 2(d -1)n[×[1, n] d-1 through straight lines: g + y∈{1,...,n} m k=2(d-1)n+1

  use the edges parallel to -→ e 2 . Thanks to condition ((b)) and ((c)), for each e ∈ E d parallel to -→ e 1 , we have -M ≤ f (e) • -→ e 1 ≤ ε.

  y ∈ E d n and f res n (e) = 0. We distinguish two cases either f res n (e) • -→ xy > 0 or f res n (e) • -→ xy < 0. Let us assume f res n (e) • -→ xy > 0. Since f res n satisfies the node law and since there exists only a finite number of self avoiding path using edges with endpoints Ω n , there exists z ∈ (Γ 1 n ∪ Γ 2 n ) \ {x} and an oriented self-avoiding path -→ γ 0 starting from x and ending at z with vertices in Ω n such that the first edge of -→ γ 0 is x, y and for any -→ e 0 = w 0 , w 1 ∈ -→ γ 0 , we have f res n (e 0 ) • ---→ w 0 w 1 > 0. If f res n (e) • -→ xy < 0. Then there exists z ∈ Γ 1 n ∪ Γ 2 n \ {x} and an oriented self-avoiding path -→ γ 0

  and the condition (3.1) still holds. We can iterate this process finitely many times with every possible self-avoiding oriented paths ending or starting with the edge e (according to the sign of f res n (e) • -→ xy). At any iteration, |f res n (e) • -→ xy| decrease. Eventually, the stream function we obtain satisfies f res n (e) • -→ xy = 0. The algorithm ends when for any x ∈ Γ 1 n ∪ Γ 2 n and y ∈ Ω ∩ Z d n such that e = x, y ∈ E d n , we have f res n (e) = 0. Consequently, at the end of the algorithm we have f res n = 0 and

Figure 4 -

 4 Figure 4 -The sets E 1,- n [A] and E 1,+ n [B]

Figure 5 -

 5 Figure 5 -Splitting the face C + 1 into m d-1 hyperrectangles

Lemma 4 . 1 .

 41 Let s > 0 and -→ v = (v 1 , . . . , v d ) ∈ S d-1 . Let ε > 0. There exists κ d and α depending only on d, for m = ε -α , for any n ≥ 1 there exist two families of real numbers in √ εZ, namely

Lemma 4 . 2 .

 42 Let s > 0 and -→ v ∈ S d-1 . Let κ d and α the positive constants from lemma 4.1. Let ε > 0. For m = ε -α , for any n ≥ 1 for any families of real numbers

Proof of Theorem 1 . 1 .Step 1 :Figure 7 -

 1117 Figure 7 -Paving C with translates of C

Figure 8 -

 8 Figure 8 -Connecting streams in two adjacent cubes at mesoscopic level

N

  to the boundary of C by exiting the water in the straight direction -→ e l . More formally, we set

d

  and so G([M -l/2, M ]) = 0. This contradicts the fact that M is the supremum of the support of G.

Theorem 4 . 6 .

 46 The map I : R d

Lemma 4 . 8 .

 48 Let -→ v ∈ S d-1 , s ∈ [0, dM ], h > 0 and A be an hyperrectangle of R d such that -→ v is not containedin an hyperplane parallel to A. There exists two positive functions g 0 : R + → R + and g 1 : R + → [0, 1] that satisfy lim ε→0 g 0 (ε) = 0 and lim ε→0 g 1 (ε) = 1

  y∈{1,...,κ(1+2d/m)n} d-1 f in (y) = 0 and by inequalities (4.36) and (4.35), ∀y ∈ {1, . . . , κ(1

The stream g x, F0 n

 F0 satisfies the node law everywhere except for points in {w ∈ Z d n : ∃y ∈ Z d n s.t. -→ yw = -→ e i /n and y, w ∈ E i, n [F 0 ]}. Moreover, using inequalities (4.35) and (4.36), we have for any edge e ∈ E d n parallel to -→ e i g x,F0

Hence, we get lim ε→0 lim sup n→∞ 1 n

 1 d log P(F) = 0 . (4.48) Finally, combining inequalities (4.43), (4.46) and (4.48), by taking the liminf when ε goes to 0 we obtain:

n→∞ 1 n

 1 d log P(G F0 ) -lim sup n→∞ 1 n d log P(F) = -|T(C)| lim sup n→∞ 1 n d log P(G F0 )

Figure 10 -

 10 Figure 10 -Representation of the set E (d = 2)

  n (x) = -→ σ (x)for L d -almost every x .Using Fatou lemma and the fact that I is lower semi-continuous on R d (proposition 4.5), we havelim inf n→∞ I( -→ σ n ) = lim inf n→∞ Ω I( -→ σ n (x))dL d (x) ≥ Ω lim inf n→∞ I( -→ σ n (x))dL d (x) ≥ Ω I( -→ σ (x))dL d (x) = I( -→ σ ) .

n

  and this is a contradiction. -Let us assume that (x+C)∩(Γ 1 ∪Γ 2 ) = ∅. Since by construction ( Ω\Ω)∩V 2 (Γ\(Γ 1 ∪Γ 2 ), ρ/2) = ∅, then we have (x + C) ∩ Ω = (x + C) ∩ Ω. If there exists y such that e = x, y ∈ E d n and P(e) ∩ Ω = P(e) ∩ Ω = ∅ then d ∞ (y, Ω) ≤ 1/2n and y ∈ Ω n . It yields that d

  ), we get d -→ σ disc p (x) = 0 .

1 n

 1 .32) Finally, using inequalities (5.24), (5.25), (5.27) and (5.32), we obtain lim sup n→∞d log P(∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : d( -→ µ n (f n ), -→ σ ) ≤ 3η) ≤ I( -→ σ p ) .By proposition 5.1, we have limp→∞ I( -→ σ p ) = I( -→ σ ) .By the properties of -→ σ , we havelim sup n→∞ -1 n d log P(∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : d( -→ µ n (f n ), -→ σ ) ≤ 3η) ≤ I( -→ σ ) + η .

  i=1,...,d {x ∈ Γ : 0 < | -→ n Ω (x) • -→ e i | ≤ 1/p} . We aim to decompose -→ σ = -→ σ (p) + -→ σ (p),res such that --→ σ (p) , -→ σ (p),res ∈ Σ(Γ 1 , Γ 2 , Ω); --→ σ (p) • -→ n Ω = 0 H d-1-almost everywhere on N p ;

H d- 1 (

 1 S i ∩ S j ) = 0 . Since H d-1 (∂ Γ Γ 1 ∪∂ Γ Γ 2 ∪ i=1,...l ∂ Γ (S i ∩Γ)) = 0, we have lim p→∞ 1 V2(∂ Γ Γ 1 ∪∂ Γ Γ 2 ∪ i=1,...l ∂ Γ (Si∩Γ),1/p) (x) = 0 for H d-1 -almost every x in Γ. Hence, thanks to the dominated convergence theorem lim p→∞ H d-1 (Γ ∩ V 2 (∂ Γ Γ 1 ∪ ∂ Γ Γ 2 ∪ i=1,...l ∂ Γ (S i ∩ Γ), 1/p)) = Γ lim p→∞ 1 V2(∂ Γ Γ 1 ∪∂ Γ Γ 2 ∪ i=1,...l ∂ Γ (Si∩Γ),1/p) (x)dH d-1 (x) = 0 . Let i ∈ {1, . . . , d}. For H d-1 -almost every x ∈ Γ, the normal exterior vector -→ n Ω (x) is well defined. For every x ∈ Γ such that -→ n Ω (x) is well defined, we have lim p→∞ 1 0<| - → n Ω (x)• -→ ei |≤1/p = 0 .Thanks to dominated convergence theorem, we havelim p→∞ Γ 1 0<| - → n Ω (x)• -→ ei |≤1/p dH d-1 (x) = 0 .Finally, we have that lim p→∞ H d-1 (N p ) = 0 and for any u ∈ C ∞ c (R d , R), we have lim p→∞ R d -→ σ (p),res • -→ ∇udL d = 0 .

2 n

 2 \V2(Np,d/n) i=1,...,d 1-→ n Ω (πi(x))• - → ei ≥1/p r0n k=1 f (p) n ( x, x --→ e i /n )1 x+(k-1) - → ei /n,x+k -→ ei /n +1-→ n Ω (πi(x))• - → ei ≤-1/p r0n k=1 f (p) n ( x, x + -→ e i /n )1 x-(k-1) - → ei /n,x-k -→ ei /n

n

  ( x, y ) = 0. Roughly speaking, we obtain the stream f

n

  by prolongating the stream f (p) n through straight lines.

Figure 13 -

 13 Figure 13 -The crosses correspond to points in Γ 1 n . By sake of clarity we only represent how we prolongate the stream in the direction -→ e 1 (represented by the bold lines). Note that in the figure, -→ n Ω (π 1 (x)) • -→ e 1 > 0 and -→ n Ω (π 1 (y)) • -→ e 1 < 0. The corresponding p is chosen big enough.

  us assume e has its two endpoints in Ω n . Let i ∈ {1, . . . , d} be such that e is colinear to -→ e i . Then, there existsx ∈ (Γ 1 ∪ Γ 2 ) \ N p such that | -→ n Ω (x) • -→ e i | ≥1/p and y ∈ Γ such that x -y = t -→ e i with |t| ≤ r 0 .

Figure 14 -n

 14 Figure 14 -Illustration of the case where there exists e with its two endpoints in Ω n in the support of f (p) n -f (p) n .

Figure 15 -

 15 Figure 15 -Illustration of the case where there exists e such that f n (e) 2 > M .

  prolongated line, i.e, for w ∈ Z d n such that there exists x ∈ Γ that satisfies w= x + t -→ e i with |t| ≥ r 0 -1/n and | -→ n Ω (x) • -→ e i | ≥ 1/p. There exists j ∈ I such that x ∈ B(x j , r xj /2) and | -→ n Ω (x j ) • -→ e i | ≥ 1/p. Sincex -y 2 ≤ 2r 0 ≤ r xj /2 we have y ∈ B(x j , r xj ).

Figure 16 -Γ 2 =

 162 Figure16-Illustration of the case where the node law is not respected in V 2 (Ω, r 0 /2p).
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 636211 The set { -→ σ L d : -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2, Ω)} is compact for the topology associated with the distance d.Proof of lemma 6.3.Let -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2 , Ω). Set ν = -→ σ L d . We have |ν|(Ω c ) = 0 and |ν|(Ω) ≤ 2dM L d (Ω) .It follows by Prohorov theorem that the set{ -→ σ L d : -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2, Ω)} is relatively compact for the weak topology in the sense that for any sequence ( -→ σ n L d ) n≥1 , we can extract a subsequence( -→ σ ψ(n) L d ) n≥1 such that there exists ν 0 ∈ M(V ∞ (Ω, 1)) d such that ∀f ∈ C b (R d , R) lim n→∞ R d f -→ σ ψ(n) dL d = R d f dν 0 .By lemma 2.2, it follows that limn→∞ d( -→ σ ψ(n) L d , ν 0 ) = 0 . Since -→ σ ψ(n) ∈ Σ Mit is itself the weak limit of a sequence of discrete streams: there exists φ : N → N an increasing function such that for all m ≥ 1 there existsf ψ(n),φ(m) ∈ S M φ(m) (Γ 1 , Γ 2 , Ω) and lim m→∞ d( -→ σ ψ(n) L d , -→ µ φ(m) (f ψ(n),φ(m) )) = 0 .For any n ≥ 1, we define φ 0 (n) to beφ 0 (n) = inf φ(m) : d( -→ σ ψ(n) L d , -→ µ φ(m) (f ψ(n),φ(m) )) σ L d , -→ µ φ0(n) (f ψ(n),φ0(n) )) = 0 .By lemma 2.8, we have thatν 0 = -→ σ 0 L d where -→ σ 0 ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2 , Ω). Hence, the set { -→ σ L d : -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω) ∩ Σ M (Γ 1 , Γ 2, Ω)} is compact for the topology associated with the distance d.Step 1. We prove that I is lower semi-continuous. Let ν ∈ M(V ∞ (Ω, 1)) d and (ν p ) p≥1 be a sequence such that d(ν p , ν) goes to 0 when p goes to infinity.• If ν ∈ { -→ σ L d : -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω)} and lim inf p→∞ I(ν p ) = +∞, then lim inf p→∞ I(ν p ) ≥ I(ν) . • If ν = -→ σ L d with -→ σ ∈ Σ(Γ 1 , Γ 2, Ω) and lim inf p→∞ I(ν p ) < ∞, then we can extract from the sequence (ν p ) p≥1 the measures such that I(ν p ) < ∞. We will denote this subsequence sequence by ( -→ σ p L d ) p≥1 where -→ σ p ∈ Σ(Γ 1 , Γ 2 , Ω) and I( -→ σ p ) = I( -→ σ p L d ).We use the same arguments as in proposition 4.5.However, we cannot use this proposition because we do not have the almost sure convergence of -→ σ p towards σ. The functionε → lim inf n→∞ d log P ∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : d -→ µ n (f n ), -→ σ L d ≤ εis clearly non-increasing. Moreover, by theorem 1.5d log P ∃f n ∈ S n (Γ 1 , Γ 2 , Ω) : d -→ µ n (f n ), -→ σ L d ≤ ε = I( -→ σ ) .Let δ > 0, there existsε 0 = ε 0 (δ) > 0 such that ∀ε ≤ ε 0 lim inf n→∞ -1 n d log P(∃f n ∈ S n (C) : d( -→ µ n (f n ), -→ σ L d ) ≤ ε) ≥ I( -→ σ ) -δ .Thus, J is convex. Let λ max = sup{λ > 0 : J(λ) < ∞}. By convexity, for any λ ∈]0, λ max [, J is continuous at λ. Using inequalities (6.4) and (6.8), we have lim sup n→∞ 1 n d log P(φ n (Γ 1 , Γ 2 , Ω) ≥ λn d-1 ) ≤ -lim ε→0 J(λ -ε) = -J(λ) and lim inf n→∞ 1 n d log P(φ n (Γ 1 , Γ 2 , Ω) ≥ λn d-1 ) ≥ -lim ε→0 J(λ + ε) = -J(λ) .

3 lim inf n→∞ 1 n 1 n

 11 d-1 log P φ n (Γ 1 , Γ 2 , Ω) n d-1 ∈]λ -ε, λ + ε[ ≥ -J l (λ) . d log P φ n (Γ 1 , Γ 2 , Ω) n d-1 ∈]λ -ε, λ + ε[ ≥ 0 = J u (λ) .

  n whose first endpoint is x and last endpoint is y. To each x, y in -→ E d n we can associate the vector -→ xy in R d . Notice that -→ xy 2 = 1/n. Let ( -→ e 1 , . . . , -→ e d ) be the canonical basis of R d . We denote by • the standard scalar product in R d . Stream function. A stream f n is a function f n : E d n → R d such that the vector f n (e) is collinear with the geometric segment associated with e. For e ∈ E d n , f n (e) 2 represents the amount of water that flows through e per second and f n (e)/ f n (e) 2 represents the direction in which the water flows through e. Admissible streams through Ω. A stream f n : E d n → R d from Γ 1 to Γ 2 through Ω is admissible if and only if

  .25) Combining inequalities (4.21), (4.22), (4.23), (4.24) and (4.25), we obtain for N, n large enough depending on ε, on the event F ∩ i∈I

  1 n ∪ Γ 2 n ). Step 5. Correcting the stream Let us now consider x ∈ ∂ int M κ . Let us denote by E κ (x) the set of faces of π x,κ(1+2d/m) (C) that are external, i.e.,

	E κ
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For z ∈ Z d n such that e = w, z ∈ E d n , either P(e) ⊂ (x + C λ 1 ) for some x such that x + C λ ∈ T(C) either P(e) ⊂ (x + C λ 2 ) or e ∈ B. In any case, we have for e = w, z f n (e) = g 1 (ε)n d-1

We recall that L(C λ 1 ) denotes the lateral sides of the cylinder C λ 1 , T (C λ 1 ) its top and B(C λ 1 ) its bottom. We apply Gauss-Green theorem for -→ σ in (w + C) ∩ (x + C λ 1 ):

where we use in the last equality that if

and thanks to equality (4.49), we have and f n satisfies the node law at w. We recall that g 1 (ε) ≤ 1, so f n satisfies the capacity constraint in C on the event F ∩ ∩ F ∈T(C) G F . Finally, we have

We want to upper bound the distance d( -→ µ n (f n ), ν). To do so, we introduce another measure ν and we upper bound separately the quantities d( -→ µ n (f n ), ν) and d( ν, ν).

We set ν = z: (C λ +z)∈T(C)

We denote for short -→ µ n (f n ) by -→ µ n . Notice that for z such that (C λ + z) ∈ T(C) and (C λ + z) ⊂ C, we have ν(C λ + z) -ν(C λ + z) 2 = 0 .

Let k ≥ 1 such that l ≤ ε C /d2 -k where ε C was defined in lemma 2. [START_REF] Bollobás | Graph theory[END_REF]. It follows that dl 2 

We denote by F the following event

On the event ∩ F ∈T(C) G F ∩ F, we define the following stream f n ∈ S n (C) obtained by concatenating all the streams f i,E+x n , ∀e = y, w ∈ E d n ∩ C:

Let y ∈ A. Without loss of generality, we can assume that -→ v 1 • -→ n > 0. Hence, we have -→ n cyl(A,λl 2 , - → v 1) (y) = --→ n . We have

Hence, by same arguments than in the previous case, we have that the node law is satisfied at any point in C ∩ Z d n . By the same computations than in the previous case, we can prove that there exists a positive constant K 2 depending only on d, s 1 and s 2 such that on the event F ∩ F ∈T(C) G F , for l small enough, we have

and by similar arguments

This yields the result.

Control of the elementary rate function

In this section, we aim to obtain a control on the elementary rate function in terms of G.

Proposition 4.9. For any

In particular, if -→ xy = -→ e i /n, for i ∈ {1, . . . , d}, we have

We aim to compute the distance d( -

Proof of theorem 1.5

We prove theorem 1.5 in two steps. These two steps correspond to the two following propositions.

The result of theorem 1.5 follows immediately from propositions 5.2 and 5.3. To prove proposition 5.2, on the event that there exists a stream

We can divide Ω into a collection of small cubes (B i ) i∈J . Thanks to the choice of the distance, the restriction of f n to these cubes is close to the restriction of -→ σ to these cubes, i.e.,

) is small. By independence, we will be able to upper-bound the probability that there exists a stream

of probabilities of more elementary events related to the elementary rate function I we have defined in theorem 1.1. To prove proposition 5.3, we do the reverse. Namely, starting with a collection of elementary events, we try to reconstruct the event that there exists a stream

The proof of this proposition is much more difficult and technical than the proof of proposition 5.2.

Proof of proposition 5.2

To prove proposition 5.2, we will need the following lemma that enables to compare the probability of an event in a dilation of C with the rescaled version of this event in C.

Lemma 5.4 (Scaling and Translation 2). Let

Let n 0 ≤ n. The application π x,n0/n defines a bijection from E d n0 to E d n (we recall that π x,n0/n was defined in (1.6)) and

We postpone the proof of lemma 5.4 after the proof of proposition 5.2.

Proof of proposition 5.2. Let

If there are several choices, we pick one according to a deterministic rule.

Step 1. Dividing Ω into a collection of small cubes. Let i = i(ε) be the integer such that

We set

There exists a constant β 0 depending on d, β 1 and β 2 such that

Using the independence, we have

Let η 0 > 0. We consider a small enough ε such that 2dλ i 2 -i ≤ η 0 . Hence, it yields

where B i (x) corresponds to the unique B ∈ ∆ i λi such that x ∈ B. Of course, B i (x) depends on ε and x. Using Fatou lemma twice and inequality (5.6), we obtain lim inf

(5.7)

Step 2. We now prove that for L d -almost all x ∈ Ω, we have lim inf

Let x ∈ Ω \ V 2 (∂Ω, η 0 ). There exists a unique w ∈ Z d such that B i (x) = λ i 2 -i (C + w). Since λ i 2 -i n ∈ N, it follows that λ i 2 -i w ∈ Z d n , we will write c(x) for λ i 2 -i w. Let n 0 = λ i 2 -i n and so δ = n 0 /n. We recall that δ ≤ 4ε 1/(d+5) . By lemma 5.4, we have

By a change of variable, we get

(5.9)

According to Definition 7.9 in [START_REF] Rudin | Real and complex analysis[END_REF], the set B i (x) shrinks nicely to x as ε goes to 0. Indeed, we have

where α d is the volume of the d-dimensional unit Euclidean ball. Moreover when ε goes to 0, δ goes to 0. Since -

(5.10)

Using equality (5.9), it follows that

Using lemma 2.3, it yields that

(5.11)

Thanks to equality (5.10), we have

Finally, using inequalities (5.8) and (5.11), we have

Using theorem 1.1 and (5.10), by letting ε goes to 0, we get for any x ∈ Ω lim inf

Using inequality (5.7) and the previous inequality, we obtain

Finally, since I( -→ σ (x)) ≥ 0 for any x ∈ Ω, using the monotone convergence theorem, we obtain by letting η 0 go to 0:

This yields the result.

(5.12)

Let f n = f n (ω) be such a stream in the configuration ω (if there are several such streams, we pick one according to a deterministic rule). We set -→ µ n = -→ µ n (f n ). We aim to prove that on the configuration

We also set

It is clear that

We have

We have by change of variable

Using inequality (5.12), we have

On the configuration ω • π x,δ , we thus get

It yields the result.

Hence, on the event

. Using lemmas 2.3 and 2.6, we have for n large enough

Using inequality (5.15) and lemma 2.3, it follows that

Moreover, using inequality (5.26), we have

Hence, using the independence, we have for p large enough depending on η for ε small enough depending on p, d and M and then n large enough depending on ε

where we recall that κ goes to 0 when ε goes to 0. We set

We can apply lemma 4.4 and use the previous inequality

(5.28)

We check that the conditions to apply lemma 4.2 are satisfied. Since div -→ σ p = 0, we have by Gauss-Green

Moreover, for all ∈ {+, -}, for all i ∈ {1, . . . , d}, and for all A ∈ P i (m), we have

where we use in the last inequality that 2d/m ≤ 1 and inequality (4.41). We recall that m = ε -α , hence we have for ε small enough

It follows that the conditions to apply lemma 4.2 are fulfilled. 

(5.30)

We would like to use the reverse Fatou Lemma. Fix ε > 0. To be able to use this lemma we need to upperbound the integrand uniformly on ε and n by an integrable function. To do so, we need to use inequalities from the proofs of lemma 4.1 and lemma 4.2. We have using inequalities (5.28), (4. [START_REF] Krengel | Uniform pointwise ergodic theorems for classes of averaging sets and multiparameter subadditive processes[END_REF]) and (4.20)

where (λ + A ) A and (λ - A ) are the families defined in lemma 4.1 associated with -→ σ (x) and ε. Note that K ≥ 1 in (4.20). Finally, using equality (4.10), we obtain

(5.31)

Besides, using lemma 2.3, we have

It follows that using inequality (4.54) for n large enough

We are going to build these continuous streams as the limit of discrete streams. Since -

there exist an increasing function ψ :

To lighten the notations, we will write f n instead of f ψ(n) . By lemma 3.5, there exists a couple

) such that

where -→ Γ n is a set of self-avoiding oriented path that have both extremities in Γ where

. We set

Let N ≥ 1. By compactness and lemma 2.8, up to extractions, we can assume that for any p ∈ {1, . . . , N } the measure -→ µ n (f

Besides, we recall that by lemma 3.5, for any e 0 ∈ E d n and any p ≥ 1, we have

By inequality (2.5), it follows that

By letting N go to infinity, we obtain

It follows that there exists -→ σ 0 ∈ Σ(Γ 1 , Γ 2 , Ω) such that lim p→∞ -→ σ (p) --→ σ 0 L 1 = 0. Note that in general, we don't have necessarily -→ σ 0 = -→ σ . However, we prove that the stream -→ σ 0 --→ σ has null divergence on Let p be large enough such that

We have

) and ρ = r 0 /2p. This concludes the proof.

Upper large deviation principle

The following little lemma will appear several times in what follows. We refer to lemma 6.7 in [START_REF] Cerf | The Wulff crystal in Ising and percolation models[END_REF] for a proof of this lemma. Lemma 6.1 (Lemma 6.7 in [START_REF] Cerf | The Wulff crystal in Ising and percolation models[END_REF]). Let f 1 , . . . , f r be r non-negative functions defined on ]0, 1[. Then,

We recall that we endow M(V ∞ (Ω, 1)) d with the topology O associated with the distance d and the Borelian σ-field B and that P n denotes the following probability: 

We denote U the following basis of neighborhood of the null element of M(V ∞ (Ω, 1)) d :

To prove theorem 1.2, it is sufficient to prove that I is a good rate function, that the sequence of measures (P n ) n≥1 is I-tight and that the following local estimates are satisfied (see section 6.2 in [START_REF] Cerf | The Wulff crystal in Ising and percolation models[END_REF]). This is the purpose of the following proposition.

Proposition 6.2. The function I is a good rate function. The sequence of measures (P n ) n≥1 is I-tight, i.e., there exists positive constants c and λ 0 such that

Moreover, the local estimates are satisfied:

Let p 0 ≥ 1 be such that for any p ≥ p 0 , d( -

It follows that

By letting first ε goes to 0 and then taking the liminf in p, we obtain

Since the previous inequality holds for any δ > 0, it follows that 

For any p ≥ 1 such that d(ν p , ν) ≤ ε 0 /2, we have

By first taking the limit when ε goes to 0 and then the liminf in p, we obtain Since the space is metric, this implies that I is lower semi-continuous.

Step 2. We prove that I is a good rate function. Let us prove that its level sets are compact for the distance d. Let λ > 0. We have

Since I is lower semi-continuous, its level sets are closed for the topology associated with d. Moreover by lemma 6.3, the set

Hence, the level sets are compact for the topology associated with d. This implies that I is a good rate function.

Step 3. We prove that I satisfies the local estimates.

is clearly non-decreasing. Hence, using theorem 1.5, we have

For measures ν such that I(ν) = +∞, we have

is non-increasing and thanks to theorem 1.5, the function goes to I( -→ σ ) = I( -→ σ L d ) when ε goes to 0.

There exists δ = δ(ε) > 0 such that

Step 4. We prove the I-tightness. Let λ ≥ 0. First note that

Since by lemma 6.3, the set

, Ω)}. We have

Thanks to proposition 2.7, we have lim sup

By lemma 6.1, it follows that lim sup

By letting first K go to infinity and then ε 0 go to 0, we obtain lim sup

This concludes the proof.

Before proving theorem 1.4, we need to prove that the map -

endowed with the topology associated with the distance d.

Proof of proposition 6.4.

Let η > 0. Thanks to the proof of proposition 4.7. in [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF] (see (4.28)), we know that there exists a finite family of hyperrectangles A 1 , . . . , A N of disjoint interiors and h ≥ 0 such that

where -→ v i is normal to A i and C 0 is a constant depending on Ω and the A i . By lemma 2. 

Using inequality (6.2), it follows that lim sup

Finally, by letting η goes to 0, we obtain

The result follows.

We recall that

Proposition 6.5. The function J is convex on R + . There exists λ max > 0 such that J is finite on [0, λ max [ and infinite on ]λ max , +∞[. Moreover, J is increasing on

Note that we did not study the behavior of the function at λ max since eventually we will replace the value of J(λ max ) by the value of its left limit at λ max .

Proof of proposition 6.5. Step 1. We prove that the infimum in the definition of J is attained. Since by proposition 6.4, the function -

Consequently, the lower semi-continuous function I attains its minimum over this set: there exists

Step 2. We prove a lower bound. Let λ ≥ 0 such that J(λ) < ∞. Note that we have

Indeed, for any -→ σ ∈ Σ(Γ 1 , Γ 2 , Ω) such that flow cont ( -→ σ ) = (1 + δ)λ with δ ≥ 0, we have using the convexity of I (theorem 4.6)

Let ε > 0. Thanks to proposition 6.4, there exists δ > 0 such that for any -

We have

Let us prove that

If not, there exists a sequence (ψ(n)) n≥1 such that

By the same arguments as in the proof of Proposition 2.7, we can choose a sequence of realizations (ω ψ(n) ) n≥1 and extract a subsequence from ( -

To lighten the notation we will denote by ( -→ µ n (f n )) n≥1 this subsequence.

By Proposition 4.7. in [START_REF] Cerf | Maximal stream and minimal cutset for first passage percolation through a domain of R d[END_REF], we have that

By lemma 2.2, we obtain that lim

This contradicts the fact that

) . (6.4)

Step 3. We prove an upper bound. Let K > 0. Let ε 0 > 0. Thanks to proposition 6.4, to each

For -→ σ such that I( -→ σ ) < +∞, up to choosing a smaller δ-→ σ , we can assume that the local estimate given by the inequality (6.1) is satisfied for ε 0 :

For -→ σ such that I( -→ σ ) = +∞, up to choosing a smaller δ-→ σ , we can assume that lim sup

Since by lemma 6.3, the set { - 

Using lemma 6.1, inequality (6.7) and the local estimates (6.5), (6.6), it follows that lim sup By letting K go to infinity and then ε 0 go to 0, we obtain lim sup n→∞ 1 n d log P(φ n (Γ 1 , Γ 2 , Ω) ≥ (λ + ε)n d-1 ) ≤ -J(λ). (6.8)

Step 4. We prove that J is convex and conclude. Let us prove that the function J is convex. Let x, y > 0 such that J(x) < ∞ and J(y

(respectively -→ σ y ) such that I( -→ σ x ) = J(x) and flow cont ( -→ σ x ) = x (respectively I( -→ σ y ) = J(y) and flow cont ( -→ σ y ) = y). We have

Using the convexity of I, it follows that -We assume f 1 < λ min . Then, inf F J u = inf F2 J u and for n large enough, by definition of λ min

It follows, that have lim sup

Hence, to prove inequality (6.9), it remains to prove that lim sup

Let us assume that F 1 = ∅. If F 2 = ∅ then

and the inequality (6.9) follows. If F 2 = ∅, we set f 2 = inf F 2 . We have

Using theorem 1.5, it yields that lim sup

since J is increasing on [φ Ω , +∞[. This concludes the proof.