N

N

Large deviation principle for the streams and the
maximal flow in first passage percolation
Barbara Dembin, Marie Théret

» To cite this version:

Barbara Dembin, Marie Théret. Large deviation principle for the streams and the maximal flow in
first passage percolation. 2021. hal-02963113v2

HAL Id: hal-02963113
https://hal.science/hal-02963113v2

Preprint submitted on 26 Feb 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02963113v2
https://hal.archives-ouvertes.fr

Large deviation principle for the streams and the maximal flow in
first passage percolation *

Barbara Dembin T, Marie Théret ¥

Abstract: We consider the standard first passage percolation model in the rescaled lattice Z<¢ /n for
d > 2 and a bounded domain Q in R¢. We denote by I'! and I'? two disjoint subsets of 02 representing
respectively the source and the sink, i.e., where the water can enter in 2 and escape from 2. A maximal
stream is a vector measure ﬁ;;m that describes how the maximal amount of fluid can enter through
I'! and spreads in Q. Under some assumptions on  and G, we already know a law of large number
for ﬁ?‘”. The sequence (ﬁ?‘”)nzl converges almost surely to the set of solutions of a continuous
deterministic problem of maximal stream in an anisotropic network. We aim here to derive a large
deviation principle for streams and deduce by contraction principle the existence of a rate function for
the upper large deviations of the maximal flow in 2.

1 Introduction

1.1 First definitions and main results
1.1.1 The environment, discrete admissible maximal streams

We use here the same notations as in [9]. Let n > 1 be an integer. We consider the graph (Z4 ,E%)
having for vertices Z¢ = Z?/n and for edges E¢, the set of pairs of points of Z? at Euclidean distance
1/n from each other. With each edge e € EZ we associate a capacity t(e), which is a random variable
with value in R*. The family (¢(e)).cgs is independent and identically distributed with a common law
G. We interpret this capacity as a rate of flow, i.e., it corresponds to the maximal amount of water that
can cross the edge per second. Throughout the paper, we work with a distribution G on R* satisfying
the following hypothesis.

Hypothesis 1. There exists M > 0 such that G([M, +oo[) = 0.
Let (Q,T!,T?) that satisfies the following hypothesis.

Hypothesis 2. The set Q is an open bounded connected subset of RY, that it is a Lipschitz domain.
There exist Si,...,S; oriented manifolds of class C' that intersect each other transversally such that the
boundary I' of  is included in U;—; .. ;S;. The sets I'' and I'? are two disjoint subsets of I that are open
in T such that inf{||z — y||, z € T, y € I'?} > 0, and that their relative boundaries OrT'* and OrI'? have
null H1 measure.

The sets I'' and I'? represent respectively the sources and the sinks. We aim to study the maximal
streams from I'! to I'? through © for the capacities (t(e))eers - We shall define discretized versions for
those sets. For @ = (71,...,74) € R, we define

[zll2 =

d
Zx? and @)oo = max { |z;|,i=1,...,d}.
i=1
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We use the subscript n to emphasize the dependence on the lattice (Z4 EZ). Let Q,, T',, T} and T'2 be
the respective discretized version of , I', I'' and I'%:

1
Qn:{xezg: doo(x,Q)<n},

Ly ={zeQ,: yd¢Q,, <x,y)€]E‘i},

n

) . 1 . 1
e = {w €l doo(z,T%) < =, doo (2, T37%) > }, fori=1,2,
n n

where d is the L™ distance and (x, y) represents the edge whose endpoints ar% x and y. We denote by
d
n

ﬁz the set of oriented edges. We will denote by ((z,y)) the oriented edge in
is  and last endpoint is y. To each ((z,y)) in ﬁ% we can associate the vector zfj in R%. Notice that
|Z9ll2 = 1/n. Let (ef,...,eq) be the canonical basis of R?. We denote by - the standard scalar product
in R?.

Stream function. A stream f, is a function f,, : E¢ — R? such that the vector f,(e) is collinear with
the geometric segment associated with e. For e € EZ, || f,,(e)||2 represents the amount of water that flows
through e per second and f,,(e)/]| fn(e)|l2 represents the direction in which the water flows through e.
Admissible streams through €. A stream f,, : E¢ — RY from T'! to I'? through Q is admissible if
and only if

- The stream is inside Q : for each edge e = (z,y) such that (z,y) ¢ Q2 \ (I} UT?2)? we have
fn(e) =0

- The stream respects the capacity constraints: for each e € EZ we have || f,(e)2 < t(e)

whose first endpoint

- The stream satisfies the node law: for each vertex x € Z<4 \ (T} UT2) we have

Z fn(e)’ﬁ/:0~

yELL: e=(x,y)€EL

The node law expresses that there is no loss or creation of fluid outside I'; and I';. The capacity constraint
imposes that the amount of water that flows through an edge e per second is limited by its capacity t(e).
We denote by S, (I'',T2,9) the set of admissible streams from I'! to I'? through 2. As the capacities
are random, the set of admissible streams S,,(I'!, T2, Q) is also random. We denote by SM(I't, T2, Q) the
set of streams f,, : E¢ — R? such that

- for each edge e = (z,y) such that (z,y) ¢ Q2 \ (I} UT?2)? we have f,(e) =0

- for each e € E¢ we have || f,.(e)|la < M

- the stream satisfies the node law for any vertex x € Z2 \ (TL UT?2).

Note that the set SM(I'',T2,Q) is a deterministic set. To each f,, we can define its associated vector
measure L, (fn) by

ﬁn(fn) = % Z f’ﬂ(e)éc(e)a

eckd

where c(e) denotes the center of the edge e.
Maximal flow through Q. For each admissible stream f,, in S,,(I'!,T'2,Q), we define its flow by

flow,,(fn) = Z Z nfn(e)ﬁ

zel'l YEQ,:
e=(z,y)€E;

where we recall that ||Z[2 = 1/n. This corresponds to the amount of water that enters in €, through
I'L per second for the stream f,,. The maximal flow between I'' and I'? through ) for the capacities
(t(e))ecrt, denoted by ¢, (T, T?,Q), is the supremum of the flows of all admissible streams from I'' to
I'? through Q:

Gn (T, T2,Q) = sup {low, (fn) : fn € Su(TH,T%,Q)} . (1.1)



We define ﬁnm‘”, the measure corresponding to a given stream f™e* € S,,(I'',T2,Q) that achieves the
maximal flow ¢, (I't, T2, Q).

Admissible streams through a connected set C without prescribed sinks and sources. Let
C C R4 We denote by S,(C) the set of admissible streams through C, that is streams f,, : E¢ — R¢
such that:

- The stream respects the capacity constraint: for each edge (z,y) € E¢ such that x € C and there
exists i € {1,...,d} such that 77 - & > 0, we have || f,(e)|]2 < t(e).

- The stream respects the node law: for each vertex x € Z% N C such that for any i € {1,...,d},

(x — €;/n) € C, we have
> fale) -7 =0.

YyELL: e=(x,y)€EL

In what follows, we will say that x is the left endpoint of the edge e = (z,y) € EZ, if there exists
1 €{1,...,d} such that ) = e_f/n Moreover, we say that e belongs to C' if its left endpoint = belongs

to C. Note that the event {f, € S,,(C)} only depends on edges such that their left endpoint is in C.

1.1.2 Presentation of the limiting objects and main results

We want to define the possible limiting objects for ﬁn To lighten the presentation of the object,
we will do as if our limiting object @ : R? — R were a nice C! vector field. Actually, the convergence
holds in a distributional sense and & is a distribution. More rigorous definitions will be given in section
1.2.3. Let us denote by S~ the unit sphere in R%. For 2 € Q and ¥ € S?1, the quantity ?(w) s
corresponds to the quantity of flow sent by 7 at the position z in the direction V. The limiting object
7 inherits the properties of ﬁn:

(i) the stream is inside Q : o =0 on R\ Q;

(ii) conservation law: divd =0 on Qand @ - Wg=0on T\ (I UT?) .

Here 7 q(z) denotes the exterior unit vector normal to € at 2. The condition (ii) is a consequence of

the fact that f, satisfies the node law on 2 and that no water escapes from 2 except at the sinks and
the sources. We will say that 7 is an admissible stream if it satisfies these two conditions and we will
denote by $(T'!, T2, Q) the set of admissible continuous streams (a more rigorous definition will be given
later). Just as in the discrete setting, we are interested in the maximal amount of flow that can enter
through I''. We need to give a definition of the flow for continuous streams. The flow is the amount of
water that enters the source per second, it translates here as follows

flow" (¢) = — | o TadH¥ .

1"1

Here, the vector WQ is exterior, that is, exiting from €2, whereas the vector —WQ is entering €2, this
accounts for the minus sign. H%~! denotes the Hausdorff measure in dimension d — 1. The goal of this
paper is roughly speaking to find a proper rate function I on ¥ such that

Ve e D(MhLT2,0)  P(3f, € Su(THT2,0Q) : To(fn) = TLY) ~exp (- I(7)n?)

where £¢ denotes the Lebesgue measure in dimension d. To be able to compare f,, and o, we introduce
a distance d between vector measures that we will explicit in section 1.2.2. The convergence for this
distance implies the weak convergence. Roughly speaking, the larger I (7) is the more atypical the
continuous stream is. We here express the rate function T as the integral on 2 of an elementary rate
function I:

&) = /Q (3 (2))dL(z) (1.2)

This elementary rate function I characterizes locally how atypical the stream is. When we consider a
small cube C' in ), we have if the cube is small enough that 7 is almost constant, there exists s > 0
and U € S?! such that & ~ s in C. The function I characterizes how likely it is possible that there



exists an admissible stream in C close to s¥ L%, Let us now give a more rigorous definition. Let us
denote by € the unit cube centered at 0, that is

e[ L1]
Sl 272
We first study the probability of having a stream in S, (€) that looks like some constant continuous
stream sU € RY.

Theorem 1.1. Let G that satisfies hypothesis 1. Let T €S and s > 0. We have

— lim lim sup — o log]P’ (Elfn € S (ﬁn (fu)le, s?]lgﬁd) < 5)

e=0 nooo

= — lim hmmf — logP (3f, € Sl (T n(fu)le,sTLeL?) <é) .

e—0 n—oo n

We will denote this limit by 1(s7).

Let M(V4 (£, 1)) be the set of measures on R? with support included in V., (2, 1) where Voo (2,1) =
{x e R%: d (9, :z:) < 1}. We endow M (Vo (Q,1))? with the topology O associated with the distance d
and the Borelian o-field B. Write P,, the following probability:

VAeB  Po(A)=P3f, € Su(T,T2,Q): Wnl(fn) € A).

We define the following rate function I on M (Vo (€, 1))% as follows:

~ oo ifv d. 12 M(pl 12
W e MV (@ D) I(v):{+ fv ¢ {TL1: T € BII2.0) NS (I, 12,0))

I(?) ifv="7L 7 enTT20)

where XM (I'', T2, Q) will be defined more rigorously later, it represents the continuous streams that
corresponds to weak limit of a sequence of discrete streams in SM(I'', T2, Q). We have the following
large deviation principle for the stream :

Theorem 1.2 (Large deviation principle for admissible streams). Under some regularity hypothesis on
Q, T'! and I'?, for distributions G compactly supported, the sequence (Pp)n>1 satisfies a large deviation

principle with speed n® governed by the good rate function I and with respect to the topology O, i.e., for
all Ae B

—inf{f(u): VE/i} <hm1nf—logP (4) <hmsupflogIP (4) < —inf{f(y): VEZ} .

n—oo nd n—00

We can deduce from theorem 1.2, by a contraction principle, a large deviation principle for the
maximal flows. Let .J be the following function on R™:

YA>0  J(\) =inf {f(?) .7 e (I, T2,Q) N =M, T2, Q), flow™" () = A}

and
Amaz = sup {flow™™ (7)) : 7 € ¥(I',T2,Q)} .

To prove an upper large deviation principle for maximal flows, we will need the following lower large
deviation principle for maximal flows that was proven in [11].

Theorem 1.3 (Lower large deviation principle for maximal flows). Let G that satisfies hypothesis 1.
Let (Q,T1,T2) that satisfies hypothesis 2. There exist ¢q > 0 and Apmin > 0 depending on Q, T, T'? and
G such that the sequence (¢,(T1,T2,Q)/n%=1 n € N) satisfies a large deviation principle of speed n?~!
with the good rate function jl

Moreover, the map J; is infinite on [0, Amin[U]dq, +00], decreasing on)Amin, ¢al, positive on | Amin, dal.
Besides, for every X < Apin, there exists ng > 1 such that

1 172
Vn > ng P<W<A):0.
n



Let Apnin > 0 depending on G and € given by theorem 1.3. We define the following rate function:

J()\) if A e [)\min; )\maa:[
j’u,(A) — hm);\z;:::: J(A) lf )\ = Amu,w . (13)
too if A € [0, Amin [UAmazs +00]

Theorem 1.4 (Upper large deviation principle for maximal flows). Let G that satisfies hypothesis
1. Let (,TY,T?) that satisfies hypothesis 2. Let ¢, Amin given by theorem 1.3. The sequence
(pn(T1,T2,Q) /0?1 n € N) satisfies a large deviation principle of speed n® with the good rate func-
tion ju _ _

Moreover, the map J,, is convexr on Ry, infinite on [0, \pin[U]A\maa, +00[, Ju s null on [Amin, ¢q]
and strictly positive on |pq, +00].

Theorems 1.2 and 1.4 are the main results of this article. To prove these theorems, we will need tools
from the realm of large deviations and the following key theorem:

Theorem 1.5. Let G that satisfies hypothesis 1. Let (Q,T1,T2) that satisfies hypothesis 2. For any
7 e X(I'1,T2,Q), we have

— lim 1imsup%10gﬂ»(3fn € Su(TLT2Q) : 0(Hn(fn), 7LY) <é)

e=0 nooo

= — lim lim infidlogP (3fn € ST T2,Q) : 0(Hn(fn), FLY) <o) = / I(7 (2))dL(z) = 1(T).
e=0 n—oo N Q

Remark 1.6. Theorems 1.3 and 1.4 give the full picture of large deviations of ¢, (T, T2 Q). The lower
large deviations are of surface order since it is enough to decrease the capacities of the edges along
a surface to obtain a lower large deviations event. The lower large deviations have been studied in the
companion paper [11]. The upper large deviations are of volume order, to create an upper large deviations
event, we need to increase the capacities of constant fraction of the edges. This is the reason why to study
lower large deviations, it is natural to study cutsets that are (d —1)-dimensional objects, whereas to study
the upper large deviations, we study streams that are d-dimensional objects.

1.2 Background

We now present the mathematical background needed in what follows. We present two different flows
in cylinders and give a rigorous definition of the limiting objects.

1.2.1 Flows in cylinders and minimal cutsets

Dealing with admissible streams is not so easy, but hopefully we can use an alternative definition of
maximal flow which is more convenient. Here n = 1, i.e., we consider the lattice (Z?, E?). Let E C E4
be a set of edges. We say that E cuts I'! from I'? in © (or is a cutset, for short) if there is no path
from '} to I'? in (Q,E?\ E). More precisely, let v be a path from T'} to I'? in {;, we can write v as a
finite sequence (vg, €1, V1, ..., €n, Uy) of vertices (v;)i=o,...n € Q?H and edges (e;)i=1,...n € (EY)" where
vo €T, v, € T? and for any 1 <i < n, e; = (v;_1,v;) € EL. Then, E cuts I'! from I'? in Q if for any
path v from '} to I'? in Q, we have v N E # (). Note that v can be seen as a set of edges or a set of
vertices and we define |y| = n. We associate with any set of edges FE its capacity T'(E) defined by

T(E)=> t(e).

ecE
The max-flow min-cut theorem, see [4], a result of graph theory, states that
#1 (T, T2,Q) = min { T(E) : E cuts T'! from I'? in Q } .

We recall that ¢; was defined in (1.1). The idea behind this theorem is quite intuitive. By the node law,
the flow is always smaller than the capacity of any cutset. Conversely, consider a maximal flow through
), some of the edges are jammed. We say that e is jammed if the amount of water that flows through



e is equal to the capacity t(e). These jammed edges form a cutset, otherwise we would be able to find
a path v from &; to &5 of non-jammed edges, and we could increase the amount of water that flows
through ~ which contradicts the fact that the flow is maximal. Thus, the maximal flow is limited by the
capacity of these jammed edges: the maximal flow is given by one of the T'(E) where E cuts I'! from I'2
in Q. It follows that the maximal flow is equal to the minimal capacity of a cutset.

We are interested in the maximal flow ¢ that can cross a cylinder oriented according to 7 e §i1
from its top to its bottom per second for admissible streams. A first issue is to understand if the maximal
flow in the box properly renormalized converges when the size of the box grows to infinity. This boils
down to understand the maximal amount of water that can flow in the direction ¥. Let us first define
rigorously the maximal flow from the top to the bottom of a cylinder. Let A be a non-degenerate
hyperrectangle, i.e., a rectangle of dimension d — 1 in R?. Let 7 € S such that ¥ is not contained
in an hyperplane parallel to A. We denote by cyl(4, h, 7) the cylinder of basis A and of height A > 0 in
the direction ¥ defined by

cyl(A h, ¥) = {m—l—t? cx €A te[0,h]}.
If ¥ is one of the two unit vectors normal to A, we denote by cyl(A, h)
eyl(A,h) = {z+tT :x€ A te[-hh]}.

We have to define discretized versions of the bottom B(A, h) and the top T'(A, h) of the cylinder cyl(A, h).
We define them by

o d . Hy ¢ Cyl(A7 h)7 <.’L‘,y> € Ed
B(A,h) = {x € Z°Neyl(4,h) - and (x,y) intersects A — hU/

and
— d . Ely ¢ Cyl(A> h)a <$,y> € Ed
T(A,h) = {x € ZENeyl(4, h) : and (x,y) intersects A +hv [
We denote by ®(A, h) the maximal flow from the top to the bottom of the cylinder cyl(A, h) in the
direction ¥, defined by
D(A, h) = ¢1(T(A,h), B(A,h),cyl(A,h, 7).

The maximal flow ®(A, k) is not well suited to use ergodic subadditive theorems, because we cannot glue
two cutsets from the top to the bottom of two adjacent cylinders together to build a cutset from the top
to the bottom of the union of these two cylinders. Indeed, the intersection of these two cutsets with the
adjacent face will very likely not coincide.

To fix this issue, we need to introduce another maximal flow through the cylinder for which the
subadditivity would be recover. Let T'(A, h) (respectively B’(A, h)) be the a discretized version of the
upper half part (resp. lower half part) of the boundary of cyl(A4, h); that is if we denote by z the center
of A:

T'(A,h) = {x € Z* Ncyl(A,h) : zt -0 > 0and Iy ¢ cyl(A, h), (z,y) € E? s (1.4)

B'(Ah) ={z € 2" Ncyl(A,h) : zE -7 < 0and Jy ¢ cyl(4,h), (z,y) € E? }. (1.5)

We denote by 7(A, h) the maximal flow from the upper half part to the lower half part of the boundary
of the cylinder, i.e.,
T(A,h) = ¢1(T' (A, h), B'(A, h),cyl(A, h)).

By the max-flow min-cut theorem, the flow 7(A, h) is equal to the minimal capacity of a set of edges F
that cuts T7(A, h) from B’(A, h) inside the cylinder cyl(A4, k). The intersection of F with the boundary
of the cylinder has to be close to the relative boundary 0A of the hyperrectangle A.



1.2.2 Some mathematical tools and definitions

Let us first recall some mathematical definitions. For a subset X of R?, we denote by X the closure
of X, by X the interior of X. Let a € R%, the set a + X corresponds to the following subset of R¢

a+X={a+z:2€X}.

For r > 0, the r-neighborhood V;(X,r) of X for the distance d;, that can be Euclidean distance if i = 2
or the L>°-distance if i = oo, is defined by

Vi(X,r) = {yERd: di(y, X) <T} .

We denote by B(z,r) the closed ball centered at x € R? of radius » > 0. Let C,(R% R) be the set of
continuous bounded functions from R? to R. We denote by C¥(A, B) for A C R? and B C R, the
set of functions of class C* defined on RP, that takes values in B and whose domain is included in a
compact subset of A. The set of functions of bounded variations in €2, denoted by BV (), is the set of
all functions u € L'(Q — R, £4) such that

sup{/ dividct: T € C*(Q,RY), Vo € Q ﬁ(x) EB(O,l)} < o0
Q

Let v be a signed-measure on R¢, we write v = v+ — v~ for the Hahn-Jordan decomposition of the signed
measures v. Then v and v~ are positive measures, respectively, the positive and negative part of v.
We define the total variation |v| of v as |v| = v + v

Let # € R? and a > 0, we define the homothety 7, o : R? — R as follows

vy € R¢ Toa(y) =ay+x. (1.6)

We will need the following proposition that enables to relate the Lebesgue measure of a neighborhood
of the boundary of a set £ with the H?~'-measure of its boundary JF.

Proposition 1.7. Let E be a subset of R? such that OF is piecewise of class C* and HI 1 (OE) < oo
Then, we have
L4 E
o £ 020, 1)

r—0 2r

=H¥HOE).

This proposition is a consequence of the existence of the (d — 1)-dimensional Minkowski content. We
refer to Definition 3.2.37 and Theorem 3.2.39 in [13].

Let us now define the distance 0. Let k € N. Let A € [1,2]. We denote by A’/{ the set of dyadic cubes
at scale k with scaling parameter A, that is,

Ak:{z—w([_;,;fﬂ) : Z}

Let A5 (€2) denote the dyadic cubes at scale k that intersect Voo (€2,2), that is
Ak ={Qeal:@nva@2 £0} .

Let v, u € M(Va (£, 1)) be vectorial measures, we set

o(v,p) = sup  sup Z Y Iw@ +2) —v(Q+ )l (L.7)

ze[lld/\EIQ]kO Qenk

Remark 1.8. Although working with topological neighborhood is the most general setting, we chose here
to work with a distance to reduce the amount of technical details. The choice of a distance is arbitrary.
However, this distance satisfies some properties that are not satisfied by other more standard distances.
This distance was inspired by the distance that appears in [14]. The key property that this distance
satisfies is that if for v, u € M(Vso(2,1))? the distance 3(v, u) is small, then the distance restricted to
some Q C €2 is also small. This property will be proven later.



1.2.3 Continuous streams

We give here the mathematical definitions to properly define the max-flow min-cut theorem as in the
paper of Nozawa [21]. A stream in Q is a vector field & € L>®(Q — R?, £4) that satisfies

dive =0 on €,

in the distributional sense, that is, div @ is a distribution defined on by
Vh € C(Q,R) / hdivedei=— | & Vhdcd.
Rd R

Thus, a stream 7 satisfies
Vh € C(,R) 7 - Vhdcl = 0.
Rd
This condition is the continuous analogue of the node law, it expresses the fact that there is no loss or
gain of fluid for the stream 7 inside Q.

For a stream o from I'' to I'2 in €, the fluid can enter or exit only through the source I'! and the
sink I'?, we have to mathematically express the fact that no water escapes through I'\ (I't UT?). Since
7 is defined in the distributional sense, we need to give a sense to the value of 7 on I that is a set of
null £L%-measure. To do so we need to define the trace on I' for any u € BV (Q). According to Nozawa in
[21], there exists a linear mapping 7 from BV () to L}(I' — R, H~1), such that, for any u € BV (1),

1
i - dy) =0 for H' T-ae. L.
o TR BT fag, M) WL =0 for e €

According to Nozawa in [21], Theorem 2.3, for every 7 = (p1,...,pq) : 2 — R% such that p; € L>®(Q —
R, L) for all i =1,...,d and div 7 € L% (Q — R, £L%), there exists g € L®(I' — R%, #%1) defined by

vu e WHH(Q) /gfy(u) A = / 7 ?udeJr/ wdiv FdLe .
r Q Q
The function g is denoted by 7 - Wq. For any stream o, since div @ = 0 L%a.e. on §, we have
Vu € W) /(6> T o)y(u) dH = / & - Fudc?.
r Q

We need to impose some boundary conditions for any stream 7 from I'! to I'2 in : the water can only
enters through I'! | i.e.,
7 - WQ <0 H4 T ae on T

and no water can enter or exit through I'\ (I'' UT?), 4.e.
T -TMa=0 Hlae onT\(T'Ur?).

Of course, we also need to add a constraint on the local capacity, otherwise the continuous maximal flow
is infinite. This local constraint is here anisotropic which means that the maximal amount of water that
can spreads in a direction depends on the direction but not on the location. This local constraint is given
by a function v : RY — R, that is a continuous convex function that satisfies v(7) = v(—= 7). In the
setting of [9], the function v corresponds the flow constant that will be properly defined in section 1.3.1.
The local capacity constraint is expressed by

L%a.e. on Q, Vo e si? -V <v().

To each admissible stream ?, we associate its flow

flow™™ () =— [ & - HadH"™!

Tt



which corresponds to the amount of water that enters in € through I'' for the stream i per second.
Nozawa considered the following variational problem

7 e L°(Q — R LY, dive = 0L%ae. on
T -V < (V) forall ¥ e S L%a.e. on €,
- ﬁg <0 M4 lae. onI?

T -TMa=0 Hi lae on T\ (TTUT?)

P = sup { flow*™ () : (1.8)

Note that we can extend o to R? by defining & = 0 L£%a.e. on Q°. We denote by ¥, the set of
admissible streams solution of the variational problem, i.e.,

7 =0 La.e. on Q°, dive = 0L%a.e. on Q,
T -V <v() forall ¥ € S L%a.e. on Q,
¥, =47 e L®R? =R L) : T g <0 H¥lae onT! . (19
T -THa=0 Hilae onT\(IUT?)
flow™™ (') = ¢q

Depending on the domain, the source and the sink, there might be several solutions to the continuous
max-flow problem. There is also a formulation of this continuous problem in terms of minimal cutset,
but we won’t present it here as we are only interested in streams. We refer to [21] for more details on this
formulation. When we study law of large numbers for maximal streams, the capacity constraint comes
naturally from the law of large numbers for maximal flow. Namely, a discrete stream cannot send more
water that V(?) in the direction ¥ almost surely where V(?) is the flow constant defined in section
1.3.1. Otherwise there exists a cylinder in the direction 7 where the maximal flow properly renormalized
exceeds 1/(7), this event is very unlikely. However, when we study large deviations, we are specifically
interested in these unlikely events and so the capacity constraint given by v is not relevant anymore. Of
course, if G is compactly supported on [0, M], the limiting streams have a capacity constraint depending
on M, d and . We define the set of admissible continuous streams Y(I',T2,9Q) without capacity
constraint as

7 =0 L%a.e. on Q°, dive = 0L%ae. on Q,
SILT2,0) ={{ 7 e LR =R, LY : & -HWag=0 H¥lae onT)\ (I'UT?) . (1.10)
Vie{l,...,d} |7 -e|<M L%ae onQ

Remark 1.9. Unlike the definition of ., in the definition of admissible streams (T, T2, Q) we do not
constrain the water to enter through T''. Indeed, we are interested in admissible streams that are not
necessarily maximal.

1.3 State of the art
1.3.1 Flow constant

In 1984, Grimmett and Kesten initiated the study of maximal flows in dimension 2 in [15]. In
1987, Kesten studied maximal flows in dimension 3 in [18] for straight boxes, i.e., in the direction
Y =74 :=(0,0,1) and basis A = [0,k] x [0,1] x {0} with k > > 0. He proved the following theorem.

Theorem 1.10 (Kesten [18]). Let d = 3. Let G be a distribution that admits an exponential moment
and such that G({0}) is small enough. Let k > 1 and m = m(k,l) > 1. If m(k,1) goes to infinity when k
and l go to infinity in such a way there exists 6 €]0, 1], such that

. 1 .
k’lllinooﬁlogm(k,l) =0,
then
® ([0, k 0,1 0 k.l
lim ([,]x[,]x{},m(,)):l/ a.s. and in L'
k,l—o0 kl

where v is a constant depending only on d and G.



The proof is very technical and tries to give a rigorous meaning to the notion of surface. Moreover, it
strongly relies on the fact that the symmetry of the straight boxes preserves the lattice, there is no hope
to extend this technique to tilted cylinders. In [28], Zhang generalized the result of Kesten for d > 3 and
G({0}) <1—pc(d).

To be able to define the flow constant in any direction, we would like to use a subadditive ergodic
theorem. Since we cannot recover a subadditive property from the maximal flow ®, we consider the
flow 7 instead. The simplest case t_o) s_t)udy maximal flows is still for a straight cylinder, i.e., when
¥ =79 :=(0,0,...,1) and A = A(k ):del[k- I;] x {0} with k; < 0 < I; € Z. In this case, the

- =
family of variables ( (A(Kk, 1),h)— RT
glued together along the common side of these cylinders. By applying ergodic subadditive theorems in
the multi-parameter case (see Krengel and Pyke [19] and Smythe [25]), we obtain the following result.

is subadditive since minimal cutsets in adjacent cylinders can be

Proposition 1.11. Let G be an integrable probability measure on [0, +oo[, i.e., f0+°° xdG(x) < oo. Let

A= Hf 11 [ki, 1] x {_} with k; <0< 1; € Z. Let h: N — RT such that lim,_,o, h(n) = +o0o. Then there
exists a constant v(vg), that does not depend on A and h but depends on G and d, such that

nl;rrgo m = v(®) a.s. and in L*.
The constant 1/(1)—8) is called the flow constant. In fact, the property that 1/(70) does not depend on h is
not a consequence of ergodic subadditive theorems, but the property can be proved quite easily. Next,
a natural question to ask is whether we can define a flow constant in any direction. When we consider
tilted cylinders, we cannot recover perfect subadditivity because of the discretization of the boundary.
Moreover, the use of ergodic subadditive theorems is not possible when the direction o we consider is
not rational. These issues were overcome by Rossignol and Théret in [22] where they proved the following
law of large numbers.

Theorem 1.12 (Rossignol-Théret [22]). Let G be an integrable probability measure on [0,4o00[ , i.e.,
+°o 2dG(z) < oo. For any U € S, there exists a constant v(V') € [0,400[ such that for any non-
degenemte hyperrectangle A normal to 7 for any function h : N — R such that lim,_, h(n) = +oo0,

we have An
L T(nA, b))

n-roo HI1(nA) v(V) in L.

If moreover the origin of the graph belongs to A, or if f0+°° /=D 4G (x) < oo, then

L T4, B()

A ST ) = (V) as..

If the cylinder is flat, i.e., if lim,_ o h(n)/n = 0, then the same convergence also holds for ®(nA, h(n)).
Moreover, either v() is null for all ¥ € S* or v(V) > 0 for all ¥ € S 1.

1.3.2 Upper large deviations for maximal flows in cylinders

We present here some result on upper large deviations for the maximal flows ®(nA, h(n)) in cylinders
and 7(nA, h(n)). The theorem 4 in [27] states upper large deviations results for the variable ®(nA, h(n))
above the value v(0).

Theorem 1.13 (Théret [27]). Let us consider a distribution G on Ry that admits an exponential mo-
ment. Let ¥ be a unit vector and A be an hyperrectangle orthogonal to 7, let h : N — Ry be a height
function such that lim,, . h(n) = +o0o. We have for every A > v(7)

Coe 1 ®(nA, h(n))
R T A () IOgP<Hd—1(nA) ZA) =0

Let us give an intuition of the speed of deviation. If ®(nA, h(n)) is abnormally large, there are two
possible scenarios. Either there are an order n?~! of paths from the top to the bottom of the cylinder
that use edges of slightly abnormally large capacity, or there are a fewer number of paths from the top

10



to the bottom of the cylinder with edges whose capacities are extremely big (with a capacity that goes
to infinity with n). Both scenarios enable to transmit more water from the top to the bottom than the
expected value. Actually, when G has an exponential moment, the first scenario is the most likely one.
Since the paths from the top to the bottom have a cardinality of order at least h(n), this implies that
a positive fraction of edges inside the cylinder have a slightly abnormally large capacity. This accounts
for the speed of deviation of volume order.

Remark 1.14. We insist on the fact that v(T) is not in general the limit of ®(nA,h(n))/H¥1(nA)
when n goes to infinity. We can prove that the limit is equal to 1/(7) only for straight cylinders or flat
cylinders. The existence of the limit of ®(nA, h(n))/H¥~1(nA) when n goes to infinity is known when
h(n) = Cn. The limit may be expressed as the solution of a deterministic variational problem of the same
kind than ¢q defined in (1.8). Proving that the limit is smaller or equal than v() is trivial. Proving
the strict inequality has been done only in dimension 2 by Rossignol and Théret in [23]. They proved
that the limit of ®(nA, h(n))/HI~Y(nA) is strictly smaller for tilted cylinder. We expect that this result
also holds for higher dimensions but the question is still open.

The corresponding large deviation principle have been obtained in the case of straight cylinders by
Théret in [26].

Theorem 1.15 (Théret [26]). Let h: N — R be a height function such that

lim h(n) =400

n—oo logn

Set A =1[0,1]"1 x {0}. Then for every A > 0, the limit
1
P(A) = lim —————1logP (®(nA,h(n)) > An* ')

ezists and is independent of h. Moreover, the function ¥ is convex on Ry, finite and continuous on the
set {\: G([\,+o0]) > 0}. If G has a first moment then ¢ vanishes on [0,v((0,...,0,1))]. If G has an
exponential moment then v is strictly positive on Jv((0,...,0,1)),+oo[, and the sequence

().

satisfies a large deviation principle with speed n®~'h(n) and governed by the good rate function 1.

This result crucially depends on the symmetry of the lattice with regards to reflexion along the
vertical faces of the cylinders. The proof strategy may not be extended to tilted cylinders. The upper
large deviations results for 7 are a bit different because the speed of deviation depends on the tail of the
distribution G. Indeed if the edges around JA have very large capacities it will increase the flow 7 in a
non negligible way. Since the minimal cutsets corresponding to 7(A, h) are anchored around 0A, their
capacity depends a lot on these edges. Théret proved in Theorem 3 in [27] upper large deviations of the
variable 7.

Theorem 1.16 (Théret [27]). Let U be a unit vector and A be an hyperrectangle orthogonal to U,
let h : N — Ry be a height function such that lim,_,. h(n) = +oo. The upper large deviations of
7(nA, h(n))/H4 1 (nA) depend on the tail of the distribution of the capacities. We have

(i) If the law G has bounded support, then for every A > v(7) we have

_— | (A
1naoof He=1(nA) min(h(n),n) : gIP’( Hi=1(nA) - )\) -0

(i4) If the law G is exponential of parameter 1, then there exists ng such that for every A > 1/(7) there
exists a positive constant D depending on d and \ such that

T(nA, h(n))

Vn > nyg P(’Hd—l(nA)

> A) > exp(—DHI 1 (nA)).
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(#i1) If the law G satisfies
Vo > 0 / *dG(z) < 00,
Ry

then for every A > v(V) we have

) 1 T(nA, h(n))
[ — A el ek S A = —00.
nhm =T )logIP’( (0 A) A 00

Let us give an intuition of why the speed is n? when h(n) > n. Since the cutsets are anchored in
d(nA), they cannot deviate too far away from nA: as a result, most of the edges outside cyl(nA,n) do
not have an influence on 7(nA, h(n)). There is no large deviation principle for maximal flows 7 or ® in
tilted cylinder.

1.3.3 Law of large numbers for the maximal stream in a domain

We work here with the lattice (Z¢,E4). In [9], Cerf and Théret proved a law of large number for
the maximal flow and the maximal stream. The maximal stream converges in some sense towards the
solution of the continuous max-flow problem ¢q. We recall that the continuous max-flow problem was
presented in section 1.2.3 and here the local capacity constraint corresponds to the flow constant v.

Theorem 1.17. [Cerf-Théret [9]] Let G that satisfies hypothesis 1 and such that G({0}) < 1 — p.(d)
(to ensure that v is a norm). Let (Q,T1,T2) that satisfies hypothesis 2. We have that the sequence
(%), converges weakly a.s. towards the set ¥, (defined in (1.9)), that is,

a.s., Vf € Cy(R,R) lim inf / fdﬁgm—/ fadct| =o.
n%m?ezy Rd Rd 2
Moreover, we have
. o (THT2.Q
i PeCEE = 0.

The strategy of their proof is to first prove that the measure ﬁ;"‘” converges towards 7L where
7 is an admissible continuous stream and that

1 7172
[ Ga(TLT2Q)

n—00 nd—1

= flow™™ (7).

These properties come from the fact that the continuous stream & inherits the properties of the discrete
stream f;%*. In particular, the local capacity constraint comes from the fact that the maximal flow in
a cylinder in a direction o properly renormalized converges towards 1/(7) when the dimension of the
cylinders goes to infinity. This implies that almost surely the stream f}** cannot send more water than
v(7) in the direction ¥. The remaining part is to prove that @ € %, i.e., that flow™" (%) = ¢q.
To prove it, they need to study discrete minimal cutsets associated with f*** and their continuous
counterpart. The originality of this paper is the use of new techniques by working with maximal streams
instead of minimal cutsets. This object is more natural than cutsets to study upper large deviations
since the upper large deviations are of volume order, whereas cutsets are (d — 1)-dimensional objects.

Actually, the convergence of ¢, (I'", T2, Q)/n?"! towards ¢oq when n goes to infnity was already
known as a consequence of the companion papers of Cerf and Théret [6], [7] and [8] with an alternative
definition for ¢q. Instead, of expressing ¢q as the solution of a variational problem for maximal stream,
they expressed it as the solution ¢q of a variational problem for minimal continuous cutsets. In [8],
Cerf and Théret proved using upper large deviations result in cylinders (theorem 1.13) that the large
deviations of ¢,, is of volume order.

Theorem 1.18 (Cerf-Théret [8]). Ifd(I'',T?) > 0 and if the law G admits an ezponential moment, then
there exists a constant ¢q such that for all X > ¢q,

1
limsup ﬁ logP (¢TL(F17F27Q) 2 )\ndil) <0.

n—oo

Their strategy does not able to prove the existence of the limit of log P ((bn (I, 12,9Q) > )\nd_l) /n? when
n goes to infinity.

12



1.3.4 Upper large deviation principle for the first passage percolation random pseudo-
metric

We consider here the lattice Z?. There exists another interpretation of the model of first passage
percolation which has been much more studied. In this interpretation we say that the random variable
t(e) represents a passage time, i.e., the time needed to cross the edge e. We can define a random pseudo-
metric 7 on the graph: for any pair of vertices z, y € Z%, the random variable T'(z,y) is the shortest
time to go from x to y, that is,

T(z,y) = inf {Zt(e) : 7 path from z to y} .

ecy

A natural question is to understand how this random pseudo-metric behaves. In particular, what is
the asymptotic behavior of the quantity T'(0,nx) when n goes to infinity ? Under some assumptions
on the distribution G, one can prove that asymptotically when n is large, the random variable T'(0, nx)
behaves like n p(z) where p(z) is a deterministic constant depending only on the distribution G' and the
point x, i.e.,

lim T(0, nx)

=pu(z)  almost surely and in L'
n— 00 n

when this limit exists. This constant p is the so-called time constant. This implies the existence of a
limiting metric D such that
Va,y € R? D(z,y) = puly —x).

This metric approximates well T'(z,y) when ||z — y||2 is large. We refer to [17] and [1] for reviews on the
subject.

For d = 2, let & = (1,0). In [2], Basu, Ganguly and Sly study the decay of the probability of the
upper large deviations event {T'(0,ne7) > (u(ei) + €)n}. They prove the following result:

Theorem 1.19. Let d = 2. Let b > 0, let G be a probability distribution with support [0,b] and a
continuous density. Then for e €]0,b— pu(e7)[ there exists r €]0,+0c| depending on € and G such that

_log B(T(0,n2}) > (u(}) + )n)

lim 5

n—00 n

Remark 1.20. Their proof strategy also holds for d > 2 and for tilted directions.

The result in [2] answers an old open question that was first formulated by Kesten in [17]. The correct
order of large deviations was already known (see [17]). A large deviation principle was proved by Chow
and Zhang in [10] for the time between two opposite faces of a box. However, their strategy cannot be
generalized for proving the existence of a rate function for the time between two points.

We here briefly present the sketch of their proof. Let N > n > 1. The aim is to build the upper
large deviations event at the higher scale N using upper large deviations events at the smaller scale n.
Let us define By = [-N, N]. Since the passage times are bounded, there exists a positive constant
¢ depending on b, such that geodesics between 0 and N & remain almost surely in the box B.y. The
strategy of the proof is to create a configuration w of the edges in the box of size B.y such that
w € {T(0,Nej) > (u(e]) + €)N} using configurations of upper large deviations events at the smaller
scale n. Namely, we consider wi,...,wN/n)2 (N/n)? independent realizations of the edges in the box
B.,, for the event {T'(0,ne1) > (u(e7) + )n}. The key idea is that, even on the upper large deviations
event, there exists a limiting metric structure in the configurations w;. Roughly speaking, at large scales
the distance T'(z, x +n7) in a given direction ¥ from a given point = grows linearly with speed V, (7),
i.e., we have T(x,x + n?) ~ an(V) Up to paying a negligible price, they can pick configurations
(wi,i=1,...,(N/n)?) with the same limiting metric. Each configuration w; is cut into different regions
such that for any z,y in a given region V, ~ V,. They reassemble all the configurations w; by gluing
together the corresponding regions, in order to create a configuration w in the box B,y that also has the
same limiting metric. It follows that for any path v in the configuration w we can build a path 7 in the

configuration wy such that
N_ .
T(y)~—T()-

n
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The path + is the dilated version of . It follows that

N0, net) > (u@) + e

T(v) >
The remaining of the proof uses techniques from large deviations theory to deduce the existence of a rate
function.

Our paper finds its inspiration in the philosophy of [2]: we use large deviations events at a small scale
to build large deviations events at a higher scale. We here manage to formalize the idea of a limiting
environment. We obtain something stronger than upper large deviations for maximal flow: we manage
to relate an abnormally large flow with local abnormalities on the domain Q2. To obtain this stronger
result, we need to deal with complex technical issues: in particular, we need to reconnect streams in
adjacent cubes.

1.4 Sketch of the proof

Most of the proofs in this paper are about reconnecting streams defined in cubes. Let A be an
hyperrectangle of dimension d — 1 of side length x > 0 normal to o = (1,0,...,0). We consider two
streams f,, € S, (cyl(A, %, 7)) and g, € Sn(cyl(A + (r + 8)et, s, e1)) for some § > 0. We would like to
exploit the region cyl(A + Kei,o, e_f) between these two cubes -that we call the corridor- to connect the
streams f,, and g, (see figure 1). Namely, we would like to prove the existence of a stream h,, such that
hn € Sp(eyl(A, 26 + 6, e—1>)), hyp = fn in cyl(A, K, e—f) and h,, = g, in cyl(A+ (k + 5)e_1>, K, e_f) Moreover,
we want that no water exists or enters from the lateral sides of the corridor for h,. In particular the
stream h,, satisfies the node law in the corridor. Note that a necessary condition for the existence of h,,
is that the flow for f,, through the face A+ kel is equal to the flow for g,, through the face A+ (k+ (5)6_1>
(we say that their flow match). Indeed, if such h,, exists, since it satisfies the node law inside the corridor
and that no flow escapes from its lateral sides, the flows of f,, and g, must match.

K
A
cyl(A, K, 1) 5 cyl(A+ (k4 )el, s, e1)
_>
€1

Figure 1 — Connecting two streams in a cylinder

The ideal situation to connect the streams is to take § = 0 but this is too restrictive because it requires
that the outputs of f,, perfectly match the inputs of g,. The outputs (respectively inputs) correspond to
the values of f, (respectively g,) for edges exiting (respectively entering) the cylinder by the corridor.
However, it seems reasonable that if the capacities of the edges in the corridor are large enough and 9 is
large enough, then as long as their flow match we can reconnect f,, and g,. This is the key property:
Key property. There exists a constant ¢y depending only on d such that for f, and g, with matching
flows, if their inputs and outputs are all smaller in absolute value than some constant b > 0, then we can
always connect the two streams as long as § > kcg and all the edges inside the corridor have capacity
larger than or equal to b.

The first step before proving theorem 1.5 is to prove the existence of an elementary rate function:
theorem 1.1.
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1.4.1 Sketch of the proof of theorem 1.1: existence of an elementary rate function

. 11

-l

Consider a stream f,, € S,,(€) that is close to a continuous stream s (in the sense that 7, (f,) is close
to s U1 L? for the distance ).

Step 1. We first prove that at a mesoscopic level the flow of f,, through each face of € is almost uniform
and close to the flow for the continuous stream s . Namely, for each face F' of €, we can split F into a
collection P(F) of small isometric (d — 1)-dimensional hypercubes of side-length x. For each C' € P(F)
the quantity ¢ (f,, C) of water that flow through C for f,, is close to the flow for the continuous stream
s ,i.e.,

We recall that

W(fn,C) =~ nt1sw e_Z’Hd_l(C)

where a? is the vector of the canonical basis that is normal to C.
Step 2. We prove that up to paying a negligible price, we can increase the capacities of a negligible
number of edges in € in such a way we guarantee the existence of a stream f,, such that for each face F
of €, for each C € P(F),

Y(fn, C) =917 - H(O).

We call such a stream a well-behaved stream. To build such a stream we do small modifications to f, to
ensure that the water spreads uniformly at the mesoscopic level. To do so we increase the capacities for
a negligible portion of the edges in order to add a small amount of water that will correct the differences
of flow with the continuous stream. Since these corrections are small, the modified stream f,, is still close
to the continuous stream s . The price we have to pay to modify the original configuration is negligible
since only a negligible portion of the edges have been modified, i.e., these modifications won’t appear in
the limit.

Step 3. We prove theorem 1.1. We fix N > n. We consider (N/n)? different configurations of the event
{3fn € Sn(€) : fr =~ sv and fn is well-behaved}. Using these configurations, we connect the streams
in order to create a stream in Sy(€) that is close to sU. Since the streams we consider at the small
scale are well-behaved, the water flow uniformly at a mesoscopic level and we are able to connect at the
macroscopic level two adjacent streams by using the key property for connection at the mesoscopic level
for each C' € P(F) (see figure 2). The length of the corridor we need to connect two adjacent streams is
cqk that is negligible for small k. The remaining of the proof uses standard techniques from the realm
of large deviations.

Cqk

Figure 2 — Connecting streams in cubes at mesoscopic level

1.4.2 Sketch of the proof of theorem 1.5
We aim to prove that for = B(I,T2,9), we have

~

IP’(EIf” €S, (TLT2,Q): f, = ?) A exp ( - I(?)nd)
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where 1(7") = Jo I(3 (2))dL%z). To prove this result we prove separately an upper and a lower bound
on the probability we try to estimate. We can till {2 into a family of small cubes £ with disjoint interiors
such that o is almost constant in each cube C € &. Using the independence of the capacities, we have

P(3fn € SuTT%,0): fum T) < [[ POfn € Sa(C) : fu = Tle).

Cce&

Since @ is almost constant in C' € € , we can use theorem 1.1 and prove that

[ PGfn € 8u(C) : fu = Tlo) = exp (—nd/QI(7(x))d£d(a:)) .

ce&

To prove the upper bound, we deconstruct a stream in 2, to prove the lower bound we do the reverse:
we construct a stream in 2 close to @ from a collection of streams inside small cubes. For each cube C ,
we consider a discrete stream g$ in S,,(C) that is close to the constant approximation of 7 in C. We
use the ideas of corridors and well-behaved streams to reconnect these streams (¢$,C € &) altogether
in order to create a stream f, € S,(2) that is close to 7. The main difficulty in the proof of the lower
bound is to create from f,, a stream fn € S, (TY,T2,Q), i.e., to remove all the water that is entering or
exiting through T'\ (I' UT2) for f, and make sure that f,, is still close to &. This is the most technical
part of the proof.

1.4.3 Organization of the paper.

In section 2, we give some properties of the distance 9, we also give necessary conditions on the stream
7 in order to have T (?) < oo. In section 3, we gather all the technical non probabilistic lemmas. In
section 4, we prove the existence of the elementary rate function I by proving theorem 1.1 and we also
prove the convexity of I. In section 5, we prove theorem 1.5, that is the key result to prove theorem 1.2.
Finally, in section 6, we prove the theorem 1.2 and we deduce an upper large deviation principle for the
maximal flow theorem 1.4.

2 Properties of the distance and of the admissible continuous
streams

In this section, we introduce the metric we use and derive some properties for the limiting continuous
streams.

2.1 Properties of the metric 0

We recall that 9 was defined in (1.7). We state here some key properties that this distance satisfies
that will be useful in what follows. The proofs of the following lemmas will be given after their statements.
The convergence for the distance ? of a sequence of measures that are uniformly bounded in the total
variation norm implies the weak convergence. We recall that for a signed-measure v on R?, we write
v =vt — v~ for the Hahn-Jordan decomposition of v and we write |v| the total variation of v defined
as v =vt +v-.

Lemma 2.1. Let v = (v1,...,v?) € M(Vo(,1))% Let (v, = (2, ..., v3))n>1 be a sequence of

n’ rrn

measures in M(Voo(Q,1))¢ such that
lim ?(v,,v) =0.

n— oo

Moreover, suppose that the measures v and (vy)n>1 are uniformly bounded in the total variation norm,
that is there exists a positive constant C7 such that

d
=1 Ve D) < GLA VR D)),
=1
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and
d

D (Ve (1)) < C1LY Vo (1))

i=1

Then, the sequence of measure (Vp)n>1 weakly converges towards v, that is

Vf € Cy(RY, R) lim fdv, = | fdv.
Rd

n—oo R4

The converse result holds for a sequence of measures absolutely continuous with respect to Lebesgue
measure.

Lemma 2.2. Let M > 0. Let v = hL? with h € L™®(R? — R%, £9) such that
|hlla < M ae. onRY, h=0 a.e onVy(Q,1)°.
o Let (hy)n>1 be a sequence of functions in L= (R — R, L) such that
Yn >1 |hnlla <M a.e. on R h, =0 a.e. on Vo(Q,1)°

and the sequence of measure (hnﬁd)nzl weakly converges towards hL?, that is

Vg € Cy(R%, R) lim ghpdL? = / ghdL®
R4 R4

n—roo

then,
lim d(h, L% hL?) =0.

n— oo

o Let (fn)n>1 be a sequence of streams inside Q such that
veeEy  |fule)l2 <M

and the sequence of measures (ﬁn (fn))n>1 weakly converges towards hL?. Then,
im (7w (fa), hLY) = 0.

We can control the distance between two measures that are absolutely continuous with respect to the
Lebesgue measure by the L'-distance.

Lemma 2.3. Let f,g € L*(RY — R? £4). We have
o(fLlgL?) < Q/Rd 1 (@) = g()|l2dL(z) = 2I| f — gl -

We say that (E;);>1 is a paving of R? if the sets E; are of pairwise disjoint interior, for i > 1, the set
E; is a translate of E; and R* = Ui>1FE;. For a subset E of R¢, we denote by diam E' its diameter, i.e.,

diam ' = sup {||lz —y[l2: =,y € E} .

The following lemma will be very useful in what follows, it enables to control the number of elements of
a paving that intersect the boundary of a given cube.

Lemma 2.4. There exists a positive constant ¢ depending only on the dimension such that for any
§ €]0,1[ and z € R%, for any paving (E;)i>1 of R? such that diam E; < e¢6, we have

HI-1(D(5C + 2))

jam F; .
CUEY) diam E;

{i>1:E;,n(0(0€+2))} <2

The result of the following lemma is a key property of the distance 0 that does not necessarily hold
for standard distances: if the distance ?(v, p1) is small then for a cube @ C Q, the distance d(v1g, ulg)
is also small.
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Lemma 2.5. Let M > 0. Let G be a distribution such that G([M,+oo[) = 0. Let v € M(Vao(Q,1))¢
such that

Vee[-1,1[7 YAe[l,2] VE>0 VQe (Ak+z)  ||v(Q)]2 < MLYQ).

There exist positive constants (1, B2 depending only on M, Q and d, and e¢ depending on d such that
for any § € [0,1] and z € RY, we have for any p < de¢, for n large enough depending on p, for any

fn € Sn())
D(ﬁn(fn)a v)
p

W Hn(fa)lsers, visers) < B + Bapd®t.

The following lemma implies that to upper-bound the distance between two measures p, v, given a
partition of €, it is sufficient to upper-bound separately the distance d(ul 4,v14) on each set A of the
partition.

Lemma 2.6. Let i,v € M(Voo(Q,1))%. Let (A;,1 < i < 7) be a family of pairwise disjoint subsets of
R? such that

T

Voo (2, 1) C [ As.

=1

Then, we have

a(/"? V) < Z o(lu]lAi’ V]lAi) :
i=1

We now prove the lemmas above.

Proof of lemma 2.1. Let f € C,(R?,R). Let € > 0. For k > 1, we set

fo= S HA@)1q,

QEAN(Q)

where ¢(Q) denotes the center of Q. Since the function f is uniformly continuous on the compact set

Voo (£2,2), we fix k large enough (depending on f and €) such that
VQEAT(Q) YreQ  |fu(z) - flz) <e.

Besides, we have

‘ den—/ fdv
R4 R4 2

/Rd fdva = /Rd T /Rd frdvn — /Rd frdv . fdv — /Rd frdv

d d
SEZIV%I(VOO(QJ)HIIJCHOO > IIVn(Q)—V(Q)H2+6ZIV%|(VOO(Q,1))

QeAl(Q)
<2601 LY Vo (1)) 4 28| fll oo 0(wn, v) (2.1)

‘ fdun—/ fdv
R4 R

This yields the result. O

<

"
2

"

2 2

Hence for n large enough,

<301 LY (Voo (2, 1))
2

Proof of lemma 2.2. Let h in L®(R? — R? £4) and (h,),>1 be a sequence of functions in L>°(RY —
RZ, £9) as in the statement of lemma 2.2. Let ¢ > 0. Let z € [-1,1[%, A € [1,2]. For kg > 1 large enough
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depending on ¢ and €2, we have

22% Yo N LHQ +2) — (hLHQ+ )], < Z > 2MLYQ) gy 0.1)20

k=ko © Qe(s+Ak) i 2 Qe(z+Ak)
=1
<Y ?2M£,d(v2(s2,3))
k=ko

<AMLA(V,(Q,3))27R < ¢,

We aim at obtaining a uniform control in z and A of

ko
S X Y@ +x) — (L@ + ),

k=0 Qe(z+A%)

Let 6 > 0 such that d6 < 27, Let B = §(y + €) with y € Z?. Since (hL)(0B) = 0, we have by
Portmanteau theorem

lim [|(h, £9)(B) — (h£*)(B) 2 = 0. (2.2)

n—o0

Besides, using lemma 2.4, we have

ko
SL S @) - te@ o,

k=0 Qe(z+Ak)

ko
S XY L) - B+ > 216

k=0 Qe(z+A%): yezs: yezd:
QNV1(Q,1) B=§(y+¢)CQ B=4(y+¢) s.t. BNOQ#D
<2 > 1(ha £9)(B) — (he?)(B)|2 + Z Y SAMHT(0Q)
yez: k=0" Qe(2+ak):
B=6(y+&)NV(2,1)#£0 QNVa(9,1)20
1 L4Vy(Q 3)) e
d d k\d—1
<2 Z (A L9 (B) — (AL (B)|2 + Z R 202 M s
ye
5(y+€)m}2(9 1)#£0
<2 > [(ha £7)(B) — (RLY)(B)l|2 + (ko + 1)L (Va(2, 3))16d* M .
yeZd:

B=5(y+&)NV2(2,1)%£0
It follows that

0(ha L4 hLY) <e+2 > (Ao £9)(B) — (RLY)(B)||2 + (ko + 1)L (V2(€2, 3))16d> M6 .

yezd:
B=6(y+€)NV2(2,1)#0

By taking the limsup in n, we obtain

limsup d(h, L4 hLY) < e + ko LY (V2 (9, 3))16d* M6 .

n—o0

By first letting d goes to 0 and then by letting £ goes to 0, we obtain
lim o(h, L% hL?) =0

n— oo

This yields the result. The same arguments may be adapted in the case of a sequence (1, ( fn))n>1 using
the fact that for any B € (z + A%) for n large enough

17 (£2) (B, < 3dL(B)YM
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Proof of lemma 2.3. Write yu = f£% and v = gL£%. Let x € [-1,1[¢, A € [1,2]. We have

Z ST u@+2) - v(@Q+a), = Z >

/ — 9(y))dL(y)
k= O Qeak k=0 QeAk Q+x

—ng Z/ 1£@) = 9(v), 4L ()

k=0" Qeak

=3 5 [ 1) - sl ac)

2

It follows that
o(fL% gL <2|f —gllps-
This yields the result. O

Proof of lemma 2.4. Write B = 0€+ z. By proposition 1.7, there exists a positive constant ¢ depending
on ¢ such that
Ld(Vg((‘)(’:, 60))

< 2H1(9¢).
250 - H ( )

Veg € [O, E@]

It follows that
LYV, (9B, £9))

Veg € [0,6@5] -
0

< 2H?*1(9B).
Let (E;);>1 be a paving of R¢ such that diam E; < e¢d, we have

LYV(0B, diam By)) _ H(9(5€ + 2)

(i > 1: Bin (0(6€ + 2))}] < LI =)

diam F; .

This yields the result. O

Proof of lemma 2.5. Let v that satisfies the conditions in the statement of the lemma 2.5. Let ¢ € [0, 1]
and z € R%. Write B = §¢ + 2.

Let w € [-1,1[¢ and X € [1,2]. Let ¢ be given by lemma 2.5. Let p < e¢d. Let f,, € S, (). Write
ﬁn = 7n(fn) Let j be the smallest integer such that dA\277 < p. Hence, w + A;‘ is a paving of R? such
that for any @ € A;‘, we have diam Q < d\277 < g¢6. Using lemma 2.4, we have

S X ImBNQ) - BN,

k=0" Qe(AN+w)

j 0
1 1
SZ;,C > H#BNQ) —v(BNQ)2+ > o > EW(BNQ)—v(BNQ)|2
k=0 Qe(Ap+w) k=j+1 Qe(AY+w):
QNBH#(D
j o
1 1
SZQ > IHW(BNQ) —v(BNQ)2+ Y ok > (ZaBNQ2+ [v(BNQ)|2)
k=0 Qe(a}+w) k=j+1" Qe(A)+w):
QNB#D
;
1
<D o Yo @ — (@l + > (I (BNQ)s+ V(BN Q)]2)
k=0 QE(AMw):QCB QE(A}+w):QNIBHD
— 1 [ 1 p
+ > i | > I fn(e)l2 + MLY(26€ + 2)

k=j+1 e€Ed:c(e)€V2(B,p)
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2 Y @@kt Y IRE

QE(AY+w):QCB ecEd:
c(e)EV2(0B,dA277)

+2MLY X277 ){Q € (A} +w) : QN OB # 0} + %j(Qd +1)246¢
< V(U v) + 8MAHIH(OB)p + 8MH1(OB)p + M(2d +1)246¢
< @a (T o v) + M (16d% + 16d + (2d + 1)24) p5~*

where we use in the last inequality that by definition of j, we have dA277+! > p. It follows that

(ol fn)v) fn

W H n(fu)lp,vig) < B +52,05d_1-

where 81 and (5 are positive constant depending only on M and d. O

Proof of lemma 2.6. Let p,v € M(Vso(€,1))% and (A;,1 < i < 7) be a family of pairwise disjoint subsets
of R? such that

T

Voo (0, 1) C | As.

We have for w € [—1,1[% and X € [1,2]

Z%k 3 IIM(Q)*V(Q)H?SZQ% S Y @A) —v(@n A

k=0 Qe(a+w) k=07 Qe(ad+w) i=1

=Y 5 X @04y -v@nA);

i=1k=0" Qe(A)+w)

< o(pda,,vla,)

It follows that
Z /LL]]-AU V]lA

This yields the result. O

2.2 Properties of the admissible streams

The aim of this section is to prove properties that the continuous streams & must be in (T, T2,Q)
to get 1(7) < oo. Denote by LM (I, I'2,Q) the following set
F:N—-N ¥Yn>1 3f GS (I, 12,Q)
M2 Q) = {? € L°R? = R% £ . vin) = Sulms o8 2.3
( ) ( ) limp, 00 0 71&(70 fw(n))v ?'C ) =0 ( )

with f¢(n) € S (Fl,IQ, Q).

Pp(n)
Proposition 2.7. Let G that satisfies hypothesis 1. Let (Q,T1,T'%) that satisfies hypothesis 2. Let
ve MRYI\ ({TL: & e (TLT2,Q) nSM(IL T2,0)}) (we recall that (T, T2,Q) was defined in
(1.10) ), we have

lim hmlnf—logIP’(Elfn €S, (I, 12,0): D(ﬁn(fn),u) <g)=—-0.

e—0 n—oo n

To prove this proposition we need the following deterministic lemma. It states that the limit of a
sequence of discrete stream inherits the properties of the discrete streams. The main ingredient of the
proof of this lemma were already present in [9]. We postpone its proof after the proof of proposition 2.7.
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Lemma 2.8. Let (Q, T, T?) that satisfies hypothesis 2. Let M > 0. Let ¢ : N — N be an increasing
function. Let fym) € Sﬁn) (TH,12,9Q), for n > 1 such that piym)(fym)) weakly converges towards a

measure v € M(R?)4. Then, we have
ve oLt o eI 12,0 NIl r%,0)} .

Proof of Proposition 2.7. Let v € M(R%)4. We start by extracting a deterministic sequence of good
realizations of 7, (f,) that converges weakly towards v. Let us assume there exists x > 0 such that

1
ve>0  liminf — logP(3f, € SN T20) : 3(Hn(fn),v) <e) > —k.

Hence, we can build iteratively an increasing sequence (a,),>1 of integers such that

1 1
Vn > 1 — logP (3]‘,1" €8, (T T%Q) : 3(Ha, (fa,) V) < ) > 2.
Q. n

n
It follows that the event

{Hfa” €8, (T1T%Q): 3(Ha, (far) V) < 1}

n

is not empty. We choose according to some deterministic rule a realization w,, of the capacities of the
set 2N Egn that belongs to this event. According to some deterministic rule, on the fixed realization w,,
we choose a stream f, € S,, (I'',T2,Q) that satisfies

3(Ha,(fa,)v) < % (2.4)
By lemma 2.1, it follows that 774, (fa,) weakly converges towards v. By lemma 2.8, we have that
ve{oLt: 7 e I3 nsMr,r2a)}).
This concludes the proof. O

Proof of lemma 2.8. To lighten the notation we will write 77, instead of ﬁw(n)(fw(n)). Note that for

all n > 1, the support of ﬁn is included in the compact set Voo (€, 1). For i € {1,...,d}, let ﬁfl =
7§;+ - 7;;‘ be the Hahn-Jordan decomposition of the signed measure 7% Notice that we have

I — 1 M SRR
7] (VD) £ = 37 Ifule)lle < —52dI9%0] < 2L (Vo D)M
ecEd

Hence, the sequence (ﬁn)nzl is uniformly tight and uniformly bounded in the total variation norm. By
Prohorov theorem (see for example, Theorem 8.6.2 in volume II of [3]), it follows that up to extraction,

we can assume that ‘ ‘ ‘ A
i S,
and by using inequality (2.4) and lemma 2.1, we deduce that
Vie{l,...,d} V=" -,

Step 1 : We prove that v is absolutely continuous with respect to £%. This proof is an
adaptation of the proof of proposition 4.2. in [9]. Let A be a Borel subset of R?. Since the Lebesgue
measure £¢ is outer regular, for £ > 0 there exists an open set O such that A C O and £4(O \ A) < e.
By the Vitali covering theorem for Radon measures (see Theorem 2.8. in [20]), there exists a countable
family (B(z;,r;),j € J) of disjoint closed balls included in O such that

it o\ By, | =0.

jeJ
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We have for § > 0, using Portmanteau theorem
HH(0) < T (Ujes Blajrj +6)) < liminf 757 (Ujes Blaj,rj +9)) .-
Moreover, we have on the realization w,,
Wit (Ujes Blaj,rj+06)) < MY LYB(xj,r;+6+2n71).
jeJ
Hence, by taking the liminf in n in the previous inequality and then by letting d goes to 0, we obtain

) <MY LYB(xj,r5)) < MLYO) < M(e + L4(A))
jeJ

and

AV VETA () <M€+Ed( ) -

Finally, we let € goes to 0, we deduce that 7Z"t(A) < MLI(A). Similarly, 7" (A) < MLIA).
We deduce that v is absolutely continuous with respect to the Lebesgue measure; that is, there exists
7 e LY(R? — R?, £4) such that v = £ Hence, we have @ € Y™ (I, T2, Q). We use the notation
7 = (o!,...,0%). We have proved that for all i € {1,...,d},

VA € B(RY) / oAt < Tt (A) + 7 (A) < 2MLYA),
A
and
VA € B(R?) — MLYA / T erdL? = [P (A) — WP (A) < MLY(A)

which implies that | 7 -e;| < M L£%almost everywhere. Tt follows that o € L= (R? — R, £%). Moreover,
we have

d d
||7||L1 = /Q ||7||2d£d < Z/Q |0'i|d£d < Zﬁw(g) + ﬁz‘,—m)
=1 i=1
d
3 3 1,4+ . . i,—
< Zhnlggf Lo (Q) + hnnl,1£f Lo (Q)

< lim inf Z W (Q) + Hh(Q)

n—oQ

= lim inf — Z FAGIE (2.5)

ecEd

where we use Portmanteau theorem and the fact that ) is an open set.
Step 2 : We prove that v(R?\ ) = 0. The set R?\ € is an open set. Using Portmanteau theorem,
we have

Vie{l,...,d} VYoe{+, -} H*RN\Q) < lim inf HE (R Q).

Besides, using proposition 1.7, and by construction of 7n we have for n large enough

(09,1/n) NZ|
nd

Hoo(RI\ Q) < 2dM [Veo < 2dM LYV, (09, d/n)) < 8d2%7{d‘1(89) .

It follows that ‘ -
Vie{l,...,d} Voe{+ -} H*RIN\NQ) =0

and v(R?\ Q) = 0. Finally, since v is absolutely continuous with respect to the Lebesgue measure we
have v(9€) = 0 and the result follows.
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Step 3 : We prove that divd = 0 £%-almost everywhere. Thanks to the previous step, we can
write v = @ L%, Let h € C°(Q,R). For all z € I’} UT'2, let df,,(z) be the amount of water that appears
at = according to the stream f,:

dfa(z)=n > fule) -yt . (2.6)

YyELL: e=(x,y)€RL

We have that f,, satisfies the node law at z if and only if df,,(z) = 0. We recall that ||y#|s = 1/n, this
accounts for the n factor in the expression above. The function d f,, corresponds to a discrete divergence.
Since f,, satisfies the node law, df, is null on Q,, \ (I} UT2). We state here the equality obtained in [9]
just after equality (4.6):

/eh'dﬁn:—% > h(z) df(z) + Snlo Sna )
Rd n

d
n
el ur?

with
lim an(h7 fna Q)

n—00 nd

=0.

This equality is not difficult to obtain, it uses the fact that the stream f,, has a null discrete divergence
to control the divergence of the limiting object 7. The proof of this result may be found in Proposition
4.5 in [9]. Notice that since h € C2°(2,R), h is null on '} UT2, for all n, and

lim / Vhdi, =0.
Rd

n— oo

Since Vh € C (€, R), by Portmanteau theorem, we have

/hdiv?dﬁd: @ - Vhdcd = lim/ Vh-dji,=0.
R4 R4

Rd n—oo

This yields the result.
Step 4 : We prove that & -77o = 0 H? 1-almost everywhere on I'\ (I'tUr?). Thanks to inequality
(4.8) in the proof of the Corollary 2 in [9], @ - 7 is an element of L (I, H*~!) characterized by

Vu € C°(R%, R) / (@ Ha)udH* ' = [ & Vudcd. (2.7)
r Rd
Let u € C*((T'' UT?)%,R) . As in the previous step, we have

lim Ad ?u . dﬁn = lim — d171 Z u(gj) dfn(x) + M .

n—00 n—oo N nd
z€lLur2

Since u is null on T’} UT? for n large enough, we have

lim / YVu-df, =0.
Rd

n—o0

Finally, using Portmanteau theorem we have

/(?-Wg)ucmd—lz T - Vudld = lim/ YVu-dil, =0.
T R4

Rd n—oQ

This ends the proof. O

3 Technical lemmas

3.1 Mixing

This section is only geometrical and does not contain any randomness. The aim of this section is
to prove that we can reconnect two different streams if the incoming flow coincides with the outcoming
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flow. Namely, if we consider two families of inputs and outputs such that the sum of the inputs is equal
to the sum of the outputs, we can connect the inputs with the outputs. To connect the streams, we are
going to give an algorithm that enables to build a stream that connects the inputs to the outputs. To
lighten the notations, all the lemmas of this section are stated and proved in Z? instead of ZZ.

Lemma 3.1 (Mixing). Let M > 0, n > 1. For any two sequences of real numbers (fin(y),y €
{1,...,n}Y) and (four(y),y € {1,...,n}4"Y) satisfying

vye{l,....,n} Y fiWI S M, |fou(y)| <M

Z fzn (y) = Z fout (y) )

yef{l,...,n}d-1 yef{l,...,n}d-1
for any m > 2(d — 1)n, there exists a stream f : E¢ — R such that:

- for each edge e ¢ [0, m[x[1,n]9"1 (we recall that e belong to a set if its left endpoint belong to this
set), we have f(e) =0,

- for each e € E we have ||f(e)|l2 < M,

’ §0T Eia)cﬁ)y € {17"”n}d71; we have f({(0,y),(1,y))) = fm(y)6—1> and f({(m — 1,y),(m,y))) =
out\Y)€1,

- for each vertex v € Z4\ ({0} x {1,...,n}4 "YU ({m} x {1,...,n}?71)) the node law is respected.

Moreover, if the outputs are uniform, i.e,

and

el )= Y ful?)

z€{l,...,n}d-1
then the same result holds for any m > (d — 1)n.

Before proving this lemma, we need to prove that we can reconnect streams in the particular case
of the dimension 2 with uniform outputs. We build the stream by an algorithm, this algorithm will be
used in other proofs of this section.

Lemma 3.2 (Mixing in dimension 2). Let M > 0, n > 1. For any sequence of real number (fin(4),7 =
1,...,n) satisfying
Vje{l,...,n} |fzn(])|§M7
there exists a stream f : B2 — R?
(i) for each edge e ¢ [0,n[x[1,n] we have
f(e) =0

)

(ii) for each e € E? we have ||f(e)|]2 < M,
(iii) for each j € {1,...,n}, we have f(e;) = fin(j)ei and

Fleg +n2) = =3 Finl),
=1

where e; = ((0,7), (1,7)) and (z,y) + ke = (z + kei,y + kei),
(iv) for each vertezx v € Z2\ ({0} x {1,...,n}) U ({n} x {1,...,n})), the node law is respected.

Proof. Up to multiplying by —1 all the inputs, we can always assume that

i=1
We set

Ig~, .
B = E;fm(l)-
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We start by sending the minimum between 3 and f;, (i) through straight lines:

n—1

f(O) = Z mln(fln(l)7 ﬁ) e_1>]lei+kel .

i=1 0

=~
Il

We are going to perform an algorithm starting with the stream f(9) to build a stream f satisfying all the
conditions of the lemma. At any step of the algorithm, f will satisfy condition (iv) but also the following
conditions:

(a) The vertical edges in the column n — ¢ are only used by the source i € {1,...,n}:

vie{l,...,np Vief{l...,n—1}  [[f({(n =3,), (n =47+ D)2 < [f(e)ll2 ., )55 -
(b) If fin(i) < f3 then the flow through the line i in the direction ej is non-decreasing:

Vie{l,....,n}st. fin()) <B Vi<ked{l,...,n—1}
fin(@) = flei) - &l < fles+jei) el < flei+kei)-ef <f.

(¢) If fin(i) > B then the flow through the line i in the direction e] is non-increasing:

Vie{l,....,n}st. fin(4) >B8 Vi<ke{l,...,n—1}
fin(@) > fle:) &l > flei+jei) - el > fle;+ket)-et > flei+nei)-ef = 6.

We set f = f(©). Tt is clear that the stream f satisfies the node law (iv) and conditions (a), (b) and (c).
Let us assume there exists ¢ such that

1f(ei)ll2 < [fin(d)]-

We consider the smallest integer ¢ such that the previous inequality is satisfied. Since f satisfies condition
(b), necessarily fi,(i) > 8 (if not we have ||f(e;)||l2 = |fin(i)])).By condition (c), we have f(e;)- e >0
and so || f(ei)||l2 = f(e;) - & < fin(i). Since f satisfies condition (iv), it yields by the node law

> flew+nef) et =Y flen) et <Y fin(k) =np.
— k= —

k=1 1 k=1

Then, there exists j such that
flej +net) e <.

We pick the smallest integer j such that the previous inequality holds. By condition (c), we have
fin(j) < B. We set

n—1—i (—i)4+—1 n—1
Yij = Z Al nz + Z sign(j — 1)€3 L ((n—sitk), (n—isitkt1)) + Z Al et
k=0 k=—(j—1i)_ k=n—i

Note that v; ; is a stream, i.e., a function from E? to R2. We can associate with vi,; an oriented path
corresponding to the path the water takes to go from source i to sink j for the stream ~; ; (see figure 3).
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ol

n—1

Figure 3 — The path associated with ; ; for j >4

We set
f = f+min (fin (i) — || f(e)ll2, B — flej +nel) - e1) v -

It is clear that f’ satisfies condition (iv). We have to check that the conditions (a), (b) and (c) are still
satisfied for f’. Note that we have

mij = min (fin (i) = || f(ei)ll2, 8 — f(ej +nei) - ef) > 0.
We start by checking if the condition (a) is satisfied: for any k € {1,...,n — 1}, we have

£ ({(n =i, k), (n =i,k + D)2 < [[f({(n— i, k), (n =i,k + 1)) [l2 +mi
< [If(ei)ll2 + mi,;
= f(ei) - er +my;

= f'(er) &t = |If'(en)]2-

We have
fler) et = fler) et +miy = | fled)ll2+mij < finli).

Moreover, it is clear that the flow through the line i in the direction e is non-increasing for f’ since it

was the case for f. Furthermore, we have f'(e; + ne_f) el = flei + ne_f) el = B. Hence, the stream f’
satisfies condition (c¢). Since the flow through the line j is non-decreasing for f, it is easy to check that
it is also true for f’. Moreover, we have by definition of m; ;

f’(ej+ne_1>)-e_1>:f(ej+ne_1>)-e_1>+mi,j <8

and
'leg) el = fleg) &l = fin)).
It follows that f’ also satisfies condition (b). Since after each step of the algorithm the number of such

couples (i,7) is decreasing, the algorithm will eventually end. Let us assume there exists no such i.

Therefore, we have
n

S fle) & =Y funli).

i=1
By the node law again, we have

n

> fleit+ned) el = finli) =np

i=1 i=1
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and by conditions (b) and (c), it follows that
vje{l,...,n} f(ej+ne_1>)zﬁe_1>.

This yields property (iii). At the end of the algorithm, the stream f satisfies conditions (i), (ii), (iii) and
(iv). O

Proof of lemma 3.1. We first prove the result for uniform outputs, that is, for any family (fi.(y),y €
{1,...,n}41) satisfying for any y € {1,...,n}?7! |fin(y)| < M, if we set

Vy € {15 i ’n}d_l fout(y) = % Z fin(w),

we{l,...,n}d-1

there exists a stream in [0, (d — 1)n[x[1,n]?~! satisfying all the requirements in the statement of lemma

3.1. We prove this result by induction on the dimension. The result holds for the dimension 2 thanks to
lemma 3.2. Let us now consider d > 3 and assume the result holds for the dimension d — 1. Consider
a family of inputs bounded by M: (fi,(y),y € {1,...,n}¢71). Using the induction hypothesis for the

dimension d — 1, for each i € {1,...,n}, we can build a stream f(gi_)l in [0, (d —2)n[x{i} x [1,n]?~2 given
the inputs (fin(i,2),2 € {1,...,n}972) and the uniform outputs equal to

Ve (L.}t gl =—s S fulin2).

z€{l,...,n}3-2

It is clear that the streams fc(li)l are defined on disjoint sets of edges. Finally, for each z € {1,...,n}4"2

using lemma 3.2, we denote by fz(m) the stream in [0, n[x[1,n] x {z} with inputs (g(i,z),i = 1,...,n)
and uniform output equal to

n

Pl =Y Y fuld= g Y fal),

=1 =1 ze{1,...,n}d-2 we{l,...,n}d-1

The stream féz) are also defined on disjoint set of edges. Finally, the stream

9=+ > AP~ (d-2me)
=1

we{l,.n}i=2

is defined on [0, (d — 1)n[x[1,n]?"L, |lg(e)|l2 < M for any e and g mixes uniformly the inputs since

Ve (Lo (=D L) (@ D) = — S falw).

we{l,..n}d-1

It follows that the result holds for the dimension d. This concludes the induction.

Let d > 2, let us now consider two families (fin(y))y and (fout(y))y of arbitrary inputs and outputs
that satisfy the conditions in the statement of the lemma. Let f' be the stream in [0, (d — 1)n[x[1,n]?"!
with inputs (fin(y))y and uniform outputs. Let f© be the stream in [0, (d — 1)n[x[1,n]¢"! with inputs
(fout(y)), and uniform outputs. Denote by S the reflexion with regards to the hyperplane {z € R?, z1 =
0}, i.e.,

Y(z1,...,24) € RY S(x1,22,...,2q) = (—21,Z9,...,2q) .

We denote by S f° the symmetric of the stream f° by S:
vec B! Sf°(e) = S(f°(S(e)))

where for e = (z,y) the edge S(e) corresponds to (S(z), S(y)). Note that for any edge e parallel to &7,

we have f°(e) = aej with a € R and

Sfo(S(e)) = S(£2(S(S(e)))) = S(f°(e)) = —aei = —[*(e).
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We have for y € {1,...,n}4"1

FU@=Dn -1y (@ Dny) =~ Y fa@) =y S foul®)
ye{l,...,n}d-1 y€e{l,...,n}d=t
= f7((((d=1)n = 1L,y),((d = )n,y)))
= =S(((=(d=Dn,y), (=(d = N)n+1,y))).
It follows that the stream g = f* — Sf°(- — (2(d — 1)n — 1)&]) connects the inputs with the outputs in

[0,2(d — 1)n[x[1,n]¢"! and satisfies all the properties stated in the lemma. If m > 2(d — 1)n, we extend
the stream outside [0,2(d — 1)n[x[1,n]¢~! through straight lines:

g+ > Yo fouEL 1), 000 -

ye{l,...,n} k=2(d—1)n+1
O]

We will need a special result of mixing in the case where the non-null inputs and outputs are regularly
spaced in the lattice. Namely, there exists an integer K > 1 such that any input or output whose index
does not belong to KZ4~1 N [1,n)?"! is null. In that case, we want to prove that we do not use a lot of
edges to reconnect the inputs with the outputs. For any integer K > 1, we denote by E% the following
set of edges:

Ef ={e=(v,y) €E':y—a=¢,Vj#1 z; € KL}
U{e€RB?: 3z €Z3n,y € KZ* " st. |z —ylly = K and e C [(2,2), (z,9)]} -

Lemma 3.3. Let d > 2, M > 0, n > 1. There exists a positive integer cq such that for any integer
K satisfying K > cq, for any two (fin(y),y € {1,...,n}¢ 1N KZ¥ Y and (four(y),y € {1,...,n}¢ 1N
K71 sequences of real numbers satisfying

vye{l,....n}" 'NKZ""  |fiWI S M, fouly) <M

and

> finly) = > fout(y) |

ye{l,...,n}d-1NKzd-1 ye{l,...,n}d-1NKZI-1
there exists a stream f : E¢* — R? such that
- for each e ¢ B4 N[0, n[x[1,n]?"! we have f(e) =0,
- for each e € EY we have ||f(e)]l2 < M,
oreachy € (L, n} IR we e (0,0, 000) = Fin(9)@ and f({(n—1,y), (n,))) =
out\Y)€1,

- for each vertex v € Z4\ ({0} x ({1,...,n}4 PN KZ¥ 1)U ({n} x ({1,...,n}? 1N KZ41))) the
node law is respected.

Moreover, we have

iz

[{e € B f(e) # 0}] < |EL 1 [0, nlx[1, n]~| <

Proof of lemma 3.3. Let ¢4 be an integer we will choose later. Let K > c4. Let us consider the following
bijection m between the lattice Z x KZ% 1 and Z? defined as follows

VeelZ Vyezi! 7((z, Ky)) = (z,y).
Therefore, the problem boils down to finding a stream that joins the inputs (f;, (Kvy),y € {1,...,n0}¢™1)

with the outputs (fout(Ky),y € {1,...,n0}471) in [0,n[x[1,ne]9"! where ng = |n/K]|. Note that
n > Kng > cqng. By setting ¢g = 2(d — 1), this ensures that we can apply lemma 3.1. We obtain a

29



stream f,, in [0, n[x[1,no]9" ' NE? that satisfies all the properties stated in the lemma 3.1. It remains to

build upon f, a stream f, in the original lattice. To do so, we set
Ve = (z,y) € Z¢ V& = (wy,ws) s.t. [wy,ws] C [~ (z), 7" (y)] fn(@) = fule).

It is easy to check that the stream f, is supported on E N [0,n[x[1,7]¢"1 and that it satisfies all the
properties stated in the lemma 3.3. It remains to upper-bound the quantity |[E% N[0, n[x[1,n]?"1|. We
have
[E% N [0,n[x[1,n]* | < n|KZ N[, 0]+ n|KZ5 0 (1, 0]t 2dK
n d—1 Sd d
) <

Sn(%)dil—i—%ﬂ(’n(? _Wn .

This yields the result. U

In what follows, we will need the following lemma. This lemma gives a precise description on the
way the edges are used. The hypothesis of this lemma may seem strange but should be more clear in its
context of application (see proofs of lemma 4.8 and proposition 5.3).

Lemma 3.4. Letd > 2, M > 0, e > 0 and n > 1. For any sequence of real number (fin(y),y €
{1,...,n}471) satisfying
Vye{l,...,n}%? — M < fin(y) <e

and
Vie{0,...,d—2} Vye{l,...,n}
Z fzn(yvx) 2 0 or Vl’,Z S {17 . 7n}d_1_i |fm(y7$) - fln(yaz)l é g,

ze{l,...,n}d-1-1

there exists a stream f : E* — R? such that
- for each e ¢ [0, (d — 1)n[x[1,n]? we have f(e) = 0;
- for each e € B?, if e is parallel to &, then we have —M < f(e) - 1 < e, otherwise || f(e)||2 < &;
- for each y € {1,...,n}, we have f({(0,y), (1,9))) = fin(y)el and

Y@= Dn =1y (@ Dny) =~ Y ful)el

2€{1,...,n}a=1

- for eachdvertex veZAN\ ({0} x ({1,...,n}¢ ) U ({(d—1)n} x ({1,...,n}?71))) the node law is
respected.

Proof. We prove this result by induction on the dimension. For d = 2. Let (fin(7),1 < j < n) be a
family that satisfies the conditions stated in the lemma:

Vie{l,...,n} —M< fi.(j)<e
and

B=> fimk)=0 or  Vkje{l,...,n} |fim(k) = fin(j)| <e.
k=1

If B > 0, we apply directly the algorithm in the proof of lemma 3.2 to obtain a stream f. If 3 < 0, then
Vi, € {1,....,n} |fin(k) — fin(j)| < € and we set @« = min{f;,(j) : 1 < j < n}. It follows that for

any j € {1,...,n}, we have f;,(j) — a € [0,¢], we apply the lemma 3.2 to the sequence of real numbers
(fin(j) —a,j =1,...,n) to obtain a stream g in [0, n[x[1, n], finally we set
n n—1
f=g+2 a) el
i=1 k=0
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In both cases, the stream f we obtain satisfies all the required properties: if 3 > 0, due to condition (a),
only the inputs ¢ € {1,...,n} such that 0 < 8 < f;,,(7) < € can use the edges parallel to €. Thanks to
condition ((b)) and ((c)), for each e € E¢ parallel to e, we have —M < f(e) - e < e.

Let us assume the result holds for d — 1 where d > 3. Let (fin(y),y € {1,...,n}¢71) be a family that
satisfies the condition stated in the lemma 3.4. For i € {1,...,n}, it is easy to check that the family
(fin(iy2),2 € {1,...,n}972) also satisfies the conditions of the lemma 3.4. By induction hypothesis,

there exists a stream f((;ll) in [0, (d — 2)n[x{i} x [1,n]?~2 that satisfies all the conditions of the lemma

3.4. We build the family g as follows

_ , i ) . 1 .
Vo e {1,...,n}¢? g(i,z) = f((dll)(<((d—2)n—1,z7m), ((d—2)n,z,a€)>)-e_1> = i Z fin(i,2).
It is clear that for any y € {1,...,n}% !, g(y) € [-M, ¢]. Besides, we have

Vx € {1,...,n}d*2 Zg(k,fﬂ) = Z fin(y) -
k=1

ye{l,...,n}d-1

By the properties of the family (fi,(y),y € {1,...,n}%"!) we have for any = € {1,...,n}4 2
Zg(k,x) >0 or Vy,ze{l,...,n} 1V |fin(y) = fin(2)] <.
k=1

If > p_, g(k,z) < 0, it follows that for any k,j € {1,...,n}, we have |g(k,z) — g(j,z)| < e. In both

cases, we can apply the result for the dimension 2: we denote by fém) the stream in [0, n[x[1,n] x {z}
with inputs (g(i,x),i =1,...,n). We can check as in the proof of lemma 3.1 that the stream

Syt Y LU0 ([d-2me)

satisfies all the required conditions.

3.2 Decomposition of a stream

In all this section, we consider (£2,I'',T'?) that satisfy hypothesis 2. Let n > 1. We say that
? = (g_f, ceey g_T>) is an oriented self-avoiding path if there exists r + 1 distinct points x1,...,z,11 € EZ
such that for any i € {1,...,7}, 97 = ((x;,z41)) € ﬁ‘fl
Lemma 3.5 (Decomposition of a stream). Let f,, be a stream inside € that satisfies the node law
everywhere except points in UL UT2. There exists a finite set of self-avoiding oriented path T' (that may
all the

other vertices in 5 belong to Q, \ (L UT2). To each oriented path 7 e ? we can associate a positive

real number p(7) such that
fa= D7) D nEl,.
FeT (=) eT

be empty) such that for any 7 € ?, the starting point and the ending point belong to TL UT?

n’

Moreover, we have

VY EeT Ve =(ay))eT  fale) 7 >0.

Proof. We are going to perform an algorithm to build iteratively the couple (?, (p(7))7 e?)' We set

Fo=Y_ (7)) Y. nEjlg,
FeT (zy))yed
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and fr°® = fp, — fn At any step of the algorithm, we have

VY ET YT =(my) €T  fule) 7> fule) 7> 0. (3.1)

Moreover, for any 7 € ?, the path 7 has both of its endpoints in T’} UT2 and all the other vertices
in 7 belong to 2, \ (I'} UT2). Consequently, at any step of the algorithm, the stream f7* satisfies the
node law for any point in Z< \ (T} UT?2).

We start with T’ = 0. Let = € FLuUT2 and y € QNZ2 such that e = (z,y) € E4 and f7°(e) # 0. We
distinguish two cases either f7¢%(e)-z7 > 0 or f75(e) - < 0. Let us assume f75(e) -3 > 0. Since f°
satisfies the node law and since there exists only a finite number of self avoiding path using edges with
endpoints Q,,, there exists z € (I': UT2)\ {z} and an oriented self—avmdmg path ?0 startlng from x and
ending at z with vertices in €2, such that the first edge of 70 is ((x,y)) and for any e = ({wg, wy)) € 70,
we have f7¢%(eg) - wow] > 0.

If fres(e @ < 0. Then there exists z € T} UT2 \ {z} and an oriented self-avoiding path 7
starting from z and ending at x with vertices in 2, such that the last edge of 70 is {({y, z)) and for any
& = ((wo,w1)) € 7o, we have f1°*(eg) - wow; > 0.

Note that, up to removing a section of 70, we can always assume that all the vertices of ?0 except
its two endpoints are in Q,, \ (I} UT2). If it is not the case, we denote by w the first vertex in 'L UT?
along the path 70 starting from x and we replace 70 by the section of 70 between the vertices w and
x.

Besides, we have

m(7F o) = inf {f7°*(e) - (nwowi) : € = ((wo, w1)) € Fo} >0.

Let @ = ((wg,w1)) € 7. By construction, we have f7¢5(e) - wow; > 0 and f,(e) - wowi > fn(e) - Wows -

Hence ((wl,w0>> cannot belong to one of the 7 in % since it would contradict (3.1). Necessarily, we
have f (e) - wow; > 0. It yields that

~ , , -~ ; 1
0< | fut+m(Fo) Z N ToYo L 20,40y | (€) - wowi = fr(e) - wowi + EW(VO)
({z0,y0))ET 0

< (fu + £25%)(e) - wWow] < fule) - wowi .

We add (7o, m(70)) ? 7)7 <7) and the condition (3.1) still holds. We can iterate this process
finitely many times Wlth every possible self-avoiding oriented paths ending or starting with the edge e
(according to the sign of f7¢(e) - fj). At any iteration, |f7¢*(e) - Z7j| decrease. Eventually, the stream
function we obtain satisfies f, (e) -z =0.

The algorithm ends When for any x € TLUT? and y € QN Z% such that e = (z,y) € E4, we have
fres(e) = 0. Consequently, at the end of the algorithm we have f/¢® =0 and

Fo=Tn=>_0F) Y nillg,.
FeT (=) e
This concludes the proof. O

4 Construction and convexity of the elementary rate function

In this section, we build the elementary rate function I that is the basic brick to build the rate
function I. We start by proving preliminary lemmas that we need in order to prove theorem 1.1 but also
theorem 1.5

4.1 Preliminary lemmas

Before proving theorem 1.1, we are going to prove that we can slightly modify a stream f,, € S, (€)
without paying too much probability such that the stream is well-behaved in the sense that at a meso-
scopic level for each face of the cube € the stream spreads uniformly.
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We recall that (e_{7 ol e_d>) denotes the oriented canonical basis of R?. For i € {1,...,d}, we denote
by €} and € the two faces of € = [~1/2,1/2[¢ associated with the vector €] that is

11t 1 1174 11t 1 1174
¢ =|-= = = o= d ¢r=|-—-2 - i .
=laal oablaal e e=[aa] <lEh el

Let i € {1,...,d} and let A be an hyperrectangle normal to e;. We denote by EiF[A] and E%~[A] the
following set of edges (see figure 4):

‘ & @
]E2+[A]={e:<x,x+TZ>€EZ:]$,:£+TZ]HA7E®} (4.1)
and
| & o
E:;_[A]:{e:<x,m+nz>eﬂﬂfb:}x—nl,x}ﬁA;é(Z)}. (4.2)

The choice of the definitions of E;;~ and E;* is to ensure that for A C ¢; and B C €/, we have
EL-[A] C B N¢ and ELF[B] C Ed N e.

ELHE <
N B
4 )
.
=

Figure 4 — The sets EL~[A] and EL*[B]

Let m > 1. We partition all the faces of ¢ in hypersquares of side-length 1/m. We denote P;" (m)
and P; (m) the following sets (see figure 5)

B 11 1t 1 1 1 1 ar—  ap€{0,...,m—1},
Pz(m)_ |:_2’_2+m|: X{_Q}X[_27_2+m|: +k:1 daek' kE{l,,d}\{Z}
kti
(4.3)
and
11 17" 11 1" ax ar €{0,...,m—1}
N B L1 1 1 11 1 Ak — Ak yeeesm— 1y,
Pi"(m) = [2’ 2+m{ X{2}X[ 2’ 2+m{ +k:1 dmek. ke{l,....d}\{i}
ki
(4.4)

Note that for A € P; (m), e/ is normal to A. The cube splits into m?~! tubes according to the direction
_>
€; .

AeP; (m)
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Note that for A € P; (m) U P;"(m), we have H¥"1(A) = 1/m?~L. Let f, € S,(€). For o € {+,-},

1
1
1.
|
! {
— Lo
| I 1 .
€2 1.7 : 1. 1
A
-
— A .
e €1 RO T
3 oJ, A
“ R
o Elements of
e ! +
" Py (m)
¢ S
HE
1
1

Figure 5 — Splitting the face € into m?~! hyperrectangles

ie€{l,...,d} and A € P?(m), let us denote by 97 (fn, A) the intensity of the stream f,, through the face
A € P¢(m) in the direction e;, that is

fn7 Z fn : i-
ecEL°[A]
Note that the intensity of the stream through a face is not uniform at the mescopic level. In the

following lemma, we prove that there exists a repartition at a mesoscopic level for the intensity of the
stream through the faces of € that is more likely.

Lemma 4.1. Let s > 0 and ¥ = (v1,...,v4) € St Let e > 0. There exists rq and o depending
only on d, for m = |e~], for any n > 1 there exist two families of real numbers in \/eZ, namely
()‘27"4 € Ud 1P+( ))7 ()‘;17"4 € Ug:lpi_ (m))7 th(lt satzsfy

(03

Voe{+,—-} Vie{l,...,d} VAeP(m) A% = suHT (At < nd#nd_l (4.5)

and

o= Y N (4.6)

Aeu?_ PH(m) Aecu?_ P (m)

such that

lim inf lim sup dlog]P’(Elfn € 8,(0):

e=0  pooo

Vo € {4+, —}Vie {1,...,d}YA € Pf(m) ¢$(fn,A) =)
and D(ﬁn fn),s 1¢£d) <e®

= lim hmbup — logIP’ (Elfn € 8,(¢): (ﬁn(fn), s?]lgﬁd) < e)

e—=0 5

and

Vi o o — A9
gt i nf logpefnesn(@: Vo € {4, —1Vie {1,...,dyVYA € P (m) ¥¢(fn, A) )\A>
E—r n—oo

and D(ﬁn fn)s s?]lcﬁd) < e®
= lim hmlnf — logIP’ (3fn € Sn(©) : (ﬁn(fn),sﬁlgﬁd) <e).

e—0 n—oo
Note that in the statement of this lemma, we cannot chose the families (A}) and (\}), we only know
that these families exist. Moreover, notethat these families depend on n and oe. Actually, if we consider
families that satisfy condition (4.5) and (4.6), we can prove the same result for these families by slightly
modifying the environment to create a new stream. The following lemma, which is an improvement of
lemma 4.1, will be useful in what follows. We postpone its proof to the end of the proof of lemma 4.1.
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Lemma 4.2. Let s > 0 and U € S* 1. Let kg and a the positive constants from lemma 4.1. Let
e>0. Form = =], for any n > 1 for any families of real numbers (B}, A € UL P} (m)), (B4, A €
UL, P; (m)) (not necessarily in \/Z) that satisfy conditions (4.5) and (4 6) we have

Vo e {+,—}Vie{l,...,d}VA € P?(m)

hmmfhmsup—log]P’ fn € Sn(€) : P2 (fn, A) = (1 _5(1/4)50
F0 meo and 0(771 (fn), s?ﬂgﬁd) < g%
= hm lim sup — loglP’ (an € Sl (7n (fn), s?]lgﬁd) < 6)
and

Vo e {+,—-}Vie{l,...,d}VA € P?(m)

hmlnfhmlnf —loglP | 3f, € Su(€) : V8 (fr, A) = (1 — /)B4
e—»0 mn—oo and a(ﬁn fn S?]l@ﬁd) < g0
= lim lim 1nf — logP (Elfn € S (ﬁn fn)s s?]lgﬁd) < 5)
e—=0 n—oo

where o is a constant depending on o and d.

Proof of lemma 4.1. The proof is divided into three steps. In the first step, we prove that if f,, € Sp()
satisfies D(ﬁn (fn), s?]lgﬁd) < ¢, then the flow for f,, through any tube cyl(4,1,e;) for A € P (m) is
close to the value of the flow through this tube for s 7. In a second step, we modify the stream in such
a way that the corresponding flows through the tubes are in /eZ. This ensures that the possible values
the flow can take at a mesoscopic level belong to a finite deterministic set. Finally, we do a pigeonhole
principle to prove that there exists a deterministic set of possible values for the flows through the tubes
that can be observed with a large enough probablhty

Let n > 1. Let us consider w € {Elfn € S (ﬁn fn)s s?]lgﬁd) < 5} On the configuration w,
we choose a stream f,(w) such that D(ﬁn fn)s s?]lgﬁd) < e. If there are several possible choices, we
select one according to a deterministic rule. For short, we write ﬁn for ﬁn( fn)-
Step 1: Control the incoming and outcoming flow in the tubes. In this step we use some tools
from [9]. The aim is now to show that the strength of the stream f,, that flows through A € P;*(m) is
close to

/ ST - el dHY (2) nd™ = suHTH(A) nd !
A

In [9] (more precisely in the display equality after inequality (4.18)), the authors define the following
flow through the bottom half of the cylinder cyl(A, h) for h > 0:

U(72 0 eyl(A, ), @) = S Jule) - (nzD)

e=(z,y)€EL:eCcyl(A,h),
2€B'(A,h), y¢B'(A;h)

where we recall that T7(A, h) and B’(A, h) were defined in equalities (1.4) and (1.5). It is easy to check
that the set of edges E4T[A] is a cutset from B’(A,h) to T'(A, h) in cyl(A, h) which is minimal for the
inclusion. By the node law, it follows that

q’(ﬁm Cyl(A’ h), e_,>) = "/):r(fny A) :

We refer to equation (4.20) in [9] for more details about this fact.

Note that both expressions only depend on edges that have their left endpoint in cyl(A, A, —e_f) c¢c.
The value of the streams outside this set has no importance in the estimation made below. Therefore,
we can use the estimates proven in proposition 4.5 in [9] and the expression of hy given just after the
display inequality (4.24). There exists C(d) > 0 depending on d such that
n /cyl(A,h 2 € dﬁn(fn) nd—1 =N

v Vh< 1
n>0 VhS Sy am
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Hence, we have

UF (fn, A) —ynd—1 U (fn, A) 1 /
_ .o < il >
i ST - e HI(A)] < T T, Az e - dila(fn)
1/ — — 1 nd
+ |= el -d nfn— sV - eldlx
h Jeyican,—) Hulfa) h Jeyian,—2) (@)

< Ty (A, b, —20) = 5T £2eyl(A, b, ~2) .

We choose h in such a way that 1/mh € Z: we set
b 1 [MC@)]
=l
where [z] denotes the ceil of the real number z. We have

I 7
< =
h m MC(d)

Write \
h = -
9j

with j > 1 and \ € [1,2]. Since 1/mh € Z, there exists = € [0, 1] such that
eyl(A h,—e))\ A= U (Q+x).

Qen’
(Q+z)Ccyl(A,h,—e])

Hence, we have for n large enough depending on € and M

I n(eyl(A, b, —€7)) = sT L (cyl(A, h, =€) |12

< [T n(eyl(A, b =2\ A) = 5Ly, B~ \ A)ll2 + [ T n(A)]l
<y Hﬁn(QHﬂ)—S?Ed(Q)IIﬁ#
QeAd

. M A
<PV p, s VL L) + —— < 2Z¢.
nm

It yields that

2 1 M 2
O (fn, A _87_6—1}7_[(1_1(14)’ §77+£< (nmd—1+2/\€’7 f"(d)—‘ md+1> .

T a1 2 = md-1
Set n = md7 we have
Ui (fn, A —pd—1 1 2 3t
BT —57-6/}{ (A) gmdf —|—8M C(d)%e .
Setting m = |~ ] where
1
“ToBd+ 1) (47)

where |z| denotes the integer part of the real number . Consequently, there exists k4 depending on d
and M such that
60&

VU)o 2t ()] < g

nd—1

o (4.8)
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By the same arguments, we can prove the same result for A € P, (m).

Step 2: Modify the stream in such a way the flow is in \/¢Z in each tube. The aim is now
to correct the stream so that ¥$(A, f,) € VeZ for i = 1,...,d, o € {+,—}, A € P?(m). Using the
arguments of the proof of lemma 3.5, there exists ? a set of self-avoiding oriented paths in € such that
for any path 7 € T only its first and last edges belong to U;—;  4E4~[€;7] UELT[€]], and we can
associate a positive real number p(7) such that

fn= Z p(?) Z n-ﬁ/]le
FeT e=(z.y)eF
and
VT ET VP =(wy)eT  fule) T 0.
Fori,j € {1,...,d}, 0,0 € {+,—}, A1 € P7(m) and Az € P;(m), we set

gnlA1, Ag] = Z p(7) Z nzyl, .
FeT: e=((zy))eT

T €RLO[AL], 4 €EL°[As)
where v/ (respectively 7') corresponds to the first (resp. last) edge of 7 Hence, we have
fo = > > gn[A1; As].
A1eUl_ P (m)UP; (m) AxeUi_ P (m)UP, (m)
On the configuration w, g,[A41, As] € S,,(€). Moreover, we have
VA, Ay € UL PH(m)UP; (m) VecEE  fo(e)-gnlAr, Az](e) > 0.

Since this decomposition is not necessarily unique, we choose one according to a deterministic rule. Let
t be a real number, we define

proj(t,€) = sign(t)ve WJ

where sign(t) corresponds to the sign of t. We define fn in the following way

~ proj (vi(gnlA1, As], A1), €)

fn = § E GnlA1, Aollyo g, 141, 45],41)£0 -
1<ij<d AP (m) Vilgn[As, Ao, A1) R

o,06{+,—} A, €P} (m)

It is easy to check that on the configuration w, we have J?n € S,,(®) because we have

0< proj (¢i(gnlA1, A, A1), €)
- Vi(gn[A1, A2, A1)

Moreover, for i € {1,...,d}, o € {+,—} and A, € P7(m), we have

proj (¥¢ (gn[A1, A2], A1), €)
02 (gl Ar, Aa], A7) V7 (gnlA1, Az, A1) Ly (4,141, 42],41)0

1.

IN

U5 (frr A1) = >

Ay EU%:J’; (m)UP, (m)

= > proj (1 (gn[Ar, As], Ar)), €) € VEZ

Az GU‘ézl’P}j (m)UP, (m)

and since
vVt eR |t — proj(t,e)| < Ve

we have

/(/J?(ﬁuAl) - wj(fnaAl)’ < card (Uzzlp;(m) U'P;(m)) \ﬁ < 2dmd_1\£,
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It follows that for n large enough (depending on ¢) using inequality (4.8), we have

09 (Fas Av) = 50O (A | <

02 (Fos A1) = 05 (s A1) + [15 (s A1) = s~ (A |

€ d—1
< 2K4 o L (4.9)

Let us compute the distance 0(7n(ﬁ),ﬁn(fn)) Let x € [-1,1[4, A € [1,2], let k > 1, let Q € A% such
that Q N € # (), we have

|70 @+2) - RalF)@+ )
< Z Z ‘1_proj(wf(gn[Al,AQ],Al)75)
)

02 [An, A, Ar) | [ Fn(mlAn 42DQ + )T s a4z

1<4,5<d A1 €PF(m
0,06{+,—} A, €P} (m)

< Z Z 1/1°(gn[A\fA2] Al ||ﬁ gn A17A2])(Q + x)HQIllbo (gn[A1,A2],A1)#0 -

1<4,5<d A1 €PF(m)
0,06{+,— }AQGP_ (m)

Besides, we have by construction:

U7 (gnlAr, Ao, Ar) = Z p(7) >0
FeT:

vf €EL (A1) €BS °[As]

and since the path 7 is self-avoiding, we have for n large enough

Do I HEnlgnlAr, AD@Q+ )2 < D S 7)M

d
Qenk Qenk FeT: "
vf €EL (A1), €BS°[As]
ne
< 2 o I0E  ai guli Aa), )
76?:

77 €RL°[A1],y' €EL°[As)
where we use that
HeeRl:ecel=|{e=(z,y) eBl:ze€ Jie{l,....d} nizj=re}| =denZi=dn?.
It follows that

S [Fa@+ o) - TaGo@ )| <vE Y d< avEamt )y
QEA]; 1<i,j<d A1 €PS(m)
0,06{+,—} AQEP; (m)

and

7'@ 77; fn = Ssup sup ZQk Z Hﬁn fn Q"’x 7n .fn Q""x)”

zGOldA€12]kO QeA’“
< 8d3/em?4™) < 8d3\/e e~ STFT
Hence, we have for n large enough

(7 (), sTLeL) V(G n(f), T LeL!) + (I n(fu), Hn(f)
<e+ 837D |
Finally, for € small enough depending on d, for n large enough depending on d and e, we have

T n(fn) sTLLY) < 7.
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Step 3: Do a pigeonhole principle for possible values of wf(fn,A). We would like to project
¥2(fn, A) on the possible values it can take for i = 1,...,d and A € P;F(m) UP; (m). Note that the
two families (49 (fn, A), i =1,...,d, A € P (m)) and (¢2(fn, A), i =1,...,d, A € P, (m)) satisfy the
conditions (4.5) and (4.6). Since ¢f (ﬁ, A) satisfies inequality (4.9), for n large enough, there are at most

4k qe®nd=1 /(m4=1,/€) possible values for z/Jo(fm A). Tt follows that by a pigeonhole principle, there exist
two deterministic families (A}, A € UL, P;"(m)) and (A5, A € UL, P, (m)) of real numbers in \/eZ that
satisfies the condition (4.5) dependlng on n and € and such that

~ CVoe{+,—IVie{l,....d}VAEP(m) ¢2(fn,A) =S
F <3fn € 5a(0): and O(ﬁn(fn),s?ﬂgﬁ‘i) <e” ! >

1 2dm
> (M) P (3f € Su(@) : (W nl(fn),sTLeL) <é) . (4.10)

4Kk qend—1

The families (\}) 4 and (A}) 4 satisfy the condition (4.6) since fn satisfies the node law. Hence, we have
by taking the limsup in n and then the liminf in € in inequality (4.10)

lim inf lim sup dlogIP’(Elfn € 8,(0):

e=0  pooo

Voe{+,-}Vie{l,....,d}VAe P(m) ¢?(fn,A) =X
and D(ﬁn (fn) ,s?]lgﬁd) <eo

> lim hmsup — logIP (3fn € Snl (ﬁn (fn)s S?]lgﬁd) <e). (411

e=0 pooo

Moreover, we have for all n > 1

CYoe [+, —}Vie{l,...,d}VAE P (m) US(fu, A) = XS
P <E|f" € Sn(€): and D(ﬁn (fn)s 57]1¢£d) <e® . )
<P (3fy € Su(@) (Wl fn), sTLeLY) <) .

It follows that

lim inf lim sup dlog]P’(Elfn € 8,(0):

e=0  pooo

Voe {+ —tVie{l,...,d}VAe P (m) ¢2(fn,A) =X
and D(ﬁn fn>787]1¢£d> <e®
< lim hmbup—log]}”(ﬂfn € Su(€) : (Hn(fn), sTLeLY) <) . (4.12)

e=0 pnooo

Combining inequalities (4.11) and (4.12) we obtain the equality. We can do the same computations by
taking the liminf in n instead of the limsup. The result follows. O

Proof of lemma 4.2. Let € > 0. Let m = |e=%| and (A}, 4 € UL P (m)) and (A, A € UL, P; (m))
be the two families of real numbers in \/¢Z defined in lemma 4.1. We consider the event

- Vo {4, JVie {1, d}VAEPIm) v (fu A) = XS
E= {Elfn S Sn(Q) : and O(ﬁn(fn),87]l¢£d) < g@ A } .

From now on, f,, stands for a stream that satisfies the requirements stated in the previous event. If there
are several possible choices, we select one according to a deterministic rule. We consider two families of
real numbers (84, A € UL P;F(m)) and (85,4 € UL, P; (m)) that satisfy conditions (4.5) and (4.6)
(these families are not necessarily in /¢Z). The aim is now to correct the stream by modifying slightly
the environment so that we obtain a stream ﬁl € 5, (@) that satisfies

Voe {+ -} Vie{l,...,d} YAeP(m) U2(fn, A)=(1—c"p5

Since both families satisfy condition (4.5), we have

Voe {+,—} Vie{l,....d} VAeP(m) |\%—5< 2md#nd71 . (4.13)
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We set

1 1/(d—1)

For o € {+,—-}, i €{l,...,d} and A € P{(m), we denote by V4 the following set
Va={ze€:{zoXe : A [0,1/n}NA£D Vj#i z;€KZ/n}.

We set

ve=J Va.
A€EP?

Let us define the function w; on V¢+ UV, as follows:

_Ba=X

VA e P (m) VYaeeVy w; ()
[Val

Hence, we have using (4.13) and (4.14)

e g1 md—lK(i—l

, /2
Vo e Vy |w;(z)| < 2mdmd71n | < e, (4.15)

Fori=1,...,d, we denote by uf the following quantity:
pe= Y Ba—=a
AeP? (m)

The quantity u$ corresponds to the difference between the flow through €9 for f,, and the flow we would
like to obtain. Since both families satisfy condition (4.6), then we have

d d

domi =) u

i=1 =1

We split the 2d faces of € into three categories: the faces F;,, where there is an excess of flow, the faces
Fout Where there is a default of flow and the faces Fy where the difference of flow is null, 7.e.,

Fin =4{€;7 1 p7 >0,i=1,....,d}u{¢) : uf <0,i=1,...,d};

Four ={€; :p; <0,i=1,....dyu{¢ : puf >0,i=1,...,d}

and
Fo={€: puS=0,i=1,...,d}.

Sol= > 1wl

€ Fin €€ Four

By the node law, we have

For any i € {1,...,d}, we define the function p; : R — R?~1 as
v‘r:(zla"'axd)GRd pi(x):(zla"'axi—laxi+17"'azd)' (416)

Let us assume €; € Fy. We denote by f/°°[€], the stream given by lemma 3.3 associated with the
families

fin(pi(@) =wie), 2 e | Va

AeP,; (m)

and the null family (that corresponds here to uniform outputs)

(fout(pi(l')) =0,z€ Ver)
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in the direction €. The number of edges on which the stream is not null is at most 3dn? /K72 and

for each edge e € B4, || fres[€;](e)|l2 < €*/2 by (4.15). We can do the same thing for € € Fy in the
direction —e; with the families of null inputs

(fin(pi(z)) =0, z € V;7)

and for outputs
(fout(pi(x)) = wi(x)v T e V;_) .
We obtain a stream f¢*[€;].
Let us now consider €; € F;, and €j+ € Four- Let a > 0 such that o < |u; |, |,u;r| Let us first

assume that ¢ = j. We denote by f/*[€., C;r, a] the stream given by lemma 3.3 in the direction e/ with
the families of inputs

@ _
(Fnlosto) = wito). v €07
and the family of outputs
(Foutosta) = (o w e v ).

It remains to deal with the case ¢ # j. Let us call 7; ; the bijection that inverts the it" coordinate
with the j* one. Notice that 7, (V7)) = V. We can build a family of pairwise disjoint oriented paths
(7$, x € V;7) of length at most 2n, such that for € V;~ the path 7, joins z to 7i,j(2) in € (see figure

6):

rj—x;—1 Tj—x;—1
— —
o= Z €i L (a1l not (bt 1)el fn) — Z €j Lot (a;—.)8 ke fnga+(z; o) /nt-(k+1)E] /n) -
k=0 k=0

790 represents in fact the stream of intensity 1 through this oriented path.

ze Vi~

S

l

g |

TLQ(ZL’) c ‘/2_

Figure 6 — The path 7, for z € V;~

By lemma 3.3, we can build a stream g%’ in the direction e—; with the family of inputs
@ . B
fin(pj(2)) = ﬁwi(ﬂ',j (x)), €V,
i

and the family of outputs
«@

<fout(13j(33)) = ij(x), x € V]+> )

J
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Finally, we set
freler e al =gl + Y -
eV, ‘ |

We have
nd—1 d

n
> Tl <20V S 2 <25
zeV,”

Hence, using the previous inequality and lemma 3.3, we have that the stream f;°°[€;, Q:] , ] is supported
by at most 2n?/K?! + 3dn? /K2 < 4dn?/K9=? for ¢ small enough depending on d. Moreover, for
each edge e € €, we have || fre*[¢, @;r, aJ(e)|l2 < 2¢2/2. By symmetry, the same construction holds for
any € € F;;, and QZ° € Fout-

The aim is now to build a residual stream f]¢° such that
Vie{l,...,d} Voe{—,+} VAePI(m) 7 (fi",A)=p1—

We do the following algorithm to build this stream.

Algorithm 1 Build the stream f;°*
fa® 0
fori=1,...,d,o=—,+ do

if €7 € Fo then
fres = e + fre0eg]
end if
end for
fori=1,...,d,o=—,4+ do
if ¢ € F;;, then
while [1)? (f7°,€)] < |u¢| do
By the node law, there exists Qﬁj € Fout such that

05 (fa% G| < w5l -

We set o = min(|7| — [¢7 (f5°°, €] 5] — |5 (fn%%, €5)I).
FEAE S A o S [ N G
end while
end if
end for
return [

The number of steps of this algorithm is at most (2d)?. Finally, the stream f7¢* has its support included
in a set I' such that

!/
Fa_.d
I < o
where k!, depends only on the dimension. Moreover, each edge e € I is used a most twice at each step,
hence we have

Ifres(e)]l2 < 2(2d)%e™/? < 8d%e™/2. (4.17)
We set _
fo= (L= (fu+ 17°).

This ensures that for ¢ small enough depending on s and d, on the event {Ve € T' t(e) > s/(2d)}, we
have f,, € §,(€). Indeed, for e € T', we have

5&/2

172 < (1= /([ fule)l2 + 8d%*%) < (1 - /%) (1+16d3 )t(e)gt(e)
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for € small enough depending on d ans s. Doing so we obtain

Vo€ {+,—}Vie{l,...,d}VAE P (m) o5(fu, A) = (1= e/ (fn, A) + 85 — X3) = (1 — /483

where we recall that ¢7 (fn, A) = XS. Moreover, using inequality (4.17) and the expression of K in terms
of € given by (4.14), we obtain for n large enough depending on d

S @l S 1R

e€EdNE ecEine

D(ﬁn(fn)v 57]1¢£d) < D(ﬁn(fn)a 571€£d) +

r
< e+ 6de™/ M + 16d2€°‘/2%

a/2

< a4 2 ( d7:2)_ T TSy
€%+ 6de** M + 16d KdK < Ke?(Im7=1) = Ke2@-1 < i@ |

where K depends on M and d and the last inequalities holds for € small enough depending on d. We set

(4.18)

On the following event

Vo e {+,—}Vie{l,...,d}VA € P?(m) 5
ENE ={3fn €8.(Q): W (fas A) = X% n{veer o=},
and D(ﬁn(fn)787]1¢ﬁd) <e?, 2d

the stream ]?n is admissible since it satisfies the capacity constraint. Using the fact that the two events
€ and &' are increasing (requiring large capacities will always help to obtain a given stream), we have
by FKG inequality

s - Yoe {—l—,—}ViE {1 d}VAEPO( ) wo(ﬁ“ ) — (1_€a/4)5<>
P <E|fn € Su(Q): and U(ﬁn fn sﬁ]lglld) < g A )
Vo e {+,—}Vie{l,.. d}VA e P (m

>p({3f, e s (@) G2 (fr A) = 24 {YeeT te)>
and D(ﬁn (fn), s?]lgﬁd < eg® 2d}
Vo e{+,—}Vie{l,...,d}VA e P(m $(frn, A) =
2P (Hf” € Su(Q) : and D(ﬁn (fn), 37]l¢£ ) e )
(ve eT te) > ;d) (4.19)

Using the independence of the capacities, we get
nfind/Kd’2

Pveel )2 5)26 (|5 ‘LOOD‘FI 2 G (|50 ' (4.20)

Combining inequalities (4.19) and (4.20), we obtain for € small enough (depending on d and s)
vo e {+,-}Vie{l,. d}VA€P°( ) U (fa, A) = (1 -5y
and a(ﬁn (fn), sTLeL?) < e

Vo € {+,—-}Vie {1, d}VA € PP(m) U (fa, A) = 2%
and a(m (fu), sV LeLd) < e

lim sup— log P <E|fn € 8,(¢):

n—oo

> hmsup — logP <3fn €S,(Q):

n—00
iz 1060 ([542<])

where we recall that K goes to infinity when € goes to 0. Finally, by lemma 4.1, we obtain by letting e
goes to 0 and choosing a fixed s < 2dM:

+

Vo € {+,—}Vie {l,...,d} VA € P?(m)

lim inf lim Sup— logP | 3f, € S,.(€) : Y (fn, A) = (1 — /MY
€70 n—eo and D(ﬁn fn),s s?]lcﬁd) < g%
> lim hmsup—logP(Elfn € 8n(@) : (W nlfn), sTLeLY) <) .

e—=0 nsoo
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Moreover, we have

. Vo€ {+,—}Vie {1,...,d} YA € P?(m)
ligr;iélflimsupﬁ logP | 3f, € S,(€) : Y (fn, A) = (1— 5a/4)5§;
n—00 and D(ﬁn(fn); S?]l@,cd) S €a0

< lim limsup%bgHD (3fn € Sn(©) : D(ﬁn(fn),sﬁlleﬁd) <e).

e=0 nooo

This yields the result. The same result holds for the liminf. O

Definition 4.3. Let s > 0 and ¥ € S*'. Let w be an homothety of R (see (1.6)). We will say that
fn € 8n(7(Q)) is (e, sV, )-well-behaved if

Vo€ {+ —}¥ie (L., d}VAEP(m) of(fa,m(A)) = (1) (sT - &) H (m(A)n "
If m = 1d, we will write (e, s?)-well—behaved instead of (e, s?,ld)-well-behaved.

4.2 Definition and existence of the elementary rate function

Proof of Theorem 1.1. Here M > 0 denotes the supremum of the support of G. Let T e S Let
s> 0. Let ¢ > 0. Let m = [e~*| where a was defined in (4.7). Let N,n € N such that n < N and
n > m+ 1. Write
¢ = ¢
~&

Step 1: Paving € with smaller cubes. We want to almost cover € with translates of ¢’ by letting
enough space between them to allow to reconnect the streams inside the different translates of €’ together.

Let us set
p=|n|l+— .
m

.%'i-i-@l—-\l

Cor —

Figure 7 — Paving € with translates of ¢’

Let (z;);er be the points in pZ4 N (1 —p/N)€. Any two distinct points x; and z;, i, j € I, are at distance
at least p/N from each other. We set

T = Ty, 2, foriel
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where we recall that 7, /v was defined in (1.6). We have m;(€) = 2; + ¢’. The family (7;(€));es is a
disjoint collection of translates of €’ such that

Viel m(¢)ce.

We define the set Cor = €\ U;erm;(€). The set Cor represents the "corridor', this space will allow the
streams in different 7;(€) to be connected altogether (see figure 7). It is easy to check that m;(Z%) = Z4,
and so that m; induces a bijection from EZ to E4. We write

d
& = { Afn € Sn(mi(€)) (e, s?,m)-well—behaved : D(ﬁN(fN)]lm(@), s?]lm(@)ﬁd) < 4%8“" }

where o was defined in (4.18). On the event &;, we will denote by f J(\;) a well-behaved stream satisfying
the property described in &; (chosen according to a deterministic rule if there is more than one such
stream). We denote by €oty the edges in E4 whose left endpoints are in Cot:

=
Coty = {(x,y) €eEL :xeCovand Jie{l,...,d} Ij= j\;} .
Let us denote by F the event

F = {Ve € Cory tle) > M — H(e)}

where H : Ry — R, is a function we will chose later in such a way lim._,g H(¢) = 0. We aim to prove

that on the event 7 N[,
the cubes m;(€), i € I and

&;, we can build a stream fy € Sy(€) such that fx coincides with f](\;) on

Ve e E& NCor  ||fn(e)lla < M —H(e).

Step 2: Reconnecting streams in the different cubes. We now explain how to reconnect the
streams in the different cubes. Let 4, j € I such that ||a; — x;||s = p/N. There exists [ € {1,...,d} such
that

P —

xj:Nel +x;.

Note that for all A € P;"(m), we have on the event & N E;

v (0 milA)) = (1= /)T - @) M (At = o (F9m (A=)

mi(A) [ ﬁ ™ (A—€)
. °
Z; Ql‘j
p—n
e e 4
e
e

Figure 8 — Connecting streams in two adjacent cubes at mesoscopic level

We can therefore apply lemma 3.1 to connect these two streams using only edges in the cylinder
eyl(mi(A), (p — n)/N, ef) (see figure 8) since (p — n)/N > 2(d — 1)/(Nm). We denote by fr' "4
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the corresponding stream. Note that each edge in the corridor is used at most once by the streams
mix,i,j,A Wi t
N . We se
mix,i,j Z fmix,i,j,A
N = N :
AeP;t (m)

For i € I, o € {4, —} such that there exists I € {1,...,d} with a; <>p/N€l> ¢ {z;,j € I}, we have to
connect the stream f](\;) to the boundary of € by exiting the water in the straight direction e/. More

formally, we set
p—n

awr= Y  Ned Logteond)ee
k=1

and

)
=z
I

2ol

N Z J(\;)(e) Z]leszl\?]l(efk

e
e€EL T [mi(€])] k=1 )

where for an edge e = (z,y) € E%, for 2 € Z%,, we denote by e + z the edge (z + 2,y + 2) € E%. Finally,

we set ) o .
R D O DEED M

el (G,g)el?:||lzi—zj |l =% i€l 1=1,....d,oe{+,—}:

ol el ¢{z;. 51}
By construction, fx coincides with f](\;) on all ¢ + x; for ¢ € I. But, the value of ||fy(e)||2 may exceed
M — H(e) for edges in the corridor. To fix this issue we consider the stream fy = (1 — H(e)/M)fn. On

the event 7 N(,; &, the stream fN is in Sy ().
Conclusion. Using lemma 2.6, we obtain

WA N(fn), sV LeL?) < ZU(ﬁN(f](\;)% s L)L) +0(H N (fn) Leor, sV Lo L)

i€l
d
< 4|I|%5“° + 25L%(Cot) +2M |€;;f| (4.21)
Moreover, we have
Nd Nd
Il < < 4.22
= [n(1+2d/m)|? = nd (422)
and since (1 — 2p/N)€ C Usjer(z; + (p/N)€), it follows that
d d d
|| > (1_227/‘]\[) — (N_2) > (N_2>
p/N [n(1+2d/m)] n(1+2d/m)
and
£(Cor) < 1 ”i|1| <1 (—L _om ’ (4.23)
- N = 1+2d/m N/ '
We have using proposition 1.7, for IV large enough depending on d and € and n
L4(Vy(€or,d/N
|Coty| < 2d ( 2(1/Nd /N) < 2d (L%(Cor) + LY (V2(0€or,d/N))) N*
d dd ) 4y d
<2d | L%(Cor) + NH (0€ot) | N¢. (4.24)
We also have using inequality (4.22)
d-1 d—1 d—1 n 41 N
HI-L(OCor) < HITH(0€) + Y HE (A(mi(€)) < 2d + 24| (N) <2d+2d—. (4.25)

icl
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Combining inequalities (4.21), (4.22), (4.23), (4.24) and (4.25), we obtain for N, n large enough depending

on ¢, on the event 7 N[;c; &, that

N (fn),sTLeL?) < gle) (4.26)

where g : Ry — Ry is a function such that lim._, g(e) = 0. It follows that for N large enough

WL N(FN), sV LeLd) <UHN(fn), Hn(fn) +0(H n(fn), sTLeLY)

S (@)l + g(e) < 24 4 g(e) (4.27)

M
EEE(}VOC

where we recall that [E4 N €| = dN?. Hence, using the independence and inequality (4.22), we obtain

1
Nd

log P <3fN € Sn (@) : AN (fn),sTLeL?) < g(e) + QdHA(;))

> % log P <]~'m ng> = % log P(F) + %m log P(&1)
> 10N (= H(e), M) + - TogP(£)). (4.28)
Nd né
We define H(e) as follows:
1 d
H(s)_inf{a>O:G([Ma,M]) >1- (1+2d/m> } (4.29)

We recall that m = [e~%|. It is clear that H is non-decreasing. We denote by I = lim._,q H(¢). Let us
assume that [ > 0. By defintion of H it follows that

d
Ve>0  G(M-1/2M])<1- (1-1—210[/771)

and so G([M —1/2,M]) = 0. This contradicts the fact that M is the supremum of the support of G.
Hence, | = 0. Thanks to inequality (4.23) and by definition of H, we have

d d
<1 - <1+21d/m> ) log (1 - <1+21d/m> ) < lim inf £7(Cor) log G([M — H(z), M]) < 0.

) s )

lim lim inf £¢(Cot) log G([M — H(e), M]) = 0. (4.30)

e—=0 N—oo

Since

it follows that

We admit the following result, we postpone its proof (see lemma 4.4 below).

P(&) =P (3 fn € Sn(mi(€)) (e, 57, mi)-well-behaved : (7 n(fn), sT Ly, ) L%) < 4;25“0)

> P3fn € Sn(€) (e, sV)-well-behaved : 0( L n(fn), s UL L) < %) .
(4.31)

For f, € 8,(€) (e, s?)—well—behaved, we have

Vo e {+,—}Vie{l,...,d}VA e P(m) ¢ (fn,A) = (1 —e*)(sT - ) HI (A)nd~t.
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The families ((s7 - &) H (A1, A € UL, Py (m)) and ((s7 - &) HO (A)nd=1, A € UL, PF(m))
clearly satisfy conditions (4.5) and (4 6). Hence by applying lemma 4.2, we obtain

lim inf lim sup — 1og1P>(3 frn € 8n(®) (g,57)-well-behaved : 0( 7 n(fn), sULe L) < £20)

e=0  pooo

= lim lim sup —logP(EIfn € 8 (€) (T n(fn),sV1eLd) <e). (4.32)

e20 nooo

Using inequalities (4.24), (4.28) and (4.31), by taking first the liminf in N and then the limsup in n we
obtain

1 H
Lim inf =5 log P (3fN €Sn(€) : AN (fN),sTLeL?) < gle) + Zd]\(;)>
> lim inf 2dcd(¢m) log G([M — H(e), M))

+ lim sup g logIP’(ﬂfn € 8,(€) (e,s7)-well-behaved : 0( 7 (fn), s UL L) < ).

n—oo

Finally, taking the limit when € goes to 0 in the previous inequality (the probability are non-decreasing
in €) and using equalities (4.30)7 (4.31) and (4.32), we obtain

lim lim inf — N 7 logP(3fn € Sn(€ WHN(fN), sTLeL) < g)

e—=0 N—

> lim lim sup 5 log P(3fn € Sn(€) : 0(H n(fn), s TLeL?) <e).

e=0 nooo

This yields the result.

The following lemma proves inequality (4.31) in a slightly more general setting.

Lemma 4.4 (Scaling and Translation). Let Y eS™ ands > 0. Lete > 0. Let m € N. Let
N >n > 1. Let (p},A € UL P (m)) and (p;, A € UL, P; (m)) be two families of real numbers
(potentially depending on &, n and N). Let x € Z%. Set § =n/N. Then 7, s(Z%) = Z%: 7.5 induces a
bijection from Ed to EY (we refer to (1.6) for the definition of my 5). Then, we have

CYVoe{+, —}Vie{l,...,d}VAe P?(m) ¢7(fn,A) = pS
g (Hf” €88 and (7 n(f). s LeL?) < & ! )
CVoef{+, —pvie{l,... . d}VAE PP(m) ¢P(fn,mas(A)) = P
P (EIfN € Sn(m2,5(9)) - and O(ﬁN(fN),Sﬁ]lm,é(@)ﬁd) < iv(gdg ° A ) .

Proof. First notice that for y € Z%, we have 7, 5(y) = ny/N + x € Z%. Then, 7, induces a bijection
from EZ to E%. Let us consider w € (R4 )E" a configuration for which there exists f, € S,(€) such that

D(ﬁn(fn)a Sﬁlcﬁd) <e

and

Voe{+,—}vie{l,....d}VAE P (m) ¥7(fu,A)=p%.
Let f, = fn(w) be such a stream in the configuration w and define ﬁn = ﬁn(fn) We aim to prove that
on the configuration w o ﬂ;}; the stream f,, o 71';7(1s belongs to Sy (7,,5(€)), satisfies

Voe{+,-} Vie{l,...,d} VAeP(m) Y (fn 0 71';;,71’,@75(14)) =%
and
(I n(from, ) sV Ly, ) LY) < 46%.
We set
ﬁN:ﬁN(anﬂ-ggé NdenOﬂ'w(s (e) -

ecEd,
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It is clear that f, o7, + € Sy(m,5(€)) for the configuration w o 7 3. Moreover, we have for A € Pf(m)

W(fnom smes(A) = > falmgle) e = > fale) e =] (fn, A) = ph -

GGEj\’,O [Trm,é(A)] SGEZO[A]
It remains to compute the distance D(ﬁN, s?]lwm)é(@ﬁd). Let A € [1,2], y € [0,1]¢. Let j > 1 such that
2 AN < 2itt,
n
Let X' € [1,2] such that

)\E =\,
n

Let z € [—1,1[? such that ¥(y — 2) € (2 + NZ9). Let k > j. Let Q € Ak, set B = Q + y, we have

N N N
77;(1;(3) = ;(B — )= ;Q—i— ;(y — ).

Since X (y — z) € (z + NZ%) C (2 + N277FZ%), it yields that
m,5(B) € (z + A§7j> :

We have by change of variable
CEnms@) = [ ety - / acty) = MLt (BN ).
BAm, 5(€) Nd [ LB)ne
It follows that for B € (y + A%), we have

d
17 5 (B) = 7 LYB N 70 5(€)) 2 = %Hﬁn(ﬂga B)) — sV LYm, 5(B) N )2
where ﬂ;(ls(B) €(z+ A];,_j). Hence, we have
d ~ ~
Yo IHENB) = sTLBNT (@)= Y %Hﬁn(B) —sTLYBNO)s.
Be(y+Aak) Be(z+A%7)

Besides, for k£ < j, we have by triangular inequality

Yo IENQ) —sTLQNms (@)l < D IHN(Q) —sTLYUQNm,5())]12

Qe(y+A%) Qe(y+Aay)
d
n
= Z WHﬁN(Q/) —sTLYQ N )|z
Q'€(z+AY)

Combining the two previous inequalities, it follows that

Yo X IENQ - sTL@N (@)

k=0 Qe(y+Ak)

d 1
N—Z I78(@) = sTLQ MO+ 57 > gr > [Ha(@ = sTLYQNO

k=0 " Qe(x+AY) k=i Qe(z+akY)
d

<202 > IENQ - sTLYQNO)2+27 JNdZ > 7@ = sTLYQN )2

Qe(z+AY%) Qe (z+A’“,)
< n—d +)\—£ (o, s T 1L <4n—d5
= Nd AN me T ReE ) =N
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Hence, it yields that on the configuration wom (1;,

0(7N(9N)7 57]16¢+x£d) < 46e

and the result follows. O

4.3 Lower semi-continuity
In this section, we prove that the map I is lower semi-continuous on R?.
Proposition 4.5. The map I is lower semi-continuous on R®.
Proof of proposition 4.5. Let ¥ € RY and let (717),,21 be a sequence such that lim,_, 71, = 7. Let
us first assume that I(7') < oo. Let d > 0. Let g9 = 0(8) > 0 such that

Ve <eg - hmsup — log]P’(an € Sn(€) (T n(fn), V1L <) > (V) —46.

n—oo

Let po > 1 be such that for any p > po, |7V — 7p||2 < eo/4. Using lemma 2.3, it yields that

O(Hn(fn), TLeL) SO(Hu(fu), Tple L) +2T — Vpllz O(Hn(fn), Tplel?) +

and
Ve <ey Vp>po - 11m_>bup — logIP(an € 8 (@) : (T nlfn), T1eLd) < &)
< —limsup - 08B € 8,(€) 0T ulfu), TyleL?) < 2/4).
It follows that
Ve <eg Vp>po —hm_)bup dlog]P’(ElfneS W Hn(fn), Vpleld) <e/4) > (V) —34.

By letting first € goes to 0 and then taking the liminf in p, we obtain
liminf (V) > I(¥) - 4.

pP—00

Since the previous inequality holds for any § > 0, it follows that

liminf I(V,) > I(V).

p— 00
Let us now assume that 1(7) = 400. By the same reasoning, we can prove that for any M > 0,

liminf I(7,) > M.

p— o0

It follows that liminf, . I(¥,) = (V') = +0c. This yields the proof. O

4.4 Convexity

In this subsection, we aim to prove that the map I is convex, this property will allow us to obtain
regularity properties on I.

Theorem 4.6. The map I : R? — Ry U {400} is conver, that is
YA€ [0,1] VU, TeeRY  TOAT L+ (1= N)V2) < AM(T1)+ (1= NI(Ty).
Let us define Dy as the set of points where I is finite, that is,
Dy={zeR?: I(z) <400} .
It is easy to check thanks to theorem 4.6, that the set Dy is convex. From theorem 4.6, we can deduce

the following proposition that is a corollary of Theorem 6.7.(i) in [12].
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Proposition 4.7. The map I is continuous on Dr.

Let C be the cube of side-length 1/n centered at 0, that is

d
o [_1, 1} |
2n’ 2n
For any edge e € EZ, write P(e) the dual of the edge e, i.e., the hypersquare of dimension d — 1 of
side-length 1/n, orthogonal to e and centered at the center of e. Let v e Si=1 s € [0,M], h > 0,
and A be an hyperrectangle of R? such that 7/\ is not contained in an hyperplane parallel to A. We
need to define a new set of admissible streams S, (cyl(A, h, ¥),s') that is defined only in the interior

of cyl(A, h, 7) and have prescribed values near the boundary of cyl(A, h, 7) Let g : Ry — [0,1] be a
function such that

lim g(e) =1.
e—0
A stream f,, is in gn(cyl(A, ), s, g(e)) if
— The stream respects the capacity constraint:Ve € EZ Ifn(e)] < tle).

— The stream is null outside the cylinder: Ve € E4 Ple) ¢ cyl(A,h, T) = fn(e) = 0.

— The values of the stream for edges closed to the boundary are prescribed by the continuous stream
sU: Ve = (x,y) such that ((z +C)U (y + C)) ¢ cyl(A, h, ¥) and P(e) C cyl(A, h, V), we have
fale) = ge)n?(sV - ).

— The node law is respected for any = € Z% such that (z 4+ C) C cyl(A, h, sT).

To prove theorem 4.6, we need first to prove the following lemma. This lemma controls the probability
of having a constant stream sU ina cylinder oriented in the direction .

Lemma 4.8. Let U € St s € [0,dM], h > 0 and A be an hyperrectangle of R? such that o s
not contained in an hyperplane parallel to A. There exists two positive functions go : Ry — R4 and
g1 : Ry — [0,1] that satisfy

lim go(e) =0 and lim g1(e) =1

e—0 e—0

such that we have

— lim inf lim sup % log P (En(cyl(A, b, V), s, gole), g1(e))) < L cyl(A, b, V) I(sT)

e=0  pooo

where

3f, € Sp(cyl(A b, V), 5T, g1(2)) : } .

En(YI(A . T), 57, 90(c), 1(6)) = { O(Tn(fu)o 5T Loy an oy £9) < g0(e) LUy l(A, b D))

Proof of lemma 4.8. To prove lemma 4.8, we proceed similarly as in the proof of theorem 1.1. We pave
the cylinder with small cubes, we consider streams in these small cubes and we try to reconnect these
streams using the corridor. The main difference with the proof of theorem 1.1 is that we require that
edges close to the boundary of the cylinder have a prescribed value. This prescribed value corresponds
to a discretized version of the continuous stream s

Here M > 0 denotes the supremum of the support of G. Without loss of generality, we can assume
that for any 7 € {1,...,d}, el =uv; > 0.
Step 1: Paving cyl(A, h, 7') with cubes. Let m = [¢=®| where o was defined in (4.7). We set

2z

Hence we have nk € Z, nk(1 + 2d/m) € Z and lim,,_,o k = . Write
2d
E=k (1 + > ¢.
m
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We want to cover cyl(A,
A

, ) by translates of E. Let T(cyl(A,h, ¥)) be the following set of translates
of E contained in cyl(A, h, 7):

h
h, V)

T(eyl(A, b, V) = {zer(l+ 2d/m)Z% . (E + x) C (cyl(A, h, ) \ Voo (D cyl(A, h, 7),d/<;))} .
Write €or the following set

Cor = cyl(A,h, )\ U T (€)

z€Z(cyl(A,h, 7))

and the set of edges Cot,, whose left endpoint is in Cort:
e
Cot, = {(sc,y) €Ed:zecovand Jie{1,...,d} zj= n} .

For x € T(cyl(A, h, 7)) we write
E, = {an € S, (m5.4(€)) (e, s, Tz, )-well-behaved : D(ﬁn(fn), s?]l,rzym(g)ﬁd) < 45%&‘1} )
On the event &,, we will denote by f2 a (g, sV, Tz x)-Well-behaved stream satisfying
0(7n(fn),3711m7~(¢)/$d) < 404
(chosen according to a deterministic rule if there is more than one). Let us denote by F the event
F ={Ve € Cor, t(e) > M —H(e)}

where H(¢) > 0 will be defined later in a similar way than in (4.29). The function H satisfies lim._,o H(e) =
0. We aim to prove, that on the event F N ﬂze‘z(cyl(A,h,ﬁ))) &:, we can build a stream

fn €8y (cyl(A, h, ), s, (1 — H(e))(1 - sa/‘*))

such that f,, coincides with f% on 7, .(€), for z € T(cyl(A, h, V)).

Step 2: Construction of the stream inside U,cx(cyi(a,,7))(* + E). By lemma 3.1, for any x €
T(cyl(A, b, V), for any i € {1,...,d}, for any o € {+, —}, for any Ay € P?(m), there exists a stream
?i’AO in cyl(my«(Ao), kd/m,oe;) such that

_>
veeErTratd)]l T (e0 D) = s

and
_ VR Ten(40)
[E5° [z, (Ao)]|

vee B non (Mo )| T

This stream mix the inputs in such a way the outputs are uniform. We set f2"¢ the stream inside
UrGf(cyl(A,h,?))('r + E) as

EEE D DR FE D DI
z€T(cyl(A,h, 7)) Ao€U; P (m)UP] (m)
For any x1, 22 € T(cyl(A, h, 7)) such that xo = 1 + k(1 + 2d/m)e_i>, we have on the event £, N E,,
VAo € P(m) ¢ (fits Ty w(A0)) = (1= &™) v, HO (my o (A0))n? ™ = 07 (f52, 7y n (Ao — 1)) -
Moreover, since 2xd/m € Z,, it follows that:

‘ d
Ei° [M,H(AO) T 2“67]

1,0 _
E [7"1,%("40)” m
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Combining the two latter equalities, we obtain that

Ve e B mae (Moot )| T =T (e D).
m n

—71,A —w2,Ag—e]
The latter equality ensures that the streams fil ’ and fiz ome glue well together and so that the node

law is satisfied everywhere inside U, cx(cyi(a,n, 7)) (¥ + ). It remains to extend ferel to cyl(A h, ¥\
Uzez(eyl(A,h, 7)) (T + E) in such a way that we respect the boundary conditions. To do so, we define a
discretized version f45¢ of the continuous stream sT. Since the stream fdise will not perfectly match
with the boundary conditions of f27!, we will also need to build a stream that corrects the differences
on the boundary.

Step 3: Construction of a discrete stream from the continuous one. Let x € f(cyl(fhh,ﬁ).
Let i € {1,...,d} and ¢ € {+,—}, let us compute [E5°[m, .o(142a/m)(€F)]|. By symmetry of the lattice
and since x € k(1 +2d/m)Z* C Z2, it is equal to [ELT[k(142d/m)€]]| = k¥ 1(1 +2d/m)?'n?=! since
nk(1+2d/m) € Z. We consider the following stream f&5¢ that is the discretized version of Sﬁ]lcyl(A,h,?)
defined by

Ve = (z,y) € EZ such that P(e) C cyl(A, h, V)
FE(e) = (L-+ 2d/m) 4D (1 — /(5T - T
In particular, if 7§ = EZ/n, for i € {1,...,d}, we have
fffisc(e) =(1+ 2d/m)_(d_1)(1 — 50‘/4)svie_i>.
Hence, we have for 2 € T(cyl(A, b, V), i € {1,...,d}, o € {+,—}

¢§(fgisc7 7Tz,f*@(1+2d/m)(¢;‘>)) = (1 + 2d/m)_(d_1)(1 - 5a/4)svi|]Ei{0[7ra:,ﬁ(1+2d/m)(€;>)}|

— (1 _ 6&/4)Svi/{d71nd71

= Z ’(ﬂf(f:f,ﬂx,n(AO))

Ao€EPS(m)
= wzo( 1267 ﬂ-%ﬁ(@g)) = wf(fﬁrel, Tra:,n(l+2d/7ﬂ) (ef)) . (433)
Let w € ZZ¢ such that w + C C cyl(A, h, 7), we have
S ) (i) = (4 2dfm) (- Y (5T ) = 0

yezs: yezs:
e:(w,y}GEZ e:(w,y)éEfL

and the node law is satisfied at w for the stream fZsc.

Step 4: Gluing the streams and correcting the differences. Let us now consider z € T(cyl(A, h, 7))
such that there exists i € {1,...,d} and o € {—, +} such that z o k(1 + 2d/m)e; ¢ T(cyl(A, h, 7)). Let
us denote by 8% (cyl(A, h, 7)) such z, i.e.,

DT (eyl(A, b, T)) = {m € Te(ART): Ka’f 2{;/m)€§l}¢0;c§;2 Ei’ ) }

and for such an z, let us denote by E,(z) the set of faces of 7, . (1424/m)(€) that are "external', i.e.,
Eqi(x) = {7733’,6(1+2d/m)(€;>) cxor(l+ 2d/m)€i> ¢ T(cyl(A, h, 7)), ie{l,...,d},o€ {—,—|—}} .

For those faces, we need to correct the stream f2™¢ to be able to glue it with the discretized version
fdise. Let us consider Fy = k(1 + 2d/m)(€% + z) € E. (). By equality (4.33), we have

U3 (3¢, Fo) = o3 (£, Fo) - (4.34)

We have ' 4
Ve € E)°[Fp] fdise(e) = (1 +2d/m)~ @D (1 — ) sv;e]
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Ve € B5°[K(€S + z o d/mey)] frrel(e) = (1 — e *svser .
It follows that for e € EL0[k(€S 4 z o d/me])], we have

. 24\ ~ @1 d2
(—fdsc(e) 4 frrel(e)) - ef = (1 —e*/*) [ 1 - (1 + ) sv; <4—M < 8d*Me® (4.35)
m m
for small enough & depending on d. For e € E5°[Fp] \ Ei°[1(€2 4+ x o d/me; )], we have f£7¢!(e) = 0 thus
, d —(d-1)
(—fdc(e) 4 frrel(e)) - e = —(1 — /%) (1 + Zm) sV > —Sv; . (4.36)

We can indexed the edges of E%°[Fp] following the order given by the canonical basis such that to each
edge e we can associate its index ((e) € {1,..., k(1 + 2d/m)n}¢~1. More precisely, we set

Ve € B[R] C(e) = nps(c(e)) + QWJ + 1) | {12}\“}6—5

where we recall that the definition of p; was given in (4.16). It is easy to check that ((e) € {1,...,x(1+
2d/m)n}i=1 (we recall that k(1 + 2d/m)n € Z). Set for any e € EL°[Fy], fin(C(e)) = (—fdi¢(e) +
ferel(e)) - e, If e is such that ¢(e) € {xdn/m + 1, k(1 + d/m)n}*"!, then

—(d-1)
fin(C(e)) = (1 — 5a/4) (1 - (1 + if) ) Sv; .

Otherwise, we have
, 9\ ~(@=1)
fin(C(€)) = —(1 = /) (1 - m>

To apply lemma 3.4, we have to check that the sequence (fin(y),y € {1,...,x(1+2d/m)n}¢~1) satisfies
the conditions stated in the lemma. First note that thanks to equality (4.34), we have

> finy) =0

ye{l,...,s(14+2d/m)n}d—1
and by inequalities (4.36) and (4.35),
Vy € {1,...,k5(1 +2d/m)n}¢ " — M < fin(y) < 8d*Me™.

Let 1 € {1,...,d —2} and x € {1,..., k(1 + 2d/m)n}’, if x ¢ {kdn/m + 1,..., k(1 + d/m)n}' then for
any y € {1,..., k(1 + 2d/m)n}?~ 1! we have

2d\ @Y
in =—(1-e"Y(1+= i -
o) =~ (14 28) s
If x € {kdn/m +1,..., k(1 + d/m)n}!, then we have

ye{l,...,s(1+2d/m)n}d—1-1

d—1-1 —(d—1)
:|{m,...,n(l+d>n} <l—<l—|—2d) )(l—sa/4)svi
m m m
d—1-1 d—1-1 —(d-1)
—‘{1,...,&(1—1—%)7&} \{m,...,m‘(l—kd)n} <1—|—2d) (1—eYsu;
m m m m
—(d-1) d—1—1 —(d-1)
2 2 2
= (1 - (1 + d) - ((1 + d) - 1) (1 + d) > (1 — e/ *)sv;(kn)4—17
m m m

— <1 - (1 + 2d> _l> (1 — ) sv;(kn)? 171 > 0.

m
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a:,Fo

It follows that the conditions to apply lemma 3.4 are satisfied. By lemma 3.4, there exists a stream g

in cyl(Fo, (d — 1)k(1 + 2d/m),o€;) C cyl(A, h, ¥) such that

e ,
veeBln] g (eo D) = f) + A1)

n

and
Ve € BX°[Fy o (d— 1)k(1+2d/m)e;] g% (e) = 0.

The stream g% satisfies the node law everywhere except for points in {w € Z% : Iy € Z4 s.t. ﬁ =
oe;/n and (y,w) € E4°[Fy]}. Moreover, using inequalities (4.35) and (4.36), we have for any edge e € E¢
parallel to e;

g%t (e) - e € [—sv;, 8d*Me?)

and for edge e parallel to e_; with j # i
g e (e)l2 < 8d*Me™.

Finally, we build f,, as follows: for any e € cyl(A, h, 7) NEd

fe) = { frgf«el(e) . ifee EfL N Uxeg(cyl(Aﬁ,?)Ww,n(1+2d/’rﬂ)(Qt)
" Fa*(€) + Lincomim(eyi(an, ) 2uFoe B 9n ' (€) - otherwise.

The node law is satisfied everywhere inside cyl(A, h, 7) Note that by construction of T(cyl(A, h, 7)),
cach e € cyl(Fy, (d — 1)k, o€;) belongs at most to d such cylinder (one for each direction): for each
j € {1,...,d} there exists at most one o € {+,—} and y € 9™ (T cyl(A,h, 7)) such that F; =
Ty r(1+2d/m) (&) € Ex(y) and e € cyl(F1,(d — 1)k,0€;). It follows that for any e € cyl(A,h, ),
we have

| fr(e)ll2 < M + 8d>Me™.

On the event F, the stream f,, = (1 — e*/4)(1 — H(e) /M) f,, respects the capacity constraint for ¢ small
enough depending on d. Indeed, we have for € small enough depending on d,

fn(@)ll2 < (1= */4)(1 +8d%*)(M — H(e)) < M — H(e).

On the event F M Nycx(cyi(a,n,7)))Exr We have that ﬁL € gn(cyl(A, h, 7), 37,91(5)) for n large enough

where o (1 . if)_(d_l) (1 . H]f;)) (1= otz

Conclusion. Using lemma 2.6, on the event M, cg(eyi(a,n,7))Exs We have

(Al fa), ST Legian ) L%
< n(fn)s o Fn)) +(Hn(fn), 8T Leyian, ) L")
<2 (1 -(1- 5a/4)(1 - H(g)/M)) % Z | fr(e)ll2 + D(ﬁn(fn)ﬂ%ra s?]lgotﬁd)
eE]Ei:c(e)Ecyl(th,?)

+ Z D(ﬁn(fs)vSW]lwxw(g)ﬁd)

z€T(cyl(A,h, 7))

< <50‘/4 + %(1 + sa/“)) AdM LA (Va(cyl(A, h, D), d/n)) + 2M ‘Q:LZ"‘ + 2dML4(Cor)
+ 4e®0 L cyl(A, b, V). (4.37)
We have for n large enough depending on A and h that
LYWV (cyl(A, b, T),d/n)) < 2L%(cyl(A, h, 7). (4.38)
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Let us estimate the size of H4~1(0Cot):

HITL(OCor) < HITH (O eyl(A, b, V) + |T(cyl(A, h, ) [HIH(9(kE))

N Ed(cyl(;li, h, 7))

< HITY D eyl(A, h, V) 2dk41

d
< WV (Deyl(A, b, T)) + 245 (Cyl(“:’ b)) (4.39)
By doing similar computations than in (4.24), we have
d 2d )41 d
|Cot,| < 2d | LY(Cor) + ZH (0Cort) | n®. (4.40)

Let us upper-bound the volume of the corridor for n large enough depending on e:

L£4(Cor) < |T(cyl(A, h, 7))|L4 (ﬁ (1 + iff) ¢\ n€> + L (Va(deyl(A, b, V), d%k))

d c d
(2] ) e onan

2d+1
< 7d,cd(cyl(A, h, V) 4 4d*kHI (D cyl(A, b, V)
< 2924 £ (cyl(A, h, T)) + 8d2eH (D cyl(A, h, V)
where in the second inequality we use proposition 1.7 for x small and in the last inequality we use the

fact that x goes to € when n goes to infinity. We detail here an inequality, we used in the previous
inequality and that we will use again in what follows. For = € [0, 1], we have

d

> (Z) ah < :cgjl (Z) <24z, (4.41)

k=1

(1+z)?—1

Finally, for € small enough depending on A and h, we have
L£4(Cor) < 27H3de0 LA (cyl(A, h, V). (4.42)

For € small enough depending on A and h, for n large enough depending on ¢, using inequalities (4.37),
(4.38), (4.39), (4.40) and (4.42), we have

0T n(f)s T Leyaan L") < go(e) £ (cyl(A b, T))

where -
go(e) = 8dM (aa/“ + %(1 + 5"‘/4)) 4 28600 g2 N 40

Finally, we have

P (fm N Sx) < P(En(eyl(A b, D), 5T, go(€), 91(e))) -

€T (cyl(A,h, D))

Using the independence, we have

IP(]:) H P(gl) < P(gn(cyl(A’ h’a 7)7 877 90(5)7 g1 (5))) . (443)
€T (cyl(A,h, 7))

We have nk(1 + 2d/m) € N. Therefore, for any = € T(cyl(A,h, 7)) we have & € Z%. Hence, if we set
no = nk, the application 7, ,,,/, is a bijection from Efm to EZ. We can apply lemma 4.4:

P(E;) = P (I fny € Sno(@) (e, s0)-well-behaved :  0( T gy (fny), s 01 L) < £™) (4.44)

56



and we have using lemma 4.2 and theorem 1.1

1
lim lim sup —— - logP(E,) > —I(sT). (4.45)

e=0 nooo
Besides, using inequality (4.45), we have

lim lim sup — ! Z logP(&;) = hm lim sup d\‘l(cyl(.A h,7))|log P(&s,)

e—0 ’n,
noee €T (cyl(A,h,T)) e

1 L%cyl(A, h, 7))

> il_I;% 117Iln_>Solip ek (1 + 2d/m)d log P(Ex,)
> —L%(cyl(A, h, W) (sT) (4.46)

where z € T(cyl(A, h, 7)). Besides, we have

lim sup ! —P(F) = limsup [ ot | log G([M — H(e), M]).

n— 00 n n—so00 nd

Hence, we can define the function H as in equality (4.29), using the control of the volume of the corridor
(4.42):

H(e) = inf {a > 0: G([M — a, M]) > 2%F3de" L4 cyl(A, h, V) } . (4.47)

and since M is the supremum of the support of G with the same arguments as in the proof of theorem
1.1, we can prove that H(e) goes to 0 when ¢ goes to 0 and

lim lim sup £4(Cot) log G([M — H(e), M]) = 0.

e=0 nooo

Hence, we get

lim lim sup L < logP(F) =0. (4.48)

e=0 nooo

Finally, combining inequalities (4.43), (4.46) and (4.48), by taking the liminf when ¢ goes to 0 we obtain:

lim inf lim sup 1d]P’(5n(cyl(.A,h,?),s?,go(e),gl(s))) > —Lcyl(A h, TNI(sT).

e=0  pooo

The result follows. O

Proof of theorem 4.6. We have to treat separately the case where T =+7.

e First Case /1 = +¥/5. Let A € [0,1] and I > 0 be a small real number, in particular, we have | < 1.
Let ¥ € S 1 and s1, 52 € R. Without any loss of generality, we can assume that v ey #0. Let C}
and C3 be the following sets (see figure 9)

C = eyl ([0, M%) x [0,12]972 x {0},1%, ) and  C3 = cyl ((N21%] x 0,122 x {0},1%,7) .
We pave € with translates of C* = C} U C3. Note that we have
cieMy =iy and  L£YCY) = (1 - NLYCH).

We consider the following set ¥ of translated of C*:

d—1
T = {CMZkiz?awdl?ﬁ; (k1,... kq) ezd} .

Let () be the following set
F(EO)={FeT: FNC#0}.

57



Figure 9 — Representation of C* (d = 3)

Let go and g; be the functions defined in lemma 4.8. For F = C* + z € T(¢), we denote by Gp the
following event (see the definition of &, in lemma 4.8)

Gr = En(CY + 2,517, 90(2), 91(€)) N En(C + 2,527, gol€), 91(€)) -

In other words, on the event Gr we suppose the existence of a stream similar to $1 7 in C+x (respectively
to s, in C3 4+ ). We denote by fLF and f2F the streams corresponding to these events (chosen
according to a deterministic rule). We denote by B the following set of edges:

B=LecEiNnC:Ple)n U (z+0CM) U (z+0C) # 0
F=z+C*e%(€)

We denote by F the following event
F={Vee®B  t(e) > gi(e) max(|s|, |so])[| 7]l oo} -

On the event F NN Feg(@}g r, we claim that there exists a stream f,, € S,,(€) obtained by concatenating
all the streams (f1F, f2:1") such that

(T n(fn), (As1+ (1= N)s2) Tle) < K1l + gole)

where K7 is a positive constant depending only on M and d. Set

? = Z (51]101*+z + ‘92]1C’§\+z)7 .

F=(C*+2)e%(¢)

Note that sets in T(€) have pairwise disjoint interiors and € C Upeg(e)F. We build f,, as follows: for
any e = (y,w) € EE N ¢

FLCM e (¢) if P(e) C C} + 2, C* + 2 € T(€)
Fale) =4 207 (e) if P(e) € C3 +x, C* + 2 € T(C)
g1(e)nd1 (fp(e) 7 (u) - (nyd) d?—ld_l(u)) ny if e € B.

It remains to check that f,, satisfies the node law everywhere in €. Remember that C' = [—1/(2n), 1/(2n)]%.
By construction of f,, if w € Z% is such that (w + C) C (x + C) for i = 1,2 and x such that
(r + C*) € T(¢€) then since f};ck“‘z satisfies the node law at w it is also true for the stream f,. Let
w € Z& such that

w+C)n  |J  (@+(0CrUacs)) #0.
z:x+CrEZ(C)
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For z € Z& such that e = (w, z) € EZ, either P(e) C (z + C}) for some x such that z +C* € T(&) either
P(e) C (z+ C3) or e € B. In any case, we have for e = (w, 2)

fu(e) = g1(e)nd=t < 7 (u) - (nw?) d?—[d_l(u)> nws.

Ple)

We recall that L(C}) denotes the lateral sides of the cylinder C7', T(C}) its top and B(C?) its bottom.
We apply Gauss-Green theorem for & in (w + C) N (z + C7):

0= / div 7 dL?
(w+C)N(z+CP)

= > / ns V- Wi,y ox (2) dHT(2) +/ $17 - T yon (W)dH ™ (u)
P((w,y)) (CHw)N(z+0C}) !

yEZ,‘i:
(w,y)€E
. / nsy T T o (2) AHI1(2) | + / 92T Ty (u)AH ()
yezd P((w,y)) (C+w)N(z+T(CPUB(CY))
(w,y)€EL
(4.49)

where we use in the last equality that if u € (z + L(C})) then ¥ - ﬁm—i—C
)

a(u) = Note that for
we (x+T(C))) = (z+ 12U + B(C})) we have 790-1—01)‘(” = —7x+c?+127( )=

e_> follows that

s - W:HC? (w)dH " (u) =0

z:z+CAET(E) /(C+w)ﬂ(x+T(Cf)UB(Cf))

and thanks to equality (4.49), we have

D / nslv T4 0 (2) dHO () = 0.
z:x+CrET(C) yezd:
(w,y)€EL

By similar arguments, we can prove that

Z Z / n327 .Z]].z+c>\ dH(2) = 0.

z:z+CreT(C) yezd:
(w, y)e]Ed

Hence, we have
> [ aTe)man)
yezd: P((w,y))
(w, y>€Ed

and f, satisfies the node law at w. We recall that g;(g) < 1, so f, satisfies the capacity constraint in €
on the event F N Npeg(e)Gr. Finally, we have f, € S,(<).

Write v = (Asy 4 (1 — A)s2) U Le L% We want to upper bound the distance 3( 7 (fn),v). To do so,
we introduce another measure 7 and we upper bound separately the quantities D(ﬁn (fn), V) and (7, v).
We set

V= Z (Sl]lCl*qu + 82]102A+z)7]1¢£d = ?]l@ﬁd .
z: (Cr+2)€T(C)

We denote for short 7, (fn) by 7 n. Notice that for z such that (C* + z) € T(¢) and (C* + z) C €, we
have
[v(C* + 2) = D(C* + 2)||]2 = 0.

Let £ > 1 such that | < \/MZ_’“ where e¢ was defined in lemma 2.4. Tt follows that di2 < eg27 2k <
£¢27%. Such a k exists when [ is small enough. Let » € [~1,1[% and B € [1,2]. Let Q € A’g.
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o Let us first assume that (Q + =) C € then

[¥(Q+2) —v(Q+ )2 < > [V(C* + 2) = 2(C* + 2)|2
(O 2)C(Q+a)
+ > [v((Q +2) N (C* + 2)) = ((Q + ) N (C + 2))|2
2:(Cr+2)N(0Q+x)#£D
<Y sl lshetc),

2:(Cr+2)N(0Q+x)#£D
Moreover, using lemma 2.4, we have that ¥ is a paving and diam(C?) < dI? < e¢327*, it follows that

11 (0Q)

ZioM diam(C?).

{z:(C*+2)N(0Q+z) #0}| <4

Finally, we get
(@ +2) = 2(Q + ) ||2 < 8(|s1| + |s2)dI*H(Q) . (4.50)

e Let us assume now that (Q + x) N A€ # (. Thus, we have

(@ +2) — V(@ + )2 < > [V(C* +2) = (C* +2)]2
2:(Cr+2)C(Q+z)NE
+ > [v((Q +2) N (C* + 2)) = P((Q +2) N (C + 2))|2
2:(CA2)NO((Q+z)NE)#D
< > 2(|s1] + [s2)LU((Q + z) N €N (CH + 2))

2:(Cr+2)NA((Q+z)NC)#D

where we used in the last inequality that v and v are null outside €. It follows that

> [(Q + =) = (Q + )l

QeA’g (Q+z)NOCHD

< ) > 25| + [s2))L(Q + z) N €N (CP 4+ 2)
QeAak: = (Cr2)No((Q+z)NE)#D
(Q+z)NOE#D
< > > 2(|s1| + [s2))£((Q + z) NEN (C* + 2))
QQAZ; 2:(CA+2)NOCAD
(Q+z)NoC#D
+ Y > 2(|s1] + [s2)) LY((Q + x) N €N (CH + 2))
QeAl:  z(Cr+2)N3(Q+z))#0
(Q+z)NoC#£D

< {z:(C*+2) N # B} 2(|s1] + |s2) LUCH)

+ Z {z:(C*+2)NAQ+ ) # 0} 2(|s1] + |s2) LHC™).
QGAZ:
(Q+z)NoC#D

Using again lemma 2.4, we obtain
> (@ + ) —v(Q + )|
QEALH(Q+z)NICHAD

< 8(|s1] + |s2])(diam C*) (H4H(0€) + [{Q € A% : (Q + ) N 0T # PHHI~(9Q)) .
(4.51)
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Combining inequalities (4.50) and (4.51), it follows that

Yo I@Q@+a) -w@+a)la < Y Q@+ -w@Q+ D)o+ D [WQ+a) - P(Q+2)s
QeAk QeAf: QeAl:
(Q+z)CC (Q+x)NICHA)D
< 8(|s1| + [sol)dl® ({Q € Af = (Q +2) N € # DA (9Q) +H™1(90))
L£4(3¢)
2 —kyd—1

< 8(|s1] + [s2])dl? (23%d2" + 2d)

< Ca(|s1] + |s2|)l
where in the last inequality we use the fact that 28 < \/e¢/d/l and where Cy is a positive constant
depending only on d. It follows that

oo

Yo 3 @+ a) Qo)

= k
k=1 QGAB

< Y Y meEn ekt Y g X IM@ta) - HQ ),

k:2=k>l\/djee ~ QEAL k2-k<iy/djee  QEA)

1
<2Cu(si|+ sl +2(sil+ 12D Y0 o YL L£YQ)
k:2=k<ly/d/ee QEAY:

(Q+z)NC#D

1
<2Cq(|s1] + |s2)l+2(Is1] +]s2]) > 27&(3@
k:2=k<l\/d/ee

d
< 23¢ (Cd + 2,/5¢> (|s1] + [s2])1.

Consequently, we have
~ [ d
v, v) <2 (Od + 234 5) (|s1] + [s2])1.
¢

Let us now compute the distance D(ﬁn, v). Using lemma 2.6 and lemma 2.4, on the event FNNpeg(e)Gr
we have

D(ﬁnvg) < Z a(ﬁnlw+0f‘7817]lw+0f“cd) +D(ﬁn]1w+02)‘7$27]1w+05\£d)
F=(w+C*)eT:FCC

+ > A(ls1] + [s2[)£7(C?)
F=(w+C*)eT:FNOCHD

< > 9o()LU(C™) +16d(|s1| + |s2|)YHIH(OE)I? < go(e) + 16d%12(|s1] + |sa]) -
F=(w+C*)eT:FCC

Note that if I(s1 %), I(sy¥) are finite then necessarily for any ¢ > 0, then we have
P(t(e) > g1(e) max(|s1], [s2])[|v]|oc) > 0.

Indeed, let us assume that P(t(e) > g1(g0)|s1][|v]loc) = 0 for some g9 > 0 and I(s; V) < oo, thanks to
theorem 1.1, we have

¥e>0  liminf % logP(3fy, € Sn(€) : (W n(fn), 51T LeL?) <) > —1(51 7).

By doing the same reasoning of proposition 2.7, we can extract a subsequence and choose a sequence of
configurations (wy,),>1 such that 7n(fn)(wn) weakly converges towards s 0 1eLd. Leti € {1,...,d}
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such that |v;| = [|v]|so. Without loss of generality, we can assume that v; > 0 and s; > 0. Then for any
e € E¢ we have f,(e) - o< g1(€0)s1v; and

/ 7n(fn)(wn) ’ e_i>d£d < 91(50)31%‘ < / 517 . 6_¢>d£d.
¢ ¢

This is a contradiction, it follows that if I(s; ) is finite then P(t(e) > g1 (c0)|s1]|[v]loc) > O.
On the event Npex(eyGr N F, there exists f, € S,,(€) such that

W Hnlfn),v) SUHnlfn), D) + 0@, v) < gole) + Kil

where K7 is a constant depending only on d, s; and ss. It follows that for € small enough depending on
l
P (Nres(e)Gr NF) <P (3fn € Sa(€) 1 3(Wn(fn)s As1 + (1 — N)so) TLeL?) < 2K41) .

Notice that |B|/n? goes to 0 when n goes to infinity, it follows that

hmsup—log]P’(]—') = lim sup d|%\ logIF’( (e) > ¢g1(e) max(]s1], |52|)||v||oo> =0. (4.52)

n—oo n— oo

We have for F' € T(€), using the independence:

P(Gr) = P(E(CY + 2,517, 9o(€), 91(2)))P(En(C + 2,507 , 9o (<), 01(€))) -

By lemma 4.8, we obtain

— lim inf lim sup 3 log P(Gr) < (M (s17) + (1 — A (7)) LYCH). (4.53)

e=0  pnooo

Since the events (G, F' € T(€)) and F are independent and using (4.52), we have

—limsup — logIP’(an € 8n(®) : 0(Hp(fn), (As1 + (1 — N)s2) V) < 2K41)
n—oo
< —|%(€)] lim sup —3 1ogP(gFO) — hmsup — log]P’( ) = —|%(€)] lim sup —3 1ogP(gFO)
n—oo n—oo

where F € T(€). Since the previous result holds for any e small enough depending on [, inequality
(4.53) yields

—hmsup — log]P’(an € Sn( W Hn(fn), As1+ (1 — N)so)?) < 2K,1)

n—oo

< |T<¢>|<M(s17> + (1= NI(s27))L4CH).

Besides, we have
LA((1+21%)€)
< — 7 7

Hence, we obtain

—limsup — logIP(an € Sn(@) : 0(Hnl(fn), As1 + (1= N)s2) V) < 2K;1)

n—oo

<(1+4 212)d(M(517) + (1= NI(s27)).

By letting [ go to 0 (the left hand side is non-decreasing in 1), we obtain
1
—limlim sup —P (3, € S W n(fn), As1+ (1= N)s2) V) < 2K11) < M (s17) + (1 — N (s27).
-0 n—soco

The result follows.
e Second Case: Let A € [0,1] and [ € [0,1]. Let 71,72 € S9! guch that o #+ + 75 and sy, 55 > 0.
We claim that there exists 7 € S?~! such that 5171 = 8272 - # 0. Indeed, we can complete
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U = s1U1 — $2U> into a normal basis (7,?2, . .,?d) of R? where ?2, . .,7d are in S4!. There
exists ¢ € {2,...,d} such that T1- 71 # 0. If not, we have

Vie{2,....d)  Ti-fi=0

and there exists A € R such that we have 7_} = )\(3171 —5272). This is a contradiction with o', * +7 5.
Hence, the vector w corresponds to the f; such that T f # 0 (if there are several choices we pick
?i with the smallest ¢). Since (7, ?2, el ?d) is a normal basis, we have

7-#28171-7—8272~ﬁ:0.

o> A

Figure 10 — Representation of the set E (d = 2)

Let (71,...,?(1_1,7) be an orthonormal basis. Let A be the hyperrectangle normal to 7 whose
expression in the basis (¢1,..., da_1, ) is [0,12]971 x {0}. Let Ey, Ey and E be the following sets (see
figure 10)

By =cyl(A N2, W), Ey=cyl(4,(1 -2 —-73) and E=FE UE,.

We have £4(E;) = M?? and £4(E,) = (1 — \)I??. We consider the following set T of translated of E:

d—1
T = {E—i— S kil A kalPAU 1+ (1= NT2) : (kn,. .., ka) € Zd} .

i=1

Let T(€) be the following set
T(C)={FeT: Fne+£0}.

Let F' € T(C) write F' = E + x. We denote by Fr the following event
Jr= STL(Cyl(Av )\127 71) +z, 8171a 90(6)791(8)) N (‘:n(Cyl(A, (1 - )‘)l27 _72) +z, 32727 90(6)791(5))

where go and g; are the functions defined in lemma 4.8. On Fr, we denote by ff and f>F the streams
corresponding to these events (chosen according to a deterministic rule if there are several possible
choices). We denote by B the following set of edges:

B=qecBINC:Ple)n |J (@+0cyl(AN% V1)U (z+deyl(A, (1 - N2 =) #0
F=z+E€%(C)
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We denote by F the following event
F={Vee B t(e) > max(s1]|v1]oo,s2||v2|loc)} -

Set
7= Z (51T 1 eyianz, )z + 52 V2 lepia 1oz, vays2)le
z: (E+2)eZ(C)
On the event Npeg(eyGr N F, we define the following stream f,, € S,(€) obtained by concatenating all
the streams fi P+ Ve = (y,w) € E4 N ¢:

FLE+ (o) if P(e) C eyl(A, N2, ¥ ) +2, E+xe€%(¢)
Fule) = f2 E*””( ) if Pe) C eyl(A, (1 - N2, ~02) +a, E+a € T(Q)
“(fp - (nyb) dHO (x ))nw if e € B.

Let y € A. Without loss of generality, we can assume that o-7 > 0. Hence, we have ﬁcyl(A a2 o) (y) =
—77. We have

S1V1 THegane ) ¥) = —$1 V1T =82V T =502 Weyi(aa-nyz,—7)(¥) -

Hence, by same arguments than in the previous case, we have that the node law is satisfied at any point
ine¢Nzl.

By the same computations than in the previous case, we can prove that there exists a positive constant
K3 depending only on d, s; and sz such that on the event F Npcg(¢) GF, for [ small enough, we have

(Tl Qs 1+ (1= N2 To)LeL?) < goe) + Kol
and by similar arguments
IAs1 0+ (1 — )3272)
=~ lim limsup —; L logP (an € 5,(€) : b(ﬁn(fn), (As1 01+ (1— >\)5272)]1¢) < 2K21)

S )\1(5171) ( — ) (8272).
This yields the result. O

4.5 Control of the elementary rate function
In this section, we aim to obtain a control on the elementary rate function in terms of G.
Proposition 4.9. For any U € R? such that G([|| V' ||ee, M]) > 0, we have
I() < ~dlog G([| TV loes M) .

Proof. Let ¥ € R? such that G([|| 7 ||se, M]) > 0. Let € > 0. We consider the following stream fdis¢
that is the discretized version of v 1¢ defined by

Ve = (z,y) € € flise(e) = n?(V - )Ty .
In particular, if 73 = E?/n, fori e {1,...,d}, we have

gisc(e) = 'Uigi} .

We aim to compute the distance d( 1, (f%5¢), T1eL?). We write I, for 1, (f¥°). Let z € [—1,1[4,
k>1and X € [1,2]. Let Q € Ak, We have

T (Q+2)NC) = Z v+ Z Z Vel /(2n))E€(Q+2)NE

mGZdﬂ(Q+z)ﬂ€ z€ZI\((Q+2z)NE) i=1

- Z Z vie] n))¢(Q+z)N¢

z€ZIN(Q+z) i=1
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Using proposition 1.7, it follows that for n large enough depending on @

17n(Q+2)NE) = TLYYUQ+2)NE)2
< (|Zim(@+z)m€|

1Z4 N Voo (0((Q + 2) N €),1/n)]| .

nd nd

LY (Q+2)N c)) |72 + 2d
< LY@ + 2) N ), dfm)) ([T |2 + 2d] 7o)
< 0@+ ) N (T s + 24T )

and

£4(2¢)
L£4YQ)

Yo 1Ha@Ne) = TLYQNE)|,

Qe(z+AR)

IA

i (Hdl(ac) N H“(a@) (7 + 24 )

2 (2 -+ 2722 (|7 > + 24| 7 )

IN

Let kg > 1 be the smallest integer such that
10dM27 k0 < ¢/2.
With this choice of kg, we have for n large enough
— 1
Z Y. QN E) - TLYQNE) |2 < Y 5phdM = 10dM27H < /2
k= kro QE(z+AD) k=ko

We can choose n large enough depending on € and kg such that

Pl 1 4d
Z o ;(2d+2d2d2k)(ll7llz+2d|\7||oo)

k=0

m\m

It follows that for n large enough depending on ¢, we have
7n disc 71€£d) <e
Note that on the event {Ve € € #(e) > ||V ||so}, the stream f%i5¢ belongs to S, (€). We recall that
HeeEl:eeel=|{e=(z,y)eRl: zee Jie{l,....,d nzj=re} =denZl|=dn?

Using the independence of the family (t(e))ee]Eg/, it follows that for n large enough depending on ¢

log]P’(Elfn € 8,(€) 0 Tnlfn), V1eL?) <e) < 7—log]P’(Ve €€ tle)>||7]s)
= fdlogGmWHoo, M) (4.54)

Finally, by taking first the limsup in n and then letting € goes to 0 in the previous inequality, we obtain
that
I(V) < =dlog G([|| V|| o> M]) -

This yields the proof. O
5 Upper large deviations for the stream in a domain

The aim of this section is to prove that the function I (defined in (1.2)), build from the elementary
rate function I, is the rate function corresponding to the probability that a stream f,, € S, (I',T'2,9Q) is

close to some continuous stream & € $(I'Y,T2,Q). This is the purpose of theorem 1.5.
We will need to approximate i by a regular vector field.
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5.1 Approximation by a regular stream

Define the function 1 € C2°(R%, R) by

n(z) =14 P (W) if [|l2 < 1
0 if flzfl2 > 1

where the constant ¢ > 0 is adjusted such that fRd n(z)dr = 1. For any n > 1, we denote by K,, the
following function

Vr € R? K, (z) = nn(nzx). (5.1)

The sequence (K, ),>1 is a sequence of mollifiers. Note that since for any z € Q we have I(?(m)) >0,
it follows that 1(7) = ||1(7))||z: and z — I(7 (z)) € L* (R — R, £4).

Proposition 5.1. Let o € ("', T2,Q) such that f(?) < 00. Let (Kp)n>1 be the sequence as defined
in (5.1). We have

~

lim 1(¢ = K,) = 1(?)

n—oo

where x denotes the convolution operator.

Proof. Let n > 1. Write @, = @ % K,,. By classical properties (see for instance theorem 4.1. in [12]),
we have

Vp>1 lim &,=09  inLP (5.2)

n—oo
and
lim o, (z) = 7 (2) for £%-almost every z .

n—oo

Using Fatou lemma and the fact that I is lower semi-continuous on R% (proposition 4.5), we have

lim inf 7( ) = lim inf /Q (3 ()AL (x) > / lim inf 1( ()AL ) > /Q 1(3 (@) (z) = ().

n—oo n— oo Q n— oo
(5.3)

Besides, using the fact that I is convex (theorem 4.6) and Jensen’s inequality, we have

i = xr — d d X Xr — d d xX).
1= [1([ Fe-nrwaco)) i < [ [ 106 ngmicmace
Hence, it yields

(@) - 1(@) < / (I(@)  Kn)(x) — I(F (2))dLx)

Q

=/ ((1(T) * Ky (@) = I(T (2))|dL (@) = | 1(T) * Ky = 1(T )| - (5-4)

Since z — (7 (x)) € L' (R — R, £%), it follows that

lim [[I(7) % K, — I(7)||;r =0

n—roo

and by inequality (5.4)

limsup (7 ,) < 1(3). (5.5)
n—0o0
The result follows by combining inequalities (5.3) and (5.5). O
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5.2 Proof of theorem 1.5
We prove theorem 1.5 in two steps. These two steps correspond to the two following propositions.

Proposition 5.2. Let o € S(I'',T2,Q). We have

lim hmsup—log]P’(Elfn €S, (T, T2%,Q): D(ﬁn(fn)77£d) <e) < f/QI(F)(:r))dﬁd(x).

e=0 nooo

Proposition 5.3. Let @ € (', I2,Q) N SM(T! T2,Q). We have

lim lim inf - log P (3f, € S,(T',T2,9) : 0(7 (), L) <) > —/QI(?(x))dﬁd(a:).

The result of theorem 1.5 follows immediately from propositions 5.2 and 5.3. To prove proposition
5.2, on the event that there exists a stream f,, € S,(I't,T'2,Q) such that (7 (fn), @ L%) < &, we pick
such a stream f,,. We can divide 2 into a collection of small cubes (B;);c;. Thanks to the choice of
the distance, the restriction of f,, to these cubes is close to the restriction of 7 to these cubes, i.e.,
the quantity D(ﬁn (fu)lp,, 71 B,L?) is small. By independence, we will be able to upper-bound the
probability that there exists a stream f,, € S,(I'',T'2,Q) such that 3(n(fn), @L%) < e by a product
of probabilities of more elementary events related to the elementary rate function I we have defined
in theorem 1.1. To prove proposition 5.3, we do the reverse. Namely, starting with a collection of
elementary events, we try to reconstruct the event that there exists a stream f, € S,,(I'',T'2,Q) such
that 3(7 n(fn), @L%) < e. The proof of this proposition is much more difficult and technical than the
proof of proposition 5.2.

5.2.1 Proof of proposition 5.2

To prove proposition 5.2, we will need the following lemma that enables to compare the probability
of an event in a dilation of € with the rescaled version of this event in €.

Lemma 5.4 (Scaling and Translation 2). Let o € S(I'',T2,Q). Letn > 1 and x € Z%. Let ng < n.
The application T, n,/m defines a bijection from Ezo to B¢ (we recall that Temo/m Was defined in (1.6))
and

nd+1
P <3fn € ST mg/n(€)) a(m(fn),?11,%7,1()/”(C £t < ; g+ls>

<]P)(E|fno € S, (€ (77% (fno) ?OWJK mo/mlel ) ) :
We postpone the proof of lemma 5.4 after the proof of proposition 5.2.

Proof of proposition 5.2. Let @ € $(I',T2,Q). Write v = o £%. Let ¢ € [0, 1].

On the event {3f, € So(I',T2,Q) : 3(Wulfn),v) < €}, we pick f, € So(I',I2,Q) such that
D(ﬁn( fn), V) < e. If there are several choices, we pick one according to a deterministic rule.
Step 1. Dividing () into a collection of small cubes. Let i = i(g) be the integer such that

2i < 57#5 ans

We set

i =

We have \;n2~% € N and for n large enough \; € [1,2]. Let z € Z¢ and B = 27')\;(€ + z). Using lemma
2.5 with 6 = ;27 % and p = £¢0°, we have

(7L, FUnLY) < 15 + Gapd ™t = i + faed™? < - D12 4 frced 2.

There exists a constant By depending on d, 81 and [ such that
(Hnlp, FLpLY) < Bpd™ 2
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Using the independence, we have

P (3f, € Su(TLT2%Q) 1 3(Wn(fn), TLY) <e)
< I PGResuB):(Hulfa)lp, T1pLY) < 5d??) .

BeA} :BCQ
Let 19 > 0. We consider a small enough ¢ such that 2d\;27% < ng. Hence, it yields

—%log]?(ﬂfn €Sy (rl I2,Q) : d(Hn( fn),7£d) <e)

> Z logIP’ (3fn € Sn(B) : 3(Hnl(fo)lp, TLpLY) < Byd?t?)
BeA’/‘\i:Bcﬁ
1
g oy 08P (3 € Sn 2 (Fu) 1B, 2y, O 1p, )L 5942y g
> iy T 2 (3 €SB 2Tl T ) < ) L0
(5.6)

where B;(z) corresponds to the unique B € A} such that z € B. Of course, B;(z) depends on ¢ and .
Using Fatou lemma twice and inequality (5.6), we obtain

lim inf nminf—idlogp (3fn € Su(TLT%,Q) : 3(Wnlfn), L) <¢)
e—0 n—o0 n

> fliminf ————logP .
) /sz\vma,no)hg? nhe niLI(B () ( O n(f)llm, oy, 7 U, £) < o2 ) 4470
(5.7)

Step 2. We now prove that for £%-almost all z € Q, we have
P 1 d+2
hgl_}(r)lfhnrggf—mlogP (Elfn € S,(B; (ﬁn o)1, (), ?]IB ()L ) < Bod )
> 1(7 ().
Let x € Q\ V2(992,10). There exists a unique w € Z% such that B;(z) = \;274(&€+w). Since \;27'n € N,

it follows that \;2~%w € Z<, we will write c(x) for ;2 %w. Let ng = \;27'n and so § = ng/n. We recall
that § < 4¢'/(@45) By lemma 5.4, we have

P (3/n € Su(B; (ﬁn (fi) LB,y T Lp,)L?) < Fod™?)
<3fn € Su(Bil@)) + (M n(fa) L, (@), T L, ) £7) < 4™/ () (T;f)d“>
<P (g € Sua(€): (T g (fg), T 0 Ty sLel?) < 8™/ (5.8)

By a change of variable, we get
nd
17 o mns0) = F@lkic'w) = T [ 17 @)~ 7 @)laac' ). (59)
0 ilT

According to Definition 7.9 in [24], the set B;(z) shrinks nicely to x as € goes to 0. Indeed, we have
Bi(z) C B(z,dd) and

LYB;(x)) =6 = agd?od = LYB(z,dd))

Oéddd ddd

where g is the volume of the d-dimensional unit Euclidean ball. Moreover when & goes to 0, ¢ goes to
. Since @ € LY(R? — R?, £%), using Lebesgue differentiation theorem on R?, there exists a subset )
of Q such that £4(Q\ Q) =0 and

Q _ w) — Y(w) =
Wed lm s [ 17 = FE)ldct) = 0. (5.10)
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Using equality (5.9), it follows that

17 0 e(aysle — @ (@) el = /C 17 © Te(ay.a((y) — 7 ()] 2dL7 (y)

d

_n — T (2)||dL?
- d/B,.m'?(y) 7 (@)[l2dL%(y)

L)

1 i
= B g 170~ T ).

Using lemma 2.3, it yields that

AT omysleld, T(@)lel?) < 2T omsle — 7 (2)le|nr < ﬁ /Bi@) 15 () — 7 (@) ]2dL%4y) .

(5.11)
We set 5
VreQ Ves0  ha(e) = 7/ 15 () — 7 (2)]pd L) -

’ LYBi(x)) /B, (@)
Thanks to equality (5.10), we have

Vz € O lim h,(e) =0.

e—0
Finally, using inequalities (5.8) and (5.11), we have
lilginffﬁlogp(ﬂfn € Sn(Bi(@)) : 0(Hn(fo)lp,(2)> 0 L, ) L") < Bod™H?)
> hrglnf —a IOg]P) (Elfno € Sno (ﬁno fno )]l@cd) < 8p g/ (d+e) + ha(e ))

> hmlnf——log]P’ (3 Fro € Sng(€) 2 (T 1y (frg)s T (2)LeLY) < 8Bpe/ (42 4 hz(a)) .

no—00

Using theorem 1.1 and (5.10), by letting ¢ goes to 0, we get for any x € Q

e—>0 n—oo

liminfliminff—(slog]P’(Elfn € Su(Bi(z)) : 3(Hn(fu)lpi(w), T Lp, L) < Bod(e)?) > I(T (2)).
nd
Using inequality (5.7) and the previous inequality, we obtain

lim hmmff—logIED (3fn € Sn (r,12,Q): b(ﬁn(fn),?ﬁd) <e)> / I(3 (z))dL(z) .

e—0 n—oo Q\V2(02,m0)

Finally, since I (7(36)) > 0 for any = € 2, using the monotone convergence theorem, we obtain by letting
10 go to 0:

hn%)hrr_l)mf——1ogIED (3fn €S, (T, T2,Q) D(ﬁn(fn),?ﬁd) <e)> / I(d (2))dL () .
e—0 n—oo Q
This yields the result. O

Proof of lemma 5.4. Let n > 1 and z € Z%. Let ng < n. We set § = ng/n. Let us consider w € (RQEZ
a configuration for which there exists f,, € Sp(74,5(€)) such that

(7n(fn) ?]lﬂ-z 5(€) ) < %5d+15- (512)

Let f,, = fn(w) be such a stream in the configuration w (if there are several such streams, we pick one
according to a deterministic rule). We set 7 = Hn(fn). We aim to prove that on the configuration

d
wo s € (Ry)*mo the stream f, o, 5 is in S, (€) and

V(T g (fr 0 Tas), @ 0mpslel?) <e
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Set gn, = fn 0Ty the stream in the lattice Efm defined as follows

Ve € E,dLO 9no (6) = fn(ﬂ-a:ﬁ(e)) .

We also set

777,0 = ﬁno (gno) = Z gno c(e) .

EIEd

It is clear that g,, € S, (€) on the configuration w o 7, s.
Let us compute the distance (g (gny), @ © s 5]l¢£‘i). Let k > 1, A € [1,2], y € [-1,1]¢ and
w € Z Let Q € A%, we have

1 1 nd
77“)(@"'?!) =4 Z fn(ﬂ'x s(e) = nd Z fn(e) = ﬁﬁn(ﬂ'x,é(Q‘Fy))'
"o eEEd : "o ecEY: "o
c@xe+w c(e)€me,s(Q+y)

We have o o o
T26(Q+y) = ;(Q—i—y)—kx: ;Q—&—;y—km.

Write z = %y + 2. Let 7 > 1 be such that

1 no 1
— < A— < =
2t < n — 2—1
Let A" € [1,2] such that
A = i
n

It yields that '
Tes(Q+y) € (z+ AL

Let us compute L4(B)/L% (7, s(B)) for B=Q + y:

LY(B) LY(B) !

L7, 5(B))  09L4(B)  nd’

Write v = ?]lm’é(g)ﬁd and vom, 5 = 7o wx,(;]l@/jd . We have by change of variable

V”m®=L7WMWMMN@= 2 (12 5(4)) AL )

BN¢

nd n
_ Tz/ T )AL y) = Sv(mas(B)) .
Ny Jr, s(BNE) n

0

Using inequality (5.12), we have

nt o 1
ZQk Z Hﬁno Q+y 71/0715(@4’2’ ”2 ndZQk Z ”ﬁn Q+Z 7V(Q+Z)||2
k=0 Qenk 0 =0 QEAk+z
d oo
in 1
ﬁsz Z 1T n(Q + 2) = v(Q + 2)|l2
0 k=0" Qeak,
Nn d+1 ?
S )\ d+1 ﬁn» ]]'771 o(¢)‘c)

On the configuration w o m, 5, we thus get
a(ﬁno (gn0)7 7 o Wr,d]lcﬁd) S €

It yields the result. O
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5.2.2 Proof of proposition 5.3

Let us explain the strategy of the proof of proposition 5.3. The general idea of this proof is to build
a discrete stream that is close to o by reconnecting constant streams in cubes. To do so, we need to
work with regular continuous streams that are close to . However, we cannot use the regularization
sequence directly on 7 since @ x K, do not have null divergence close to the sources and the sinks. To
avoid this issue, we first need to build a prolongated version 7' of & defined in an extended version of
Q where the sources and the sinks have been pushed away. Doing so ensures that o, = o’ x K, has
null divergence almost everywhere on €.

Next, we till Q into small cubes (B;)ics centered at (z;)ic; such that o, ~ o ,(x;) on B; for any

i € J. We consider the family of elementary events: in each cube B; there exists a discrete stream f,(f)
close to the constant continuous stream 7p(xi)]1 B,- We use again corridors to reconnect these streams
altogether and create a stream f,,, where outside the cubes and their corridors in Q \ U;c s B;, the stream
fn coincides with the discretized version of the stream ?p (defined as in the proof of lemma 4.8). Note
that unlike the proof of theorem 1.1, where the node law at the macroscopic level was straightforward
(because the continuous stream was constant and so the flow through the adjacent faces always match),
here the stream o, is not constant and so the node law at the macroscopic level is harder to get. A
major difficulty of this proof is to build 7' in such away we can build a discretized version of 7p that
belongs in SM(I't, T2, Q).

The aim of the following proposition is to push away the sink and source for 7. We postpone its
proof until the section 5.3.

Proposition 5.5 (Prolongation of a continuous stream). Let @ € $(I'', T2, Q)NEM (I, T2, Q) (we recall
that SM (T, T2,Q) was defined in (2.3)) such that 1(0) < co. For any n > 0, there exist p = p(n) > 0
and Q, TV, T2 and &’ € ©(I'',T2,9Q) such that
— QCQ TTUT2 C o9, dy(TPUT2,T) = p and (Q\ Q)N V(D \ (TLUT2), p/2) =0 (see figure 11)
— ||? = F"a|l < and 1(F'1g) < I() +1.

Figure 11 — Example of possible (?2, fl, fz)

Proof of proposition 5.5. Let & € $(I'',T'2,Q) N SM (I, T2,Q). If I(7) = oo, the result is straightfor-
ward. Let us assume that I(7) < oo.
Let n > 0. Let p, Q, I'!, I'? and 7’ be as in the statement of proposition 5.5.

Step 1. Approximation of &’ by a regular function. Let (Kp)p>1 be the sequence of mollifiers
(defined in (5.1)). Write &, = o' * K,. We have o, € C>®°(R% R?). Let p > 4/p. We claim that

Ve e Vo(,p/2)  diva,(x) =0.
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Since o’ € B(I'',T'2,(2), we have (see remark 13 in [9])
dive' = —(0" - Hg)H' 5 = —(F T5)H =

TiuT? "

Let h € C* (R4, R). We get
/ hdivd,ded=— [ &, Vhdcd
R R
- _/ K, ()3 (z —y) - Vh(z)dL(y)dLd ()
Rd Rd
— [ | mw# - ?hu L)L),
Re JRd
Since h € C°(R4, R), we have for £%almost every y € R?

(W) Vh(z+)dCy) =% | Kp()h(z +9)dCy) = V (K, * h)(2).

Rd Rd

It follows that

/ hdiva,dL = [ K,+hdivo'dL? = ,/N (@ ) Ky x hdHT!
R4 riur2

Rd

Hence, if h has its support included in Va2(2, p/2), the function K, * h has its support included in
V5(2,3p/4). For any z € I'' UT?, we have K, x h(z) = 0 and

/ hdive ,dL? =0.
Rd

It follows that div @, = 0 on Va(Q, p/2).

Moreover, since for i=1,...,d we have |'(x) - e/| < M for L%-almost every x in V5(£2, p), we have
|7 () - €| < M for L7- almost every z in V2(2, p/2). For p large enough, by proposition 5.1, we have
I (? ) < co. Let n > 1. Let € > 0. The function 71, is uniformly continuous on 2, that is there exists
d = 6(e) > 0 such that

Ve,y e o—ylla <8 = [[T4(2) = T2 <. (5.13)
In what follows, m = |e~%] where a = (2(3d + 1))~! was defined in (4.7), kK = k(m,n,d) must satisfy
Kk < d(e)/(2d), we set
2m | né
k=—|—|.
n | 4dm
We have nx € N and nk(1 + 2d/m)/2 € N. Besides, we get by definition of x
6
lim k(n) =

We divide © into small cubes of side-length k(1 + 2d/m). Write 9, the set of the centers of the cubes
of side-length (1 4 2d/m) included in 2, that is

2d
M, = {x €K (1 + m) VAR T, w(1+2d/m) (€) C 2\ Voo (09, d/@)} .
We define 0"*90,. as the centers of the cubes in 9, that are in the boundary of IM,., i.e.,
- 2d 2d
oM, = {xefm,@: ElyEH(l—i-m) z, ||y—x||oo_n(1+m>,y§§9ﬁﬁ} .

We denote by ?g the approximation of ?p at scale x defined as follow

= Z ?p(x)nﬂz,n(l+2d/m)(€)'

TEM,
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Note that

O\ Va(09,d(d + 2)k) C 2\ Voo (9Q, (d+2)8) € | Taw(2a/m) (€. (5.14)
TEM,

Thanks to (5.13) and proposition 1.7, we have for £ small enough depending on 2
|55 — & plallr < eLUQ) +2dM LY (V2(0Q,d(d + 2)k)) < eL4(Q) + 108° MHI™ D)k, (5.15)

Step 2. Prove that o, - 75 = 0 H%!- almost everywhere on 990 N Vy(I'' UT2,p/2)°. Let
u € C*(R4,R), by inequality (2.7), we have

/ (O Rudn = [ T, VudL?
o0 R
/ Tz —y) - V() K, (y)dL (y)dL ().
Re JRe
Since u € C°(R%, R), there exist a bounded subset F,, of R? and a constant C,, > 0 such that
vreR'  [Va()s < Culser,
We have

/ 1T (z — ) - V() K, (y)|dL(y)dL / / %M O Ky (y) Lue p, L (y) ALY (2)
Rd JR4 Rd JRd
=2dMC,LYF,) < co.

Hence, we can apply Fubini Tonelli theorem

/ (T Hg)udHt = / (@ — ) - Vu@)K, (y)dCh@)dL(y)
[5}9) Rd JRd
= | K | '(z)-wzm)dz:d(z)dz:d(y)
— [ Kl [ (@ T)@ule+ pint @)
R4 o0

Since |(7 - ﬁ%)(w)\ < 2dM, we can again apply Fubini Tonelli theorem:
[ @ itguant = [ (@ w5 ([ ue o mactn ) o)
a0 o9 R4
= /F . (" W) () (K * u)(x)dH (). (5.16)
lu 2
We recall that 1/p < p/4. Let u € C°(Vo(I' UT2, p/2)¢, R). Then, K, * u has its support included in

Vo(TH U T2, p/4)¢ and
/J?,, g udH T =0
o9

It follows that
Ty %}5 = 0 H% '-almost everywhere on QN V(I UT?, p/2)° (5.17)

Step 3. Construction of a stream in Uycon, Ty x(1424/m)(€) close to 7. Set

1 1
2w=—— ..., —— .
0 on’" 7 2n
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We denote by E;(z) the following event:
a(ﬁn(fn)v?p(x)]lmm(c)) < 125&05(1,

Ee(x) = { Tfn € Sp(mo (@) : Vo e {+,—}Vie{l,...,d} VA € P?(m) .
¢§(fm Ww,m(A)) = (1 - 5a/4) (fw (€29) ?p(y) : a)de_l(y)) :1(171

z420,2v

we recall that P; (m) and P;"(m) were defined in (4.3) and (4.4) and «p in (4.18). The choice of z
is to compensate the shift due to integrating over the plaquettes. This choice will be clear in the next
step. Let f¥ be a stream that satisfies the conditions of the event &;(z) (if there are several possible
choices, we choose according to a deterministic rule). Let x € 90, we have on the event £, (x) that for
any i € {1,...,d} and o € {+,—}:

U (fres e (€5)) = ijﬂﬁmmm»uw®</ m)%wwawﬂ%w>ﬁl.

AEP?(m)
We define the corridor €ot as follows:

Cor =0\ U T i (€) -
€M,
We proceed similarly as in the proof of lemma 4.8. Let ¢ € {+,—}, z € M, i € {1,...,d} such that =+
r(1+d/m)e; € M,. For VA € P?(m), by lemma 3.1, there exists a stream fi’A in cyl(ms . (A), Kd/m, o€;)
such that
. —x,A 6_3
vee B T (eo D) = fi00)
n

and

WEEyPM(AOdgﬂ 7oA @) = P Tan(A)
m B [ (A)]

If 2+ r(1+d/m)e, ¢ M,, by lemma 3.1, there exists a stream fZ’A in cyl(m, (A), kd/m —1/n, € ) such
that

%
vee B Traa] B (e 5) = 1200

and

; d 1 —z,A VS (fE mp x(A))
i+ B~ O I o — Zi\Jny "xk\ L)
Ve S En |:7Ta:,f€ (A + m 67,) n el:| fn (6) |Ez)<>[7'rz’,§(z4.)]‘ .

This stream mixes the inputs in such a way the outputs are uniform. We build 27! in U, con,. Tk (142d/m) (€)
as follows

re T —x,A
fret= 30 | fi ) £ (5.18)
zEM, A€U;=1,... aP;F(m)UP; (m)
We claim that on the event Nueon,&x(z),the stream fEmel satisfies the node law everywhere inside
Uzem, Ta,k(142d/m)(€). Indeed, for any z,y € M, such that ||z — y[l; = (1 + 2d/m), we can write
without loss of generality y —z = x(1+2d/m)e;. On the event &, (2)NEx(y), we have for any A € P} (m)

d—1

7uy) - e_fd?idl(y)> :rlldfl =7 (fl,my(A—1)) .

¢f(fff,%,n(x4)) = (1_6a/4) (/

7Tz+z0,~(1+2d/m)(€;r)
The latter equality combined with the fact that [EL [, . (A)]] = [EL ™ [1,..(A—e})]| (since B H [m, . (A)] =
E&™ [my 0 (A— e))]+2rd/me; and 2kd/m € Z,) ensures that the node law is satisfied along the common

face of 7, . (142d/m)(€) and Ty .c(1424/m)(€)-
At this stage, we have constructed the stream inside the cubes 7T17H(1+2d/m)(€>7 for z € M,. The
remaining part is the most technical part of the proof. The aim is to prolongate this stream in Q \
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Uzem,. Ty, r(1+2d/m)(€) in such a way the node law is respected everywhere except in rrur2. To do
so, we are going to build the discretized version ?gisc of ?p. Note that ?p have been built in such
a way that its discretized version is in SM(T'1,T2,Q). We have the stream f27 in the cubes and the
stream 7?“ outside the cubes. At this point the node law is not respected inside 2 along the common
faces. For these common faces, the stream fP"! has been built in such a way that its flow match with
the flow of 7;?“. However, the inputs and the outputs do not perfectly match. We need to correct this
difference by doing a mixing, but without corridor. This is the most technical part of the proof.

Step 4. Construction of a discrete stream. We recall that C is the cube of side-length 1/n centered

at 0, that is
d
1 1
C=|——,—| .
2n’ 2n

We consider the following stream ?gi“ that is the discretized version of 7,, defined as follows: for any
i€{l,...,d}, for any e = (x,y) € E¢ such that x,y € Q,, and I = ?Z/n ,

?gisc(e) _ (1 _ Ea/4)nd_1 ( . )?p(u) . e_g]lﬁd’}-[d—l(u)> 6_3 .

Let x € Q, \ (T} UT2). We want to prove that 7;‘?“ satisfies the node law at z. We distinguish
several cases.
Case 1. We have x + C C Q. Since div ?p = 0 on (2, we obtain by applying Gauss-Green theorem to
71, inz+C:

. dl (u) - (nzx =1y) = 0.
[0 Fescu)a Z/ () - () MY ) = 0

yezd:
(z, y)E]Ed

It follows that ?Zisc satisfies the node-law at z.
Case 2. We have (z + C)NT # (. The amount of water d?gisc(x) created at x for the stream 7%“6 is
equal to

d?gm((l‘) _ (1 _ 50/4)nd_1 Z ?p . (n ﬁ)ﬂﬁ’d%d_l

Y (a,yyeEd Y P ()

We claim that for any y ¢ €, such that (z,y) € EZ, we have P(e) N Q = (). We distinguish two cases.

— Let us assume (z+C)N(TTUT2) # 0. If there exists y ¢ 2, such that (z,y) € E? then z € TLUT?2
and this is a contradiction.

— Let us assume that (z+C)N (I UT2) = (). Since by construction (2\Q)NVy(I'\ (FTUT2), p/2) = 0,
then we have (z + C)NQ = (z + C) N Q. If there exists y such that e = (z,y) € E¢ and
Ple)NQ="P(e)NQ # 0 then doo(y, Q) < 1/2n and y € Q.

It yields that
dogec(z) = (1—eHn=t Y- 7y (nyd)lgdH™!

y€eZd:(z,y)€Ed P(e)

By applying the Gauss-Green theorem to ?p in(z+C)N ?2, we have

- > / 7y (nyd)lgdH ! + /~ Ty MgdH ™ =0,

VT (zy)EEd (8QNC)\OC

Using equality (5.17), we get
disc _
deo p (r)=0.

(0]



We conclude that 7%1“ satisfies the node law at x for any = € Q,, \ (TL, UT2).

Step 5. Correcting the stream Let us now consider x € 9™9),.. Let us denote by E,(z) the set of

faces of T, (14+24/m)(€) that are external, i.e.,

Eﬁ(x):{m(l—i—i:f) €+ xon(l—l—iil>6_i>¢immi€{1,...,d},<>€{—,—|—}}.

For those faces, the stream f27! (defined in (5.18)) does not perfectly coincide with the discretized
version of 71, but their flow match. To overcome this issue, we are going to build a stream that corrects
these differences. We here want to mix, but without using a corridor. This means that we need to
be particularly cautious that the stream we build does not exceed the capacity constraint. Let us first
consider Fy =z + (1 +2d/m)€; € E.(z) C Q. We recall that P(e) denote the dual of the edge e. Set

v = k(14 2d/m)/2. Since nv € N and = € Z%, we have

Foa 1 L 1Y, 1 1 d*i+
R ™ YT o YT T o *

U P<<x—ie_>x>>: U Pe.

x€FyNZE eEEf.ﬁ[Fg]

It follows that

vy (fEre Fy) = (1—60“/4)( ; ?p(y)-e?dﬁd—l(y)) nd=!
0+20

—a-e | f Fo(y) - EdH ) | nt T = o (T Ry).
U P(e)

ecel T [Fy]

Let us now consider the case where [y = x + k(1 + 2d/m)€ € E,(z) C Q. We have

P 1 (. 1) 1 1]
L ™™ Y7o YT o' T o

U P <<xx + ;?>) = Ple).

we(Fo— e} )nzd e€E, T [Fo— L&)

It follows that

of (s @) == ([ @0 dant)) o

Fo+zo
—a-e | f o, Pl EH ) |
U e
B Y |

: 1
— (@ R - La).

We refer to figure 12 for the illustration of the choice of zg.
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] 4 T2 k(142d/m) (6)

A

N
Mx+20,k(14+2d/m) (Q:)

Figure 12 — Choice of z3. The edges in bold represent edges where we will affect the value given by

di
71)180'

e Let us first assume that & ,(z) - e; > 0. Up to a translation of —1/ne; the case + is treated in
the same way as the case —. To avoid cumbersome notations, we only treat the case where ¢ = — but
by seak of generality we do not replace ¢ by —. We have

1— Ea/4

—T ( -~ 7 u(y) - e_fd"Hd‘l(y)) .

K

- d
Ve € Eb° |:/€ (Cf o E;) + m} frret(e)
m
Besides, using (5.13), we have

1

Kd—1 m

d—1
7 (y) - S (y) (1+2d) 2,(x)- 2| <

Fo+zo

and

nd-1 T p(u) - el dHHu) — T p(z) €| <e.
Ple)

It follows that for any e € EL° [ (€7 o %E)) + ]

(1—eo/) (1 " fj) (Tpla) - T =) < frel(e) - B < (1— /) (1 T fj) (@pla) - T +2)
(5.21)
and for any e € E:0[F]
(L= )T p(a) - & — &) < —FEe(e) - T < (L)~ pla) - & +6).  (522)
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Combining the two previous inequalities for e € E&° [Ka (Cf o %e_f) + x}, we obtain

d—1 d—1
(T ele) + fre)) @ < (1 -2l ((1 #(1+%) ) o <<l vn) - 1) (@) ﬁ)

2d
< 2% 4 297100 < 29 g e
m

for small enough ¢ depending on d and M where we recall that m = [e~%]. Moreover, we have

‘ 9g\ -1
(=75 (e) + f2(e)) - & = (1 - /%) (((1 + m) - 1) 7 (@) e — 2de> > 2% >-M
for ¢ small enough depending on M. For e € E5°[Fp] \ B¢ [k (€F 0 £7) + 2], we have f27(e) =0,
(T () + ) - B = —Te(e) B = —(L— et [ () B M ) 2 —M
P(e)
and using inequality (5.22)
(=T (e) + [ (e) & = =T () e < (1= (=F p(a) - & +e) <e.

We recall that we assume here that o, () - & > 0.
We can index the edges of EL°[Fy] by {1,...,k(1 + 2d/m)n}¢~1. We recall the definition of p; in
(4.16). We set

vee BIR]  o(e) = mulete)) + (| G 1)

2 . .
JE€{1,....d}\ {3}

It is easy to check that ((e) € {1,...,x(1+2d/m)n}4=t (we recall that x(1+ 2d/m)n € Z). Set for any
e in Eib°[Fp) _
Fin(G(e)) = (=T 5 (e) + f1r! (e)) & -
If e is such that ((e) ¢ {kdn/m + 1,K(1 4+ d/m)n}¢~!, then
fin(C(e)) = =T () - & .

It follows that
Yy e {1,..., k(1 +2d/m)n}?! — M < finly) <29 dMe” .

To apply lemma 3.4, we have to check that the sequence (fin(y),y € {1,...,x(1+2d/m)n}?~1) satisfies
the conditions stated in this lemma. First note that thanks to inequality (5.19), we have

> fin(y) =0.
ye{l,...,x(14+2d/m)n}d-1
By (5.13), we have
Veg,e1 € EL°[Fo]  |[T%(eq) - &f — T 1*(e1) - €f| < €. (5.23)

We distinguish two cases.
> We assume that 0 < & ,(z) - e < 2%!~. In that case, for any ey € E4°[Fp], using (5.21), we have
|fPrel(eq) - ef| < 2971(2% 1~ 4 ¢). Tt follows that for any y,z € {1,..., k(1 + 2d/m)n}*"!, we have

|f2n(y) - fln(z)| <e+ Qd(2d€17a + E) < e®

for ¢ small enough depending on d where we recall that o < 1/2 (see (4.7)).
> We assume that o, (z)-e; > 2%~ > 2%em. Letl € {1,...,d—2} and u € {1,..., k(142d/m)n}',
if u ¢ {rkdn/m +1,k(1+ d/m)n}' then we have

vy e {1, - <1 i M) n} Fon(u,y) = =85 (u, )

m
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and using (5.23), we have

92d d—1-1
vyanl € {13 cey R (]— + m) n} |f1n(u7y0) - fzn(uayl)‘ <e.
If u € {kdn/m + 1, k(1 + d/m)n}! using inequalities (5.21) and (5.22)

Z fzn(uay)

ye{l,...,x(1+2d/m)n}d-1-1

_ 3 T () - e + > T )

ye{l,....,s(14+2d/m)n}d—1-1 ye{rdn/m,...,k(1+d/m)n}d—1-1

d—1-1 d—1
> (1- /) <<?p<x> o) (1 " fj) H(1+2) @) - g>> ()11

=(1—e%*) ( ( = 1) —€ (1 + (1 + i‘f)l» (km)d—1—t (1 + ?j)d_l_l
e

2d
> (1 _Ea/4) ( ?p(x 7 2d 1 ) ( n)d—l—l
m
> (1—e¥*)(24d - 29" e > 0.
In both cases, the conditions to apply lemma 3.4 are fulfilled. By lemma 3.4, there exists a stream g%°
in cyl(Fy, (d — 1)k(1 + 2d/m),oe;) C Q such that
) —)
veeElR] g™ (o ) =70 + 270,
n
The stream g2 satisfies the node law everywhere except for points in Z2 N Fyy. Moreover, we have for
any edge e € E4 Neyl(Fy, (d — 1)k, 0€;) parallel to e,
g0 (e) - & € [-M, 2 dMe®]

and by (5.13) ‘
gi’FO(e)~e—i>+?g”C(e)~e—i> > M40 p(x) e —e>—-M—¢

and
g=Fo(e) - el + 7%186(6) el < M+ e+ 2H gMme> .

For an edge e parallel to e_; with j # i
g ()2 < 20+ dMe”.

e Let us assume that & ,(z) - € < 0. Hence, we have (=o' ,(z)) - & > 0. We can apply the previous
case for 7‘1’50 and prel. Then, we multiply by —1 the stream we obtained. We end up with a
discrete Stream g% Fo in cyl(Fy, (d — 1)k(1 + 2d/m), oe;) C Q such that

%
veeBrln] g (eo D) =T + 120,

Moreover, we have for any edge e € EZ N cyl(Fy, (d — 1), 0¢€;) parallel to e;:
g=To(e) - € e [—2T dMe®, M)

and by (5.13) ,
g0 (e) E + Ty(e) T < M AT p(a) e < Mte

and
gofo(e) - e 7d”6( Y€l > —M —e — 2 dMe> .
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For an edge e parallel to e_} with j # i:
lgi o (e)]l2 < 29+ dMe”.
Finally, we build f,, € S, (T'*,T2,Q) as follows

prel(e) ifw,zeU m Q
Ve — , c QO ﬂEd - _ fn i N ] ) QeM,,
e=(w,z) n Jfn(e) { 72,&(6) + Y comion, EFGEK(:E) g=¥F(e) otherwise.

The node law is satisfied everywhere in Q,, for f,,. Note that by construction of 9, each e € cyl(Fy, (d—
1)k(1+2d/m),oe;) belongs at most to 2d such cylinder (one for each direction): for each j € {1,...,d}
there exists at most one o € {+,—} and y € M, such that FI = 7 .(142a/m)(€7) € Ex(y) and
e € cyl(F1, (d — 1)k(1 + 2d/m),0€!). Indeed, let us assume there exists z,y € ™M, with k(1 +
2d/m)¢] +z € E.(z) and k(1 + 2d/m)€; +y € E,(y) such that

2 1 2
eEcyl(m(l—l—nj)@fj—kx—ne_i),(d—l)/ﬁ(l-&-”il),a)

2 2
ﬂcyl(&(l—l—d)@:i-l-y,(d—l)n(l—i—d),—?f) )
m m

It follows that y—x = te; with t < k(1+2d/m)+2(d—1)x(1+2d/m) = 2dr(1+2d/m). Since z,y € M,
we have doo (s x(142d/m), O) > di and deo (Ty, x(14-2d/m), O) > dk. Tt yields that m, .(2d4142d/m)(€) U
Ty w(2d+1+2d/m)(€) C Q. Since ||y — 2[|oc < 2dk(1+2d/m) < k(2d+ 1+ 2d/m) (the last inequality holds
for large enough m). It is easy to check that doo (7, 4p(142d/m)e w(142d4/m)> 02) = dk. Hence, it follows
that x + k(1 + 2d/m)e; € M,, this contradicts the fact that k(1 + 2d/m)¢} + z € E. ().

It follows that for any e € €2, we have

Ifa(e)ll2 < M + 20412 Me™ + ¢ < M(1+%/?)

for € small enough depending on d and M.
Conclusion. By proposition 1.7 and (5.14), we have for x small enough depending on €2,

d
Ed(QtO'C) < Ed(VQ(GQ,QCFI{)) i Ed(Q) ke ((1 + 3:) - 1)

Kd

< SHITH(OQ)d k + Ed(Q)2d+1% < 81 (0Q)d(e) + cd(Q)dem‘(lg)

where we use (4.41) in the second inequality. We recall that d(e) and 1/m(e) goes to 0 when e goes to
0, we recall that d(¢) depends on p. We set

d
H(e) = inf {a >0:G(M — a,M] < 8HY1(9Q)dd(e) + cd(ﬂ)zdﬂ(g)} .
m
We can prove as in the proof of theorem 1.1 equality (4.30), that lim._,o H(¢) = 0 and for any p > 1

lim lim sup L% (Cor)log G([M — H(e), M]) = 0. (5.24)
e—

n—oo
Besides, we have

2d

HITL(ACot) < |, |2dk1 + HTH(ON) < ﬁd(ﬂ); +HIH09Q).

Using an inequality similar to (4.24), it follows that for n large enough (depending on ¢)
[{e € B% : e € Cot}| < 3dn?L(Cor). (5.25)
We set f,, = (1 —&*/2)(1 — H(e)/M) f,. Hence for any e € 2, we have

Il < =) (1= B2 ) ar o) < 1),
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Hence, on the event Myeon, Ex(z) N {Ve € Cot t(e) > M — H(e)}, we have f, € S,(I'',I'2,Q). Using
lemmas 2.3 and 2.6, we have for n large enough

D(ﬁ”(f”)? ?Zﬁd) é Z D(ﬁn(fn)]]'ﬂ'w,x(c)7 ?p(x)]]'ﬂ'a‘,m(et)ﬁd) + 2||?Z]l7rw.m(1+2d/7n)(Q:)\Trm,m(e)||L1
TEM,;

T DN VA0 B

ecEiNCor

< 12 L4(Q) + 6dM LY (Cor) .
Using inequality (5.15) and lemma 2.3, it follows that

UTELY,TLY) <o(TEL, T plalt) + (T plal?, T o L?) +0(T 1o L?, T LY)
<275 — T plall +27 = Tyl +2(7 1o — |1
< 2eLUQ) 4 20 MHIH D)k + 2|0 — T pllr + 2. (5.26)

Moreover, using inequality (5.26), we have
(T (f)s TLY) <O (fa), T (f) +0(H (fn), THLY) +0(T5L%, T LY)
<2dL (Voo (2, 1)) (H]\(j)u — /) 4 sa/2> M + 6dMLY(Cor) + (26 + 126™0) L4(Q)
+20d* MH YD)k + 2|0 — 0 pllrr +21.

Hence, using the independence, we have for p large enough depending on 7 for € small enough depending
on p, d and M and then n large enough depending on ¢

[T P =M-HE) [] PE) <PEF € Su(Tn,T2,Q) s 2(ia(fa), 7LD <30) (5.27)

ecCotNEY €M,

where we recall that x goes to 0 when e goes to 0. We set ng = nk. Let x € Q\ Cor. Note that
[0 p(2)le — 0 plc(z))le| 1 < e where ¢(z) € M, such that = € Te(z),<(€). By lemma 2.3, it yields

a(ﬁno (fro)s ?p(c(m))]lgﬁd) < D(ﬁno (fro)s 71,(.%)]1@,6‘1) + 2.

We can apply lemma 4.4 and use the previous inequality

Vo € Su(ega) o(€)) AT nlfn)y T ple(@) L) (o)) < 12670k,

P(E,.(c(z)) =P Vo e {+,—}Vie{1,...,d}VA € P?(m) .
U5 s T () = (1= ) ([ o) Poly) - SR () ) ey
Ffro € Sno (@) (W (fo), T ple(a))Le L) < 3,
> P Voe{+,-}Vie{l,...,d} VA € P?(m) )
¢§>(an7 A) = (1 - &_a/4) (‘/‘ﬂ'c(z)+z0,r€(1+2d/m)(€?) ?p(y) ' a) de_l(y)) (7:2%
3fno € Sno(€) 1 (g (fo)s T plw)LeL?) < %,
> P Voe{+,-}Vie{l,...,d} VA € P?(m) )
¢§>(an7 A) - (1 N 50‘/4) (f”c(r)+z0aﬁ(1+2d/m)(€?) ?p(y) ' ad%d_l(y)) (7:’2%

(5.28)

We check that the conditions to apply lemma 4.2 are satisfied. Since div 71) = 0, we have by Gauss-Green
theorem applied to ?p N Te(2)420,m(142d/m) (€)

d d

Foly) e dHT (y) = Z/
=1 Y Te(w) 40 m(1+2d/m) (€F)

i

/ T p(y) - e dH T (y)
i=1 Y Te(@) 20k (14+2d4/m) (€7)
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Moreover, for all o € {+, -}, for all s € {1,...,d}, and for all A € Py (m), we have

—_— T oy) - el dHT (y) — HEHA) T p(2) - €
= / T ) (4) ()

a7 / T p(y) T dHT (y) = HT (o) 200 (€0)) T p (@) - €
Te(@)+20.x(1+2d/m) (€F)

1 - 1 B 24\ 1
= (mr)d 1 /ﬂc(mzw(ef) 15 p(y) — T p(@)ll2dH (y) + 7(m,€)d_1'fd ! ((1 + m) - 1) 15 - € |l Lo

< (5 + 2de) HITL(A).
m

where we use in the last inequality that 2d/m < 1 and inequality (4.41). We recall that m = [e~%],
hence we have for £ small enough

1

(mr)=t / T ply) - EAH T y) = HOTHA)T (@) - | < 2 T2Mde NI (A).
Tt zg.m(1+2d/m) (€F)

It follows that the conditions to apply lemma 4.2 are fulfilled. Thanks to theorem 1.1 and inequality
(5.28), it yields

1 1
lim sup lim sup —— log P(€,(c(z)) < lim sup lim sup ——; log P(E (c(z)) < 10 (). (5.29)

e=0 n—oo no e—0 mp—oo Ny

Besides, we have

1
lim sup lim sup Z log P(E.(x)) = limsup lim sup/ —— logP(Eu(c(z)l U 7, .(¢) (z)dL(x).
e—0 n—o00 cem, nd e—0 n—oo JO N wEM

(5.30)

We would like to use the reverse Fatou Lemma. Fix ¢ > 0. To be able to use this lemma we need to
upperbound the integrand uniformly on € and n by an integrable function. To do so, we need to use
inequalities from the proofs of lemma 4.1 and lemma 4.2. We have using inequalities (5.28), (4.19) and
(4.20)

1 1
—— log P(Ex(c(z)) < ——; logP (Elfno € 8,,(@):
n nd

0 _H,dloqun?;dngﬁOD

where (A})a and (\}) are the families defined in lemma 4.1 associated with 7 (z) and e. Note that
K >1in (4.20). Finally, using equality (4.10), we obtain

Voe{+,—-}Vie{l,...,d}VAe P(m) ¢{(fny, A) =A%
and b(ﬁno(fno)v?P(x)]lcﬁd) <e“ )

g I BEA(C(2) < g 108P (3 € S1u(€) (T olfn), Fplo)LeL) <)

0
2dmd—1 d 1\/5 M
- lo — kllog G ({,—i—oo D . 5.31
nd g(4ndsan3_1> @708 V2d ( )

0

Besides, using lemma 2.3, we have
P (ano € S, (€ (ﬁno (fro)s )]le‘cd) < 5)
>P (3 fno € sno 2 (H g (frg)s (1 — £/ (4dM)) T p(2)LeLY) < £/2) .
It follows that using inequality (4.54) for n large enough
1
— 7108 (3fny € Sno () : (g (fro), Tp(a)1eL?) <€) < —dlog G([(1 — &/ (4dM))|[ T () | oo, M])
0

—dlog G([(1 — ¢/(4dM)) M, M]).

A
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We can therefore use reverse Fatou lemma for a fixed €, we obtain

lim sup Z log]P’ (x)) < /thsup——log}P’(S (c(z))1 Mw(@)(x)dﬁd(x)

n— 00 n— 00 nO wEM

/Q lim sup —— log P(Ex () 1 n.(&)(#)dLYz)

ng—»o0 no wWEM

Using inequality (5.31), we have

lim sup — —logﬂ"(é' (c(x))
no—00 nO
< limsup —— log]P’ (ﬂfno € 85 (€ (ﬁno (fro)s )]lgﬁd) < 5) — kil logG <[M, +00 D
ne—00 no vV 2d

< I(Ty(x)) — rylog G ([;\é = D

and the right hand side is integrable on €2, we can use again the reverse Fatou lemma, we obtain

1
lim sup lim sup Z log P& (z)) < / lim sup lim sup —— log P(Ex(c(z))1 U 7, .(¢) (z)dL(z) .
Tl Q ’

e—0 n—oo zEM,, e—0 ng—00 ng WEM 4,

Combining inequalities (5.30) and (5.29), we obtain

lim sup lim sup ) —n—logIP’(S (x)) < /Q 1(T,(2)dL(z) = 1(T,) . (5.32)

e—0 n— oo zeM,

Finally, using inequalities (5.24), (5.25), (5.27) and (5.32), we obtain

~

lim sup —— 1og P(3fn € Su(T1, T2, Q) : (T n(fn), 0) < 3n) < I(7).

n—oo

By proposition 5.1, we have R
lim 1(d,) = 1(3").
p—ro0
By the properties of 7', we have
lim sup —— logPan € 8Ty, 2,9) : 0(Hn(fn), ) < 30) < I(T) +1.

n— oo

The result follows by letting 1 go to 0. O

5.3 Proof of proposition 5.5

Proof of proposition 5.5. Let & € $(I'',T2,Q) N £ (I'', T2, Q) such that 1(7) < co. By hypothesis 2
there exist Sp,...,8; hypersurfaces of class C! such that ' C U;—1._;S;.

.....

N, = (TN V(T UarT? Uimy . Or(SiNT), 1/p)) U U {xel:0<|Halx) e <1/p}.
i=1,...,d

We aim to decompose 7 =W 4 F@res guch that
— G FPhres ¢ (I T2, Q);
— . WQ = 0 H4 L-almost everywhere on Np;

— G p)res ig negligible in some sense.
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We are going to build these continuous streams as the limit of discrete streams. Since 7 exM (Tt 12,Q),
there exist an increasing function ¢ : N = N and fy(,) € Sﬁn)(f‘l, 2, Q) for n € N, such that

nlinéoo(ﬁww)(fw(n)), FLh) =

To lighten the notations, we will write f, instead of fw(n)- By lemma 3.5, there exists a couple
(?m (p(7))7€?n) such that

Fo= Y 0(F) D nEflay
76? (zy)e™

where ?L is a set of self-avoiding oriented path that have both extremities in T} UT2. If there are
several possible choices for this co %ﬂe we pick one according to a deterministic rule We can decompose

(®) gpd T P)res

the set I',, into two disjoint sets I' ;' and where

?S{’)’T” = {7 € . 7 has at least one extremity in Vg(di/n)}
and ?5{1) = ? \ ?%p)’res. We set

= > o) Y gL
FeTP T=((wy)eT

and fT(Lp)’TeS = fn— f(p) It is easy to check that
fiP € SYTT\N, T2\ N, Q).

Let N > 1. By compactness and lemma 2.8, up to extractions, we can assume that for any p €

{1,...,N} the measure ﬁn (p) ) converges weakly towards a stream 7@ L4 where 7@ e (L2 Q)
and 7(;;) mo =0 H" -almost everywhere on (I'\ (I'' UT?)) UN,,. Besides, we recall that by lemma
3.5, for any eg € E¢ and any p > 1, we have

(£ () = f 0 e0)) - fulea) = D> p(F) Y. n@h- faleo)le(eo) 2 0.
FeTW\TP+Y T=((my))eF

It follows that
1 N 1 N fn(e)
e 2 LI ~ 10Ol =5 3 FUEE - 06D gy
]E p=1 p=1 n 2
1
< Z I £(e)ll2 < 2dLH (Voo (2, 1)) M
e€Ed
By inequality (2.5), it follows that
N
S ITE = FW| < 2dL4 (Voo (R,1)) M
—1

By letting N go to infinity, we obtain

YT~ F O < 2007 (Vo (R, 1)) M
=1

It follows that there exists oo € $(I'!, 2, Q) such that lim,_,u, || — 0 ||z1 = 0. Note that in general,
we don’t have necessarily ?0 7. However, we prove that the stream ?0 o has null divergence on
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R and null trace on I'. We set & P)res = & — 7 (@), By following the arguments steps 3 and 4 in the
proof of lemma 2.8 and proposition 1.7, we have for any u € C°*(R% R),

1

Z@res  Fuarcd] = | lim — — Z u(z) df,(z)

R n—00 Tld 1
z€(PLUT2)NVe(Ny,d/n)

|Z2& N Va(Ny, d/n)

n
nd

< dM||ullo lim nL(Va(N,2d/n))

< 8d* M ||ul| o HY L (N,) -

< dM|jul|s lim
n—oo

Besides, since the manifolds intersect transversally for ¢ # j € {1,...,1} the intersection S;NS; is a sub-
manifold of codimension 2 (see for instance chapter 1 paragraph 5 in [16]). It follows that H4~1(S;NS;) =
0 and
HEH(Op(S;NT) < Y HTNSNS;) = 0.
J#i
Since Hd—l(apl“l Ua[‘FQ Ui=1,...1 or (SZ ﬂl—‘)) = 0, we have limpﬁoo ﬂVz(@rFluaeruizl,,_,zar (8;nD),1/p) (l‘) =0
for H?!-almost every z in I'. Hence, thanks to the dominated convergence theorem

lim HHT NV (0rTH UOrT? Uiy, 4 Or(S; NT), 1/p))

p—o0
= / lim ]lVZ(BpFlUapFQUi:L,,,lap(SiﬂF),l/p)(‘T)d,Hdil(x) =0.
T p—o0
Let i € {1,...,d}. For #% '-almost every = € T', the normal exterior vector 7 o(x) is well defined. For

every x € I" such that ﬁg(x) is well defined, we have
Jim Locizo @) ei<iyp =0-

Thanks to dominated convergence theorem, we have

. d—1
A | Locia@)a<ypdi (@) = 0.

Finally, we have that
lim HHN,) =0

p—o0

and for any u € C>°(R%,R), we have

lim o (p)res ?udﬁd =0.

P—00 Jrd

We have

/Rd(?w”es — 4+ F0) Vudld| = /Rd(% ~ 70 Vudcd| < |Fullp=||To — P11 -

It follows that for any u € C°(RY, R),

lim [ F@res. Fudcd = / (@ — To) - VudLd = 0.
Rd

P—0 JRd

Hence, we have div(? — 70) = 0 L%almost everywhere on €. Furthermore, by equality (2.7), we get

/ (@ —F) - Vudld = / (T —Fo) - HoudHi" .
R4 N
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Finally, for any u € C2°(R%,R), we have
/((7 o) Wo)udH ™ =0.
r

Step 2. Prolongation of the discrete stream. Let ryg > 0 we will choose later. We define the
prolongated version f) of f{” (see figure 5.3) as follows

Lron]
fv(lp) = fép) + Z Z (ﬂﬁg(m(gﬂ))-ax/p Z fr(Lp)(@vx— €_i>/”>) (x+(k—1)E /n,a+ke] /n)
€L U2\ V2 (Np,d/n) i=1,...,d k=1
Lron]
1% (ri(2)) 22 <—1/p Z O (@, 2+ €_i>/”>)ﬂ<z(k1)a?/n,xka?/n>>
k=1

where m;(z) € T is the intersection between I'" and {z + el )\ € R}, if there are several intersection
points, we pick the closest from z. Note that it may exist two disjoint points 2 and y in I'} UT'2 such that

7;i(x) = m;(y). However, this is not an issue since by definition of SM (I'', T2, Q2), we have f(p)(< y)) =0.
Roughly speaking, we obtain the stream f}lp ) by prolongating the stream fT(L P) through straight lines.

€2

ol

Figure 13 — The crosses correspond to points in I'}. By sake of clarity we only represent how we prolongate
the stream in the direction e; (represented by the bold lines). Note that in the figure, 7o (m(z))- &1 > 0
and 7 o(m(y)) - €1 < 0. The corresponding p is chosen big enough.

Choice of r¢. Let z € T1 U FQAN Since Q is a Lipschitz domain, there exist » > 0, an hyperplane
H, containing x of normal vector 7, and ¢, : H — R a Lipschitz function such that

B(z,r)NT ={y + (;Sw(y)ﬁz cy € HyNB(z,r)} .

Since x ¢ Va(Uj=1,....0r(S;NT), 1/2p), up to choosing a smaller r, we can assume that B(z,r)NI' C S; for
some j € {1,...,1} and for any i € {1,...,d}, if |7 q(z)-e| > 1/p then for any y € FﬂB(:L‘ ), we have
Taly)-e| >1/2p). If Walz) e = O then for any y € TN B(x,7), we have |7 q(y) - er] < 1/(2p). We
used the fact that the hypersurface S; is of class C'. To each x in T'UI'\ WV, we associate r,, > 0 as above.
We can extract from the family (B(x,7,/2),2 € TTUT?\ N,) a finite covering (B(z;,74,/2),i € I) of
the compact set 't UT? \ NV,,. We set



We prove that the stream does not exceed the capacity constraint. Let ¢ be an edge in the
support of fi7) — f{P). Let us assume e has its two endpoints in Q,. Let i € {1,...,d} be such that e is
colinear to e;. Then, there exists 2 € (T' UT?)\ N, such that |7 o(x) - €| > 1/p and y € T such that
x—y=te, with || < ro.

{Ov
N
\

&/( 3|
.
Q)

el

Figure 14 — Illustration of the case where there exists e with its two endpoints in €2, in the support of
) f(p)
n n -

We claim that there does not exists any y € I such that z —y = te; with [t| < 2rg. Since we
prolongate the stream by the exterior the existence of such y implies that by prolongating the stream
we have crossed ) again. Indeed, assume such a y exists. Let j € I such that x € B(x;,r,,/2). Since
|z —yll2 < 7y, /2, we have that y € B(z;,7,,). Moreover, since | a(z) - €| > 1/p, by definition of Tajs
we have

Ve e TN B(xy,ry,) |Talz) e >1/2p. (5.33)

Let us denote by ' and 3’ the points in H,; (the hyperplane associated to x;) such that z = 2’ +
G, (2 )ﬁx] and y = y' + éq, (v’ )ﬁx] Let us denote by ¢g the following mapping

Vse 0.1 uls) = u, (1 - s)a’ + ).

Since z; ¢ N, and T is locally C' around z we know that ¢g is of class C!. By the mean value
theorem, there exists s €]0,1[ such that ¢j(s) = @o(1) — ¢o(0) = ¢, (y') — ¢o,(2'). In other words,
the vector y' — 2’ + (¢o, (¥') — bu, (ac’))ﬁwJ = te! belongs to the tangent space at the point z, =
(1 =9)" +sy + qbo(s)ﬁxj) € T (see figure 14). Consequently, we have

ﬁg(zs) 6_1> =0.

This contradicts (5.33). The support of ﬂlp ) T(Lp ) does not contain edges with two endpoints in €2,,.

Let us assume that there exists e € EZ such that ||]?7(Lp )(e)||2 > M. Necessarily e is not in 2. Roughly
speaking, in this situation, by prolongating the stream two disjoint points of I" use the same edge. Let
i € {1,...,d} be such that e is colinear to e;. Then there exists = and y in I'' UT? \ A, such that
|Wa(x)-e| >1/pand z —y = te; with |t| < 2ry (see figure 15. By the same reasoning than above, this
is excluded.
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Figure 15 — Illustration of the case where there exists e such that || f,,(e)||2 > M.

We prove that the stream f\/) satisfies the node law at T'L UT2. Let 2 € TL UT2. If z €

Vo (Np, d/n), then for any edge e that has x for endpoint, we have by construction fép)(e) = f}lp)(e =0.
Let us now assume that 2 ¢ Vo(N,,, d/n). Assume there exists i € {1,...,d} such that 7 q(m;(z))-e; = 0.
Since x ¢ Vo(N,,d/n), we have that for any y € B(x,d/n) NT, Wqo(y) - e, = 0. In other words, I is
locally flat near 7;(x). Consequently, it yields that z+e; /n and z—e; /n belong to T'> UT'2. By definition
of SM(T,T5, ), we have

FP(,w — € /n)) = [P ((@,@ + € fn) = £ ((x, 2 + € /n)) = 0.
Finally, we have

dfP ()= Y fP(ee—el/n)-& - [P (a2 +72/n) e

i=1,....d
= Z 13 o (m(2)) 2310 (P (@2 — € /) — fP ((z,2 — € /n)) - &
i=1,...d

+ Litg (o)) -zt <—1/p (WD (2,2 + € /) — [P ((w,x + € /n)) - &
=0.

Step 3. We prove that the prolongated discrete stream converges towards a continuous
stream in an extended version of (). We claim that the node law is satisfied for ﬁlp ) at any point
in Vo(Q,r9/2p). We prove this result by contradiction. Assume there exists a point w € Vo(Q,ro/2p)
where the node law is not satisfied (see figure 16). Necessarily, w ¢ €2, and there exists y € I" such that
w=1y+ toT o (y) with tg < ro/2p (see figure 16. Since the node law is not respected only at the end of a
prolongated line, i.e, for w € Z% such that there exists « € I' that satisfies w = z+te; with [t| > ro—1/n
and |7 o(z) - €/| > 1/p. There exists j € I such that 2 € B(xj,7s,;/2) and |7 a(z;) - €| > 1/p. Since
lz —yll2 < 270 <7y, /2 we have y € B(wj,7z;).
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Figure 16 — Illustration of the case where the node law is not respected in V2 (€2, 79/2p).

By the mean value theorem, there exists z € B(x;,7,,) NT such that y — x is in the tangent space of
z. Hence, we have (y —z)- T a(z) = 0. And so te] - Wo(z) = toa(y) Ta(z) and |te] - TWa(z)] < to <
r0/2p < 1/2p. This contradicts the fact that |e; - 7 q(z)| > 1/2p by definition of Ta,.
Write _
Q=QUW(T'UT2\N,,70/2p)

and B B
I ={zecQ:dy(z,T) =ro/2p}

%= {zeQ:dy(x,T%) =r0/2p}.

By lemma 2.8, we can prove that we can extract from ﬁn( :(lp ))]15 a sequence that converges towards

a continuous stream ¢ L4 in {5£¢ : 5 € S(I'', T, Q)} that coincides with @ ® £ on Q. It is easy
to check that since @ — o has null divergence on R? and null trace on T’ then () + 7 - ?O)Ed in
{5£d: 5 e X', T, Q)} and coincides with (7 ® + & — &¢)L% on Q.

Continuity of I. Note that I((6® + & — T)lg) = [(@® + & — ). Since the sequence
(@) 47— )p>1 converges in L' towards o, up to extraction, we can assume that (@) + 3 — ) (z)
converges towards o (z) for £%almost every z on Q. Let n > 0. Set § = 1/(4dL%(Q)M). We have

(=)@ +F = F0) = [ 11 5@ + 7 - Fo)(a))dL(z).

Q
Since (1 — (5)(?(”) +7 — ?0)(:@ € Dy, by proposition 4.7, the function I is continuous at this point:

lim I((1-0)(7" + 7 — 7 0o)(2)) = I(1 - 6) 7 (2)).
p—>00
Moreover, by proposition 4.9, we have I((1 — §)(d®) + & — Fo)(z)) < —dlog G([(1 — §)M, M]) for
L%-almost every z. We can therefore apply the dominated convergence theorem:
lim 1(1-0)(@® + 7 — 7o) = I(1-8)7).
p—00

Using the convexity of IA, we obtain

o~ o~

lim T(1-0)(@W +7 = F0) <I(1-9)7) < (1-9I(F) + 51(0) < 1(3).
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Let p be large enough such that
[(1=8)(@P +7 = F0) <I(F) +1n

and

|7 — (7@ +3 — o)l <n/2.
We have

10— (1-0)F" + 7 — Fo)lallp =0 — (1= 8) (TP + 7 — o)l
< [T = TP+ 6L4Q)2dM < 1.

We set o' = (1 —6)(6®) + & — &) and p = ro/2p. This concludes the proof.

6 Upper large deviation principle

The following little lemma will appear several times in what follows. We refer to lemma 6.7 in [5] for
a proof of this lemma.

Lemma 6.1 (Lemma 6.7 in [5]). Let fi,..., fr be r non-negative functions defined on |0,1[. Then,

hm supslog <Z file ) = max limsupelog f;(e) .

1<i<r 0
i=1

We recall that we endow M (Vo (€, 1))? with the topology O associated with the distance 9 and the
Borelian o-field B and that P,, denotes the following probability:

VAeB  Pu(A) =P(Efy € Su(T,T%,0Q) : Wn(fn) € A).
Let o € X(I'",T2,Q) and § > 0. We denote by By(, ) the open ball centered at o L% of radius 4:

BD(?,d):{ueM( (1) (T L, )<5}.

We denote U the following basis of neighborhood of the null element of M (Vo (€, 1))%:

:{Ba (o,é) :pzl}.

To prove theorem 1.2, it is sufficient to prove that Tisa good rate function, that the sequence of measures
(Pp)n>1 is I-tight and that the following local estimates are satisfied (see section 6.2 in [5]). This is the
purpose of the following proposition.

Proposition 6.2. The function Tisa good rate function. The sequence of measures (Pp)n>1 s f—tz’ght,
i.e., there exists positive constants ¢ and Ay such that

VA> X VU €U hmsup—log]P’(ﬂfn €8, (I, T2,Q) : Zol(fn) € I1([0,N) +U) < —cA.

n— oo

Moreover, the local estimates are satisfied:

Vv e MV (1) Ve >0 hmlnf log]P’(anES (r,12,Q): D(ﬁn(fn),u) <e) z—f(u).

Ve MVso(,1)? s.t. T()<oo Ve>0, 36=46(c) >0

hmsup—log]P’(Elfn € 8, (T1T%0) : 0(Tn(fn),v) <6(e)) < —I(v)(1—¢).

n—oo
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Before proving this proposition, we prove the following lemma.

Lemma 6.3. The set {7£d < (I T2,Q)NEM(TT2,Q)} is compact for the topology associated
with the distance 0.

Proof of lemma 6.3. Let & € 2(I'',T2,Q) N M (I T2,Q). Set v = & L% We have
W(Q)=0 and  |v|(Q) <2dMLY Q).

It follows by Prohorov theorem that the set {0 £%: & € ("', T2, Q)N LM (', T'2,Q)} is relatively com-
pact for the weak topology in the sense that for any sequence (?n[,d)nzl, we can extract a subsequence

(?w(n)ﬁd)nzl such that there exists 19 € M (Voo (£2,1))? such that

Vf € Cy(RE, R) lim / [ pmdL? = / fdvg .
Rd R4

n—oo

By lemma 2.2, it follows that
lim 0(?,/, L) =0.

n— o0

Since 7¢(n € M it is itself the weak limit of a sequence of discrete streams: there exists ¢ : N — N an
increasing function such that for all m > 1 there exists fy(n),p(m) € Siy, 5(m) (I, T2,Q) and

lim 0(71/,(7; £ 74)(771) fw (n), ¢(m))) =0.

m—r 00

For any n > 1, we define ¢g(n) to be

dalin) = inf {0m) 0T sty £, o Py ) < 2| -

It follows that
lim 0 ?,C ﬁ¢0 ¢0(n))) =0.

n— oo

By lemma 2.8, we have that vy = o oL?% where ?0 € E(I‘l,I‘z,Q) N IM(TL T2 Q). Hence, the set
{FL?: 7 e (I, I2,Q) NnEMTT2,Q)} is compact for the topology associated with the distance
O

Proof of proposition 6.2. Step 1. We prove that I is lower semi-continuous. Let v € M(Veo (Q,1))%
and (v),>1 be a sequence such that 9(v,, ) goes to 0 when p goes to infinity.

elfve{dLl: 7 e X, T20)} and liminf, f(yp) = +o00, then

liminf I(1,) > I(v).

p—o0

o If v =7 L with & € X(I'", "2 ,§2) and liminfp o f(l/p) < 00, then we can extract from the sequence
(Vp)p>1 the measures such that I (Vp) < 00. We will denote this subsequence sequence by (@ ,L%),>1

where @, € $(I'',I'2,Q) and 1(71,) = I(?Z;Ed). We use the same arguments as in proposition 4.5.
However, we cannot use this proposition because we do not have the almost sure convergence of ?p
towards o. The function

o 1 1 2 d
€ hnrglgf—ﬁlogp (3fn € S (T1,T2,Q) : D(ﬁn(fn),?ﬁ ) <e)
is clearly non-increasing. Moreover, by theorem 1.5, we have

lim hmlnf——logP(Efn €S, (T 1%0): D(ﬁn(fn),?ﬁd) <e)= 1(7).

e—0 n—oo

Let 6 > 0, there exists £g = £¢(d) > 0 such that

~

Ve<ey  lim inf—— log P(3fn € Sn(€) : 0(H n(fn), 7L <) >I(0) —4.

n—oo
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Let pg > 1 be such that for any p > po, 0(0 L%, 7 LY) < e9/4. Tt yields that

Ve <eo Yp>po hmmff— og P(3fn € Sn(€) : 0(H n(fn), TLY) < &0)

né
< liminf —— log]P’(Efn €S, (¢ ﬁn (fn), 7 Ed) <e/d).
n— o0
It follows that
Ve <eo Vp>po hmmf——log[?’(ﬂfn € 8n(€) 1 0(Hn(fn), TpL?) <e/4) > I(V)—34.

n—oo

By letting first £ goes to 0 and then taking the liminf in p, we obtain

liminf I(,) > 1(7) — 6.

p—00

Since the previous inequality holds for any § > 0, it follows that

lim inf f(7p) > 1(7).

p—o

e If v e M(Vao(Q,1))?\ {TL%: & € ('}, T2,Q)}, then by definition of I, we have I(r) = 4o00. Let
M > 0. By proposition 2.7, there exists €y > 0 such that

hmsup—flogP(an €S, (I, 12,0): D(ﬁn(fn),l/) <egy)>M.

n—oQ

For any p > 1 such that d(v,,v) < £¢/2, we have

Ve < %0 hmsup——logIP’(an € Su(TH12,Q) : (W n(fn), 1) <€)

n—oo

> hmsup——logP(an € Su(THT2,0Q) : 3(W 0l fn), vp) < €0/2)

n—oQ

> hmsup——logP(Elfn €S, (I, 12,0): D(ﬁn(fn),y) <egy)>M.

n—oo

By first taking the limit when e goes to 0 and then the liminf in p, we obtain

lim inf I(Vp) > M.

p—00

By letting M go to infinity, we obtain

hmlnf[(l/p) =I(v) =—+.

p—r0o0

Finally, we have in any case _
lim inf I(Vp) >1(v).

p—00 -
Since the space is metric, this implies that I is lower semi-continuous.
Step 2. We prove that [ is a good rate function. Let us prove that its level sets are compact for
the distance 0. Let A > 0. We have
{FLh: 7 es@L T3NSI T2,Q), I(7) <A} = {v € MV (L 1) I(v) < A}
c{oLt: T ex(r,r2,Q)nsMr,r2,0)l.

Since I is lower semi-continuous, its level sets are closed for the topology associated with 0. Moreover
by lemma 6.3, the set {£%: & € 2(I',T2,Q) N SM (T, T2,Q Q)} is compact. Hence, the level sets are
compact for the topology associated with 9. This implies that Tisa good rate function.

Step 3. We prove that I satisfies the local estimates. Let & € 2(I'', T2, Q) N XM (I'!, I'2, Q) such
that 1(3) < co. The function

€ hmmf - log P (Elfn €S, (T T2 Q): a(ﬁn(fn),?/ld) < 5)
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is clearly non-decreasing. Hence, using theorem 1.5, we have
1
¥e>0  liminf —logP (Elfn €S, (TN T2,Q) : 0(Hn(fn), T7LY) <é)

> lim lim inf - logP (3, € Su(T,T2,Q) - (W n(fn), 7LY) < &) = —1(7) = —I(TL).

T g/—0 n—oo n

For measures v such that I(r) = 400, we have
ol d ~
¥e>0  liminf —logP (3fy € Su(T,T2,Q) : 0(Hn(fn).v) <€) 2 ~I(v) = —00.
Let & € (T, T2,Q) N SM (T, T2, Q) such that 1() < co. The function

€+ —limsup — 3 log]P’(EIfn €S, (', 12,Q): D(ﬁn(fn),?ﬁd) <e)

n—oo

is non-increasing and thanks to theorem 1.5, the function goes to f(?) = I(@ L") when ¢ goes to 0.
There exists 0 = §(¢) > 0 such that

— lim sup % logP (3f, € ST, T2,Q) : 2(Hn(fn), 7LY) <3(e)) > I(T)(1 —¢) = [(TLY)(1 —¢).
(6.1)

Step 4. We prove the I-tightness. Let A > 0. First note that 1-1([0,)]) = {o£% : & €

L[0,A) N EM(TYT2,Q)}. Let U € U. Let K > 0. Let g9 > 0. For & € ZM(I'1, T2, Q) such that
I(?) < 400, there exists 6z (e9) > 0, such that the local estimates (6.1) is satisfied for £o. For & such
that 1(@) < A, up to choosing a smaller §—, we can assume that By (o', d=) C (I7([0,A]) + U). For &
such that 1(@) = 400, there exists 6 such that

hmsup—log]P’(Elfn € S, (T T2.Q) : 0(H n(fn), 7LY < 63) < —K.

n— oo
Since by lemma 6.3, the set {&£%: & € R(I'',I2,Q)NSM (I, I'2,Q)} is compact for d, we can extract
from (Bo(7,6=), 0 € L(I',T2,Q) N M, I2,Q)) a finite covering (BD(?i,(S?i),i =1,...,N) of
{TL%: 7 ex(I,I2,Q) NnEM(T,T2,Q)}. We have

P(3f, € Su(TT20): Talfa) £ 110, 0) +T)

/N

Z (30 € Sulf',T2,0): Walfa) ¢ T7H(10,N) + U, () € Bal(T1:07,))

—HP’(aneS (CLT2,9): Half) ¢ U BD(?iaé?i)) :

i=1,....N

Thanks to proposition 2.7, we have

lim bup—logP (afn S Sn(rl F2 ) : ﬁn(fn) % U BD(?U(S?)) = -
n—roo i=1,...,N
Moreover, if 1(3;) < A, then (I1([0,A]) + U)eN Ba(?i, 6z,) =0 and
P (3fn € SaTT2,9): Halfa) & T7H(0.N) +U), Hnlfa) € Bo(W4,07,)) = 0.
By lemma 6.1, it follows that
lim sup — L logP(3f, € Su(T,T2,0) : Talfn) ¢ T-([0,X]) + U)
n—oo

< —min ((1 ~ £o) min {f(?i) Li=1,...,N, I(d) > )\} K) < —min((1 — o)\, K).
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By letting first K go to infinity and then gy go to 0, we obtain

hmsup—logIP’(Elfn €SI T2,Q) : Hnlfa) ¢ T H(0N) +U) < —

n— oo

This concludes the proof. O
Before proving theorem 1.4, we need to prove that the map o £ — flow®"! (") is continuous.

Proposition 6.4. The function @ L — flow ™™ () is continuous where {& L% : & € BT, T2,Q)} is
endowed with the topology associated with the distance 0.

Proof of proposition 6.4. Let & € Y(r't,12,9Q) and (7,,)}721 be a sequence in 3(I'*, T2, Q) such that
lim o(7,L%, oL =0

p—

Let > 0. Thanks to the proof of proposition 4.7. in [9] (see (4.28)), we know that there exists a finite
family of hyperrectangles A1, ..., Ay of disjoint interiors and h > 0 such that

N

1
cont —
flow (?)——2h g /CYI(A‘h) o - vldL

Vo e (I, T2,Q) 4 < ConM (6.2)

where ¥/ is normal to A; and Cj is a constant depending on 2 and the A,;. By lemma 2.1, 7 L4 weakly
converges to o £%. By Portmanteau theorem, we have that for any i € {1,..., N’}

lim Ty vpdL? = / 7 udL?
P00 Jeyl(A;,h) cyl(As k)
Using inequality (6.2), it follows that

lim sup ‘ﬂow“mt(?) - ﬂowcont(?pﬂ < 2ConM .

p—00
Finally, by letting n goes to 0, we obtain
lim ﬂowcom(7p) = ﬂowcom(?) .

p—0o0

The result follows. O
We recall that

J(X) = inf {f(?) LT e (I, T2,Q) N =M, T2, Q), low™™ (7)) = A} .

Proposition 6.5. The function J is convexr on Ry. There exists Apar > 0 such that J is finite on
[0, Anaz| and infinite on | Amaz, +00[. Moreover, J is increasing on [pa, Amaz[, J(A) =0 on [0, ¢q] and

YA €]0, Mz | lim 710gP(¢n(r1 2,0) > %) = —J\).
n—o0o N,
Note that we did not study the behavior of the function at A, since eventually we will replace the
value of J(Apqz) by the value of its left limit at Apqz.

Proof of proposition 6.5. Step 1. We prove that the infimum in the definition of J is attained.
Since by proposition 6.4, the function @ — flow™™ (") is continuous then the set {& € L(I'!,T2,Q) N
SM(1 T2,Q), low™™ (@) = A} is closed. Besides, by lemma 6.3, the set {&£% : & € £(I'',I'2,Q) N
SM(T1T2,Q)} is compact and so the set {& € (', T2,Q) N M (I T2, Q), low™" () = \} is also
compact. Consequently, the lower semi-continuous function T attains its minimum over this set: there
exists o € B(T'!,T2,Q) N M (I, T2, Q) such that low™™ () = A and J(\) = I(7).

Step 2. We prove a lower bound. Let A > 0 such that J(\) < oo. Note that we have

J(\) = inf {f(?) LT e (I, I2,Q) N =M(IL, T2, Q), low™™ () > )\} .
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Indeed, for any & € (', I'2,Q) such that flow™™ (&) = (1 + d)A with § > 0, we have using the
convexity of I (theorem 4.6)

J(A)gf(li5?> < liéf(7)+(1_1i6>f(ﬁ)gf(?).

Let € > 0. Thanks to proposition 6.4, there exists § > 0 such that for any CiR= »(T', T2, Q) we have

AT, T) <6 = |How™ () — flow*™ (3| < %
We have
P(3f, € Su(T,T2,Q) : 0(Hn(fn), TLY <6)
< P(¢n (TN, T2,0) > (A —e)n?™1,3f, € Su(PLT2,Q) 1 3(HWn(fn), 7L < 6)
+P(¢pn (P, T2,Q) < A —e)n? 1,3 € Su(DLT2,Q) - o(Wn(fn), FLY) <6).

Let us prove that

Ing>1 Vn>ng  P(on(TLT2,Q) < A—e)n® 1, 3f, € ST, T2,Q) - 0(Wn(fn), 7L <6)=0.
(6.3)

If not, there exists a sequence (1)(n)),>1 such that

]P)(¢1/1(n) (P17P27 Q) < ()‘ - E)w(n)d_17 wa(n) S Sw(n)(F1»PQ»Q> : D(ﬁw(n)(fw(n)a ?‘Cd) < 5) >0.

By the same arguments as in the proof of Proposition 2.7, we can choose a sequence of realizations
(Wy(n))n>1 and extract a subsequence from (ﬁw(n)( Juom)(Wyn)))n>1 that converges weakly towards
7' L4 with &' € 2(I'',T2,Q). To lighten the notation we will denote by (7 n(fn))n>1 this subsequence.
By Proposition 4.7. in [9], we have that

By lemma 2.2, we obtain that
lim (W n(fn), @'LY) =0.

n— oo

It follows that 9(o L%, 7'L%) < § and so

lim flow(f) = flow™™ (") > X —

n—oo nd—1

N ™

This contradicts the fact that
flow, (fn) < (T, T2,Q) < (A —e)nd L.
It yields that
—J(\) = —1(7) < linrgigf%bgP(Elfn € 8, (T, T2,Q) : (L n(fn), LY <6)
< lim inf % log P(¢, (T, T2,Q) > (A —e)n 1), (6.4)

Step 3. We prove an upper bound. Let K > 0. Let ¢g > 0. Thanks to proposition 6.4, to each
o € 2(I',I'2,Q), we can associate a real number d— > 0 such that

Vo' e (L T2,Q) o(dLL LY <ip = |flow " (F) — flow™™ ()| <

N ™

For & such that IA(?) < 400, up to choosing a smaller §-, we can assume that the local estimate given
by the inequality (6.1) is satisfied for eq:

Jimm sup % logP (3f, € Su(T,T2,Q) : 0(Tn(fn), TLY) < b2) < 1)1 —c0).  (6.5)

n—oo
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For & such that f(?) = +00, up to choosing a smaller 5, we can assume that

lim sup dlogIP(ﬂfn €S, (T T2.0) : 0(H n(fn), 7L < 62) < —K. (6.6)

n—oo

Since by lemma 6.3, the set {7 £?: & € %(I'', T2, Q)N SM (I, T2, Q)} is compact for 9, we can extract
from (Bo(7,0%), @ € R(I',T2,Q)nSM(T,T2,Q)) a finite covering (Bo(74,0%,),i = 1,...,N). We
have

N
P(¢,(F1,T2,Q) > (A +)n Z (60 (T, T2,Q) > (A +e)n® L, WM € By(T4,0%.))

+P [ 3f0 €S@T2Q) : Wa(f) ¢ | Bo(Fisdz,) | . (67)

i=1,....N

We claim that

Ing =1 Ynzng  P3fn€8(TLT%Q): Uulfa) ¢ | Bo(Ti02,) | =0.

Indeed, if it was not true, by the same arguments we used to prove (6.3) and lemma 2.8, we can prove
that there exists @ L% ¢ Uiz~ Ba(?i,(??i) with @ € M(I',I'2,Q). This contradicts the fact
that (Ba(?i,é?i),i = 1,...,N) is a covering of {L%? : & e (', T2,Q) NnSMTT2,Q)}. Let
i €{1,..., N} such that ﬂowc‘mt(7i) < A. By the same arguments we used to prove (6.3), we can prove
that

g >1 Yn>ng  P(su(TLT3Q) > (A +e)n® L, 7 € By(T4,02,)) =0.

Using lemma 6.1, inequality (6.7) and the local estimates (6.5), (6.6), it follows that

lim sup— 3 log]P’(qﬁn(Fl 2,Q)> (A +e)nt)

n—o0

1
< hmsup — log (ZP Ifn € Su(THT2.Q) : 0(Hn(fn), @iL%) < 57i)11ﬂowwm(?i)zk>

=1

< —min ((1 — eo) min{(7;) : flow®(T;) > \,i=1,.. .,N},K) < —min((1 — e0)J(\), K).
By letting K go to infinity and then gg go to 0, we obtain

lim sup - logIF’(gbn(Fl I2,Q) > A +e)n®h < —J). (6.8)

n— oo

Step 4. We prove that J is convex and conclude. Let us prove that the function J is convex.
Let 2,y > 0 such that J(z) < oo and J(y) < co. Let a € [0,1]. Let &, € (', I'2, Q)N ZM (T, T2, Q)
(respectively & ,) such that 1(3,) = J(z) and flow®™™(d,) = =z (respectively f(7y) = J(y) and
flow*" (7 ,) = y). We have

ﬁowcont(a?x +(1— Ck)?y) = — \/1(a7z +(1- a)?y) . ﬁQde—l

= aflow™™ (7 ,) + (1 — @) flow™™ (7 ,)

Using the convexity of IA, it follows that

J(ax + (1 —a)y )Sl(a



Thus, J is convex. Let Apqe = sup{A > 0 : J(A) < oo}. By convexity, for any A €]0, \paz|, J is
continuous at A. Using inequalities (6.4) and (6.8), we have

lim sup % log P(¢, (T, T2,0Q) > An?™ 1) < —lim J(A —¢) = —J(\)

n—00 e—=0

and
1
lim inf — log P(¢, (I, T2,0) > An?™") > — lim J(A +¢) = —J(N).
E—r

n—oo N

As a result we have

n—oo

1 _
lim ﬁlogP(cﬁn(Fl,FZ,Q) >t = —J()).

Using theorems 1.17 and 1.18, and the continuity of J, we have that J(A) > 0 if and only if A > ¢q.
Let us prove that J is increasing on [pq, Apmaz[- Let A, N € [¢q, Amaz| such that A < X. There exists
a €]0, 1] such that

A=(1-a)pg +a\.

Using the convexity of J, we have
JA) < (1 —a)J(pq) +aJ(N) =aJ(\) < JN).
The result follows. O

Proof of theorem 1.4. We recall that .J, was defined in (1.3).
e Lower bound. We prove the local lower bound:

n—oo N nd_l

1 2 ~
YA>0 Ve>0 liminfldlog]P’<qM E])\—€7)\+6[>>—Ju(>\).

Let A >0and e > 0. If ju()\) = 400, there is nothing to prove. If \,;, < A < ¢q such that ju(/\) < 00,
we have by theorem 1.3

oo pd—1 nd—1

1 2 ~
lim inf ! log P (W EX—g, A+ 6[) >—Ji(N).
It follows that

1
lim inf — log P

n—oo N ’nd_l

(W 6])\5,/\+€[> 20="Ju(Y).

Let us now assume that A > ¢o. We have

rL,r2,0 rL,r2,0 r,r2,0
P(¢"( — )E]A—E,)\+€[)ZP(¢n( — )2)\>—IP’<¢”( pa— )2)\+5).
n n n
Since J(A) < J(A+¢€), by lemma 6.1, it leads to
. . 1 ¢n(F1’FQ’Q) T
— - - — > — = —
hnrr_l)lgf o logIP’< v EX—eg,A+e[) >-J(N) Ju(N).
e Upper bound. We have to prove that for all closed subset F of RT
. 1 ¢n(rlvr2a9) . T
hgl_}solip v logP (ndl eEF|<— 12f Ju - (6.9)

Let F be a closed subset of RT. We consider F; = F N[0, ¢q] and Fo = F N [pq, +oo[. Let us first
assume that F; # (0. Let f; = sup F1. We distinguish two cases.

— We assume f1 > A\nin. Then by proposition 6.5, we have inf }-ju = 0 and inequality (6.9) is
trivially satisfied.
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— We assume f; < Amin. Then, inf # ju =infzr, ju and for n large enough, by definition of A,

nd—1 nd—1
It follows, that have

1 (T, T2.0
lim sup — log P (W € .7:)
n n

n— oo

1 (T, T2.0
—limsupdlogIP’(W 6}'2> .
n n

n—oo
Hence, to prove inequality (6.9), it remains to prove that

. 1 ¢n(F17F27Q) . T
hmsupﬁlogﬁD <nd—1 e F | < —l}__lf:]u.

n— oo

Let us assume that F; = (). If F5 = () then

nd—1

and the inequality (6.9) follows. If F» # 0, we set fo = inf F5. We have

nd—1 nd—1
Using theorem 1.5, it yields that

1 It r2 0
n n

n—oo

1
< limsup — log P (
n

n—oo

ou(T1,T20) f2>

nd—1 = _J(fQ) = —igfj;

since J is increasing on [¢q, +oo[. This concludes the proof. O
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