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Large deviation principle for the streams and the maximal flow in
first passage percolation ∗

Barbara Dembin †, Marie Théret ‡

Abstract: We consider the standard first passage percolation model in the rescaled lattice Zd/n for
d ≥ 2 and a bounded domain Ω in Rd. We denote by Γ1 and Γ2 two disjoint subsets of ∂Ω representing
respectively the source and the sink, i.e., where the water can enter in Ω and escape from Ω. A maximal
stream is a vector measure −→µmaxn that describes how the maximal amount of fluid can enter through
Γ1 and spreads in Ω. Under some assumptions on Ω and G, we already know a law of large number
for −→µmaxn . The sequence (−→µmaxn )n≥1 converges almost surely to the set of solutions of a continuous
deterministic problem of maximal stream in an anisotropic network. We aim here to derive a large
deviation principle for streams and deduce by contraction principle the existence of a rate function for
the upper large deviations of the maximal flow in Ω.

1 Introduction
1.1 First definitions and main results
1.1.1 The environment, discrete admissible maximal streams

We use here the same notations as in [9]. Let n ≥ 1 be an integer. We consider the graph (Zdn,Edn)
having for vertices Zdn = Zd/n and for edges Edn, the set of pairs of points of Zdn at Euclidean distance
1/n from each other. With each edge e ∈ Edn we associate a capacity t(e), which is a random variable
with value in R+. The family (t(e))e∈Edn is independent and identically distributed with a common law
G. We interpret this capacity as a rate of flow, i.e., it corresponds to the maximal amount of water that
can cross the edge per second. Throughout the paper, we work with a distribution G on R+ satisfying
the following hypothesis.

Hypothesis 1. There exists M > 0 such that G([M,+∞[) = 0.

Let (Ω,Γ1,Γ2) that satisfies the following hypothesis.

Hypothesis 2. The set Ω is an open bounded connected subset of Rd, that it is a Lipschitz domain.
There exist S1, . . . ,Sl oriented manifolds of class C1 that intersect each other transversally such that the
boundary Γ of Ω is included in ∪i=1,...,lSi. The sets Γ1 and Γ2 are two disjoint subsets of Γ that are open
in Γ such that inf{‖x− y‖, x ∈ Γ1, y ∈ Γ2} > 0, and that their relative boundaries ∂ΓΓ1 and ∂ΓΓ2 have
null Hd−1 measure.

The sets Γ1 and Γ2 represent respectively the sources and the sinks. We aim to study the maximal
streams from Γ1 to Γ2 through Ω for the capacities (t(e))e∈Edn . We shall define discretized versions for
those sets. For x = (x1, . . . , xd) ∈ Rd, we define

‖x‖2 =

√√√√ d∑
i=1

x2
i and ‖x‖∞ = max

{
|xi|, i = 1, . . . , d

}
.
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We use the subscript n to emphasize the dependence on the lattice (Zdn,Edn). Let Ωn, Γn, Γ1
n and Γ2

n be
the respective discretized version of Ω, Γ, Γ1 and Γ2:

Ωn =
{
x ∈ Zdn : d∞(x,Ω) < 1

n

}
,

Γn =
{
x ∈ Ωn : ∃y /∈ Ωn, 〈x, y〉 ∈ Edn

}
,

Γin =
{
x ∈ Γn : d∞(x,Γi) < 1

n
, d∞(x,Γ3−i) ≥ 1

n

}
, for i = 1, 2,

where d∞ is the L∞ distance and 〈x, y〉 represents the edge whose endpoints are x and y. We denote by
−→
E d
n the set of oriented edges. We will denote by 〈〈x, y〉〉 the oriented edge in −→E d

n whose first endpoint
is x and last endpoint is y. To each 〈〈x, y〉〉 in −→E d

n we can associate the vector −→xy in Rd. Notice that
‖−→xy‖2 = 1/n. Let (−→e1 , . . . ,

−→ed) be the canonical basis of Rd. We denote by · the standard scalar product
in Rd.
Stream function. A stream fn is a function fn : Edn → Rd such that the vector fn(e) is collinear with
the geometric segment associated with e. For e ∈ Edn, ‖fn(e)‖2 represents the amount of water that flows
through e per second and fn(e)/‖fn(e)‖2 represents the direction in which the water flows through e.
Admissible streams through Ω. A stream fn : Edn → Rd from Γ1 to Γ2 through Ω is admissible if
and only if
· The stream is inside Ω : for each edge e = 〈x, y〉 such that (x, y) /∈ Ω2

n \ (Γ1
n ∪ Γ2

n)2 we have
fn(e) = 0
· The stream respects the capacity constraints: for each e ∈ Edn we have ‖fn(e)‖2 ≤ t(e)
· The stream satisfies the node law: for each vertex x ∈ Zdn \ (Γ1

n ∪ Γ2
n) we have∑

y∈Zdn: e=〈x,y〉∈Edn

fn(e) · −→xy = 0 .

The node law expresses that there is no loss or creation of fluid outside Γ1 and Γ2. The capacity constraint
imposes that the amount of water that flows through an edge e per second is limited by its capacity t(e).
We denote by Sn(Γ1,Γ2,Ω) the set of admissible streams from Γ1 to Γ2 through Ω. As the capacities
are random, the set of admissible streams Sn(Γ1,Γ2,Ω) is also random. We denote by SMn (Γ1,Γ2,Ω) the
set of streams fn : Edn → Rd such that
· for each edge e = 〈x, y〉 such that (x, y) /∈ Ω2

n \ (Γ1
n ∪ Γ2

n)2 we have fn(e) = 0
· for each e ∈ Edn we have ‖fn(e)‖2 ≤M
· the stream satisfies the node law for any vertex x ∈ Zdn \ (Γ1

n ∪ Γ2
n).

Note that the set SMn (Γ1,Γ2,Ω) is a deterministic set. To each fn, we can define its associated vector
measure −→µ n(fn) by

−→µ n(fn) = 1
nd

∑
e∈Edn

fn(e)δc(e) ,

where c(e) denotes the center of the edge e.
Maximal flow through Ω. For each admissible stream fn in Sn(Γ1,Γ2,Ω), we define its flow by

flown(fn) =
∑
x∈Γ1

n

∑
y∈Ωn:

e=〈x,y〉∈Edn

n fn(e) · −→xy

where we recall that ‖−→xy‖2 = 1/n. This corresponds to the amount of water that enters in Ωn through
Γ1
n per second for the stream fn. The maximal flow between Γ1 and Γ2 through Ω for the capacities

(t(e))e∈Edn , denoted by φn(Γ1,Γ2,Ω), is the supremum of the flows of all admissible streams from Γ1 to
Γ2 through Ω:

φn(Γ1,Γ2,Ω) = sup
{

flown(fn) : fn ∈ Sn(Γ1,Γ2,Ω)
}
. (1.1)
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We define −→µmaxn , the measure corresponding to a given stream fmaxn ∈ Sn(Γ1,Γ2,Ω) that achieves the
maximal flow φn(Γ1,Γ2,Ω).
Admissible streams through a connected set C without prescribed sinks and sources. Let
C ⊂ Rd. We denote by Sn(C) the set of admissible streams through C, that is streams fn : Edn → Rd
such that:
· The stream respects the capacity constraint: for each edge 〈x, y〉 ∈ Edn such that x ∈ C and there
exists i ∈ {1, . . . , d} such that −→xy · −→ei > 0, we have ‖fn(e)‖2 ≤ t(e).
· The stream respects the node law: for each vertex x ∈ Zdn ∩ C such that for any i ∈ {1, . . . , d},

(x−−→e i/n) ∈ C, we have ∑
y∈Zdn: e=〈x,y〉∈Edn

fn(e) · −→xy = 0 .

In what follows, we will say that x is the left endpoint of the edge e = 〈x, y〉 ∈ Edn, if there exists
i ∈ {1, . . . , d} such that −→xy = −→ei /n. Moreover, we say that e belongs to C if its left endpoint x belongs
to C. Note that the event {fn ∈ Sn(C)} only depends on edges such that their left endpoint is in C.

1.1.2 Presentation of the limiting objects and main results

We want to define the possible limiting objects for −→µ n. To lighten the presentation of the object,
we will do as if our limiting object −→σ : Rd → Rd were a nice C1 vector field. Actually, the convergence
holds in a distributional sense and −→σ is a distribution. More rigorous definitions will be given in section
1.2.3. Let us denote by Sd−1 the unit sphere in Rd. For x ∈ Ω and −→v ∈ Sd−1, the quantity −→σ (x) · −→v
corresponds to the quantity of flow sent by −→σ at the position x in the direction −→v . The limiting object
−→σ inherits the properties of −→µ n:
(i) the stream is inside Ω : −→σ = 0 on Rd \ Ω;
(ii) conservation law: div−→σ = 0 on Ω and −→σ · −→n Ω = 0 on Γ \ (Γ1 ∪ Γ2) .

Here −→n Ω(x) denotes the exterior unit vector normal to Ω at x. The condition (ii) is a consequence of
the fact that fn satisfies the node law on Ω and that no water escapes from Ω except at the sinks and
the sources. We will say that −→σ is an admissible stream if it satisfies these two conditions and we will
denote by Σ(Γ1,Γ2,Ω) the set of admissible continuous streams (a more rigorous definition will be given
later). Just as in the discrete setting, we are interested in the maximal amount of flow that can enter
through Γ1. We need to give a definition of the flow for continuous streams. The flow is the amount of
water that enters the source per second, it translates here as follows

flowcont(−→σ ) = −
∫

Γ1

−→σ · −→n ΩdHd−1 .

Here, the vector −→n Ω is exterior, that is, exiting from Ω, whereas the vector −−→n Ω is entering Ω, this
accounts for the minus sign. Hd−1 denotes the Hausdorff measure in dimension d− 1. The goal of this
paper is roughly speaking to find a proper rate function Î on Σ such that

∀−→σ ∈ Σ(Γ1,Γ2,Ω) P
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) ≈ −→σ Ld

)
≈ exp

(
− Î(−→σ )nd

)
where Ld denotes the Lebesgue measure in dimension d. To be able to compare fn and −→σ , we introduce
a distance d between vector measures that we will explicit in section 1.2.2. The convergence for this
distance implies the weak convergence. Roughly speaking, the larger Î(−→σ ) is the more atypical the
continuous stream is. We here express the rate function Î as the integral on Ω of an elementary rate
function I:

Î(−→σ ) =
∫

Ω
I(−→σ (x))dLd(x) . (1.2)

This elementary rate function I characterizes locally how atypical the stream is. When we consider a
small cube C in Ω, we have if the cube is small enough that −→σ is almost constant, there exists s > 0
and −→v ∈ Sd−1 such that −→σ ≈ s−→v in C. The function I characterizes how likely it is possible that there
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exists an admissible stream in C close to s−→v Ld. Let us now give a more rigorous definition. Let us
denote by C the unit cube centered at 0, that is

C =
[
−1

2 ,
1
2

[d
.

We first study the probability of having a stream in Sn(C) that looks like some constant continuous
stream s−→v ∈ Rd.

Theorem 1.1. Let G that satisfies hypothesis 1. Let −→v ∈ Sd−1 and s > 0. We have

− lim
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn)1C, s
−→v 1CLd

)
≤ ε
)

= − lim
ε→0

lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn)1C, s
−→v 1CLd

)
≤ ε
)
.

We will denote this limit by I(s−→v ).

LetM(V∞(Ω, 1)) be the set of measures on Rd with support included in V∞(Ω, 1) where V∞(Ω, 1) =
{x ∈ Rd : d∞(Ω, x) ≤ 1}. We endowM(V∞(Ω, 1))d with the topology O associated with the distance d
and the Borelian σ-field B. Write Pn the following probability:

∀A ∈ B Pn(A) = P(∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) ∈ A) .

We define the following rate function Ĩ onM(V∞(Ω, 1))d as follows:

∀ν ∈M(V∞(Ω, 1))d Ĩ(ν) =
{

+∞ if ν /∈ {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)}
Î(−→σ ) if ν = −→σ Ld, −→σ ∈ Σ(Γ1,Γ2,Ω)

where ΣM (Γ1,Γ2,Ω) will be defined more rigorously later, it represents the continuous streams that
corresponds to weak limit of a sequence of discrete streams in SMn (Γ1,Γ2,Ω). We have the following
large deviation principle for the stream :

Theorem 1.2 (Large deviation principle for admissible streams). Under some regularity hypothesis on
Ω, Γ1 and Γ2, for distributions G compactly supported, the sequence (Pn)n≥1 satisfies a large deviation
principle with speed nd governed by the good rate function Ĩ and with respect to the topology O, i.e., for
all A ∈ B

− inf
{
Ĩ(ν) : ν ∈ Å

}
≤ lim inf

n→∞

1
nd

logPn(A) ≤ lim sup
n→∞

1
nd

logPn(A) ≤ − inf
{
Ĩ(ν) : ν ∈ A

}
.

We can deduce from theorem 1.2, by a contraction principle, a large deviation principle for the
maximal flows. Let J be the following function on R+:

∀λ ≥ 0 J(λ) = inf
{
Î(−→σ ) : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω), flowcont(−→σ ) = λ

}
and

λmax = sup
{

flowcont(−→σ ) : −→σ ∈ Σ(Γ1,Γ2,Ω)
}
.

To prove an upper large deviation principle for maximal flows, we will need the following lower large
deviation principle for maximal flows that was proven in [11].

Theorem 1.3 (Lower large deviation principle for maximal flows). Let G that satisfies hypothesis 1.
Let (Ω,Γ1,Γ2) that satisfies hypothesis 2. There exist φΩ ≥ 0 and λmin ≥ 0 depending on Ω, Γ1, Γ2 and
G such that the sequence (φn(Γ1,Γ2,Ω)/nd−1, n ∈ N) satisfies a large deviation principle of speed nd−1

with the good rate function J̃l.
Moreover, the map J̃l is infinite on [0, λmin[∪]φΩ,+∞[, decreasing on ]λmin, φΩ[, positive on ]λmin, φΩ[.

Besides, for every λ < λmin, there exists n0 ≥ 1 such that

∀n ≥ n0 P
(
φn(Γ1,Γ2,Ω)

nd−1 ≤ λ
)

= 0 .
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Let λmin ≥ 0 depending on G and Ω given by theorem 1.3. We define the following rate function:

J̃u(λ) =


J(λ) if λ ∈ [λmin, λmax[
limλ→λmax

λ<λmax

J(λ) if λ = λmax

+∞ if λ ∈ [0, λmin[∪]λmax,+∞[
. (1.3)

Theorem 1.4 (Upper large deviation principle for maximal flows). Let G that satisfies hypothesis
1. Let (Ω,Γ1,Γ2) that satisfies hypothesis 2. Let φΩ, λmin given by theorem 1.3. The sequence
(φn(Γ1,Γ2,Ω)/nd−1, n ∈ N) satisfies a large deviation principle of speed nd with the good rate func-
tion J̃u.

Moreover, the map J̃u is convex on R+, infinite on [0, λmin[∪]λmax,+∞[, J̃u is null on [λmin, φΩ]
and strictly positive on ]φΩ,+∞[.

Theorems 1.2 and 1.4 are the main results of this article. To prove these theorems, we will need tools
from the realm of large deviations and the following key theorem:

Theorem 1.5. Let G that satisfies hypothesis 1. Let (Ω,Γ1,Γ2) that satisfies hypothesis 2. For any
−→σ ∈ Σ(Γ1,Γ2,Ω), we have

− lim
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)

= − lim
ε→0

lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)

=
∫

Ω
I(−→σ (x))dLd(x) = Î(−→σ ) .

Remark 1.6. Theorems 1.3 and 1.4 give the full picture of large deviations of φn(Γ1,Γ2,Ω). The lower
large deviations are of surface order since it is enough to decrease the capacities of the edges along
a surface to obtain a lower large deviations event. The lower large deviations have been studied in the
companion paper [11]. The upper large deviations are of volume order, to create an upper large deviations
event, we need to increase the capacities of constant fraction of the edges. This is the reason why to study
lower large deviations, it is natural to study cutsets that are (d−1)-dimensional objects, whereas to study
the upper large deviations, we study streams that are d-dimensional objects.

1.2 Background
We now present the mathematical background needed in what follows. We present two different flows

in cylinders and give a rigorous definition of the limiting objects.

1.2.1 Flows in cylinders and minimal cutsets

Dealing with admissible streams is not so easy, but hopefully we can use an alternative definition of
maximal flow which is more convenient. Here n = 1, i.e., we consider the lattice (Zd,Ed). Let E ⊂ Ed
be a set of edges. We say that E cuts Γ1 from Γ2 in Ω (or is a cutset, for short) if there is no path
from Γ1

1 to Γ2
1 in (Ω1,Ed \ E). More precisely, let γ be a path from Γ1

1 to Γ2
1 in Ω1, we can write γ as a

finite sequence (v0, e1, v1, . . . , en, vn) of vertices (vi)i=0,...,n ∈ Ωn+1
1 and edges (ei)i=1,...,n ∈ (Ed)n where

v0 ∈ Γ1
1, vn ∈ Γ2

1 and for any 1 ≤ i ≤ n, ei = 〈vi−1, vi〉 ∈ Ed. Then, E cuts Γ1 from Γ2 in Ω if for any
path γ from Γ1

1 to Γ2
1 in Ω1, we have γ ∩ E 6= ∅. Note that γ can be seen as a set of edges or a set of

vertices and we define |γ| = n. We associate with any set of edges E its capacity T (E) defined by

T (E) =
∑
e∈E

t(e) .

The max-flow min-cut theorem, see [4], a result of graph theory, states that

φ1(Γ1,Γ2,Ω) = min
{
T (E) : E cuts Γ1 from Γ2 in Ω

}
.

We recall that φ1 was defined in (1.1). The idea behind this theorem is quite intuitive. By the node law,
the flow is always smaller than the capacity of any cutset. Conversely, consider a maximal flow through
Ω, some of the edges are jammed. We say that e is jammed if the amount of water that flows through
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e is equal to the capacity t(e). These jammed edges form a cutset, otherwise we would be able to find
a path γ from G1 to G2 of non-jammed edges, and we could increase the amount of water that flows
through γ which contradicts the fact that the flow is maximal. Thus, the maximal flow is limited by the
capacity of these jammed edges: the maximal flow is given by one of the T (E) where E cuts Γ1 from Γ2

in Ω. It follows that the maximal flow is equal to the minimal capacity of a cutset.
We are interested in the maximal flow Φ that can cross a cylinder oriented according to −→v ∈ Sd−1

from its top to its bottom per second for admissible streams. A first issue is to understand if the maximal
flow in the box properly renormalized converges when the size of the box grows to infinity. This boils
down to understand the maximal amount of water that can flow in the direction −→v . Let us first define
rigorously the maximal flow from the top to the bottom of a cylinder. Let A be a non-degenerate
hyperrectangle, i.e., a rectangle of dimension d − 1 in Rd. Let −→v ∈ Sd−1 such that −→v is not contained
in an hyperplane parallel to A. We denote by cyl(A, h,−→v ) the cylinder of basis A and of height h > 0 in
the direction −→v defined by

cyl(A, h,−→v ) =
{
x+ t−→v : x ∈ A, t ∈ [0, h]

}
.

If −→v is one of the two unit vectors normal to A, we denote by cyl(A, h)

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.

We have to define discretized versions of the bottom B(A, h) and the top T (A, h) of the cylinder cyl(A, h).
We define them by

B(A, h) :=
{
x ∈ Zd ∩ cyl(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

and 〈x, y〉 intersects A− h−→v

}
and

T (A, h) :=
{
x ∈ Zd ∩ cyl(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

and 〈x, y〉 intersects A+ h−→v

}
.

We denote by Φ(A, h) the maximal flow from the top to the bottom of the cylinder cyl(A, h) in the
direction −→v , defined by

Φ(A, h) = φ1(T (A, h), B(A, h), cyl(A, h,−→v )) .

The maximal flow Φ(A, h) is not well suited to use ergodic subadditive theorems, because we cannot glue
two cutsets from the top to the bottom of two adjacent cylinders together to build a cutset from the top
to the bottom of the union of these two cylinders. Indeed, the intersection of these two cutsets with the
adjacent face will very likely not coincide.

To fix this issue, we need to introduce another maximal flow through the cylinder for which the
subadditivity would be recover. Let T ′(A, h) (respectively B′(A, h)) be the a discretized version of the
upper half part (resp. lower half part) of the boundary of cyl(A, h); that is if we denote by z the center
of A:

T ′(A, h) =
{
x ∈ Zd ∩ cyl(A, h) : −→zx · −→v > 0 and ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

}
, (1.4)

B′(A, h) =
{
x ∈ Zd ∩ cyl(A, h) : −→zx · −→v < 0 and ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

}
. (1.5)

We denote by τ(A, h) the maximal flow from the upper half part to the lower half part of the boundary
of the cylinder, i.e.,

τ(A, h) = φ1(T ′(A, h), B′(A, h), cyl(A, h)) .

By the max-flow min-cut theorem, the flow τ(A, h) is equal to the minimal capacity of a set of edges E
that cuts T ′(A, h) from B′(A, h) inside the cylinder cyl(A, h). The intersection of E with the boundary
of the cylinder has to be close to the relative boundary ∂A of the hyperrectangle A.
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1.2.2 Some mathematical tools and definitions

Let us first recall some mathematical definitions. For a subset X of Rd, we denote by X the closure
of X, by X̊ the interior of X. Let a ∈ Rd, the set a+X corresponds to the following subset of Rd

a+X = {a+ x : x ∈ X} .

For r > 0, the r-neighborhood Vi(X, r) of X for the distance di, that can be Euclidean distance if i = 2
or the L∞-distance if i =∞, is defined by

Vi(X, r) =
{
y ∈ Rd : di(y,X) < r

}
.

We denote by B(x, r) the closed ball centered at x ∈ Rd of radius r > 0. Let Cb(Rd,R) be the set of
continuous bounded functions from Rd to R. We denote by Ckc (A,B) for A ⊂ Rp and B ⊂ Rq, the
set of functions of class Ck defined on Rp, that takes values in B and whose domain is included in a
compact subset of A. The set of functions of bounded variations in Ω, denoted by BV (Ω), is the set of
all functions u ∈ L1(Ω→ R,Ld) such that

sup
{∫

Ω
div
−→
h dLd :

−→
h ∈ C∞c (Ω,Rd), ∀x ∈ Ω

−→
h (x) ∈ B(0, 1)

}
<∞ .

Let ν be a signed-measure on Rd, we write ν = ν+−ν− for the Hahn-Jordan decomposition of the signed
measures ν. Then ν+ and ν− are positive measures, respectively, the positive and negative part of ν.
We define the total variation |ν| of ν as |ν| = ν+ + ν−.

Let x ∈ Rd and α > 0, we define the homothety πx,α : Rd → Rd as follows

∀y ∈ Rd πx,α(y) = αy + x . (1.6)

We will need the following proposition that enables to relate the Lebesgue measure of a neighborhood
of the boundary of a set E with the Hd−1-measure of its boundary ∂E.

Proposition 1.7. Let E be a subset of Rd such that ∂E is piecewise of class C1 and Hd−1(∂E) < ∞.
Then, we have

lim
r→0

Ld(V2(∂E, r))
2r = Hd−1(∂E) .

This proposition is a consequence of the existence of the (d − 1)-dimensional Minkowski content. We
refer to Definition 3.2.37 and Theorem 3.2.39 in [13].

Let us now define the distance d. Let k ∈ N. Let λ ∈ [1, 2]. We denote by ∆k
λ the set of dyadic cubes

at scale k with scaling parameter λ, that is,

∆k
λ =

{
2−kλ

([
−1

2 ,
1
2

[d
+ x

)
: x ∈ Zd

}
.

Let ∆k
λ(Ω) denote the dyadic cubes at scale k that intersect V∞(Ω, 2), that is

∆k
λ(Ω) =

{
Q ∈ ∆k

λ : Q ∩ V∞(Ω, 2) 6= ∅
}
.

Let ν, µ ∈M(V∞(Ω, 1))d be vectorial measures, we set

d(ν, µ) = sup
x∈[−1,1[d

sup
λ∈[1,2]

∞∑
k=0

1
2k

∑
Q∈∆k

λ

‖µ(Q+ x)− ν(Q+ x)‖2 . (1.7)

Remark 1.8. Although working with topological neighborhood is the most general setting, we chose here
to work with a distance to reduce the amount of technical details. The choice of a distance is arbitrary.
However, this distance satisfies some properties that are not satisfied by other more standard distances.
This distance was inspired by the distance that appears in [14]. The key property that this distance
satisfies is that if for ν, µ ∈ M(V∞(Ω, 1))d the distance d(ν, µ) is small, then the distance restricted to
some Q ⊂ Ω is also small. This property will be proven later.
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1.2.3 Continuous streams

We give here the mathematical definitions to properly define the max-flow min-cut theorem as in the
paper of Nozawa [21]. A stream in Ω is a vector field −→σ ∈ L∞(Ω→ Rd,Ld) that satisfies

div−→σ = 0 on Ω,

in the distributional sense, that is, div−→σ is a distribution defined on Ω by

∀h ∈ C∞c (Ω,R)
∫
Rd
hdiv−→σ dLd = −

∫
Rd
−→σ ·
−→
∇hdLd .

Thus, a stream −→σ satisfies
∀h ∈ C∞c (Ω,R)

∫
Rd
−→σ ·
−→
∇hdLd = 0 .

This condition is the continuous analogue of the node law, it expresses the fact that there is no loss or
gain of fluid for the stream −→σ inside Ω.

For a stream −→σ from Γ1 to Γ2 in Ω, the fluid can enter or exit only through the source Γ1 and the
sink Γ2, we have to mathematically express the fact that no water escapes through Γ \ (Γ1 ∪ Γ2). Since
−→σ is defined in the distributional sense, we need to give a sense to the value of −→σ on Γ that is a set of
null Ld-measure. To do so we need to define the trace on Γ for any u ∈ BV (Ω). According to Nozawa in
[21], there exists a linear mapping γ from BV (Ω) to L1(Γ→ R,Hd−1), such that, for any u ∈ BV (Ω),

lim
r→0,r>0

1
Ld(Ω ∩B(x, r))

∫
Ω∩B(x,r)

|u(y)− γ(u)(x)|dLd(y) = 0 for Hd−1-a.e. x ∈ Γ.

According to Nozawa in [21], Theorem 2.3, for every −→ρ = (ρ1, . . . , ρd) : Ω→ Rd such that ρi ∈ L∞(Ω→
Rd,Ld) for all i = 1, . . . , d and div−→ρ ∈ Ld(Ω→ R,Ld), there exists g ∈ L∞(Γ→ Rd,Hd−1) defined by

∀u ∈W 1,1(Ω)
∫

Γ
gγ(u) dHd−1 =

∫
Ω

−→ρ ·
−→
∇udLd +

∫
Ω
udiv−→ρ dLd .

The function g is denoted by −→ρ · −→n Ω. For any stream −→σ , since div−→σ = 0 Ld-a.e. on Ω, we have

∀u ∈W 1,1(Ω)
∫

Γ
(−→σ · −→n Ω)γ(u) dHd−1 =

∫
Ω

−→σ ·
−→
∇udLd .

We need to impose some boundary conditions for any stream −→σ from Γ1 to Γ2 in Ω: the water can only
enters through Γ1 , i.e.,

−→σ · −→n Ω ≤ 0 Hd−1-a.e. on Γ1

and no water can enter or exit through Γ \ (Γ1 ∪ Γ2), i.e.

−→σ · −→n Ω = 0 Hd−1-a.e. on Γ \ (Γ1 ∪ Γ2) .

Of course, we also need to add a constraint on the local capacity, otherwise the continuous maximal flow
is infinite. This local constraint is here anisotropic which means that the maximal amount of water that
can spreads in a direction depends on the direction but not on the location. This local constraint is given
by a function ν : Rd → R+, that is a continuous convex function that satisfies ν(−→v ) = ν(−−→v ). In the
setting of [9], the function ν corresponds the flow constant that will be properly defined in section 1.3.1.
The local capacity constraint is expressed by

Ld-a.e. on Ω, ∀−→v ∈ Sd−1 −→σ · −→v ≤ ν(−→v ) .

To each admissible stream −→σ , we associate its flow

flowcont(−→σ ) = −
∫

Γ1

−→σ · −→n ΩdHd−1

8



which corresponds to the amount of water that enters in Ω through Γ1 for the stream −→σ per second.
Nozawa considered the following variational problem

φΩ = sup

flowcont(−→σ ) :

−→σ ∈ L∞(Ω→ Rd,Ld), div−→σ = 0Ld-a.e. on Ω,
−→σ · −→v ≤ ν(−→v ) for all −→v ∈ Sd−1 Ld-a.e. on Ω,

−→σ · −→n Ω ≤ 0 Hd−1-a.e. on Γ1
−→σ · −→n Ω = 0 Hd−1-a.e. on Γ \ (Γ1 ∪ Γ2)

 . (1.8)

Note that we can extend −→σ to Rd by defining −→σ = 0 Ld-a.e. on Ωc. We denote by Σν the set of
admissible streams solution of the variational problem, i.e.,

Σν =


−→σ ∈ L∞(Rd → Rd,Ld) :

−→σ = 0 Ld-a.e. on Ωc, div−→σ = 0Ld-a.e. on Ω,
−→σ · −→v ≤ ν(−→v ) for all −→v ∈ Sd−1 Ld-a.e. on Ω,

−→σ · −→n Ω ≤ 0 Hd−1-a.e. on Γ1
−→σ · −→n Ω = 0 Hd−1-a.e. on Γ \ (Γ1 ∪ Γ2)

flowcont(−→σ ) = φΩ

 . (1.9)

Depending on the domain, the source and the sink, there might be several solutions to the continuous
max-flow problem. There is also a formulation of this continuous problem in terms of minimal cutset,
but we won’t present it here as we are only interested in streams. We refer to [21] for more details on this
formulation. When we study law of large numbers for maximal streams, the capacity constraint comes
naturally from the law of large numbers for maximal flow. Namely, a discrete stream cannot send more
water that ν(−→v ) in the direction −→v almost surely where ν(−→v ) is the flow constant defined in section
1.3.1. Otherwise there exists a cylinder in the direction −→v where the maximal flow properly renormalized
exceeds ν(−→v ), this event is very unlikely. However, when we study large deviations, we are specifically
interested in these unlikely events and so the capacity constraint given by ν is not relevant anymore. Of
course, if G is compactly supported on [0,M ], the limiting streams have a capacity constraint depending
on M , d and −→v . We define the set of admissible continuous streams Σ(Γ1,Γ2,Ω) without capacity
constraint as

Σ(Γ1,Γ2,Ω) =

−→σ ∈ L∞(Rd → Rd,Ld) :
−→σ = 0 Ld-a.e. on Ωc, div−→σ = 0Ld-a.e. on Ω,
−→σ · −→n Ω = 0 Hd−1-a.e. on Γ \ (Γ1 ∪ Γ2)
∀i ∈ {1, . . . , d} |−→σ · −→ei | ≤M Ld-a.e. on Ω

 . (1.10)

Remark 1.9. Unlike the definition of Σν , in the definition of admissible streams Σ(Γ1,Γ2,Ω) we do not
constrain the water to enter through Γ1. Indeed, we are interested in admissible streams that are not
necessarily maximal.

1.3 State of the art
1.3.1 Flow constant

In 1984, Grimmett and Kesten initiated the study of maximal flows in dimension 2 in [15]. In
1987, Kesten studied maximal flows in dimension 3 in [18] for straight boxes, i.e., in the direction
−→v = −→v0 := (0, 0, 1) and basis A = [0, k]× [0, l]× {0} with k ≥ l ≥ 0. He proved the following theorem.

Theorem 1.10 (Kesten [18]). Let d = 3. Let G be a distribution that admits an exponential moment
and such that G({0}) is small enough. Let k ≥ l and m = m(k, l) ≥ 1. If m(k, l) goes to infinity when k
and l go to infinity in such a way there exists δ ∈]0, 1[, such that

lim
k,l→∞

1
kδ

logm(k, l) = 0 ,

then
lim

k,l→∞

Φ
(
[0, k]× [0, l]× {0},m(k, l)

)
k l

= ν a.s. and in L1

where ν is a constant depending only on d and G.

9



The proof is very technical and tries to give a rigorous meaning to the notion of surface. Moreover, it
strongly relies on the fact that the symmetry of the straight boxes preserves the lattice, there is no hope
to extend this technique to tilted cylinders. In [28], Zhang generalized the result of Kesten for d ≥ 3 and
G({0}) < 1− pc(d).

To be able to define the flow constant in any direction, we would like to use a subadditive ergodic
theorem. Since we cannot recover a subadditive property from the maximal flow Φ, we consider the
flow τ instead. The simplest case to study maximal flows is still for a straight cylinder, i.e., when
−→v = −→v0 := (0, 0, . . . , 1) and A = A(

−→
k ,
−→
l ) =

∏d−1
i=1 [ki, li] × {0} with ki ≤ 0 < li ∈ Z. In this case, the

family of variables (τ(A(
−→
k ,
−→
l ), h))−→

k ,
−→
l
is subadditive since minimal cutsets in adjacent cylinders can be

glued together along the common side of these cylinders. By applying ergodic subadditive theorems in
the multi-parameter case (see Krengel and Pyke [19] and Smythe [25]), we obtain the following result.

Proposition 1.11. Let G be an integrable probability measure on [0,+∞[, i.e.,
∫ +∞

0 xdG(x) <∞. Let
A =

∏d−1
i=1 [ki, li]×{0} with ki ≤ 0 < li ∈ Z. Let h : N→ R+ such that limn→∞ h(n) = +∞. Then there

exists a constant ν(−→v0), that does not depend on A and h but depends on G and d, such that

lim
n→∞

τ(nA, h(n))
Hd−1(nA) = ν(−→v0) a.s. and in L1.

The constant ν(−→v0) is called the flow constant. In fact, the property that ν(−→v 0) does not depend on h is
not a consequence of ergodic subadditive theorems, but the property can be proved quite easily. Next,
a natural question to ask is whether we can define a flow constant in any direction. When we consider
tilted cylinders, we cannot recover perfect subadditivity because of the discretization of the boundary.
Moreover, the use of ergodic subadditive theorems is not possible when the direction −→v we consider is
not rational. These issues were overcome by Rossignol and Théret in [22] where they proved the following
law of large numbers.

Theorem 1.12 (Rossignol-Théret [22]). Let G be an integrable probability measure on [0,+∞[ , i.e.,∫ +∞
0 xdG(x) < ∞. For any −→v ∈ Sd−1, there exists a constant ν(−→v ) ∈ [0,+∞[ such that for any non-
degenerate hyperrectangle A normal to −→v , for any function h : N→ R+ such that limn→∞ h(n) = +∞,
we have

lim
n→∞

τ(nA, h(n))
Hd−1(nA) = ν(−→v ) in L1.

If moreover the origin of the graph belongs to A, or if
∫ +∞

0 x1+1/(d−1)dG(x) <∞, then

lim
n→∞

τ(nA, h(n))
Hd−1(nA) = ν(−→v ) a.s..

If the cylinder is flat, i.e., if limn→∞ h(n)/n = 0, then the same convergence also holds for Φ(nA, h(n)).
Moreover, either ν(−→v ) is null for all −→v ∈ Sd−1 or ν(−→v ) > 0 for all −→v ∈ Sd−1.

1.3.2 Upper large deviations for maximal flows in cylinders

We present here some result on upper large deviations for the maximal flows Φ(nA, h(n)) in cylinders
and τ(nA, h(n)). The theorem 4 in [27] states upper large deviations results for the variable Φ(nA, h(n))
above the value ν(−→v ).

Theorem 1.13 (Théret [27]). Let us consider a distribution G on R+ that admits an exponential mo-
ment. Let −→v be a unit vector and A be an hyperrectangle orthogonal to −→v , let h : N → R+ be a height
function such that limn→∞ h(n) = +∞. We have for every λ > ν(−→v )

lim inf
n→∞

− 1
Hd−1(nA)h(n) logP

(
Φ(nA, h(n))
Hd−1(nA) ≥ λ

)
> 0 .

Let us give an intuition of the speed of deviation. If Φ(nA, h(n)) is abnormally large, there are two
possible scenarios. Either there are an order nd−1 of paths from the top to the bottom of the cylinder
that use edges of slightly abnormally large capacity, or there are a fewer number of paths from the top
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to the bottom of the cylinder with edges whose capacities are extremely big (with a capacity that goes
to infinity with n). Both scenarios enable to transmit more water from the top to the bottom than the
expected value. Actually, when G has an exponential moment, the first scenario is the most likely one.
Since the paths from the top to the bottom have a cardinality of order at least h(n), this implies that
a positive fraction of edges inside the cylinder have a slightly abnormally large capacity. This accounts
for the speed of deviation of volume order.

Remark 1.14. We insist on the fact that ν(−→v ) is not in general the limit of Φ(nA, h(n))/Hd−1(nA)
when n goes to infinity. We can prove that the limit is equal to ν(−→v ) only for straight cylinders or flat
cylinders. The existence of the limit of Φ(nA, h(n))/Hd−1(nA) when n goes to infinity is known when
h(n) = Cn. The limit may be expressed as the solution of a deterministic variational problem of the same
kind than φΩ defined in (1.8). Proving that the limit is smaller or equal than ν(−→v ) is trivial. Proving
the strict inequality has been done only in dimension 2 by Rossignol and Théret in [23]. They proved
that the limit of Φ(nA, h(n))/Hd−1(nA) is strictly smaller for tilted cylinder. We expect that this result
also holds for higher dimensions but the question is still open.

The corresponding large deviation principle have been obtained in the case of straight cylinders by
Théret in [26].

Theorem 1.15 (Théret [26]). Let h : N→ R+ be a height function such that

lim
n→∞

h(n)
logn = +∞ .

Set A = [0, 1]d−1 × {0}. Then for every λ ≥ 0, the limit

ψ(λ) = lim
n→∞

− 1
nd−1h(n) logP

(
Φ(nA, h(n)) ≥ λnd−1)

exists and is independent of h. Moreover, the function ψ is convex on R+, finite and continuous on the
set {λ : G([λ,+∞[) > 0}. If G has a first moment then ψ vanishes on [0, ν((0, . . . , 0, 1))]. If G has an
exponential moment then ψ is strictly positive on ]ν((0, . . . , 0, 1)),+∞[, and the sequence(

Φ(nA, h(n))
nd−1

)
n≥1

satisfies a large deviation principle with speed nd−1h(n) and governed by the good rate function ψ.

This result crucially depends on the symmetry of the lattice with regards to reflexion along the
vertical faces of the cylinders. The proof strategy may not be extended to tilted cylinders. The upper
large deviations results for τ are a bit different because the speed of deviation depends on the tail of the
distribution G. Indeed if the edges around ∂A have very large capacities it will increase the flow τ in a
non negligible way. Since the minimal cutsets corresponding to τ(A, h) are anchored around ∂A, their
capacity depends a lot on these edges. Théret proved in Theorem 3 in [27] upper large deviations of the
variable τ .

Theorem 1.16 (Théret [27]). Let −→v be a unit vector and A be an hyperrectangle orthogonal to −→v ,
let h : N → R+ be a height function such that limn→∞ h(n) = +∞. The upper large deviations of
τ(nA, h(n))/Hd−1(nA) depend on the tail of the distribution of the capacities. We have

(i) If the law G has bounded support, then for every λ > ν(−→v ) we have

lim inf
n→∞

− 1
Hd−1(nA) min(h(n), n) logP

(
τ(nA, h(n))
Hd−1(nA) ≥ λ

)
> 0 .

(ii) If the law G is exponential of parameter 1, then there exists n0 such that for every λ > ν(−→v ) there
exists a positive constant D depending on d and λ such that

∀n ≥ n0 P
(
τ(nA, h(n))
Hd−1(nA) ≥ λ

)
≥ exp(−DHd−1(nA)) .
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(iii) If the law G satisfies
∀θ > 0

∫
R+

eθxdG(x) <∞ ,

then for every λ > ν(−→v ) we have

lim
n→∞

1
Hd−1(nA) logP

(
τ(nA, h(n))
Hd−1(nA) ≥ λ

)
= −∞ .

Let us give an intuition of why the speed is nd when h(n) ≥ n. Since the cutsets are anchored in
∂(nA), they cannot deviate too far away from nA: as a result, most of the edges outside cyl(nA, n) do
not have an influence on τ(nA, h(n)). There is no large deviation principle for maximal flows τ or Φ in
tilted cylinder.

1.3.3 Law of large numbers for the maximal stream in a domain

We work here with the lattice (Zdn,Edn). In [9], Cerf and Théret proved a law of large number for
the maximal flow and the maximal stream. The maximal stream converges in some sense towards the
solution of the continuous max-flow problem φΩ. We recall that the continuous max-flow problem was
presented in section 1.2.3 and here the local capacity constraint corresponds to the flow constant ν.

Theorem 1.17. [Cerf-Théret [9]] Let G that satisfies hypothesis 1 and such that G({0}) < 1 − pc(d)
(to ensure that ν is a norm). Let (Ω,Γ1,Γ2) that satisfies hypothesis 2. We have that the sequence
(−→µmaxn )n≥1 converges weakly a.s. towards the set Σν (defined in (1.9)), that is,

a.s., ∀f ∈ Cb(Rd,R) lim
n→∞

inf−→σ ∈Σν

∥∥∥∥∫
Rd
fd−→µmaxn −

∫
Rd
f−→σ dLd

∥∥∥∥
2

= 0 .

Moreover, we have

lim
n→∞

φn(Γ1,Γ2,Ω)
nd−1 = φΩ .

The strategy of their proof is to first prove that the measure −→µmaxn converges towards −→σ Ld where
−→σ is an admissible continuous stream and that

lim
n→∞

φn(Γ1,Γ2,Ω)
nd−1 = flowcont(−→σ ) .

These properties come from the fact that the continuous stream −→σ inherits the properties of the discrete
stream fmaxn . In particular, the local capacity constraint comes from the fact that the maximal flow in
a cylinder in a direction −→v properly renormalized converges towards ν(−→v ) when the dimension of the
cylinders goes to infinity. This implies that almost surely the stream fmaxn cannot send more water than
ν(−→v ) in the direction −→v . The remaining part is to prove that −→σ ∈ Σν , i.e., that flowcont(−→σ ) = φΩ.
To prove it, they need to study discrete minimal cutsets associated with fmaxn and their continuous
counterpart. The originality of this paper is the use of new techniques by working with maximal streams
instead of minimal cutsets. This object is more natural than cutsets to study upper large deviations
since the upper large deviations are of volume order, whereas cutsets are (d− 1)-dimensional objects.

Actually, the convergence of φn(Γ1,Γ2,Ω)/nd−1 towards φΩ when n goes to infnity was already
known as a consequence of the companion papers of Cerf and Théret [6], [7] and [8] with an alternative
definition for φΩ. Instead, of expressing φΩ as the solution of a variational problem for maximal stream,
they expressed it as the solution φ̃Ω of a variational problem for minimal continuous cutsets. In [8],
Cerf and Théret proved using upper large deviations result in cylinders (theorem 1.13) that the large
deviations of φn is of volume order.

Theorem 1.18 (Cerf-Théret [8]). If d(Γ1,Γ2) > 0 and if the law G admits an exponential moment, then
there exists a constant φ̃Ω such that for all λ > φ̃Ω,

lim sup
n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω) ≥ λnd−1) < 0 .

Their strategy does not able to prove the existence of the limit of logP
(
φn(Γ1,Γ2,Ω) ≥ λnd−1) /nd when

n goes to infinity.
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1.3.4 Upper large deviation principle for the first passage percolation random pseudo-
metric

We consider here the lattice Zd. There exists another interpretation of the model of first passage
percolation which has been much more studied. In this interpretation we say that the random variable
t(e) represents a passage time, i.e., the time needed to cross the edge e. We can define a random pseudo-
metric T on the graph: for any pair of vertices x, y ∈ Zd, the random variable T (x, y) is the shortest
time to go from x to y, that is,

T (x, y) = inf
{∑
e∈γ

t(e) : γ path from x to y
}
.

A natural question is to understand how this random pseudo-metric behaves. In particular, what is
the asymptotic behavior of the quantity T (0, nx) when n goes to infinity ? Under some assumptions
on the distribution G, one can prove that asymptotically when n is large, the random variable T (0, nx)
behaves like nµ(x) where µ(x) is a deterministic constant depending only on the distribution G and the
point x, i.e.,

lim
n→∞

T (0, nx)
n

= µ(x) almost surely and in L1

when this limit exists. This constant µ is the so-called time constant. This implies the existence of a
limiting metric D such that

∀x, y ∈ Rd D(x, y) = µ(y − x) .

This metric approximates well T (x, y) when ‖x− y‖2 is large. We refer to [17] and [1] for reviews on the
subject.

For d = 2, let −→e1 = (1, 0). In [2], Basu, Ganguly and Sly study the decay of the probability of the
upper large deviations event {T (0, n−→e1) ≥ (µ(−→e1) + ε)n}. They prove the following result:

Theorem 1.19. Let d = 2. Let b > 0, let G be a probability distribution with support [0, b] and a
continuous density. Then for ε ∈]0, b− µ(−→e1)[ there exists r ∈]0,+∞[ depending on ε and G such that

lim
n→∞

− logP(T (0, n−→e1) ≥ (µ(−→e1) + ε)n)
n2 = r .

Remark 1.20. Their proof strategy also holds for d ≥ 2 and for tilted directions.

The result in [2] answers an old open question that was first formulated by Kesten in [17]. The correct
order of large deviations was already known (see [17]). A large deviation principle was proved by Chow
and Zhang in [10] for the time between two opposite faces of a box. However, their strategy cannot be
generalized for proving the existence of a rate function for the time between two points.

We here briefly present the sketch of their proof. Let N ≥ n ≥ 1. The aim is to build the upper
large deviations event at the higher scale N using upper large deviations events at the smaller scale n.
Let us define BN = [−N,N ]d. Since the passage times are bounded, there exists a positive constant
c depending on b, such that geodesics between 0 and N−→e1 remain almost surely in the box BcN . The
strategy of the proof is to create a configuration ω of the edges in the box of size BcN such that
ω ∈ {T (0, N−→e1) ≥ (µ(−→e1) + ε)N} using configurations of upper large deviations events at the smaller
scale n. Namely, we consider ω1, . . . , ω(N/n)2 (N/n)2 independent realizations of the edges in the box
Bcn for the event {T (0, n−→e1) ≥ (µ(−→e1) + ε)n}. The key idea is that, even on the upper large deviations
event, there exists a limiting metric structure in the configurations ωi. Roughly speaking, at large scales
the distance T (x, x+n−→v ) in a given direction −→v from a given point x grows linearly with speed ∇x(−→v ),
i.e., we have T (x, x + n−→v ) ≈ n∇x(−→v ). Up to paying a negligible price, they can pick configurations
(ωi, i = 1, . . . , (N/n)2) with the same limiting metric. Each configuration ωi is cut into different regions
such that for any x, y in a given region ∇x ≈ ∇y. They reassemble all the configurations ωi by gluing
together the corresponding regions, in order to create a configuration ω in the box BcN that also has the
same limiting metric. It follows that for any path γ in the configuration ω we can build a path γ̃ in the
configuration ω1 such that

T (γ) ≈ N

n
T (γ̃) .
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The path γ is the dilated version of γ̃. It follows that

T (γ) ≥ N

n
T (0, n−→e1) ≥ (µ(−→e1) + ε)N .

The remaining of the proof uses techniques from large deviations theory to deduce the existence of a rate
function.

Our paper finds its inspiration in the philosophy of [2]: we use large deviations events at a small scale
to build large deviations events at a higher scale. We here manage to formalize the idea of a limiting
environment. We obtain something stronger than upper large deviations for maximal flow: we manage
to relate an abnormally large flow with local abnormalities on the domain Ω. To obtain this stronger
result, we need to deal with complex technical issues: in particular, we need to reconnect streams in
adjacent cubes.

1.4 Sketch of the proof
Most of the proofs in this paper are about reconnecting streams defined in cubes. Let A be an

hyperrectangle of dimension d − 1 of side length κ > 0 normal to −→e1 = (1, 0, . . . , 0). We consider two
streams fn ∈ Sn(cyl(A, κ,−→e1)) and gn ∈ Sn(cyl(A + (κ + δ)−→e1 , κ,

−→e1)) for some δ > 0. We would like to
exploit the region cyl(A+ κ−→e1 , δ,

−→e1) between these two cubes -that we call the corridor- to connect the
streams fn and gn (see figure 1). Namely, we would like to prove the existence of a stream hn such that
hn ∈ Sn(cyl(A, 2κ+ δ,−→e1)), hn = fn in cyl(A, κ,−→e1) and hn = gn in cyl(A+ (κ+ δ)−→e1 , κ,

−→e1). Moreover,
we want that no water exists or enters from the lateral sides of the corridor for hn. In particular the
stream hn satisfies the node law in the corridor. Note that a necessary condition for the existence of hn
is that the flow for fn through the face A+κ−→e1 is equal to the flow for gn through the face A+ (κ+ δ)−→e1
(we say that their flow match). Indeed, if such hn exists, since it satisfies the node law inside the corridor
and that no flow escapes from its lateral sides, the flows of fn and gn must match.

−→e1

cyl(A, κ,−→e1) cyl(A+ (κ+ δ)−→e1 , κ,
−→e1)δ

κ

A

Figure 1 – Connecting two streams in a cylinder

The ideal situation to connect the streams is to take δ = 0 but this is too restrictive because it requires
that the outputs of fn perfectly match the inputs of gn. The outputs (respectively inputs) correspond to
the values of fn (respectively gn) for edges exiting (respectively entering) the cylinder by the corridor.
However, it seems reasonable that if the capacities of the edges in the corridor are large enough and δ is
large enough, then as long as their flow match we can reconnect fn and gn. This is the key property:
Key property. There exists a constant cd depending only on d such that for fn and gn with matching
flows, if their inputs and outputs are all smaller in absolute value than some constant b > 0, then we can
always connect the two streams as long as δ > κcd and all the edges inside the corridor have capacity
larger than or equal to b.

The first step before proving theorem 1.5 is to prove the existence of an elementary rate function:
theorem 1.1.
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1.4.1 Sketch of the proof of theorem 1.1: existence of an elementary rate function

We recall that

C =
[
−1

2 ,
1
2

[d
.

Consider a stream fn ∈ Sn(C) that is close to a continuous stream s−→v (in the sense that −→µ n(fn) is close
to s−→v 1CLd for the distance d).
Step 1. We first prove that at a mesoscopic level the flow of fn through each face of C is almost uniform
and close to the flow for the continuous stream s−→v . Namely, for each face F of C, we can split F into a
collection P(F ) of small isometric (d− 1)-dimensional hypercubes of side-length κ. For each C ∈ P(F )
the quantity ψ(fn, C) of water that flow through C for fn is close to the flow for the continuous stream
s−→v ,i.e.,

ψ(fn, C) ≈ nd−1s−→v · −→eiHd−1(C)

where −→ei is the vector of the canonical basis that is normal to C.
Step 2. We prove that up to paying a negligible price, we can increase the capacities of a negligible
number of edges in C in such a way we guarantee the existence of a stream f̃n such that for each face F
of C, for each C ∈ P(F ),

ψ(f̃n, C) = nd−1s−→v · −→eiHd−1(C) .

We call such a stream a well-behaved stream. To build such a stream we do small modifications to fn to
ensure that the water spreads uniformly at the mesoscopic level. To do so we increase the capacities for
a negligible portion of the edges in order to add a small amount of water that will correct the differences
of flow with the continuous stream. Since these corrections are small, the modified stream f̃n is still close
to the continuous stream s−→v . The price we have to pay to modify the original configuration is negligible
since only a negligible portion of the edges have been modified, i.e., these modifications won’t appear in
the limit.
Step 3. We prove theorem 1.1. We fix N ≥ n. We consider (N/n)d different configurations of the event
{∃fn ∈ Sn(C) : fn ≈ s−→v and fn is well-behaved}. Using these configurations, we connect the streams
in order to create a stream in SN (C) that is close to s−→v . Since the streams we consider at the small
scale are well-behaved, the water flow uniformly at a mesoscopic level and we are able to connect at the
macroscopic level two adjacent streams by using the key property for connection at the mesoscopic level
for each C ∈ P(F ) (see figure 2). The length of the corridor we need to connect two adjacent streams is
cdκ that is negligible for small κ. The remaining of the proof uses standard techniques from the realm
of large deviations.

cdκ

κ

Figure 2 – Connecting streams in cubes at mesoscopic level

1.4.2 Sketch of the proof of theorem 1.5

We aim to prove that for −→σ ∈ Σ(Γ1,Γ2,Ω), we have

P
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : fn ≈ −→σ

)
≈ exp

(
− Î(−→σ )nd

)

15



where Î(−→σ ) =
∫

Ω I(−→σ (x))dLd(x). To prove this result we prove separately an upper and a lower bound
on the probability we try to estimate. We can till Ω into a family of small cubes E with disjoint interiors
such that −→σ is almost constant in each cube C ∈ E . Using the independence of the capacities, we have

P
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : fn ≈ −→σ

)
≤
∏
C∈E

P(∃fn ∈ Sn(C) : fn ≈ −→σ 1C) .

Since −→σ is almost constant in C ∈ E , we can use theorem 1.1 and prove that∏
C∈E

P(∃fn ∈ Sn(C) : fn ≈ −→σ 1C) ≈ exp
(
−nd

∫
Ω
I(−→σ (x))dLd(x)

)
.

To prove the upper bound, we deconstruct a stream in Ω, to prove the lower bound we do the reverse:
we construct a stream in Ω close to −→σ from a collection of streams inside small cubes. For each cube C,
we consider a discrete stream gCn in Sn(C) that is close to the constant approximation of −→σ in C. We
use the ideas of corridors and well-behaved streams to reconnect these streams (gCn , C ∈ E) altogether
in order to create a stream fn ∈ Sn(Ω) that is close to −→σ . The main difficulty in the proof of the lower
bound is to create from fn a stream fn ∈ Sn(Γ1,Γ2,Ω), i.e., to remove all the water that is entering or
exiting through Γ \ (Γ1 ∪Γ2) for fn and make sure that fn is still close to −→σ . This is the most technical
part of the proof.

1.4.3 Organization of the paper.

In section 2, we give some properties of the distance d, we also give necessary conditions on the stream
−→σ in order to have Î(−→σ ) < ∞. In section 3, we gather all the technical non probabilistic lemmas. In
section 4, we prove the existence of the elementary rate function I by proving theorem 1.1 and we also
prove the convexity of I. In section 5, we prove theorem 1.5, that is the key result to prove theorem 1.2.
Finally, in section 6, we prove the theorem 1.2 and we deduce an upper large deviation principle for the
maximal flow theorem 1.4.

2 Properties of the distance and of the admissible continuous
streams

In this section, we introduce the metric we use and derive some properties for the limiting continuous
streams.

2.1 Properties of the metric d

We recall that d was defined in (1.7). We state here some key properties that this distance satisfies
that will be useful in what follows. The proofs of the following lemmas will be given after their statements.
The convergence for the distance d of a sequence of measures that are uniformly bounded in the total
variation norm implies the weak convergence. We recall that for a signed-measure ν on Rd, we write
ν = ν+ − ν− for the Hahn-Jordan decomposition of ν and we write |ν| the total variation of ν defined
as |ν| = ν+ + ν−.

Lemma 2.1. Let ν = (ν1, . . . , νd) ∈ M(V∞(Ω, 1))d. Let (νn = (ν1
n, . . . , ν

d
n))n≥1 be a sequence of

measures inM(V∞(Ω, 1))d such that
lim
n→∞

d(νn, ν) = 0 .

Moreover, suppose that the measures ν and (νn)n≥1 are uniformly bounded in the total variation norm,
that is there exists a positive constant C1 such that

∀n ≥ 1
d∑
i=1
|νin|(V∞(Ω, 1)) ≤ C1Ld(V∞(Ω, 1)) ,
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and
d∑
i=1
|νi|(V∞(Ω, 1)) ≤ C1Ld(V∞(Ω, 1)) .

Then, the sequence of measure (νn)n≥1 weakly converges towards ν, that is

∀f ∈ Cb(Rd,R) lim
n→∞

∫
Rd
fdνn =

∫
Rd
fdν .

The converse result holds for a sequence of measures absolutely continuous with respect to Lebesgue
measure.

Lemma 2.2. Let M > 0. Let ν = hLd with h ∈ L∞(Rd → Rd,Ld) such that

‖h‖2 ≤M a.e. on Rd, h = 0 a.e. on V2(Ω, 1)c.

• Let (hn)n≥1 be a sequence of functions in L∞(Rd → Rd,Ld) such that

∀n ≥ 1 ‖hn‖2 ≤M a.e. on Rd hn = 0 a.e. on V2(Ω, 1)c

and the sequence of measure (hnLd)n≥1 weakly converges towards hLd, that is

∀g ∈ Cb(Rd,R) lim
n→∞

∫
Rd
ghndLd =

∫
Rd
ghdLd

then,
lim
n→∞

d(hnLd, hLd) = 0 .

• Let (fn)n≥1 be a sequence of streams inside Ω such that

∀e ∈ Edn ‖fn(e)‖2 ≤M

and the sequence of measures (−→µ n(fn))n≥1 weakly converges towards hLd. Then,

lim
n→∞

d(−→µ n(fn), hLd) = 0 .

We can control the distance between two measures that are absolutely continuous with respect to the
Lebesgue measure by the L1-distance.

Lemma 2.3. Let f, g ∈ L1(Rd → Rd,Ld). We have

d(fLd, gLd) ≤ 2
∫
Rd
‖f(x)− g(x)‖2dLd(x) = 2‖f − g‖L1 .

We say that (Ei)i≥1 is a paving of Rd if the sets Ei are of pairwise disjoint interior, for i ≥ 1, the set
Ei is a translate of E1 and Rd = ∪i≥1Ei. For a subset E of Rd, we denote by diamE its diameter, i.e.,

diamE = sup {‖x− y‖2 : x, y ∈ E} .

The following lemma will be very useful in what follows, it enables to control the number of elements of
a paving that intersect the boundary of a given cube.

Lemma 2.4. There exists a positive constant εC depending only on the dimension such that for any
δ ∈]0, 1[ and z ∈ Rd, for any paving (Ei)i≥1 of Rd such that diamE1 ≤ εCδ, we have

|{i ≥ 1 : Ei ∩ (∂(δC + z))}| ≤ 2H
d−1(∂(δC + z))
Ld(E1) diamE1 .

The result of the following lemma is a key property of the distance d that does not necessarily hold
for standard distances: if the distance d(ν, µ) is small then for a cube Q ⊂ Ω, the distance d(ν1Q, µ1Q)
is also small.
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Lemma 2.5. Let M > 0. Let G be a distribution such that G([M,+∞[) = 0. Let ν ∈ M(V∞(Ω, 1))d
such that

∀x ∈ [−1, 1[d ∀λ ∈ [1, 2] ∀k ≥ 0 ∀Q ∈ (∆k
λ + x) ‖ν(Q)‖2 ≤MLd(Q) .

There exist positive constants β1, β2 depending only on M , Ω and d, and εC depending on d such that
for any δ ∈ [0, 1] and z ∈ Rd, we have for any ρ ≤ δεC, for n large enough depending on ρ, for any
fn ∈ Sn(Ω)

d(−→µ n(fn)1δC+z, ν1δC+z) ≤ β1
d(−→µ n(fn), ν)

ρ
+ β2ρδ

d−1 .

The following lemma implies that to upper-bound the distance between two measures µ, ν, given a
partition of Ω, it is sufficient to upper-bound separately the distance d(µ1A, ν1A) on each set A of the
partition.

Lemma 2.6. Let µ, ν ∈ M(V∞(Ω, 1))d. Let (Ai, 1 ≤ i ≤ r) be a family of pairwise disjoint subsets of
Rd such that

V∞(Ω, 1) ⊂
r⋃
i=1

Ai .

Then, we have

d(µ, ν) ≤
r∑
i=1

d(µ1Ai , ν1Ai) .

We now prove the lemmas above.

Proof of lemma 2.1. Let f ∈ Cb(Rd,R). Let ε > 0. For k ≥ 1, we set

fk =
∑

Q∈∆k
1 (Ω)

f(c(Q))1Q ,

where c(Q) denotes the center of Q. Since the function f is uniformly continuous on the compact set
V∞(Ω, 2), we fix k large enough (depending on f and ε) such that

∀Q ∈ ∆k
1(Ω) ∀x ∈ Q |fk(x)− f(x)| ≤ ε .

Besides, we have∥∥∥∥∫
Rd
fdνn −

∫
Rd
fdν

∥∥∥∥
2

≤
∥∥∥∥∫

Rd
fdνn −

∫
Rd
fkdνn

∥∥∥∥
2

+
∥∥∥∥∫

Rd
fkdνn −

∫
Rd
fkdν

∥∥∥∥
2

+
∥∥∥∥∫

Rd
fdν −

∫
Rd
fkdν

∥∥∥∥
2

≤ ε
d∑
i=1
|νin|(V∞(Ω, 1)) + ‖f‖∞

∑
Q∈∆k

1 (Ω)

‖νn(Q)− ν(Q)‖2 + ε

d∑
i=1
|νin|(V∞(Ω, 1))

≤ 2εC1Ld(V∞(Ω, 1)) + 2k‖f‖∞ d(νn, ν) . (2.1)

Hence for n large enough, ∥∥∥∥∫
Rd
fdνn −

∫
Rd
fdν

∥∥∥∥
2
≤ 3εC1Ld(V∞(Ω, 1)) .

This yields the result.

Proof of lemma 2.2. Let h in L∞(Rd → Rd,Ld) and (hn)n≥1 be a sequence of functions in L∞(Rd →
Rd,Ld) as in the statement of lemma 2.2. Let ε > 0. Let z ∈ [−1, 1[d, λ ∈ [1, 2]. For k0 ≥ 1 large enough
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depending on ε and Ω, we have
∞∑

k=k0

1
2k

∑
Q∈(z+∆k

λ
)

∥∥(hnLd)(Q+ x)− (hLd)(Q+ x)
∥∥

2 ≤
∞∑

k=k0

1
2k

∑
Q∈(z+∆k

λ
)

2MLd(Q)1Q∩V2(Ω,1) 6=∅

≤
∞∑

k=k0

1
2k 2MLd(V2(Ω, 3))

≤ 4MLd(V2(Ω, 3))2−k0 ≤ ε .

We aim at obtaining a uniform control in z and λ of
k0∑
k=0

1
2k

∑
Q∈(z+∆k

λ
)

∥∥(hnLd)(Q+ x)− (hLd)(Q+ x)
∥∥

2 .

Let δ > 0 such that dδ ≤ 2−k0 . Let B = δ(y + C) with y ∈ Zd. Since (hLd)(∂B) = 0, we have by
Portmanteau theorem

lim
n→∞

‖(hnLd)(B)− (hLd)(B)‖2 = 0 . (2.2)

Besides, using lemma 2.4, we have
k0∑
k=0

1
2k

∑
Q∈(z+∆k

λ
)

∥∥(hnLd)(Q+ x)− (hLd)(Q+ x)
∥∥

2

≤
k0∑
k=0

1
2k

∑
Q∈(z+∆k

λ):
Q∩V2(Ω,1)

∑
y∈Zd:

B=δ(y+C)⊂Q

‖(hnLd)(B)− (hLd)(B)‖2 +
∑
y∈Zd:

B=δ(y+C) s.t. B∩∂Q6=∅

2Mδd

≤ 2
∑
y∈Zd:

B=δ(y+C)∩V2(Ω,1) 6=∅

‖(hnLd)(B)− (hLd)(B)‖2 +
k0∑
k=0

1
2k

∑
Q∈(z+∆k

λ):
Q∩V2(Ω,1) 6=∅

8dMHd−1(∂Q)δ

≤ 2
∑
y∈Zd:

B=δ(y+C)∩V2(Ω,1) 6=∅

‖(hnLd)(B)− (hLd)(B)‖2 +
k0∑
k=0

1
2k
Ld(V2(Ω, 3))

(λ2−k)d 2d(λ2−k)d−18dMδ

≤ 2
∑
y∈Zd:

B=δ(y+C)∩V2(Ω,1) 6=∅

‖(hnLd)(B)− (hLd)(B)‖2 + (k0 + 1)Ld(V2(Ω, 3))16d2Mδ .

It follows that

d(hnLd, hLd) ≤ ε+ 2
∑
y∈Zd:

B=δ(y+C)∩V2(Ω,1) 6=∅

‖(hnLd)(B)− (hLd)(B)‖2 + (k0 + 1)Ld(V2(Ω, 3))16d2Mδ .

By taking the limsup in n, we obtain

lim sup
n→∞

d(hnLd, hLd) ≤ ε+ k0Ld(V2(Ω, 3))16d2Mδ .

By first letting δ goes to 0 and then by letting ε goes to 0, we obtain

lim
n→∞

d(hnLd, hLd) = 0 .

This yields the result. The same arguments may be adapted in the case of a sequence (−→µ n(fn))n≥1 using
the fact that for any B ∈ (x+ ∆k

λ) for n large enough

‖−→µ n(fn)(B)‖2 ≤ 3dLd(B)M .
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Proof of lemma 2.3. Write µ = fLd and ν = gLd. Let x ∈ [−1, 1[d, λ ∈ [1, 2]. We have

∞∑
k=0

1
2k

∑
Q∈∆k

λ

‖µ(Q+ x)− ν(Q+ x)‖2 =
∞∑
k=0

1
2k

∑
Q∈∆k

λ

∥∥∥∥∫
Q+x

(f(y)− g(y))dLd(y)
∥∥∥∥

2

≤
∞∑
k=0

1
2k

∑
Q∈∆k

λ

∫
Q+x
‖f(y)− g(y)‖2 dL

d(y)

=
∞∑
k=0

1
2k

∫
Rd
‖f(y)− g(y)‖2 dL

d(y)

≤ 2‖f − g‖L1 .

It follows that
d(fLd, gLd) ≤ 2‖f − g‖L1 .

This yields the result.

Proof of lemma 2.4. Write B = δC+z. By proposition 1.7, there exists a positive constant εC depending
on C such that

∀ε0 ∈ [0, εC] Ld(V2(∂C, ε0))
2ε0

≤ 2Hd−1(∂C) .

It follows that
∀ε0 ∈ [0, εCδ]

Ld(V2(∂B, ε0))
2ε0

≤ 2Hd−1(∂B) .

Let (Ei)i≥1 be a paving of Rd such that diamE1 ≤ εCδ, we have

|{i ≥ 1 : Ei ∩ (∂(δC + z))}| ≤ L
d(V2(∂B,diamE1))

Ld(E1) ≤ 4H
d−1(∂(δC + z))
Ld(E1) diamE1 .

This yields the result.

Proof of lemma 2.5. Let ν that satisfies the conditions in the statement of the lemma 2.5. Let δ ∈ [0, 1]
and z ∈ Rd. Write B = δC + z.

Let w ∈ [−1, 1[d and λ ∈ [1, 2]. Let εC be given by lemma 2.5. Let ρ ≤ εCδ. Let fn ∈ Sn(Ω). Write
−→µ n = −→µ n(fn). Let j be the smallest integer such that dλ2−j ≤ ρ. Hence, w+ ∆λ

j is a paving of Rd such
that for any Q ∈ ∆λ

j , we have diamQ ≤ dλ2−j ≤ εCδ. Using lemma 2.4, we have

∞∑
k=0

1
2k

∑
Q∈(∆λ

k
+w)

‖−→µ n(B ∩Q)− ν(B ∩Q)‖2

≤
j∑

k=0

1
2k

∑
Q∈(∆λ

k
+w)

‖−→µ n(B ∩Q)− ν(B ∩Q)‖2 +
∞∑

k=j+1

1
2k

∑
Q∈(∆λ

k+w):
Q∩B 6=∅

‖−→µ n(B ∩Q)− ν(B ∩Q)‖2

≤
j∑

k=0

1
2k

∑
Q∈(∆λ

j
+w)

‖−→µ n(B ∩Q)− ν(B ∩Q)‖2 +
∞∑

k=j+1

1
2k

∑
Q∈(∆λ

k+w):
Q∩B 6=∅

(‖−→µ n(B ∩Q)‖2 + ‖ν(B ∩Q)‖2)

≤
j∑

k=0

1
2k

 ∑
Q∈(∆λ

j
+w):Q⊂B

‖−→µ n(Q)− ν(Q)‖2 +
∑

Q∈(∆λ
j

+w):Q∩∂B 6=∅

(‖−→µ n(B ∩Q)‖2 + ‖ν(B ∩Q)‖2)


+

∞∑
k=j+1

1
2k

 1
nd

∑
e∈Edn:c(e)∈V2(B,ρ)

‖fn(e)‖2 +MLd(2δC + z)


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≤ 2
∑

Q∈(∆λ
j

+w):Q⊂B

‖−→µ n(Q)− ν(Q)‖2 + 2
nd

∑
e∈Edn:

c(e)∈V2(∂B,dλ2−j)

‖fn(e)‖2

+ 2MLd(λ2−jC)|{Q ∈ (∆λ
j + w) : Q ∩ ∂B 6= ∅}|+ M

2j (2d+ 1)2dδd

≤ 2j+1d(−→µ n, ν) + 8MdHd−1(∂B)ρ+ 8MHd−1(∂B)ρ+ M

2j (2d+ 1)2dδd

≤ 4dλ
ρ

d(−→µ n, ν) +M
(
16d2 + 16d+ (2d+ 1)2d

)
ρδd−1

where we use in the last inequality that by definition of j, we have dλ2−j+1 > ρ. It follows that

d(−→µ n(fn)1B , ν1B) ≤ β1
d(−→µ n(fn), ν)

ρ
+ β2ρδ

d−1 .

where β1 and β2 are positive constant depending only on M and d.

Proof of lemma 2.6. Let µ, ν ∈M(V∞(Ω, 1))d and (Ai, 1 ≤ i ≤ r) be a family of pairwise disjoint subsets
of Rd such that

V∞(Ω, 1) ⊂
r⋃
i=1

Ai .

We have for w ∈ [−1, 1[d and λ ∈ [1, 2]
∞∑
k=0

1
2k

∑
Q∈(∆λ

k
+w)

‖µ(Q)− ν(Q)‖2 ≤
∞∑
k=0

1
2k

∑
Q∈(∆λ

k
+w)

r∑
i=1
‖µ(Q ∩Ai)− ν(Q ∩Ai)‖2

=
r∑
i=1

∞∑
k=0

1
2k

∑
Q∈(∆λ

k
+w)

‖µ(Q ∩Ai)− ν(Q ∩Ai)‖2

≤
r∑
i=1

d(µ1Ai , ν1Ai) .

It follows that

d(µ, ν) ≤
r∑
i=1

d(µ1Ai , ν1Ai) .

This yields the result.

2.2 Properties of the admissible streams
The aim of this section is to prove properties that the continuous streams −→σ must be in Σ(Γ1,Γ2,Ω)

to get Î(−→σ ) <∞. Denote by ΣM (Γ1,Γ2,Ω) the following set

ΣM (Γ1,Γ2,Ω) =
{
−→σ ∈ L∞(Rd → Rd,Ld) : ∃ψ : N→ N ∀n ≥ 1 ∃fψ(n) ∈ SMψ(n)(Γ1,Γ2,Ω)

limn→∞ d(−→µ ψ(n)(fψ(n)),−→σ Ld) = 0

}
(2.3)

with fψ(n) ∈ SMψ(n)(Γ1,Γ2,Ω).

Proposition 2.7. Let G that satisfies hypothesis 1. Let (Ω,Γ1,Γ2) that satisfies hypothesis 2. Let
ν ∈ M(Rd)d \ ({−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)}) (we recall that Σ(Γ1,Γ2,Ω) was defined in
(1.10)), we have

lim
ε→0

lim inf
n→∞

1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d
(−→µ n(fn), ν

)
≤ ε) = −∞ .

To prove this proposition we need the following deterministic lemma. It states that the limit of a
sequence of discrete stream inherits the properties of the discrete streams. The main ingredient of the
proof of this lemma were already present in [9]. We postpone its proof after the proof of proposition 2.7.
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Lemma 2.8. Let (Ω,Γ1,Γ2) that satisfies hypothesis 2. Let M > 0. Let ψ : N → N be an increasing
function. Let fψ(n) ∈ SMψ(n)(Γ1,Γ2,Ω), for n ≥ 1 such that µψ(n)(fψ(n)) weakly converges towards a
measure ν ∈M(Rd)d. Then, we have

ν ∈
{−→σ Ld : −→σ ∈ ΣM (Γ1,Γ2,Ω) ∩ Σ(Γ1,Γ2,Ω)

}
.

Proof of Proposition 2.7. Let ν ∈ M(Rd)d. We start by extracting a deterministic sequence of good
realizations of −→µ n(fn) that converges weakly towards ν. Let us assume there exists κ > 0 such that

∀ε > 0 lim inf
n→∞

1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d
(−→µ n(fn), ν

)
≤ ε) ≥ −κ .

Hence, we can build iteratively an increasing sequence (an)n≥1 of integers such that

∀n ≥ 1 1
adn

logP
(
∃fan ∈ San(Γ1,Γ2,Ω) : d

(−→µ an(fan), ν
)
≤ 1
n

)
≥ −2κ .

It follows that the event {
∃fan ∈ San(Γ1,Γ2,Ω) : d

(−→µ an(fan), ν
)
≤ 1
n

}
is not empty. We choose according to some deterministic rule a realization ωn of the capacities of the
set Ω∩Edan that belongs to this event. According to some deterministic rule, on the fixed realization ωn,
we choose a stream fan ∈ San(Γ1,Γ2,Ω) that satisfies

d
(−→µ an(fan), ν

)
≤ 1
n
. (2.4)

By lemma 2.1, it follows that −→µ an(fan) weakly converges towards ν. By lemma 2.8, we have that

ν ∈
{−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)

}
) .

This concludes the proof.

Proof of lemma 2.8. To lighten the notation we will write −→µ n instead of −→µ ψ(n)(fψ(n)). Note that for
all n ≥ 1, the support of −→µ n is included in the compact set V∞(Ω, 1). For i ∈ {1, . . . , d}, let −→µ in =
−→µ i,+n −−→µ i,−n be the Hahn-Jordan decomposition of the signed measure −→µ in. Notice that we have

|−→µ in|
(
V∞(Ω, 1)

)
≤ 1
nd

∑
e∈Edn

‖fn(e)‖2 ≤
M

nd
2d|Ωn| ≤ 2dLd(V∞(Ω, 1))M .

Hence, the sequence (−→µ n)n≥1 is uniformly tight and uniformly bounded in the total variation norm. By
Prohorov theorem (see for example, Theorem 8.6.2 in volume II of [3]), it follows that up to extraction,
we can assume that

−→µ i,+n ⇀ −→µ i,+, −→µ i,−n ⇀ −→µ i,− ,

and by using inequality (2.4) and lemma 2.1, we deduce that

∀i ∈ {1, . . . , d} νi = −→µ i,+ −−→µ i,− .

Step 1 : We prove that ν is absolutely continuous with respect to Ld. This proof is an
adaptation of the proof of proposition 4.2. in [9]. Let A be a Borel subset of Rd. Since the Lebesgue
measure Ld is outer regular, for ε > 0 there exists an open set O such that A ⊂ O and Ld(O \ A) ≤ ε.
By the Vitali covering theorem for Radon measures (see Theorem 2.8. in [20]), there exists a countable
family (B(xj , rj), j ∈ J) of disjoint closed balls included in O such that

−→µ i,+
O \ ⋃

j∈J
B(xj , rj)

 = 0 .
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We have for δ > 0, using Portmanteau theorem

−→µ i,+(O) ≤ −→µ i,+
(
∪j∈J B̊(xj , rj + δ)

)
≤ lim inf

n→∞
−→µ i,+n

(
∪j∈J B̊(xj , rj + δ)

)
.

Moreover, we have on the realization ωn,

−→µ i,+n
(
∪j∈J B̊(xj , rj + δ)

)
≤M

∑
j∈J
Ld(B(xj , rj + δ + 2n−1) .

Hence, by taking the liminf in n in the previous inequality and then by letting δ goes to 0, we obtain

−→µ i,+(O) ≤M
∑
j∈J
Ld(B(xj , rj)) ≤MLd(O) ≤M(ε+ Ld(A))

and
−→µ i,+(A) ≤ −→µ i,+(O) ≤M(ε+ Ld(A)) .

Finally, we let ε goes to 0, we deduce that −→µ i,+(A) ≤ MLd(A). Similarly, −→µ i,−(A) ≤ MLd(A).
We deduce that ν is absolutely continuous with respect to the Lebesgue measure; that is, there exists
−→σ ∈ L1(Rd → Rd,Ld) such that ν = −→σ Ld. Hence, we have −→σ ∈ ΣM (Γ1,Γ2,Ω). We use the notation
−→σ = (σ1, . . . , σd). We have proved that for all i ∈ {1, . . . , d},

∀A ∈ B(Rd)
∫
A

|σi|dLd ≤ −→µ i,+(A) +−→µ i,−(A) ≤ 2MLd(A) ,

and
∀A ∈ B(Rd) −MLd(A) ≤

∫
A

−→σ · −→eidLd = −→µ i,+(A)−−→µ i,−(A) ≤MLd(A)

which implies that |−→σ ·−→ei | ≤M Ld-almost everywhere. It follows that −→σ ∈ L∞(Rd → Rd,Ld). Moreover,
we have

‖−→σ ‖L1 =
∫

Ω
‖−→σ ‖2dLd ≤

d∑
i=1

∫
Ω
|σi|dLd ≤

d∑
i=1

−→µ i,+(Ω) +−→µ i,−(Ω)

≤
d∑
i=1

lim inf
n→∞

−→µ i,+n (Ω) + lim inf
n→∞

−→µ i,−n (Ω)

≤ lim inf
n→∞

d∑
i=1

−→µ i,+n (Ω) +−→µ i,−n (Ω)

= lim inf
n→∞

1
nd

∑
e∈Edn

‖fn(e)‖2 (2.5)

where we use Portmanteau theorem and the fact that Ω is an open set.
Step 2 : We prove that ν(Rd \ Ω) = 0. The set Rd \ Ω is an open set. Using Portmanteau theorem,
we have

∀i ∈ {1, . . . , d} ∀� ∈ {+,−} −→µ i,�(Rd \ Ω) ≤ lim inf
n→∞

−→µ i,�n (Rd \ Ω) .

Besides, using proposition 1.7, and by construction of −→µ n we have for n large enough

−→µ i,�n (Rd \ Ω) ≤ 2dM |V∞(∂Ω, 1/n) ∩ Zdn|
nd

≤ 2dMLd(V2(∂Ω, d/n)) ≤ 8d2M

n
Hd−1(∂Ω) .

It follows that
∀i ∈ {1, . . . , d} ∀� ∈ {+,−} −→µ i,�(Rd \ Ω) = 0

and ν(Rd \ Ω) = 0. Finally, since ν is absolutely continuous with respect to the Lebesgue measure we
have ν(∂Ω) = 0 and the result follows.

23



Step 3 : We prove that div−→σ = 0 Ld-almost everywhere. Thanks to the previous step, we can
write ν = −→σ Ld. Let h ∈ C∞c (Ω,R). For all x ∈ Γ1

n ∪Γ2
n, let dfn(x) be the amount of water that appears

at x according to the stream fn:

dfn(x) = n
∑

y∈Zdn: e=〈x,y〉∈Edn

fn(e) · −→yx . (2.6)

We have that fn satisfies the node law at x if and only if dfn(x) = 0. We recall that ‖−→yx‖2 = 1/n, this
accounts for the n factor in the expression above. The function dfn corresponds to a discrete divergence.
Since fn satisfies the node law, dfn is null on Ωn \ (Γ1

n ∪ Γ2
n). We state here the equality obtained in [9]

just after equality (4.6):∫
Rd

−→
∇h · d−→µ n = − 1

nd−1

∑
x∈Γ1

n∪Γ2
n

h(x) dfn(x) + αn(h, fn,Ω)
nd

with
lim
n→∞

αn(h, fn,Ω)
nd

= 0 .

This equality is not difficult to obtain, it uses the fact that the stream fn has a null discrete divergence
to control the divergence of the limiting object −→σ . The proof of this result may be found in Proposition
4.5 in [9]. Notice that since h ∈ C∞c (Ω,R), h is null on Γ1

n ∪ Γ2
n, for all n, and

lim
n→∞

∫
Rd

−→
∇h · d−→µ n = 0 .

Since −→∇h ∈ C∞c (Ω,R), by Portmanteau theorem, we have∫
Rd
hdiv−→σ dLd =

∫
Rd
−→σ ·
−→
∇h dLd = lim

n→∞

∫
Rd

−→
∇h · d−→µ n = 0 .

This yields the result.
Step 4 : We prove that −→σ ·−→n Ω = 0 Hd−1-almost everywhere on Γ\(Γ1∪Γ2). Thanks to inequality
(4.8) in the proof of the Corollary 2 in [9], −→σ · −→n Ω is an element of L∞(Γ,Hd−1) characterized by

∀u ∈ C∞c (Rd,R)
∫

Γ
(−→σ · −→n Ω)u dHd−1 =

∫
Rd
−→σ ·
−→
∇udLd . (2.7)

Let u ∈ C∞c ((Γ1 ∪ Γ2)c,R) . As in the previous step, we have

lim
n→∞

∫
Rd

−→
∇u · d−→µ n = lim

n→∞
− 1
nd−1

∑
x∈Γ1

n∪Γ2
n

u(x) dfn(x) + αn(h, fn,Ω)
nd

.

Since u is null on Γ1
n ∪ Γ2

n for n large enough, we have

lim
n→∞

∫
Rd

−→
∇u · d−→µ n = 0 .

Finally, using Portmanteau theorem we have∫
Γ
(−→σ · −→n Ω)u dHd−1 =

∫
Rd
−→σ ·
−→
∇u dLd = lim

n→∞

∫
Rd

−→
∇u · d−→µ n = 0 .

This ends the proof.

3 Technical lemmas
3.1 Mixing

This section is only geometrical and does not contain any randomness. The aim of this section is
to prove that we can reconnect two different streams if the incoming flow coincides with the outcoming
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flow. Namely, if we consider two families of inputs and outputs such that the sum of the inputs is equal
to the sum of the outputs, we can connect the inputs with the outputs. To connect the streams, we are
going to give an algorithm that enables to build a stream that connects the inputs to the outputs. To
lighten the notations, all the lemmas of this section are stated and proved in Zd instead of Zdn.

Lemma 3.1 (Mixing). Let M > 0, n ≥ 1. For any two sequences of real numbers (fin(y), y ∈
{1, . . . , n}d−1) and (fout(y), y ∈ {1, . . . , n}d−1) satisfying

∀y ∈ {1, . . . , n}d−1 |fin(y)| ≤M , |fout(y)| ≤M

and ∑
y∈{1,...,n}d−1

fin(y) =
∑

y∈{1,...,n}d−1

fout(y) ,

for any m ≥ 2(d− 1)n, there exists a stream f : Ed → Rd such that:
· for each edge e /∈ [0,m[×[1, n]d−1 (we recall that e belong to a set if its left endpoint belong to this
set), we have f(e) = 0,
· for each e ∈ Ed we have ‖f(e)‖2 ≤M ,
· for each y ∈ {1, . . . , n}d−1, we have f(〈(0, y), (1, y)〉) = fin(y)−→e1 and f(〈(m − 1, y), (m, y)〉) =
fout(y)−→e1 ,
· for each vertex v ∈ Zd \ (({0} × {1, . . . , n}d−1) ∪ ({m} × {1, . . . , n}d−1)) the node law is respected.

Moreover, if the outputs are uniform, i.e,

∀y ∈ {1, . . . , n}d−1 fout(y) = 1
nd−1

∑
z∈{1,...,n}d−1

fin(z)

then the same result holds for any m ≥ (d− 1)n.

Before proving this lemma, we need to prove that we can reconnect streams in the particular case
of the dimension 2 with uniform outputs. We build the stream by an algorithm, this algorithm will be
used in other proofs of this section.

Lemma 3.2 (Mixing in dimension 2). Let M > 0, n ≥ 1. For any sequence of real number (fin(j), j =
1, . . . , n) satisfying

∀j ∈ {1, . . . , n} |fin(j)| ≤M ,

there exists a stream f : E2 → R2

(i) for each edge e /∈ [0, n[×[1, n] we have
f(e) = 0

,
(ii) for each e ∈ E2 we have ‖f(e)‖2 ≤M ,
(iii) for each j ∈ {1, . . . , n}, we have f(ej) = fin(j)−→e1 and

f(ej + n−→e1) = 1
n

n∑
i=1

fin(i)−→e1 ,

where ej = 〈(0, j), (1, j)〉 and 〈x, y〉+ k−→e1 = 〈x+ k−→e1 , y + k−→e1〉,
(iv) for each vertex v ∈ Z2 \ (({0} × {1, . . . , n}) ∪ ({n} × {1, . . . , n})), the node law is respected.

Proof. Up to multiplying by −1 all the inputs, we can always assume that
n∑
i=1

fin(i) ≥ 0 .

We set

β = 1
n

n∑
i=1

fin(i) .
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We start by sending the minimum between β and fin(i) through straight lines:

f (0) =
n∑
i=1

min(fin(i), β)
n−1∑
k=0

−→e11ei+k−→e1 .

We are going to perform an algorithm starting with the stream f (0) to build a stream f satisfying all the
conditions of the lemma. At any step of the algorithm, f will satisfy condition (iv) but also the following
conditions:
(a) The vertical edges in the column n− i are only used by the source i ∈ {1, . . . , n}:

∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n− 1} ‖f(〈(n− i, j), (n− i, j + 1)〉)‖2 ≤ ‖f(ei)‖21fin(i)>β .

(b) If fin(i) ≤ β then the flow through the line i in the direction −→e1 is non-decreasing:

∀i ∈ {1, . . . , n} s.t. fin(i) < β ∀j < k ∈ {1, . . . , n− 1}
fin(i) = f(ei) · −→e1 ≤ f(ei + j−→e1) · −→e1 ≤ f(ei + k−→e1) · −→e1 ≤ β .

(c) If fin(i) > β then the flow through the line i in the direction −→e1 is non-increasing:

∀i ∈ {1, . . . , n} s.t. fin(i) > β ∀j < k ∈ {1, . . . , n− 1}
fin(i) ≥ f(ei) · −→e1 ≥ f(ei + j−→e1) · −→e1 ≥ f(ei + k−→e1) · −→e1 ≥ f(ei + n−→e1) · −→e1 = β .

We set f = f (0). It is clear that the stream f satisfies the node law (iv) and conditions (a), (b) and (c).
Let us assume there exists i such that

‖f(ei)‖2 < |fin(i)| .

We consider the smallest integer i such that the previous inequality is satisfied. Since f satisfies condition
(b), necessarily fin(i) > β (if not we have ‖f(ei)‖2 = |fin(i)|)).By condition (c), we have f(ei) · −→e1 ≥ 0
and so ‖f(ei)‖2 = f(ei) · −→e1 < fin(i). Since f satisfies condition (iv), it yields by the node law

n∑
k=1

f(ek + n−→e1) · −→e1 =
n∑
k=1

f(ek) · −→e1 <

n∑
k=1

fin(k) = nβ .

Then, there exists j such that
f(ej + n−→e1) · −→e1 < β .

We pick the smallest integer j such that the previous inequality holds. By condition (c), we have
fin(j) < β. We set

γi,j =
n−1−i∑
k=0

−→e11ei+k−→e1 +
(j−i)+−1∑
k=−(j−i)−

sign(j − i)−→e21〈(n−i,i+k),(n−i,i+k+1)〉 +
n−1∑
k=n−i

−→e11ej+k−→e1 .

Note that γi,j is a stream, i.e., a function from E2 to R2. We can associate with γi,j an oriented path
corresponding to the path the water takes to go from source i to sink j for the stream γi,j (see figure 3).
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−→e1

−→e2

i

j

n− i

Figure 3 – The path associated with γi,j for j > i

We set
f ′ = f + min (fin(i)− ‖f(ei)‖2, β − f(ej + n−→e1) · −→e1) γi,j .

It is clear that f ′ satisfies condition (iv). We have to check that the conditions (a), (b) and (c) are still
satisfied for f ′. Note that we have

mi,j := min (fin(i)− ‖f(ei)‖2, β − f(ej + n−→e1) · −→e1) > 0 .

We start by checking if the condition (a) is satisfied: for any k ∈ {1, . . . , n− 1}, we have

‖f ′(〈(n− i, k), (n− i, k + 1)〉)‖2 ≤ ‖f(〈(n− i, k), (n− i, k + 1)〉)‖2 +mi,j

≤ ‖f(ei)‖2 +mi,j

= f(ei) · −→e1 +mi,j

= f ′(ei) · −→e1 = ‖f ′(ei)‖2 .

We have
f ′(ei) · −→e1 = f(ei) · −→e1 +mi,j = ‖f(ei)‖2 +mi,j ≤ fin(i) .

Moreover, it is clear that the flow through the line i in the direction −→e1 is non-increasing for f ′ since it
was the case for f . Furthermore, we have f ′(ei + n−→e1) · −→e1 = f(ei + n−→e1) · −→e1 = β. Hence, the stream f ′

satisfies condition (c). Since the flow through the line j is non-decreasing for f , it is easy to check that
it is also true for f ′. Moreover, we have by definition of mi,j

f ′(ej + n−→e1) · −→e1 = f(ej + n−→e1) · −→e1 +mi,j ≤ β

and
f ′(ej) · −→e1 = f(ej) · −→e1 = fin(j) .

It follows that f ′ also satisfies condition (b). Since after each step of the algorithm the number of such
couples (i, j) is decreasing, the algorithm will eventually end. Let us assume there exists no such i.
Therefore, we have

n∑
i=1

f(ei) · −→e1 =
n∑
i=1

fin(i) .

By the node law again, we have
n∑
i=1

f(ei + n−→e1) · −→e1 =
n∑
i=1

fin(i) = nβ
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and by conditions (b) and (c), it follows that

∀j ∈ {1, . . . , n} f(ej + n−→e1) = β−→e1 .

This yields property (iii). At the end of the algorithm, the stream f satisfies conditions (i), (ii), (iii) and
(iv).

Proof of lemma 3.1. We first prove the result for uniform outputs, that is, for any family (fin(y), y ∈
{1, . . . , n}d−1) satisfying for any y ∈ {1, . . . , n}d−1 |fin(y)| ≤M , if we set

∀y ∈ {1, . . . , n}d−1 fout(y) = 1
nd−1

∑
w∈{1,...,n}d−1

fin(w) ,

there exists a stream in [0, (d− 1)n[×[1, n]d−1 satisfying all the requirements in the statement of lemma
3.1. We prove this result by induction on the dimension. The result holds for the dimension 2 thanks to
lemma 3.2. Let us now consider d ≥ 3 and assume the result holds for the dimension d − 1. Consider
a family of inputs bounded by M : (fin(y), y ∈ {1, . . . , n}d−1). Using the induction hypothesis for the
dimension d− 1, for each i ∈ {1, . . . , n}, we can build a stream f

(i)
d−1 in [0, (d− 2)n[×{i}× [1, n]d−2 given

the inputs (fin(i, z), z ∈ {1, . . . , n}d−2) and the uniform outputs equal to

∀z ∈ {1, . . . , n}d−2 g(i, z) = 1
nd−2

∑
z∈{1,...,n}d−2

fin(i, z) .

It is clear that the streams f (i)
d−1 are defined on disjoint sets of edges. Finally, for each x ∈ {1, . . . , n}d−2,

using lemma 3.2, we denote by f (x)
2 the stream in [0, n[×[1, n] × {x} with inputs (g(i, x), i = 1, . . . , n)

and uniform output equal to

1
n

n∑
i=1

g(i, x) = 1
nd−1

n∑
i=1

∑
z∈{1,...,n}d−2

fin(i, z) = 1
nd−1

∑
w∈{1,...,n}d−1

fin(w) .

The stream f
(x)
2 are also defined on disjoint set of edges. Finally, the stream

g =
n∑
i=1

f
(i)
d−1 +

∑
x∈{1,...,n}d−2

f
(x)
2 (· − (d− 2)n−→e1)

is defined on [0, (d− 1)n[×[1, n]d−1, ‖g(e)‖2 ≤M for any e and g mixes uniformly the inputs since

∀y ∈ {1, . . . , n}d−1 g(〈((d− 1)n− 1, y), ((d− 1)n, y)〉) = 1
nd−1

∑
w∈{1,...,n}d−1

fin(w) .

It follows that the result holds for the dimension d. This concludes the induction.
Let d ≥ 2, let us now consider two families (fin(y))y and (fout(y))y of arbitrary inputs and outputs

that satisfy the conditions in the statement of the lemma. Let f i be the stream in [0, (d− 1)n[×[1, n]d−1

with inputs (fin(y))y and uniform outputs. Let fo be the stream in [0, (d − 1)n[×[1, n]d−1 with inputs
(fout(y))y and uniform outputs. Denote by S the reflexion with regards to the hyperplane {x ∈ Rd, x1 =
0}, i.e.,

∀(x1, . . . , xd) ∈ Rd S(x1, x2, . . . , xd) = (−x1, x2, . . . , xd) .

We denote by Sfo the symmetric of the stream fo by S:

∀e ∈ Ed Sfo(e) = S(fo(S(e)))

where for e = 〈x, y〉 the edge S(e) corresponds to 〈S(x), S(y)〉. Note that for any edge e parallel to −→e1 ,
we have fo(e) = a−→e1 with a ∈ R and

Sfo(S(e)) = S(fo(S(S(e)))) = S(fo(e)) = −a−→e1 = −fo(e) .
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We have for y ∈ {1, . . . , n}d−1,

f i(〈((d− 1)n− 1, y), ((d− 1)n, y)〉) = 1
nd−1

∑
y∈{1,...,n}d−1

fin(y) = 1
nd−1

∑
y∈{1,...,n}d−1

fout(y)

= fo(〈((d− 1)n− 1, y), ((d− 1)n, y)〉)
= −Sfo(〈(−(d− 1)n, y), (−(d− 1)n+ 1, y)〉) .

It follows that the stream g = f i − Sfo(· − (2(d − 1)n − 1)−→e1) connects the inputs with the outputs in
[0, 2(d− 1)n[×[1, n]d−1 and satisfies all the properties stated in the lemma. If m > 2(d− 1)n, we extend
the stream outside [0, 2(d− 1)n[×[1, n]d−1 through straight lines:

g +
∑

y∈{1,...,n}

m∑
k=2(d−1)n+1

fout(y)−→e11〈(k−1,y),(k,y)〉 .

We will need a special result of mixing in the case where the non-null inputs and outputs are regularly
spaced in the lattice. Namely, there exists an integer K ≥ 1 such that any input or output whose index
does not belong to KZd−1 ∩ [1, n]d−1 is null. In that case, we want to prove that we do not use a lot of
edges to reconnect the inputs with the outputs. For any integer K ≥ 1, we denote by EdK the following
set of edges:

EdK =
{
e = 〈x, y〉 ∈ Ed : y − x = −→e1 , ∀j 6= 1 xj ∈ KZ

}
∪
{
e ∈ Ed : ∃z ∈ Z ∃x, y ∈ KZd−1 s.t. ‖x− y‖1 = K and e ⊂ [(z, x), (z, y)]

}
.

Lemma 3.3. Let d ≥ 2, M > 0, n ≥ 1. There exists a positive integer cd such that for any integer
K satisfying K ≥ cd, for any two (fin(y), y ∈ {1, . . . , n}d−1 ∩KZd−1) and (fout(y), y ∈ {1, . . . , n}d−1 ∩
KZd−1) sequences of real numbers satisfying

∀y ∈ {1, . . . , n}d−1 ∩KZd−1 |fin(y)| ≤M , |fout(y)| ≤M

and ∑
y∈{1,...,n}d−1∩KZd−1

fin(y) =
∑

y∈{1,...,n}d−1∩KZd−1

fout(y) ,

there exists a stream f : Ed → Rd such that
· for each e /∈ EdK ∩ [0, n[×[1, n]d−1 we have f(e) = 0,
· for each e ∈ Ed we have ‖f(e)‖2 ≤M ,
· for each y ∈ {1, . . . , n}d−1∩KZd−1, we have f(〈(0, y), (1, y)〉) = fin(y)−→e1 and f(〈(n−1, y), (n, y)〉) =
fout(y)−→e1 ,
· for each vertex v ∈ Zd \ (({0} × ({1, . . . , n}d−1 ∩KZd−1)) ∪ ({n} × ({1, . . . , n}d−1 ∩KZd−1))) the
node law is respected.

Moreover, we have ∣∣{e ∈ Ed : f(e) 6= 0}
∣∣ ≤ ∣∣EdK ∩ [0, n[×[1, n]d−1∣∣ ≤ 3d

Kd−2n
d .

Proof of lemma 3.3. Let cd be an integer we will choose later. Let K ≥ cd. Let us consider the following
bijection π between the lattice Z×KZd−1 and Zd defined as follows

∀x ∈ Z ∀y ∈ Zd−1 π((x,Ky)) = (x, y) .

Therefore, the problem boils down to finding a stream that joins the inputs (fin(Ky), y ∈ {1, . . . , n0}d−1)
with the outputs (fout(Ky), y ∈ {1, . . . , n0}d−1) in [0, n[×[1, n0]d−1 where n0 = bn/Kc. Note that
n ≥ Kn0 ≥ cdn0. By setting cd = 2(d − 1), this ensures that we can apply lemma 3.1. We obtain a
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stream fn in [0, n[×[1, n0]d−1 ∩Ed that satisfies all the properties stated in the lemma 3.1. It remains to
build upon fn a stream f̃n in the original lattice. To do so, we set

∀e = 〈x, y〉 ∈ Zd ∀ẽ = 〈w1, w2〉 s.t. [w1, w2] ⊂ [π−1(x), π−1(y)] f̃n(ẽ) = fn(e) .

It is easy to check that the stream f̃n is supported on EdK ∩ [0, n[×[1, n]d−1 and that it satisfies all the
properties stated in the lemma 3.3. It remains to upper-bound the quantity |EdK ∩ [0, n[×[1, n]d−1|. We
have

|EdK ∩ [0, n[×[1, n]d−1| ≤ n |KZd−1 ∩ [1, n]d−1|+ n |KZd−1 ∩ [1, n]d−1|2dK

≤ n
( n
K

)d−1
+ 2dKn

( n
K

)d−1
≤ 3d
Kd−2n

d .

This yields the result.

In what follows, we will need the following lemma. This lemma gives a precise description on the
way the edges are used. The hypothesis of this lemma may seem strange but should be more clear in its
context of application (see proofs of lemma 4.8 and proposition 5.3).

Lemma 3.4. Let d ≥ 2, M > 0, ε > 0 and n ≥ 1. For any sequence of real number (fin(y), y ∈
{1, . . . , n}d−1) satisfying

∀y ∈ {1, . . . , n}d−1 −M ≤ fin(y) ≤ ε

and

∀i ∈{0, . . . , d− 2} ∀y ∈ {1, . . . , n}i∑
x∈{1,...,n}d−1−i

fin(y, x) ≥ 0 or ∀x, z ∈ {1, . . . , n}d−1−i |fin(y, x)− fin(y, z)| ≤ ε ,

there exists a stream f : Ed → Rd such that
· for each e /∈ [0, (d− 1)n[×[1, n]d we have f(e) = 0;
· for each e ∈ Ed, if e is parallel to −→e1 , then we have −M ≤ f(e) · −→e1 ≤ ε, otherwise ‖f(e)‖2 ≤ ε;
· for each y ∈ {1, . . . , n}d−1, we have f(〈(0, y), (1, y)〉) = fin(y)−→e1 and

f(〈((d− 1)n− 1, y), ((d− 1)n, y)〉) = 1
nd−1

∑
z∈{1,...,n}d−1

fin(z)−→e1 ;

· for each vertex v ∈ Zd \ (({0} × ({1, . . . , n}d−1)) ∪ ({(d− 1)n} × ({1, . . . , n}d−1))) the node law is
respected.

Proof. We prove this result by induction on the dimension. For d = 2. Let (fin(j), 1 ≤ j ≤ n) be a
family that satisfies the conditions stated in the lemma:

∀ j ∈ {1, . . . , n} −M ≤ fin(j) ≤ ε

and

β =
n∑
k=1

fin(k) ≥ 0 or ∀k, j ∈ {1, . . . , n} |fin(k)− fin(j)| ≤ ε .

If β ≥ 0, we apply directly the algorithm in the proof of lemma 3.2 to obtain a stream f . If β < 0, then
∀k, j ∈ {1, . . . , n} |fin(k) − fin(j)| ≤ ε and we set α = min{fin(j) : 1 ≤ j ≤ n}. It follows that for
any j ∈ {1, . . . , n}, we have fin(j)− α ∈ [0, ε], we apply the lemma 3.2 to the sequence of real numbers
(fin(j)− α, j = 1, . . . , n) to obtain a stream g in [0, n[×[1, n], finally we set

f = g +
n∑
i=1

α

n−1∑
k=0

−→e11ei+k−→e1 .
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In both cases, the stream f we obtain satisfies all the required properties: if β ≥ 0, due to condition (a),
only the inputs i ∈ {1, . . . , n} such that 0 ≤ β ≤ fin(i) ≤ ε can use the edges parallel to −→e2 . Thanks to
condition ((b)) and ((c)), for each e ∈ Ed parallel to −→e1 , we have −M ≤ f(e) · −→e1 ≤ ε.

Let us assume the result holds for d− 1 where d ≥ 3. Let (fin(y), y ∈ {1, . . . , n}d−1) be a family that
satisfies the condition stated in the lemma 3.4. For i ∈ {1, . . . , n}, it is easy to check that the family
(fin(i, x), x ∈ {1, . . . , n}d−2) also satisfies the conditions of the lemma 3.4. By induction hypothesis,
there exists a stream f

(i)
(d−1) in [0, (d− 2)n[×{i} × [1, n]d−2 that satisfies all the conditions of the lemma

3.4. We build the family g as follows

∀x ∈ {1, . . . , n}d−2 g(i, x) = f
(i)
(d−1)(〈((d−2)n−1, i, x), ((d−2)n, i, x)〉)·−→e1 = 1

nd−2

∑
z∈{1,...,n}d−2

fin(i, z) .

It is clear that for any y ∈ {1, . . . , n}d−1, g(y) ∈ [−M, ε]. Besides, we have

∀x ∈ {1, . . . , n}d−2
n∑
k=1

g(k, x) =
∑

y∈{1,...,n}d−1

fin(y) .

By the properties of the family (fin(y), y ∈ {1, . . . , n}d−1) we have for any x ∈ {1, . . . , n}d−2

n∑
k=1

g(k, x) ≥ 0 or ∀y, z ∈ {1, . . . , n}d−1 |fin(y)− fin(z)| ≤ ε .

If
∑n
k=1 g(k, x) < 0, it follows that for any k, j ∈ {1, . . . , n}, we have |g(k, x) − g(j, x)| ≤ ε. In both

cases, we can apply the result for the dimension 2: we denote by f (x)
2 the stream in [0, n[×[1, n] × {x}

with inputs (g(i, x), i = 1, . . . , n). We can check as in the proof of lemma 3.1 that the stream

n∑
i=1

f
(i)
(d−1) +

∑
x∈{1,...,n}d−2

f
(x)
2 (· − (d− 2)n−→e1)

satisfies all the required conditions.

3.2 Decomposition of a stream
In all this section, we consider (Ω,Γ1,Γ2) that satisfy hypothesis 2. Let n ≥ 1. We say that

−→γ = (−→g1 , . . . ,
−→gr) is an oriented self-avoiding path if there exists r + 1 distinct points x1, . . . , xr+1 ∈ Edn

such that for any i ∈ {1, . . . , r}, −→gi = 〈〈xi, xi+1〉〉 ∈
−→
E d
n.

Lemma 3.5 (Decomposition of a stream). Let fn be a stream inside Ω that satisfies the node law
everywhere except points in Γ1

n ∪Γ2
n. There exists a finite set of self-avoiding oriented path −→Γ (that may

be empty) such that for any −→γ ∈ −→Γ , the starting point and the ending point belong to Γ1
n ∪ Γ2

n, all the
other vertices in −→γ belong to Ωn \ (Γ1

n ∪ Γ2
n). To each oriented path −→γ ∈ −→Γ we can associate a positive

real number p(−→γ ) such that
fn =

∑
−→γ ∈
−→
Γ

p(−→γ )
∑

〈〈x,y〉〉∈−→γ

n−→xy1〈x,y〉 .

Moreover, we have
∀−→γ ∈

−→Γ ∀−→e = 〈〈x, y〉〉 ∈ −→γ fn(e) · −→xy > 0 .

Proof. We are going to perform an algorithm to build iteratively the couple (−→Γ , (p(−→γ ))−→γ ∈−→Γ ). We set

f̂n =
∑
−→γ ∈
−→
Γ

p(−→γ )
∑

〈〈x,y〉〉∈−→γ

n−→xy1〈x,y〉
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and fresn = fn − f̂n. At any step of the algorithm, we have

∀−→γ ∈
−→Γ ∀−→e = 〈〈x, y〉〉 ∈ −→γ fn(e) · −→xy ≥ f̂n(e) · −→xy > 0 . (3.1)

Moreover, for any −→γ ∈ −→Γ , the path −→γ has both of its endpoints in Γ1
n ∪ Γ2

n and all the other vertices
in −→γ belong to Ωn \ (Γ1

n ∪ Γ2
n). Consequently, at any step of the algorithm, the stream fresn satisfies the

node law for any point in Zdn \ (Γ1
n ∪ Γ2

n).
We start with −→Γ = ∅. Let x ∈ Γ1

n∪Γ2
n and y ∈ Ω∩Zdn such that e = 〈x, y〉 ∈ Edn and fresn (e) 6= 0. We

distinguish two cases either fresn (e) ·−→xy > 0 or fresn (e) ·−→xy < 0. Let us assume fresn (e) ·−→xy > 0. Since fresn

satisfies the node law and since there exists only a finite number of self avoiding path using edges with
endpoints Ωn, there exists z ∈ (Γ1

n∪Γ2
n)\{x} and an oriented self-avoiding path −→γ 0 starting from x and

ending at z with vertices in Ωn such that the first edge of −→γ 0 is 〈〈x, y〉〉 and for any −→e0 = 〈〈w0, w1〉〉 ∈ −→γ 0,
we have fresn (e0) · −−−→w0w1 > 0.

If fresn (e) · −→xy < 0. Then there exists z ∈ Γ1
n ∪ Γ2

n \ {x} and an oriented self-avoiding path −→γ 0
starting from z and ending at x with vertices in Ωn such that the last edge of −→γ 0 is 〈〈y, x〉〉 and for any
−→e0 = 〈〈w0, w1〉〉 ∈ −→γ 0, we have fresn (e0) · −−−→w0w1 > 0.

Note that, up to removing a section of −→γ 0, we can always assume that all the vertices of −→γ 0 except
its two endpoints are in Ωn \ (Γ1

n ∪ Γ2
n). If it is not the case, we denote by w the first vertex in Γ1

n ∪ Γ2
n

along the path −→γ 0 starting from x and we replace −→γ 0 by the section of −→γ 0 between the vertices w and
x.

Besides, we have

m(−→γ 0) = inf {fresn (e) · (n−−−→w0w1) : −→e = 〈〈w0, w1〉〉 ∈ −→γ 0} > 0 .

Let −→e = 〈〈w0, w1〉〉 ∈ −→γ 0. By construction, we have fresn (e) · −−−→w0w1 > 0 and fn(e) · −−−→w0w1 > f̂n(e) · −−−→w0w1.
Hence, 〈〈w1, w0〉〉 cannot belong to one of the −→γ in −→Γ since it would contradict (3.1). Necessarily, we
have f̂n(e) · −−−→w0w1 ≥ 0. It yields that

0 ≤

f̂n +m(−→γ 0)
∑

〈〈x0,y0〉〉∈−→γ 0

n−−→x0y01〈x0,y0〉

 (e) · −−−→w0w1 = f̂n(e) · −−−→w0w1 + 1
n
m(−→γ 0)

≤ (f̂n + fresn )(e) · −−−→w0w1 ≤ fn(e) · −−−→w0w1 .

We add (−→γ 0,m(−→γ 0)) to (−→Γ , (p(−→γ )−→γ ∈−→Γ ) and the condition (3.1) still holds. We can iterate this process
finitely many times with every possible self-avoiding oriented paths ending or starting with the edge e
(according to the sign of fresn (e) · −→xy). At any iteration, |fresn (e) · −→xy| decrease. Eventually, the stream
function we obtain satisfies fresn (e) · −→xy = 0.

The algorithm ends when for any x ∈ Γ1
n ∪ Γ2

n and y ∈ Ω ∩ Zdn such that e = 〈x, y〉 ∈ Edn, we have
fresn (e) = 0. Consequently, at the end of the algorithm we have fresn = 0 and

fn = f̂n =
∑
−→γ ∈
−→Γ

p(−→γ )
∑

〈〈x,y〉〉∈−→γ

n−→xy1〈x,y〉 .

This concludes the proof.

4 Construction and convexity of the elementary rate function
In this section, we build the elementary rate function I that is the basic brick to build the rate

function Î. We start by proving preliminary lemmas that we need in order to prove theorem 1.1 but also
theorem 1.5

4.1 Preliminary lemmas
Before proving theorem 1.1, we are going to prove that we can slightly modify a stream fn ∈ Sn(C)

without paying too much probability such that the stream is well-behaved in the sense that at a meso-
scopic level for each face of the cube C the stream spreads uniformly.
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We recall that (−→e1 , . . . ,
−→ed) denotes the oriented canonical basis of Rd. For i ∈ {1, . . . , d}, we denote

by C+
i and C−i the two faces of C = [−1/2, 1/2[d associated with the vector −→ei that is

C−i =
[
−1

2 ,
1
2

[i−1
×
{
−1

2

}
×
[
−1

2 ,
1
2

[d−i
and C+

i =
[
−1

2 ,
1
2

[i−1
×
{

1
2

}
×
[
−1

2 ,
1
2

[d−i
.

Let i ∈ {1, . . . , d} and let A be an hyperrectangle normal to −→ei . We denote by Ei,+n [A] and Ei,−n [A] the
following set of edges (see figure 4):

Ei,+n [A] =
{
e =

〈
x, x+

−→ei
n

〉
∈ Edn :

]
x, x+

−→ei
n

]
∩ A 6= ∅

}
(4.1)

and

Ei,−n [A] =
{
e =

〈
x, x+

−→ei
n

〉
∈ Edn :

]
x−
−→ei
n
, x

]
∩ A 6= ∅

}
. (4.2)

The choice of the definitions of Ei,−n and Ei,+n is to ensure that for A ⊂ C−i and B ⊂ C+
i , we have

Ei,−n [A] ⊂ Edn ∩ C and Ei,+n [B] ⊂ Edn ∩ C.

A
B

E1,+
n [B]

E1,−
n [A]

−→e1

−→e2

Figure 4 – The sets E1,−
n [A] and E1,+

n [B]

Let m ≥ 1. We partition all the faces of C in hypersquares of side-length 1/m. We denote P+
i (m)

and P−i (m) the following sets (see figure 5)

P−i (m) =


[
−1

2 ,−
1
2 + 1

m

[i−1
×
{
−1

2

}
×
[
−1

2 ,−
1
2 + 1

m

[d−i
+

∑
k=1,...,d
k 6=i

ak
m
−→e k : ak ∈ {0, . . . ,m− 1},

k ∈ {1, . . . , d} \ {i}


(4.3)

and

P+
i (m) =


[
−1

2 ,−
1
2 + 1

m

[i−1
×
{

1
2

}
×
[
−1

2 ,−
1
2 + 1

m

[d−i
+

∑
k=1,...,d
k 6=i

ak
m
−→e k : ak ∈ {0, . . . ,m− 1},

k ∈ {1, . . . , d} \ {i}

 .

(4.4)

Note that for A ∈ P−i (m), −→ei is normal to A. The cube splits into md−1 tubes according to the direction
−→ei :

C ∪ C+
i =

⋃
A∈P−

i
(m)

cyl(A, 1,−→ei ) .
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Note that for A ∈ P−i (m) ∪ P+
i (m), we have Hd−1(A) = 1/md−1. Let fn ∈ Sn(C). For � ∈ {+,−} ,

1
m

Elements of
P+

1 (m)
C

−→e1

−→e2

−→e3

Figure 5 – Splitting the face C+
1 into md−1 hyperrectangles

i ∈ {1, . . . , d} and A ∈ P�i (m), let us denote by ψ�i (fn, A) the intensity of the stream fn through the face
A ∈ P�i (m) in the direction −→ei , that is

ψ�i (fn, A) =
∑

e∈Ei,�n [A]

fn (e) · −→ei .

Note that the intensity of the stream through a face is not uniform at the mescopic level. In the
following lemma, we prove that there exists a repartition at a mesoscopic level for the intensity of the
stream through the faces of C that is more likely.
Lemma 4.1. Let s > 0 and −→v = (v1, . . . , vd) ∈ Sd−1. Let ε > 0. There exists κd and α depending
only on d, for m = bε−αc, for any n ≥ 1 there exist two families of real numbers in

√
εZ, namely

(λ+
A, A ∈ ∪di=1P

+
i (m)), (λ−A, A ∈ ∪di=1P

−
i (m)), that satisfy

∀� ∈ {+,−} ∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)
∣∣λ�A − sviHd−1(A)nd−1∣∣ ≤ κd εα

md−1n
d−1 (4.5)

and ∑
A∈∪d

i=1P
+
i

(m)

λ+
A =

∑
A∈∪d

i=1P
−
i

(m)

λ−A (4.6)

such that

lim inf
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = λ�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ εα

)
= lim
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ ε
)

and

lim inf
ε→0

lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = λ�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ εα

)
= lim
ε→0

lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ ε
)
.

Note that in the statement of this lemma, we cannot chose the families (λ+
A) and (λ−A), we only know

that these families exist. Moreover, notethat these families depend on n and oε. Actually, if we consider
families that satisfy condition (4.5) and (4.6), we can prove the same result for these families by slightly
modifying the environment to create a new stream. The following lemma, which is an improvement of
lemma 4.1, will be useful in what follows. We postpone its proof to the end of the proof of lemma 4.1.
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Lemma 4.2. Let s > 0 and −→v ∈ Sd−1. Let κd and α the positive constants from lemma 4.1. Let
ε > 0. For m = bε−αc, for any n ≥ 1 for any families of real numbers (β+

A , A ∈ ∪di=1P
+
i (m)), (β−A , A ∈

∪di=1P
−
i (m)) (not necessarily in

√
εZ) that satisfy conditions (4.5) and (4.6), we have

lim inf
ε→0

lim sup
n→∞

1
nd

logP

∃fn ∈ Sn(C) :
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)

ψ�i (fn, A) = (1− εα/4)β�A
and d

(−→µ n(fn), s−→v 1CLd
)
≤ εα0


= lim
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ ε
)

and

lim inf
ε→0

lim inf
n→∞

1
nd

logP

∃fn ∈ Sn(C) :
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)

ψ�i (fn, A) = (1− εα/4)β�A
and d

(−→µ n(fn), s−→v 1CLd
)
≤ εα0


= lim
ε→0

lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ ε
)

where α0 is a constant depending on α and d.

Proof of lemma 4.1. The proof is divided into three steps. In the first step, we prove that if fn ∈ Sn(C)
satisfies d

(−→µ n(fn), s−→v 1CLd
)
≤ ε, then the flow for fn through any tube cyl(A, 1,−→ei ) for A ∈ P−i (m) is

close to the value of the flow through this tube for s−→v . In a second step, we modify the stream in such
a way that the corresponding flows through the tubes are in

√
εZ. This ensures that the possible values

the flow can take at a mesoscopic level belong to a finite deterministic set. Finally, we do a pigeonhole
principle to prove that there exists a deterministic set of possible values for the flows through the tubes
that can be observed with a large enough probability.

Let n ≥ 1. Let us consider ω ∈
{
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ ε
}
. On the configuration ω,

we choose a stream fn(ω) such that d
(−→µ n(fn), s−→v 1CLd

)
≤ ε. If there are several possible choices, we

select one according to a deterministic rule. For short, we write −→µ n for −→µ n(fn).
Step 1: Control the incoming and outcoming flow in the tubes. In this step we use some tools
from [9]. The aim is now to show that the strength of the stream fn that flows through A ∈ P+

i (m) is
close to ∫

A

s−→v · −→ei dHd−1(x)nd−1 = sviHd−1(A)nd−1 .

In [9] (more precisely in the display equality after inequality (4.18)), the authors define the following
flow through the bottom half of the cylinder cyl(A, h) for h > 0:

Ψ(−→µ n, cyl(A, h),−→ei ) =
∑

e=〈x,y〉∈Edn:e⊂cyl(A,h),
x∈B′(A,h), y /∈B′(A,h)

fn(e) · (n−→xy)

where we recall that T ′(A, h) and B′(A, h) were defined in equalities (1.4) and (1.5). It is easy to check
that the set of edges Ei,+n [A] is a cutset from B′(A, h) to T ′(A, h) in cyl(A, h) which is minimal for the
inclusion. By the node law, it follows that

Ψ(−→µ n, cyl(A, h),−→ei ) = ψ+
i (fn, A) .

We refer to equation (4.20) in [9] for more details about this fact.
Note that both expressions only depend on edges that have their left endpoint in cyl(A, h,−−→ei ) ⊂ C.

The value of the streams outside this set has no importance in the estimation made below. Therefore,
we can use the estimates proven in proposition 4.5 in [9] and the expression of h0 given just after the
display inequality (4.24). There exists C(d) > 0 depending on d such that

∀η > 0 ∀h ≤ η

C(d)Mm

∣∣∣∣∣ 1h
∫

cyl(A,h,−−→ei )

−→ei · d−→µ n(fn)− ψ+
i (fn, A)
nd−1

∣∣∣∣∣ ≤ η .
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Hence, we have∣∣∣∣ψ+
i (fn, A)
nd−1 − s−→v · −→eiHd−1(A)

∣∣∣∣ ≤
∣∣∣∣∣ψ+

i (fn, A)
nd−1 − 1

h

∫
cyl(A,h,−−→ei )

−→ei · d−→µ n(fn)

∣∣∣∣∣
+

∣∣∣∣∣ 1h
∫

cyl(A,h,−−→ei )

−→ei · d−→µ n(fn)− 1
h

∫
cyl(A,h,−−→ei )

s−→v · −→eidLd(x)

∣∣∣∣∣
≤ η + 1

h
‖−→µ n(cyl(A, h,−−→ei ))− s−→v Ld(cyl(A, h,−−→ei ))‖2 .

We choose h in such a way that 1/mh ∈ Z: we set

h = 1
m

⌈
MC(d)

η

⌉−1

where dxe denotes the ceil of the real number x. We have

h ≤ 1
m

η

MC(d) .

Write
h = λ

2j

with j ≥ 1 and λ ∈ [1, 2]. Since 1/mh ∈ Z, there exists x ∈ [0, 1]d such that

cyl(A, h,−−→ei ) \A =
⋃

Q∈∆j
λ

(Q+x)⊂cyl(A,h,−−→ei )

(Q+ x) .

Hence, we have for n large enough depending on ε and M

‖−→µ n(cyl(A, h,−−→ei ))− s−→v Ld(cyl(A, h,−−→ei ))‖2
≤ ‖−→µ n(cyl(A, h,−−→ei ) \A)− s−→v Ld(cyl(A, h,−−→ei ) \A)‖2 + ‖−→µ n(A)‖2

≤
∑
Q∈∆j

λ

‖−→µ n(Q+ x)− s−→v Ld(Q)‖2 + M

nmd−1

≤ 2jd(−→µ n, s−→v 1CLd) + M

nmd−1 ≤ 2λ
h
ε .

It yields that∣∣∣∣ψ+
i (fn, A)
nd−1 − s−→v · −→eiHd−1(A)

∣∣∣∣ ≤ η + 2λε
h2 ≤

1
md−1

(
ηmd−1 + 2λε

⌈
MC(d)

η

⌉2
md+1

)
.

Set η = 1
md

, we have∣∣∣∣ψ+
i (fn, A)
nd−1 − s−→v · −→eiHd−1(A)

∣∣∣∣ ≤ 1
md−1

(
1
m

+ 8M2C(d)2εm3d+1
)
.

Setting m = bε−αc where

α = 1
2(3d+ 1) (4.7)

where bxc denotes the integer part of the real number x. Consequently, there exists κd depending on d
and M such that ∣∣∣∣ψ+

i (fn, A)
nd−1 − s−→v · −→eiHd−1(A)

∣∣∣∣ ≤ κd εα

md−1 . (4.8)
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By the same arguments, we can prove the same result for A ∈ P−i (m).
Step 2: Modify the stream in such a way the flow is in

√
εZ in each tube. The aim is now

to correct the stream so that ψ�i (A, fn) ∈
√
εZ for i = 1, . . . , d, � ∈ {+,−}, A ∈ P�i (m). Using the

arguments of the proof of lemma 3.5, there exists −→Γ a set of self-avoiding oriented paths in C such that
for any path −→γ ∈ −→Γ only its first and last edges belong to ∪i=1,...,dEi,−n [C−i ] ∪ Ei,+n [C+

i ], and we can
associate a positive real number p(−→γ ) such that

fn =
∑
−→γ ∈
−→Γ

p(−→γ )
∑

−→e =〈〈x,y〉〉∈−→γ

n−→xy1e

and
∀−→γ ∈

−→Γ ∀−→e = 〈〈x, y〉〉 ∈ −→γ fn(e) · −→xy ≥ 0 .

For i, j ∈ {1, . . . , d}, �, ◦ ∈ {+,−}, A1 ∈ P�i (m) and A2 ∈ P◦j (m), we set

gn[A1, A2] =
∑
−→γ ∈
−→Γ :

γf∈Ei,�n [A1],γl∈Ei,◦n [A2]

p(−→γ )
∑

−→e =〈〈x,y〉〉∈−→γ

n−→xy1e .

where γf (respectively γl) corresponds to the first (resp. last) edge of −→γ . Hence, we have

fn =
∑

A1∈∪di=1P
+
i

(m)∪P−
i

(m)

∑
A2∈∪dk=1P

+
k

(m)∪P−
k

(m)

gn[A1, A2] .

On the configuration ω, gn[A1, A2] ∈ Sn(C). Moreover, we have

∀A1, A2 ∈ ∪di=1P+
i (m) ∪ P−i (m) ∀e ∈ Edn fn(e) · gn[A1, A2](e) ≥ 0 .

Since this decomposition is not necessarily unique, we choose one according to a deterministic rule. Let
t be a real number, we define

proj(t, ε) = sign(t)
√
ε

⌊
|t|√
ε

⌋
where sign(t) corresponds to the sign of t. We define f̂n in the following way

f̂n =
∑

1≤i,j≤d
�,◦∈{+,−}

∑
A1∈P�i (m)
A2∈P◦j (m)

proj
(
ψi(gn[A1, A2], A1), ε

)
ψi(gn[A1, A2], A1) gn[A1, A2]1ψ�

i
(gn[A1,A2],A1)6=0 .

It is easy to check that on the configuration ω, we have f̂n ∈ Sn(C) because we have

0 ≤
proj

(
ψi(gn[A1, A2], A1)), ε

)
ψi(gn[A1, A2], A1) ≤ 1 .

Moreover, for i ∈ {1, . . . , d}, � ∈ {+,−} and A1 ∈ P�i (m), we have

ψ�i (f̂n, A1) =
∑

A2∈∪dk=1P
+
k

(m)∪P−
k

(m)

proj
(
ψ�i (gn[A1, A2], A1)), ε

)
ψ�i (gn[A1, A2], A1) ψ�i (gn[A1, A2], A1)1ψ�

i
(gn[A1,A2],A1) 6=0

=
∑

A2∈∪dk=1P
+
k

(m)∪P−
k

(m)

proj
(
ψ�i (gn[A1, A2], A1)), ε

)
∈
√
εZ

and since
∀t ∈ R |t− proj(t, ε)| ≤

√
ε

we have ∣∣∣ψ�i (f̂n, A1)− ψ�i (fn, A1)
∣∣∣ ≤ card

(
∪dk=1P+

k (m) ∪ P−k (m)
)√

ε ≤ 2dmd−1√ε .
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It follows that for n large enough (depending on ε) using inequality (4.8), we have∣∣∣ψ�i (f̂n, A1)− sviHd−1(A1)nd−1
∣∣∣ ≤ ∣∣∣ψ�i (f̂n, A1)− ψ�i (fn, A1)

∣∣∣+
∣∣ψ�i (fn, A1)− sviHd−1(A1)nd−1∣∣

≤ 2κd
εα

md−1n
d−1 . (4.9)

Let us compute the distance d(−→µ n(f̂n),−→µ n(fn)). Let x ∈ [−1, 1[d, λ ∈ [1, 2], let k ≥ 1, let Q ∈ ∆k
λ such

that Q ∩ C 6= ∅, we have∥∥∥−→µ n(fn)(Q+ x)−−→µ n(f̂n)(Q+ x)
∥∥∥

2

≤
∑

1≤i,j≤d
�,◦∈{+,−}

∑
A1∈P�i (m)
A2∈P◦j (m)

∣∣∣∣1− proj(ψ�i (gn[A1, A2], A1), ε)
ψ�i (gn[A1, A2], A1)

∣∣∣∣ ‖−→µ n(gn[A1, A2])(Q+ x)‖21ψ�
i
(gn[A1,A2],A1)6=0

≤
∑

1≤i,j≤d
�,◦∈{+,−}

∑
A1∈P�i (m)
A2∈P◦j (m)

√
ε

ψ�i (gn[A1, A2], A1)‖
−→µ n(gn[A1, A2])(Q+ x)‖21ψ�

i
(gn[A1,A2],A1) 6=0 .

Besides, we have by construction:

ψ�i (gn[A1, A2], A1) =
∑
−→γ ∈
−→Γ :

γf∈Ei,�n [A1],γl∈Ej,◦n [A2]

p(−→γ ) ≥ 0

and since the path −→γ is self-avoiding, we have for n large enough∑
Q∈∆k

λ

‖−→µ n(gn[A1, A2])(Q+ x)‖2 ≤
∑
Q∈∆k

λ

∑
−→γ ∈
−→Γ :

γf∈Ei,�n [A1],γl∈Ej,◦n [A2]

p(−→γ ) |
−→γ ∩ (Q+ x)|

nd

≤
∑
−→γ ∈
−→Γ :

γf∈Ei,�n [A1],γl∈Ej,◦n [A2]

p(−→γ ) |
−→γ ∩ C|
nd

= dψ�i (gn[A1, A2], A1)

where we use that

|{e ∈ Edn : e ∈ C}| = |{e = 〈x, y〉 ∈ Edn : x ∈ C, ∃i ∈ {1, . . . , d} n−→xy = −→ei }| = d|C ∩ Zdn| = dnd .

It follows that∑
Q∈∆k

λ

∥∥∥−→µ n(fn)(Q+ x)−−→µ n(f̂n)(Q+ x)
∥∥∥

2
≤
√
ε

∑
1≤i,j≤d
�,◦∈{+,−}

∑
A1∈P�i (m)
A2∈P◦j (m)

d ≤ d
√
ε(2dmd−1)2

and

d(−→µ n(f̂n),−→µ n(fn)) = sup
x∈[0,1]d

sup
λ∈[1,2]

∞∑
k=0

1
2k

∑
Q∈∆k

λ

∥∥∥−→µ n(fn)(Q+ x)−−→µ n(f̂n)(Q+ x)
∥∥∥

2

≤ 8d3√εm2(d−1) ≤ 8d3√ε ε−
d−1
3d+1 .

Hence, we have for n large enough

d(−→µ n(f̂n), s−→v 1CLd) ≤ d(−→µ n(fn), s−→v 1CLd) + d(−→µ n(f̂n),−→µ n(fn))

≤ ε+ 8d3ε
d+3

2(3d+1) .

Finally, for ε small enough depending on d, for n large enough depending on d and ε, we have

d(−→µ n(f̂n), s−→v 1CLd) ≤ εα .
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Step 3: Do a pigeonhole principle for possible values of ψ�i (f̂n, A). We would like to project
ψ�i (f̂n, A) on the possible values it can take for i = 1, . . . , d and A ∈ P+

i (m) ∪ P−i (m). Note that the
two families (ψ�i (f̂n, A), i = 1, . . . , d, A ∈ P+

i (m)) and (ψ�i (f̂n, A), i = 1, . . . , d, A ∈ P−i (m)) satisfy the
conditions (4.5) and (4.6). Since ψ�i (f̂n, A) satisfies inequality (4.9), for n large enough, there are at most
4κdεαnd−1/(md−1√ε) possible values for ψ�i (f̂n, A). It follows that by a pigeonhole principle, there exist
two deterministic families (λ+

A, A ∈ ∪di=1P
+
i (m)) and (λ−A, A ∈ ∪di=1P

−
i (m)) of real numbers in

√
εZ that

satisfies the condition (4.5) depending on n and ε and such that

P

(
∃f̂n ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (f̂n, A) = λ�A

and d
(−→µ n(f̂n), s−→v 1CLd

)
≤ εα

)

≥
(

md−1√ε
4κdεαnd−1

)2dmd−1

P
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ ε
)
. (4.10)

The families (λ+
A)A and (λ−A)A satisfy the condition (4.6) since f̂n satisfies the node law. Hence, we have

by taking the limsup in n and then the liminf in ε in inequality (4.10)

lim inf
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = λ�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ εα

)
≥ lim
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ ε
)
. (4.11)

Moreover, we have for all n ≥ 1

P
(
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = λ�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ εα

)
≤ P

(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ εα

)
.

It follows that

lim inf
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = λ�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ εα

)
≤ lim
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ εα

)
. (4.12)

Combining inequalities (4.11) and (4.12) we obtain the equality. We can do the same computations by
taking the liminf in n instead of the limsup. The result follows.

Proof of lemma 4.2. Let ε > 0. Let m = bε−αc and (λ+
A, A ∈ ∪di=1P

+
i (m)) and (λ−A, A ∈ ∪di=1P

−
i (m))

be the two families of real numbers in
√
εZ defined in lemma 4.1. We consider the event

E =
{
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = λ�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ εα

}
.

From now on, fn stands for a stream that satisfies the requirements stated in the previous event. If there
are several possible choices, we select one according to a deterministic rule. We consider two families of
real numbers (β+

A , A ∈ ∪di=1P
+
i (m)) and (β−A , A ∈ ∪di=1P

−
i (m)) that satisfy conditions (4.5) and (4.6)

(these families are not necessarily in
√
εZ). The aim is now to correct the stream by modifying slightly

the environment so that we obtain a stream f̃n ∈ Sn(C) that satisfies

∀� ∈ {+,−} ∀i ∈ {1, . . . , d} ∀A ∈ P�i (m) ψ�i (f̃n, A) = (1− εα/4)β�A .

Since both families satisfy condition (4.5), we have

∀� ∈ {+,−} ∀i ∈ {1, . . . , d} ∀A ∈ P�i (m) |λ�A − β�A| ≤ 2κd
εα

md−1n
d−1 . (4.13)

39



We set

K =
⌊(

1
2κdεα/2

)1/(d−1)
⌋
. (4.14)

For � ∈ {+,−}, i ∈ {1, . . . , d} and A ∈ P�i (m), we denote by VA the following set

VA = {x ∈ C : {x � λ−→ei : λ ∈ [0, 1/n[} ∩A 6= ∅, ∀j 6= i xj ∈ KZ/n} .

We set
V �i =

⋃
A∈P�

i

VA .

Let us define the function wi on V +
i ∪ V

−
i as follows:

∀A ∈ P�i (m) ∀x ∈ VA wi(x) = β�A − λ�A
|VA|

.

Hence, we have using (4.13) and (4.14)

∀x ∈ VA |wi(x)| ≤ 2κd
εα

md−1n
d−1m

d−1Kd−1

nd−1 ≤ εα/2 . (4.15)

For i = 1, . . . , d, we denote by µ�i the following quantity:

µ�i =
∑

A∈P�
i

(m)

β�A − λ�A .

The quantity µ�i corresponds to the difference between the flow through C�i for fn and the flow we would
like to obtain. Since both families satisfy condition (4.6), then we have

d∑
i=1

µ−i =
d∑
i=1

µ+
i .

We split the 2d faces of C into three categories: the faces Fin where there is an excess of flow, the faces
Fout where there is a default of flow and the faces F0 where the difference of flow is null, i.e.,

Fin = {C−i : µ−i > 0, i = 1, . . . , d} ∪ {C+
i : µ+

i < 0, i = 1, . . . , d};

Fout = {C−i : µ−i < 0, i = 1, . . . , d} ∪ {C+
i : µ+

i > 0, i = 1, . . . , d}

and
F0 = {C�i : µ�i = 0, i = 1, . . . , d} .

By the node law, we have ∑
C�
i
∈Fin

|µ�i | =
∑

C�
j
∈Fout

|µ�j |

For any i ∈ {1, . . . , d}, we define the function pi : Rd → Rd−1 as

∀x = (x1, . . . , xd) ∈ Rd pi(x) = (x1, . . . , xi−1, xi+1, . . . , xd) . (4.16)

Let us assume C−i ∈ F0. We denote by fresn [C−i ], the stream given by lemma 3.3 associated with the
families fin(pi(x)) = wi(x), x ∈

⋃
A∈P−

i
(m)

VA


and the null family (that corresponds here to uniform outputs)(

fout(pi(x)) = 0, x ∈ V +
i

)
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in the direction −→ei . The number of edges on which the stream is not null is at most 3dnd/Kd−2 and
for each edge e ∈ Ed, ‖fresn [C−i ](e)‖2 ≤ εα/2 by (4.15). We can do the same thing for C+

i ∈ F0 in the
direction −−→ei with the families of null inputs(

fin(pi(x)) = 0, x ∈ V +
i

)
and for outputs (

fout(pi(x)) = wi(x), x ∈ V −i
)
.

We obtain a stream fresn [C+
i ].

Let us now consider C−i ∈ Fin and C+
j ∈ Fout. Let α > 0 such that α ≤ |µ−i |, |µ

+
j |. Let us first

assume that i = j. We denote by fresn [C−i ,C
+
i , α] the stream given by lemma 3.3 in the direction −→ei with

the families of inputs (
fin(pi(x)) = α

|µ−i |
wi(x), x ∈ V −i

)
and the family of outputs (

fout(pi(x)) = α

|µ+
i |
wi(x), x ∈ V +

i

)
.

It remains to deal with the case i 6= j. Let us call τi,j the bijection that inverts the ith coordinate
with the jth one. Notice that τi,j(V −i ) = V −j . We can build a family of pairwise disjoint oriented paths
(−→γ x, x ∈ V −i ) of length at most 2n, such that for x ∈ V −i the path −→γ x joins x to τi,j(x) in C (see figure
6):

−→γ x =
xj−xi−1∑
k=0

−→ei1〈x+k−→ei/n,x+(k+1)−→ei/n〉 −
xj−xi−1∑
k=0

−→ej1〈x+(xj−xi)−→ei/n+k−→ej/n,x+(xj−xi)−→ei/n+(k+1)−→ej/n〉 .

−→γ x represents in fact the stream of intensity 1 through this oriented path.

−→e1

−→e2

x ∈ V −1

τ1,2(x) ∈ V −2

−→γ xκ

Figure 6 – The path −→γ x for x ∈ V −1

By lemma 3.3, we can build a stream gi,jn in the direction −→ej with the family of inputs(
fin(pj(x)) = α

|µ−i |
wi(τ−1

i,j (x)), x ∈ V −j
)

and the family of outputs (
fout(pj(x)) = α

|µ+
j |
wj(x), x ∈ V +

j

)
.
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Finally, we set
fresn [C−i ,C

+
j , α] = gi,jn +

∑
x∈V −

i

α

|µ−i |
wi(x)−→γ x .

We have ∑
x∈V −

i

|−→γ x| ≤ 2n|V −i | ≤ 2n n
d−1

Kd−1 ≤ 2 nd

Kd−1 .

Hence, using the previous inequality and lemma 3.3, we have that the stream fresn [C−i ,C
+
j , α] is supported

by at most 2nd/Kd−1 + 3dnd/Kd−2 ≤ 4dnd/Kd−2 for ε small enough depending on d. Moreover, for
each edge e ∈ C, we have ‖fresn [C−i ,C

+
j , α](e)‖2 ≤ 2εα/2. By symmetry, the same construction holds for

any C�i ∈ Fin and C�j ∈ Fout.
The aim is now to build a residual stream fresn such that

∀i ∈ {1, . . . , d} ∀� ∈ {−,+} ∀A ∈ P�i (m) ψ�i (fresn , A) = β�A − λ�A .

We do the following algorithm to build this stream.

Algorithm 1 Build the stream fresn

fresn ← 0
for i = 1, . . . , d, ◦ = −,+ do
if C◦i ∈ F0 then
fresn ← fresn + fresn [C◦i ]

end if
end for
for i = 1, . . . , d, ◦ = −,+ do
if C◦i ∈ Fin then
while |ψ◦i (fresn ,C◦i )| < |µ◦i | do
By the node law, there exists C�j ∈ Fout such that

|ψj(fresn ,C�j )| < |µ�j | .

We set α = min(|µ◦i | − |ψ◦i (fresn ,C◦i )|, |µ�j | − |ψj(fresn ,C�j )|).
fresn ← fresn + fresn [C◦i ,C�j , α]

end while
end if

end for
return fresn .

The number of steps of this algorithm is at most (2d)2. Finally, the stream fresn has its support included
in a set Γ such that

|Γ| ≤ κ′d
Kd−2n

d

where κ′d depends only on the dimension. Moreover, each edge e ∈ Γ is used a most twice at each step,
hence we have

‖fresn (e)‖2 ≤ 2(2d)2εα/2 ≤ 8d2εα/2 . (4.17)

We set
f̃n = (1− εα/4)(fn + fresn ) .

This ensures that for ε small enough depending on s and d, on the event {∀e ∈ Γ t(e) ≥ s/(2d)}, we
have f̃n ∈ Sn(C). Indeed, for e ∈ Γ, we have

‖f̃n(e)‖2 ≤ (1− εα/4)(‖fn(e)‖2 + 8d2εα/2) ≤ (1− εα/4)
(

1 + 16d3 ε
α/2

s

)
t(e) ≤ t(e)
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for ε small enough depending on d ans s. Doing so we obtain

∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m) ψ�i (f̃n, A) = (1− εα/4)(ψ�i (fn, A) + β�A − λ�A) = (1− εα/4)β�A
where we recall that ψ�i (fn, A) = λ�A. Moreover, using inequality (4.17) and the expression of K in terms
of ε given by (4.14), we obtain for n large enough depending on d

d(−→µ n(f̃n), s−→v 1CLd) ≤ d(−→µ n(fn), s−→v 1CLd) + 2εα/4

nd

∑
e∈Edn∩C

‖fn(e)‖2 + 2
nd

∑
e∈Edn∩C

‖fresn (e)‖2

≤ εα + 6dεα/4M + 16d2εα/2
|Γ|
nd

≤ εα + 6dεα/4M + 16d2K ′d
εα/2

Kd−2 ≤ Kε
α
2 (1− d−2

d−1 ) = Kε
α

2(d−1) ≤ ε
α

4(d−1) .

where K depends on M and d and the last inequalities holds for ε small enough depending on d. We set

α0 = α

4(d− 1) . (4.18)

On the following event

E ∩ E ′ =

∃fn ∈ Sn(C) :
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)

ψ�i (fn, A) = λ�A
and d

(−→µ n(fn), s−→v 1CLd
)
≤ εα,

 ∩ {∀e ∈ Γ t(e) ≥ s

2d

}
,

the stream f̃n is admissible since it satisfies the capacity constraint. Using the fact that the two events
E and E ′ are increasing (requiring large capacities will always help to obtain a given stream), we have
by FKG inequality

P

(
∃f̃n ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (f̃n, A) = (1− εα/4)β�A

and d
(−→µ n(f̃n), s−→v 1CLd

)
≤ εα0

)

≥ P

∃fn ∈ Sn(C) :
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)

ψ�i (fn, A) = λ�A
and d

(−→µ n(fn), s−→v 1CLd
)
≤ εα

 ∩ {∀e ∈ Γ t(e) ≥ s

2d

}
≥ P

(
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = λ�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ εα

)
× P

(
∀e ∈ Γ t(e) ≥ s

2d

)
. (4.19)

Using the independence of the capacities, we get

P
(
∀e ∈ Γ t(e) ≥ s

2d

)
≥ G

([ s
2d ,+∞

[)|Γ|
≥ G

([ s
2d ,+∞

[)κ′dnd/Kd−2

. (4.20)

Combining inequalities (4.19) and (4.20), we obtain for ε small enough (depending on d and s)

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = (1− εα/4)β�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ εα0

)
≥ lim sup

n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = λ�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ εα

)
+ κ′d
Kd−2 logG

([ s
2d ,+∞

[)
where we recall that K goes to infinity when ε goes to 0. Finally, by lemma 4.1, we obtain by letting ε
goes to 0 and choosing a fixed s ≤ 2dM :

lim inf
ε→0

lim sup
n→∞

1
nd

logP

∃fn ∈ Sn(C) :
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)

ψ�i (fn, A) = (1− εα/4)β�A
and d

(−→µ n(fn), s−→v 1CLd
)
≤ εα0


≥ lim
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ ε
)
.
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Moreover, we have

lim inf
ε→0

lim sup
n→∞

1
nd

logP

∃fn ∈ Sn(C) :
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)

ψ�i (fn, A) = (1− εα/4)β�A
and d

(−→µ n(fn), s−→v 1CLd
)
≤ εα0


≤ lim
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), s−→v 1CLd
)
≤ εα0

)
.

This yields the result. The same result holds for the liminf.

Definition 4.3. Let s > 0 and −→v ∈ Sd−1. Let π be an homothety of Rd (see (1.6)). We will say that
fn ∈ Sn(π(C)) is (ε, s−→v ,π)-well-behaved if

∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m) ψ�i (fn, π(A)) = (1− εα/4)(s−→v · −→ei )Hd−1(π(A))nd−1 .

If π = Id, we will write (ε, s−→v )-well-behaved instead of (ε, s−→v , Id)-well-behaved.

4.2 Definition and existence of the elementary rate function
Proof of Theorem 1.1. Here M > 0 denotes the supremum of the support of G. Let −→v ∈ Sd−1. Let
s > 0. Let ε > 0. Let m = bε−αc where α was defined in (4.7). Let N,n ∈ N such that n ≤ N and
n ≥ m+ 1. Write

C′ = n

N
C .

Step 1: Paving C with smaller cubes. We want to almost cover C with translates of C′ by letting
enough space between them to allow to reconnect the streams inside the different translates of C′ together.
Let us set

p =
⌊
n

(
1 + 2d

m

)⌋
.

xi + C′

C

p
N

Cor

xi

Figure 7 – Paving C with translates of C′

Let (xi)i∈I be the points in pZdN ∩(1−p/N)C. Any two distinct points xi and xj , i, j ∈ I, are at distance
at least p/N from each other. We set

πi = πxi, nN , for i ∈ I
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where we recall that πxi,n/N was defined in (1.6). We have πi(C) = xi + C′. The family (πi(C))i∈I is a
disjoint collection of translates of C′ such that

∀i ∈ I πi(C) ⊂ C .

We define the set Cor = C \ ∪i∈Iπi(C). The set Cor represents the "corridor", this space will allow the
streams in different πi(C) to be connected altogether (see figure 7). It is easy to check that πi(Zdn) = ZdN
and so that πi induces a bijection from Edn to EdN . We write

Ei =
{
∃fN ∈ SN (πi(C)) (ε, s−→v , πi)-well-behaved : d

(−→µ N (fN )1πi(C), s
−→v 1πi(C)Ld

)
≤ 4 n

d

Nd
εα0

}
where α0 was defined in (4.18). On the event Ei, we will denote by f (i)

N a well-behaved stream satisfying
the property described in Ei (chosen according to a deterministic rule if there is more than one such
stream). We denote by CorN the edges in EdN whose left endpoints are in Cor:

CorN =
{
〈x, y〉 ∈ EdN : x ∈ Cor and ∃i ∈ {1, . . . , d} −→xy =

−→ei
N

}
.

Let us denote by F the event

F = { ∀e ∈ CorN t(e) ≥M −H(ε)}

where H : R+ → R+ is a function we will chose later in such a way limε→0 H(ε) = 0. We aim to prove
that on the event F ∩

⋂
i∈I Ei, we can build a stream fN ∈ SN (C) such that fN coincides with f (i)

N on
the cubes πi(C), i ∈ I and

∀e ∈ EdN ∩ Cor ‖fN (e)‖2 ≤M −H(ε) .

Step 2: Reconnecting streams in the different cubes. We now explain how to reconnect the
streams in the different cubes. Let i, j ∈ I such that ‖xi − xj‖1 = p/N . There exists l ∈ {1, . . . , d} such
that

xj = p

N
−→el + xi .

Note that for all A ∈ P+
l (m), we have on the event Ei ∩ Ej

ψ+
l

(
f

(i)
N , πi(A)

)
= (1− εα/4)(s−→v · −→el )Hd−1(πi(A))nd−1 = ψ−l

(
f

(j)
N , πj (A−−→el )

)
.

xi xj

n
N

n
N

p−n
N

πi(A) πj(A−−→el )

−→el

cyl
(
πi(A), p−nN ,−→el

)

Figure 8 – Connecting streams in two adjacent cubes at mesoscopic level

We can therefore apply lemma 3.1 to connect these two streams using only edges in the cylinder
cyl(πi(A), (p − n)/N,−→el ) (see figure 8) since (p − n)/N ≥ 2(d − 1)/(Nm). We denote by fmix,i,j,AN

45



the corresponding stream. Note that each edge in the corridor is used at most once by the streams
fmix,i,j,AN . We set

fmix,i,jN =
∑

A∈P+
l

(m)

fmix,i,j,AN .

For i ∈ I, � ∈ {+,−} such that there exists l ∈ {1, . . . , d} with xi � p/N−→el /∈ {xj , j ∈ I}, we have to
connect the stream f

(i)
N to the boundary of C by exiting the water in the straight direction −→el . More

formally, we set

gi,l,+N =
∑

e∈El,+
N

[πi(C+
l

)]

f
(i)
N (e)

p−n∑
k=1

1
e+k

−→el
N

1(
e+k

−→el
N

)
∈C

and

gi,l,−N =
∑

e∈El,−
N

[πi(C−l )]

f
(i)
N (e)

p−n∑
k=1

1
e−k

−→el
N

1(
e−k

−→el
N

)
∈C

where for an edge e = 〈x, y〉 ∈ EdN for z ∈ ZdN , we denote by e+ z the edge 〈x+ z, y + z〉 ∈ EdN . Finally,
we set

fN =
∑
i∈I

f
(i)
N +

∑
(i,j)∈I2:‖xi−xj‖1= p

N

fmix,i,jN +
∑
i∈I

∑
l=1,...,d,�∈{+,−}:
xi� pN

−→el /∈{xj ,j∈I}

gi,l,�N .

By construction, fN coincides with f (i)
N on all C′ + xi for i ∈ I. But, the value of ‖fN (e)‖2 may exceed

M −H(ε) for edges in the corridor. To fix this issue we consider the stream f̂N = (1−H(ε)/M)fN . On
the event F ∩

⋂
i∈I Ei, the stream f̂N is in SN (C).

Conclusion. Using lemma 2.6, we obtain

d(−→µ N (fN ), s−→v 1CLd) ≤
∑
i∈I

d(−→µ N (f (i)
N ), s−→v 1πi(C)Ld) + d(−→µ N (fN )1Cor, s

−→v 1CorLd)

≤ 4|I| n
d

Nd
εα0 + 2sLd(Cor) + 2M |CorN |

Nd
. (4.21)

Moreover, we have

|I| ≤ Nd

bn(1 + 2d/m)cd ≤
Nd

nd
(4.22)

and since (1− 2p/N)C ⊂ ∪i∈I(xi + (p/N)C), it follows that

|I| ≥
(

1− 2p/N
p/N

)d
=
(

N

bn(1 + 2d/m)c − 2
)d
≥
(

N

n(1 + 2d/m) − 2
)d

and

Ld(Cor) ≤ 1− nd

Nd
|I| ≤ 1−

(
1

1 + 2d/m − 2 n
N

)d
. (4.23)

We have using proposition 1.7, for N large enough depending on d and ε and n

|CorN | ≤ 2dL
d(V2(Cor, d/N))

1/Nd
≤ 2d

(
Ld(Cor) + Ld(V2(∂Cor, d/N))

)
Nd

≤ 2d
(
Ld(Cor) + 4d

N
Hd−1(∂Cor)

)
Nd . (4.24)

We also have using inequality (4.22)

Hd−1(∂Cor) ≤ Hd−1(∂C) +
∑
i∈I
Hd−1 (∂(πi(C)) ≤ 2d+ 2d|I|

( n
N

)d−1
≤ 2d+ 2dN

n
. (4.25)

46



Combining inequalities (4.21), (4.22), (4.23), (4.24) and (4.25), we obtain forN,n large enough depending
on ε, on the event F ∩

⋂
i∈I Ei, that

d(−→µ N (fN ), s−→v 1CLd) ≤ g(ε) (4.26)

where g : R+ → R+ is a function such that limε→0 g(ε) = 0. It follows that for N large enough

d(−→µ N (f̂N ), s−→v 1CLd) ≤ d(−→µ N (f̂N ),−→µ N (fN )) + d(−→µ N (fN ), s−→v 1CLd)

≤ 2H(ε)
MNd

∑
e∈Ed

N
∩C

‖fN (e)‖2 + g(ε) ≤ 2dH(ε)
M

+ g(ε) (4.27)

where we recall that |EdN ∩ C| = dNd. Hence, using the independence and inequality (4.22), we obtain

1
Nd

logP
(
∃fN ∈ SN (C) : d(−→µ N (fN ), s−→v 1CLd) ≤ g(ε) + 2dH(ε)

M

)
≥ 1
Nd

logP
(
F ∩

⋂
i∈I
Ei

)
= 1
Nd

logP(F) + 1
Nd
|I| logP(E1)

≥ |CorN |
Nd

logG([M −H(ε),M ]) + 1
nd

logP(E1) . (4.28)

We define H(ε) as follows:

H(ε) = inf
{
a > 0 : G([M − a,M ]) ≥ 1−

(
1

1 + 2d/m

)d}
. (4.29)

We recall that m = bε−αc. It is clear that H is non-decreasing. We denote by l = limε→0 H(ε). Let us
assume that l > 0. By defintion of H it follows that

∀ε > 0 G([M − l/2,M ]) < 1−
(

1
1 + 2d/m

)d
and so G([M − l/2,M ]) = 0. This contradicts the fact that M is the supremum of the support of G.
Hence, l = 0. Thanks to inequality (4.23) and by definition of H, we have(

1−
(

1
1 + 2d/m

)d)
log
(

1−
(

1
1 + 2d/m

)d)
≤ lim inf

N→∞
Ld(Cor) logG([M −H(ε),M ]) ≤ 0 .

Since

lim
ε→0

(
1−

(
1

1 + 2d/m

)d)
log
(

1−
(

1
1 + 2d/m

)d)
= 0 ,

it follows that

lim
ε→0

lim inf
N→∞

Ld(Cor) logG([M −H(ε),M ]) = 0 . (4.30)

We admit the following result, we postpone its proof (see lemma 4.4 below).

P(Ei) = P
(
∃fN ∈ SN (πi(C)) (ε, s−→v , πi)-well-behaved : d

(−→µ N (fN ), s−→v 1πi(C)Ld) ≤ 4 n
d

Nd
εα0

)
≥ P(∃fn ∈ Sn(C) (ε, s−→v )-well-behaved : d(−→µ n(fn), s−→v 1CLd) ≤ εα0) .

(4.31)

For fn ∈ Sn(C) (ε, s−→v )-well-behaved, we have

∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m) ψ�i (fn, A) = (1− εα/4)(s−→v · −→ei )Hd−1(A)nd−1 .
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The families ((s−→v · −→ei )Hd−1(A)nd−1, A ∈ ∪di=1P
−
i (m)) and ((s−→v · −→ei )Hd−1(A)nd−1, A ∈ ∪di=1P

+
i (m))

clearly satisfy conditions (4.5) and (4.6). Hence, by applying lemma 4.2, we obtain

lim inf
ε→0

lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(C) (ε, s−→v )-well-behaved : d(−→µ n(fn), s−→v 1CLd) ≤ εα0)

= lim
ε→0

lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn), s−→v 1CLd) ≤ ε) . (4.32)

Using inequalities (4.24), (4.28) and (4.31), by taking first the liminf in N and then the limsup in n we
obtain

lim inf
N→∞

1
Nd

logP
(
∃fN ∈ SN (C) : d(−→µ N (fN ), s−→v 1CLd) ≤ g(ε) + 2dH(ε)

M

)
≥ lim inf

N→∞
2dLd(Cor) logG([M −H(ε),M ])

+ lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(C) (ε, s−→v )-well-behaved : d(−→µ n(fn), s−→v 1CLd) ≤ εα0) .

Finally, taking the limit when ε goes to 0 in the previous inequality (the probability are non-decreasing
in ε) and using equalities (4.30), (4.31) and (4.32), we obtain

lim
ε→0

lim inf
N→∞

1
Nd

logP(∃fN ∈ SN (C) : d(−→µ N (fN ), s−→v 1CLd) ≤ ε)

≥ lim
ε→0

lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn), s−→v 1CLd) ≤ ε) .

This yields the result.

The following lemma proves inequality (4.31) in a slightly more general setting.

Lemma 4.4 (Scaling and Translation). Let −→v ∈ Sd−1 and s > 0. Let ε > 0. Let m ∈ N. Let
N ≥ n ≥ 1. Let (ρ+

A, A ∈ ∪di=1P
+
i (m)) and (ρ−A, A ∈ ∪di=1P

−
i (m)) be two families of real numbers

(potentially depending on ε, n and N). Let x ∈ ZdN . Set δ = n/N . Then πx,δ(Zdn) = ZdN : πx,δ induces a
bijection from Edn to EdN (we refer to (1.6) for the definition of πx,δ). Then, we have

P
(
∃fn ∈ Sn(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn, A) = ρ�A

and d
(−→µ n(fn), s−→v 1CLd

)
≤ ε

)
≤ P

(
∃fN ∈ SN (πx,δ(C)) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fN , πx,δ(A)) = ρ�A

and d
(−→µ N (fN ), s−→v 1πx,δ(C)Ld

)
≤ 4δdε

)
.

Proof. First notice that for y ∈ Zdn, we have πx,δ(y) = ny/N + x ∈ ZdN . Then, πx,δ induces a bijection
from Edn to EdN . Let us consider ω ∈ (R+)Edn a configuration for which there exists fn ∈ Sn(C) such that

d
(−→µ n(fn), s−→v 1CLd

)
≤ ε

and
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m) ψ�i (fn, A) = ρ�A .

Let fn = fn(ω) be such a stream in the configuration ω and define −→µ n = −→µ n(fn). We aim to prove that
on the configuration ω ◦ π−1

x,δ the stream fn ◦ π−1
x,δ belongs to SN (πx,δ(C)), satisfies

∀� ∈ {+,−} ∀i ∈ {1, . . . , d} ∀A ∈ P�i (m) ψ�i (fn ◦ π−1
x,δ, πx,δ(A)) = ρ�A

and
d
(−→µ N (fn ◦ π−1

x,δ), s
−→v 1πx,δ(C)Ld

)
≤ 4δdε .

We set
−→µ N = −→µ N (fn ◦ π−1

x,δ) = 1
Nd

∑
e∈Ed

N

fn ◦ π−1
x,δ(e)δc(e) .
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It is clear that fn ◦ π−1
x,δ ∈ SN (πx,δ(C)) for the configuration ω ◦ π−1

x,δ. Moreover, we have for A ∈ P�i (m)

ψ�i (fn ◦ π−1
x,δ, πx,δ(A))) =

∑
e∈Ei,�

N
[πx,δ(A)]

fn(π−1
x,δ(e)) ·

−→ei =
∑

e∈Ei,�n [A]

fn(e) · −→ei = ψ�i (fn, A) = ρ�A .

It remains to compute the distance d
(−→µ N , s−→v 1πx,δ(C)Ld

)
. Let λ ∈ [1, 2], y ∈ [0, 1]d. Let j ≥ 1 such that

2j < λ
N

n
≤ 2j+1 .

Let λ′ ∈ [1, 2] such that
λ
N

n
= λ′2j .

Let z ∈ [−1, 1[d such that N
n (y − x) ∈ (z + λ′Zd). Let k ≥ j. Let Q ∈ ∆k

λ, set B = Q+ y, we have

π−1
x,δ(B) = N

n
(B − x) = N

n
Q+ N

n
(y − x) .

Since N
n (y − x) ∈ (z + λ′Zd) ⊂ (z + λ′2j−kZd), it yields that

π−1
x,δ(B) ∈

(
z + ∆k−j

λ′

)
.

We have by change of variable

Ld(B ∩ πx,δ(C)) =
∫
B∩πx,δ(C)

dLd(y) = nd

Nd

∫
π−1
x,δ

(B)∩C
dLd(y) = nd

Nd
Ld(π−1

x,δ(B) ∩ C) .

It follows that for B ∈ (y + ∆k
λ), we have

‖−→µ N (B)− s−→v Ld(B ∩ πx,δ(C))‖2 = nd

Nd
‖−→µ n(π−1

x,δ(B))− s−→v Ld(π−1
x,δ(B) ∩ C)‖2

where π−1
x,δ(B) ∈ (z + ∆k−j

λ′ ). Hence, we have∑
B∈(y+∆k

λ
)

‖−→µ N (B)− s−→v Ld(B ∩ πx,δ(C))‖2 =
∑

B̂∈(z+∆k−j
λ′

)

nd

Nd
‖−→µ n(B̂)− s−→v Ld(B̂ ∩ C)‖2 .

Besides, for k < j, we have by triangular inequality∑
Q∈(y+∆k

λ
)

‖−→µ N (Q)− s−→v Ld(Q ∩ πx,δ(C))‖2 ≤
∑

Q∈(y+∆j
λ

)

‖−→µ N (Q)− s−→v Ld(Q ∩ πx,δ(C))‖2

=
∑

Q′∈(z+∆0
λ

)

nd

Nd
‖−→µ N (Q′)− s−→v Ld(Q′ ∩ C)‖2 .

Combining the two previous inequalities, it follows that
∞∑
k=0

1
2k

∑
Q∈(y+∆k

λ
)

‖−→µ N (Q)− s−→v Ld(Q ∩ πx,δ(C))‖2

≤ nd

Nd

j−1∑
k=0

1
2k

∑
Q′∈(z+∆0

λ
)

‖−→µ N (Q′)− s−→v Ld(Q′ ∩ C)‖2 + nd

Nd

∞∑
k=j

1
2k

∑
Q∈(z+∆k−j

λ′
)

‖−→µ n(Q)− s−→v Ld(Q ∩ C)‖2

≤ 2 n
d

Nd

∑
Q∈(z+∆0

λ
)

‖−→µ N (Q)− s−→v Ld(Q ∩ C)‖2 + 2−j n
d

Nd

∞∑
k=0

1
2k

∑
Q∈(z+∆k

λ′
)

‖−→µ n(Q)− s−→v Ld(Q ∩ C)‖2

≤ nd

Nd

(
2 + λ′

λ

n

N

)
d(−→µ n, s−→v 1CLd) ≤ 4 n

d

Nd
ε .
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Hence, it yields that on the configuration ω ◦ π−1
x,δ,

d(−→µ N (gN ), s−→v 1δC+xLd) ≤ 4δdε

and the result follows.

4.3 Lower semi-continuity
In this section, we prove that the map I is lower semi-continuous on Rd.

Proposition 4.5. The map I is lower semi-continuous on Rd.

Proof of proposition 4.5. Let −→v ∈ Rd and let (−→v p)p≥1 be a sequence such that limp→∞
−→v p = −→v . Let

us first assume that I(−→v ) <∞. Let δ > 0. Let ε0 = ε0(δ) > 0 such that

∀ε ≤ ε0 − lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn),−→v 1CLd) ≤ ε) ≥ I(−→v )− δ .

Let p0 ≥ 1 be such that for any p ≥ p0, ‖−→v −−→v p‖2 ≤ ε0/4. Using lemma 2.3, it yields that

d(−→µ n(fn),−→v 1CLd) ≤ d(−→µ n(fn),−→v p1CLd) + 2‖−→v −−→v p‖2 ≤ d(−→µ n(fn),−→v p1CLd) + ε0

2 ,

and

∀ε ≤ ε0 ∀p ≥ p0 − lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn),−→v 1CLd) ≤ ε0)

≤ − lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn),−→v p1CLd) ≤ ε/4) .

It follows that

∀ε ≤ ε0 ∀p ≥ p0 − lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn),−→v p1CLd) ≤ ε/4) ≥ I(−→v )− δ .

By letting first ε goes to 0 and then taking the liminf in p, we obtain

lim inf
p→∞

I(−→v p) ≥ I(−→v )− δ .

Since the previous inequality holds for any δ > 0, it follows that

lim inf
p→∞

I(−→v p) ≥ I(−→v ) .

Let us now assume that I(−→v ) = +∞. By the same reasoning, we can prove that for any M > 0,

lim inf
p→∞

I(−→v p) ≥M .

It follows that lim infp→∞ I(−→v p) = I(−→v ) = +∞. This yields the proof.

4.4 Convexity
In this subsection, we aim to prove that the map I is convex, this property will allow us to obtain

regularity properties on I.

Theorem 4.6. The map I : Rd → R+ ∪ {+∞} is convex, that is

∀λ ∈ [0, 1] ∀−→v 1,
−→v 2 ∈ Rd I(λ−→v 1 + (1− λ)−→v 2) ≤ λI(−→v 1) + (1− λ)I(−→v 2) .

Let us define DI as the set of points where I is finite, that is,

DI =
{
x ∈ Rd : I(x) < +∞

}
.

It is easy to check thanks to theorem 4.6, that the set DI is convex. From theorem 4.6, we can deduce
the following proposition that is a corollary of Theorem 6.7.(i) in [12].
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Proposition 4.7. The map I is continuous on D̊I .

Let C be the cube of side-length 1/n centered at 0, that is

C =
[
− 1

2n,
1

2n

]d
.

For any edge e ∈ Edn, write P(e) the dual of the edge e, i.e., the hypersquare of dimension d − 1 of
side-length 1/n, orthogonal to e and centered at the center of e. Let −→v ∈ Sd−1, s ∈ [0,M ], h > 0,
and A be an hyperrectangle of Rd such that −→v is not contained in an hyperplane parallel to A. We
need to define a new set of admissible streams Ŝn(cyl(A, h,−→v ), s−→v ) that is defined only in the interior
of cyl(A, h,−→v ) and have prescribed values near the boundary of cyl(A, h,−→v ). Let g : R+ → [0, 1] be a
function such that

lim
ε→0

g(ε) = 1 .

A stream fn is in Ŝn(cyl(A, h−→v ), s−→v , g(ε)) if
— The stream respects the capacity constraint:∀e ∈ Edn ‖fn(e)‖ ≤ t(e).
— The stream is null outside the cylinder: ∀e ∈ Edn P(e) 6⊂ cyl(A, h,−→v ) =⇒ fn(e) = 0.
— The values of the stream for edges closed to the boundary are prescribed by the continuous stream

s−→v : ∀e = 〈x, y〉 such that ((x + C) ∪ (y + C)) 6⊂ cyl(A, h,−→v ) and P(e) ⊂ cyl(A, h,−→v ), we have
fn(e) = g(ε)n2(s−→v · −→xy)−→xy.

— The node law is respected for any x ∈ Zdn such that (x+ C) ⊂ cyl(A, h, s−→v ) .
To prove theorem 4.6, we need first to prove the following lemma. This lemma controls the probability

of having a constant stream s−→v in a cylinder oriented in the direction −→v .

Lemma 4.8. Let −→v ∈ Sd−1, s ∈ [0, dM ], h > 0 and A be an hyperrectangle of Rd such that −→v is
not contained in an hyperplane parallel to A. There exists two positive functions g0 : R+ → R+ and
g1 : R+ → [0, 1] that satisfy

lim
ε→0

g0(ε) = 0 and lim
ε→0

g1(ε) = 1

such that we have

− lim inf
ε→0

lim sup
n→∞

1
nd

logP (En(cyl(A, h,−→v ), s−→v , g0(ε), g1(ε))) ≤ Ld(cyl(A, h,−→v ))I(s−→v )

where

En(cyl(A, h,−→v ), s−→v , g0(ε), g1(ε)) =
{

∃fn ∈ Ŝn(cyl(A, h,−→v ), s−→v , g1(ε)) :
d
(−→µ n(fn), s−→v 1cyl(A,h,−→v )Ld

)
≤ g0(ε)Ld(cyl(A, h,−→v ))

}
.

Proof of lemma 4.8. To prove lemma 4.8, we proceed similarly as in the proof of theorem 1.1. We pave
the cylinder with small cubes, we consider streams in these small cubes and we try to reconnect these
streams using the corridor. The main difference with the proof of theorem 1.1 is that we require that
edges close to the boundary of the cylinder have a prescribed value. This prescribed value corresponds
to a discretized version of the continuous stream s−→v .

Here M > 0 denotes the supremum of the support of G. Without loss of generality, we can assume
that for any i ∈ {1, . . . , d}, −→v · −→ei = vi ≥ 0.
Step 1: Paving cyl(A, h,−→v ) with cubes. Let m = bε−αc where α was defined in (4.7). We set

κ = m

n

⌊nε
m

⌋
.

Hence we have nκ ∈ Z, nκ(1 + 2d/m) ∈ Z and limn→∞ κ = ε. Write

E = κ

(
1 + 2d

m

)
C .
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We want to cover cyl(A, h,−→v ) by translates of E. Let T(cyl(A, h,−→v )) be the following set of translates
of E contained in cyl(A, h,−→v ):

T(cyl(A, h,−→v )) =
{
x ∈ κ(1 + 2d/m)Zd : (E + x) ⊂ (cyl(A, h,−→v ) \ V∞(∂ cyl(A, h,−→v ), dκ))

}
.

Write Cor the following set

Cor = cyl(A, h,−→v ) \
⋃

x∈T(cyl(A,h,−→v ))

πx,κ(C)

and the set of edges Corn whose left endpoint is in Cor:

Corn =
{
〈x, y〉 ∈ Edn : x ∈ Cor and ∃i ∈ {1, . . . , d} −→xy =

−→ei
n

}
.

For x ∈ T(cyl(A, h,−→v ))) we write

Ex =
{
∃fn ∈ Sn(πx,κ(C)) (ε, s−→v , πx,κ)-well-behaved : d

(−→µ n(fn), s−→v 1πx,κ(C)Ld
)
≤ 4εα0κd

}
.

On the event Ex, we will denote by fxn a (ε, s−→v , πx,κ)-well-behaved stream satisfying

d
(−→µ n(fn), s−→v 1πx,κ(C)Ld

)
≤ 4εα0κd

(chosen according to a deterministic rule if there is more than one). Let us denote by F the event

F = { ∀e ∈ Corn t(e) ≥M −H(ε)}

where H(ε) ≥ 0 will be defined later in a similar way than in (4.29). The function H satisfies limε→0 H(ε) =
0. We aim to prove, that on the event F ∩

⋂
x∈T(cyl(A,h,−→v ))) Ex, we can build a stream

fn ∈ Ŝn
(

cyl(A, h,−→v ), s−→v , (1−H(ε))(1− εα/4)
)

such that fn coincides with fxn on πx,κ(C), for x ∈ T(cyl(A, h,−→v )).
Step 2: Construction of the stream inside ∪x∈T(cyl(A,h,−→v ))(x + E). By lemma 3.1, for any x ∈
T(cyl(A, h,−→v )), for any i ∈ {1, . . . , d}, for any � ∈ {+,−}, for any A0 ∈ P�i (m), there exists a stream
f
x,A0
n in cyl(πx,κ(A0), κd/m, �−→ei ) such that

∀e ∈ Ei,�n [πx,κ(A0)] f
x,A0
n

(
e �
−→ei
n

)
= fxn (e)

and
∀e ∈ Ei,�n

[
πx,κ

(
A0 �

d

m
−→ei
)]

f
x,A0
n (e) = ψ�i (fxn , πx,κ(A0))

|Ei,�n [πx,κ(A0)]|
.

This stream mix the inputs in such a way the outputs are uniform. We set fpreln the stream inside
∪x∈T(cyl(A,h,−→v ))(x+ E) as

fpreln =
∑

x∈T(cyl(A,h,−→v ))

fxn +
∑

A0∈∪iP+
i

(m)∪P−
i

(m)

f
x,A0
n

 .

For any x1, x2 ∈ T(cyl(A, h,−→v )) such that x2 = x1 + κ(1 + 2d/m)−→ei , we have on the event Ex1 ∩ Ex2

∀A0 ∈ P+
i (m) ψ+

i (fx1
n , πx1,κ(A0)) = (1− εα/4)sviHd−1(πx,κ(A0))nd−1 = ψ−i (fx2

n , πx2,κ(A0 −−→ei )) .

Moreover, since 2κd/m ∈ Zn, it follows that:

|Ei,�n [πx,κ(A0)]| =
∣∣∣∣Ei,�n [

πx,κ(A0) + 2κd
m
−→ei
]∣∣∣∣ .
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Combining the two latter equalities, we obtain that

∀e ∈ Ei,�n
[
πx1,κ

(
A0 �

d

m
−→ei
)]

f
x1,A0
n (e) = f

x2,A0−−→ei
n

(
e+
−→ei
n

)
.

The latter equality ensures that the streams fx1,A0
n and fx2,A0−−→ei

n glue well together and so that the node
law is satisfied everywhere inside ∪x∈T(cyl(A,h,−→v ))(x + E). It remains to extend fpreln to cyl(A, h,−→v ) \
∪x∈T(cyl(A,h,−→v ))(x + E) in such a way that we respect the boundary conditions. To do so, we define a
discretized version fdiscn of the continuous stream s−→v . Since the stream fdiscn will not perfectly match
with the boundary conditions of fpreln , we will also need to build a stream that corrects the differences
on the boundary.
Step 3: Construction of a discrete stream from the continuous one. Let x ∈ T(cyl(A, h,−→v ).
Let i ∈ {1, . . . , d} and � ∈ {+,−}, let us compute |Ei,�n [πx,κ(1+2d/m)(C�i )]|. By symmetry of the lattice
and since x ∈ κ(1 + 2d/m)Zd ⊂ Zdn, it is equal to |E1,+

n [κ(1 + 2d/m)C+
1 ]| = κd−1(1 + 2d/m)d−1nd−1 since

nκ(1+2d/m) ∈ Z. We consider the following stream fdiscn that is the discretized version of s−→v 1cyl(A,h,−→v )
defined by

∀e = 〈x, y〉 ∈ Edn such that P(e) ⊂ cyl(A, h,−→v )
fdiscn (e) = (1 + 2d/m)−(d−1)(1− εα/4)n2(s−→v · −→xy)−→xy .

In particular, if −→xy = −→ei /n, for i ∈ {1, . . . , d}, we have

fdiscn (e) = (1 + 2d/m)−(d−1)(1− εα/4)svi−→ei .

Hence, we have for x ∈ T(cyl(A, h,−→v ), i ∈ {1, . . . , d}, � ∈ {+,−}

ψ�i (fdiscn , πx,κ(1+2d/m)(C�i )) = (1 + 2d/m)−(d−1)(1− εα/4)svi|Ei,�n [πx,κ(1+2d/m)(C�i )]|
= (1− εα/4)sviκd−1nd−1

=
∑

A0∈P�i (m)

ψ�i (fxn , πx,κ(A0))

= ψ�i (fxn , πx,κ(C�i )) = ψ�i (fpreln , πx,κ(1+2d/m)(C�i )) . (4.33)

Let w ∈ Zdn such that w + C ⊂ cyl(A, h,−→v ), we have∑
y∈Zdn:

e=〈w,y〉∈Edn

fdiscn (e) · (n−→wy) = (1 + 2d/m)−(d−1)(1− εα/4)n
∑
y∈Zdn:

e=〈w,y〉∈Edn

(s−→v · −→wy) = 0

and the node law is satisfied at w for the stream fdiscn .
Step 4: Gluing the streams and correcting the differences. Let us now consider x ∈ T(cyl(A, h,−→v ))
such that there exists i ∈ {1, . . . , d} and � ∈ {−,+} such that x � κ(1 + 2d/m)−→ei /∈ T(cyl(A, h,−→v )). Let
us denote by ∂intT(cyl(A, h,−→v )) such x, i.e.,

∂intT(cyl(A, h,−→v )) =
{
x ∈ T(cyl(A, h,−→v )) : ∃i ∈ {1, . . . , d}, � ∈ {+,−}

x � κ(1 + 2d/m)−→ei /∈ T(cyl(A, h,−→v ))

}
and for such an x, let us denote by Eκ(x) the set of faces of πx,κ(1+2d/m)(C) that are "external", i.e.,

Eκ(x) =
{
πx,κ(1+2d/m)(C�i ) : x � κ(1 + 2d/m)−→ei /∈ T(cyl(A, h,−→v )), i ∈ {1, . . . , d}, � ∈ {−,+}

}
.

For those faces, we need to correct the stream fpreln to be able to glue it with the discretized version
fdiscn . Let us consider F0 = κ(1 + 2d/m)(C�i + x) ∈ Eκ(x). By equality (4.33), we have

ψ�i (fdiscn , F0) = ψ�i (fpreln , F0) . (4.34)

We have
∀e ∈ Ei,�n [F0] fdiscn (e) = (1 + 2d/m)−(d−1)(1− εα/4)svi−→ei ,
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∀e ∈ Ei,�n [κ(C�i + x � d/m−→ei )] fpreln (e) = (1− εα/4)svi−→ei .
It follows that for e ∈ Ei,�n [κ(C�i + x � d/m−→ei )], we have

(−fdiscn (e) + fpreln (e)) · −→ei = (1− εα/4)
(

1−
(

1 + 2d
m

)−(d−1)
)
svi ≤ 4d

2

m
M ≤ 8d2Mεα (4.35)

for small enough ε depending on d. For e ∈ Ei,�n [F0] \Ei,�n [κ(C�i + x � d/m−→ei )], we have fpreln (e) = 0 thus

(−fdiscn (e) + fpreln (e)) · −→ei = −(1− εα/4)
(

1 + 2 d
m

)−(d−1)
svi ≥ −svi . (4.36)

We can indexed the edges of Ei,�n [F0] following the order given by the canonical basis such that to each
edge e we can associate its index ζ(e) ∈ {1, . . . , κ(1 + 2d/m)n}d−1. More precisely, we set

∀e ∈ Ei,�n [F0] ζ(e) = npi(c(e)) +
(⌊

κ(1 + 2d/m)n
2

⌋
+ 1
) ∑
j∈{1,...,d}\{i}

−→ej

where we recall that the definition of pi was given in (4.16). It is easy to check that ζ(e) ∈ {1, . . . , κ(1 +
2d/m)n}d−1 (we recall that κ(1 + 2d/m)n ∈ Z). Set for any e ∈ Ei,�n [F0], fin(ζ(e)) = (−fdiscn (e) +
fpreln (e)) · −→ei . If e is such that ζ(e) ∈ {κdn/m+ 1, κ(1 + d/m)n}d−1, then

fin(ζ(e)) = (1− εα/4)
(

1−
(

1 + 2d
m

)−(d−1)
)
svi .

Otherwise, we have

fin(ζ(e)) = −(1− εα/4)
(

1 + 2d
m

)−(d−1)
svi .

To apply lemma 3.4, we have to check that the sequence (fin(y), y ∈ {1, . . . , κ(1 + 2d/m)n}d−1) satisfies
the conditions stated in the lemma. First note that thanks to equality (4.34), we have∑

y∈{1,...,κ(1+2d/m)n}d−1

fin(y) = 0

and by inequalities (4.36) and (4.35),

∀y ∈ {1, . . . , κ(1 + 2d/m)n}d−1 −M ≤ fin(y) ≤ 8d2Mεα .

Let l ∈ {1, . . . , d − 2} and x ∈ {1, . . . , κ(1 + 2d/m)n}l, if x /∈ {κdn/m + 1, . . . , κ(1 + d/m)n}l then for
any y ∈ {1, . . . , κ(1 + 2d/m)n}d−1−l, we have

fin(x, y) = −(1− εα/4)
(

1 + 2d
m

)−(d−1)
svi .

If x ∈ {κdn/m+ 1, . . . , κ(1 + d/m)n}l, then we have∑
y∈{1,...,κ(1+2d/m)n}d−1−l

fin(x, y)

=

∣∣∣∣∣
{
κdn

m
, . . . , κ

(
1 + d

m

)
n

}d−1−l
∣∣∣∣∣
(

1−
(

1 + 2d
m

)−(d−1)
)

(1− εα/4)svi

−

∣∣∣∣∣
{

1, . . . , κ
(

1 + 2d
m

)
n

}d−1−l
\
{
κdn

m
, . . . , κ

(
1 + d

m

)
n

}d−1−l
∣∣∣∣∣
(

1 + 2d
m

)−(d−1)
(1− εα/4)svi

=
(

1−
(

1 + 2d
m

)−(d−1)
−

((
1 + 2d

m

)d−1−l
− 1
)(

1 + 2d
m

)−(d−1)
)

(1− εα/4)svi(κn)d−1−l

=
(

1−
(

1 + 2d
m

)−l)
(1− εα/4)svi(κn)d−1−l ≥ 0 .
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It follows that the conditions to apply lemma 3.4 are satisfied. By lemma 3.4, there exists a stream gx,F0
n

in cyl(F0, (d− 1)κ(1 + 2d/m), �−→ei ) ⊂ cyl(A, h,−→v ) such that

∀e ∈ Ei,�n [F0] gx,F0
n

(
e �
−→ei
n

)
= −fdiscn (e) + fpreln (e)

and
∀e ∈ Ei,�n [F0 � (d− 1)κ(1 + 2d/m)−→ei ] gx,F0

n (e) = 0 .

The stream gx,F0
n satisfies the node law everywhere except for points in {w ∈ Zdn : ∃y ∈ Zdn s.t. −→yw =

�−→ei /n and 〈y, w〉 ∈ Ei,�n [F0]}. Moreover, using inequalities (4.35) and (4.36), we have for any edge e ∈ Edn
parallel to −→ei

gx,F0
n (e) · −→ei ∈ [−svi, 8d2Mεα]

and for edge e parallel to −→ej with j 6= i:

‖gx,F0
n (e)‖2 ≤ 8d2Mεα .

Finally, we build fn as follows: for any e ∈ cyl(A, h,−→v ) ∩ Edn

fn(e) =
{
fpreln (e) if e ∈ Edn ∩ ∪x∈T(cyl(A,h,−→v )πx,κ(1+2d/m)(C)
fdiscn (e) +

∑
x∈∂intT(cyl(A,h,−→v ))

∑
F0∈Eκ(x) g

x,F0
n (e) otherwise.

The node law is satisfied everywhere inside cyl(A, h,−→v ). Note that by construction of T(cyl(A, h,−→v )),
each e ∈ cyl(F0, (d − 1)κ, �−→ei ) belongs at most to d such cylinder (one for each direction): for each
j ∈ {1, . . . , d} there exists at most one ◦ ∈ {+,−} and y ∈ ∂int(T cyl(A, h,−→v )) such that F1 =
πy,κ(1+2d/m)(C◦i ) ∈ Eκ(y) and e ∈ cyl(F1, (d − 1)κ, ◦−→ei ). It follows that for any e ∈ cyl(A, h,−→v ),
we have

‖fn(e)‖2 ≤M + 8d3Mεα .

On the event F , the stream f̂n = (1− εα/4)(1−H(ε)/M)fn respects the capacity constraint for ε small
enough depending on d. Indeed, we have for ε small enough depending on d,

‖f̂n(e)‖2 ≤ (1− εα/4)(1 + 8d3εα)(M −H(ε)) ≤M −H(ε) .

On the event F ∩ ∩x∈T(cyl(A,h,−→v )))Ex, we have that f̂n ∈ Ŝn(cyl(A, h,−→v ), s−→v , g1(ε)) for n large enough
where

g1(ε) =
(

1 + 2d
m

)−(d−1)(
1− H(ε)

M

)
(1− εα/4)2 .

Conclusion. Using lemma 2.6, on the event ∩x∈T(cyl(A,h,−→v ))Ex, we have

d(−→µ n(f̂n), s−→v 1cyl(A,h,−→v )Ld)

≤ d(−→µ n(f̂n),−→µ n(fn)) + d(−→µ n(fn), s−→v 1cyl(A,h,−→v )Ld)

≤ 2
(

1− (1− εα/4)(1−H(ε)/M)
) 1
nd

∑
e∈Edn:c(e)∈cyl(A,h,−→v )

‖fn(e)‖2 + d(−→µ n(fn)1Cor, s
−→v 1CorLd)

+
∑

x∈T(cyl(A,h,−→v ))

d(−→µ n(fxn ), s−→v 1πx,κ(C)Ld)

≤
(
εα/4 + H(ε)

M
(1 + εα/4)

)
4dMLd(V2(cyl(A, h,−→v ), d/n)) + 2M |Corn|

nd
+ 2dMLd(Cor)

+ 4εα0Ld(cyl(A, h,−→v )) . (4.37)

We have for n large enough depending on A and h that

Ld(V2(cyl(A, h,−→v ), d/n)) ≤ 2Ld(cyl(A, h,−→v )) . (4.38)
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Let us estimate the size of Hd−1(∂Cor):

Hd−1(∂Cor) ≤ Hd−1(∂ cyl(A, h,−→v )) + |T(cyl(A, h,−→v ))|Hd−1(∂(κC))

≤ Hd−1(∂ cyl(A, h,−→v )) + L
d(cyl(A, h,−→v ))

κd
2dκd−1

≤ Hd−1(∂ cyl(A, h,−→v )) + 2dL
d(cyl(A, h,−→v ))

κ
(4.39)

By doing similar computations than in (4.24), we have

|Corn| ≤ 2d
(
Ld(Cor) + 2d

n
Hd−1(∂Cor)

)
nd . (4.40)

Let us upper-bound the volume of the corridor for n large enough depending on ε:

Ld(Cor) ≤ |T(cyl(A, h,−→v ))|Ld
(
κ

(
1 + 2d

m

)
C \ κC

)
+ Ld

(
V2(∂ cyl(A, h,−→v ), d2κ)

)
≤ L

d(cyl(A, h,−→v ))
κd(1 + 2d/m)d κd

((
1 + 2d

m

)d
− 1
)

+ 4d2κHd−1(∂ cyl(A, h,−→v ))

≤ 2d+1

m
dLd(cyl(A, h,−→v )) + 4d2κHd−1(∂ cyl(A, h,−→v ))

≤ 2d+2dεα0Ld(cyl(A, h,−→v )) + 8d2εHd−1(∂ cyl(A, h,−→v ))

where in the second inequality we use proposition 1.7 for κ small and in the last inequality we use the
fact that κ goes to ε when n goes to infinity. We detail here an inequality, we used in the previous
inequality and that we will use again in what follows. For x ∈ [0, 1], we have

(1 + x)d − 1 =
d∑
k=1

(
d

k

)
xk ≤ x

d∑
k=1

(
d

k

)
≤ 2dx . (4.41)

Finally, for ε small enough depending on A and h, we have

Ld(Cor) ≤ 2d+3dεα0Ld(cyl(A, h,−→v )) . (4.42)

For ε small enough depending on A and h, for n large enough depending on ε, using inequalities (4.37),
(4.38), (4.39), (4.40) and (4.42), we have

d(−→µ n(f̂n), s−→v 1cyl(A,h,−→v )Ld) ≤ g0(ε)Ld(cyl(A, h,−→v ))

where
g0(ε) = 8dM

(
εα/4 + H(ε)

M
(1 + εα/4)

)
+ 2d+6εα0d2M + 4εα0 .

Finally, we have

P

F ∩ ⋂
x∈T(cyl(A,h,−→v ))

Ex

 ≤ P(En(cyl(A, h,−→v ), s−→v , g0(ε), g1(ε))) .

Using the independence, we have

P(F)
∏

x∈T(cyl(A,h,−→v ))

P(Ex) ≤ P(En(cyl(A, h,−→v ), s−→v , g0(ε), g1(ε))) . (4.43)

We have nκ(1 + 2d/m) ∈ N. Therefore, for any x ∈ T(cyl(A, h,−→v )) we have x ∈ Zdn. Hence, if we set
n0 = nκ, the application πx,n0/n is a bijection from Edn0

to Edn. We can apply lemma 4.4:

P(Ex) ≥ P
(
∃fn0 ∈ Sn0(C) (ε, s−→v )-well-behaved : d(−→µ n0(fn0), s−→v 1CLd) ≤ εα0

)
(4.44)
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and we have using lemma 4.2 and theorem 1.1

lim
ε→0

lim sup
n→∞

1
ndκd

logP(Ex) ≥ −I(s−→v ) . (4.45)

Besides, using inequality (4.45), we have

lim
ε→0

lim sup
n→∞

1
nd

∑
x∈T(cyl(A,h,−→v ))

logP(Ex) = lim
ε→0

lim sup
n→∞

1
nd
|T(cyl(A, h,−→v ))| logP(Ex0)

≥ lim
ε→0

lim sup
n→∞

1
nd
Ld(cyl(A, h,−→v ))
κd(1 + 2d/m)d logP(Ex0)

≥ −Ld(cyl(A, h,−→v ))I(s−→v ) (4.46)

where x0 ∈ T(cyl(A, h,−→v )). Besides, we have

lim sup
n→∞

1
nd

P(F) = lim sup
n→∞

|Corn|
nd

logG([M −H(ε),M ]) .

Hence, we can define the function H as in equality (4.29), using the control of the volume of the corridor
(4.42):

H(ε) = inf
{
a > 0 : G([M − a,M ]) ≥ 2d+3dεα0Ld(cyl(A, h,−→v )

}
. (4.47)

and since M is the supremum of the support of G with the same arguments as in the proof of theorem
1.1, we can prove that H(ε) goes to 0 when ε goes to 0 and

lim
ε→0

lim sup
n→∞

Ld(Cor) logG([M −H(ε),M ]) = 0 .

Hence, we get

lim
ε→0

lim sup
n→∞

1
nd

logP(F) = 0 . (4.48)

Finally, combining inequalities (4.43), (4.46) and (4.48), by taking the liminf when ε goes to 0 we obtain:

lim inf
ε→0

lim sup
n→∞

1
nd

P(En(cyl(A, h,−→v ), s−→v , g0(ε), g1(ε))) ≥ −Ld(cyl(A, h,−→v ))I(s−→v ) .

The result follows.

Proof of theorem 4.6. We have to treat separately the case where −→v 1 = ±−→v 2.
• First Case −→v 1 = ±−→v 2. Let λ ∈ [0, 1] and l > 0 be a small real number, in particular, we have l < 1.
Let −→v ∈ Sd−1 and s1, s2 ∈ R. Without any loss of generality, we can assume that −→v · −→ed 6= 0. Let Cλ1
and Cλ2 be the following sets (see figure 9)

Cλ1 = cyl
(
[0, λl2]× [0, l2]d−2 × {0}, l2,−→v

)
and Cλ2 = cyl

(
[λl2, l2]× [0, l2]d−2 × {0}, l2,−→v

)
.

We pave C with translates of Cλ = Cλ1 ∪ Cλ2 . Note that we have

Ld(Cλ1 ) = λLd(Cλ) and Ld(Cλ2 ) = (1− λ)Ld(Cλ) .

We consider the following set T of translated of Cλ:

T =
{
Cλ +

d−1∑
i=1

kil
2−→ei + kdl

2−→v : (k1, . . . , kd) ∈ Zd
}
.

Let T(C) be the following set
T(C) = {F ∈ T : F ∩ C 6= ∅} .
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λl2

(1− λ)l2

l2

l2−→v

−→e1

−→e2 −→e3

Cλ1

Cλ2

Figure 9 – Representation of Cλ (d = 3)

Let g0 and g1 be the functions defined in lemma 4.8. For F = Cλ + x ∈ T(C), we denote by GF the
following event (see the definition of En in lemma 4.8)

GF = En(Cλ1 + x, s1
−→v , g0(ε), g1(ε)) ∩ En(Cλ2 + x, s2

−→v , g0(ε), g1(ε)) .

In other words, on the event GF we suppose the existence of a stream similar to s1
−→v in Cλ1 +x (respectively

to s2
−→v in Cλ2 + x). We denote by f1,F

n and f2,F
n the streams corresponding to these events (chosen

according to a deterministic rule). We denote by B the following set of edges:

B =

e ∈ Edn ∩ C : P(e) ∩
⋃

F=x+Cλ∈T(C)

(x+ ∂Cλ1 ) ∪ (x+ ∂Cλ2 ) 6= ∅

 .

We denote by F the following event

F = { ∀e ∈ B t(e) ≥ g1(ε) max(|s1|, |s2|)‖−→v ‖∞} .

On the event F ∩∩F∈T(C)GF , we claim that there exists a stream fn ∈ Sn(C) obtained by concatenating
all the streams (f1,F

n , f2,F
n ) such that

d(−→µ n(fn), (λs1 + (1− λ)s2)−→v 1C) ≤ K1l + g0(ε)

where K1 is a positive constant depending only on M and d. Set

−→σ =
∑

F=(Cλ+z)∈T(C)

(s11Cλ1 +z + s21Cλ2 +z)−→v .

Note that sets in T(C) have pairwise disjoint interiors and C ⊂ ∪F∈T(C)F . We build fn as follows: for
any e = 〈y, w〉 ∈ Edn ∩ C

fn(e) =


f1,Cλ+x
n (e) if P(e) ⊂ Cλ1 + x, Cλ + x ∈ T(C)
f2,Cλ+x
n (e) if P(e) ⊂ Cλ2 + x, Cλ + x ∈ T(C)
g1(ε)nd−1

(∫
P(e)
−→σ (u) · (n−→yw) dHd−1(u)

)
n−→yw if e ∈ B.

It remains to check that fn satisfies the node law everywhere in C. Remember that C = [−1/(2n), 1/(2n)]d.
By construction of fn, if w ∈ Zdn is such that (w + C) ⊂ (x + Cλi ) for i = 1, 2 and x such that
(x + Cλ) ∈ T(C) then since f i,Cλ+x

n satisfies the node law at w it is also true for the stream fn. Let
w ∈ Zdn such that

(w + C) ∩
⋃

x:x+Cλ∈T(C)

(x+ (∂Cλ1 ∪ ∂Cλ2 )) 6= ∅ .

58



For z ∈ Zdn such that e = 〈w, z〉 ∈ Edn, either P(e) ⊂ (x+Cλ1 ) for some x such that x+Cλ ∈ T(C) either
P(e) ⊂ (x+ Cλ2 ) or e ∈ B. In any case, we have for e = 〈w, z〉

fn(e) = g1(ε)nd−1

(∫
P(e)

−→σ (u) · (n−→wz) dHd−1(u)
)
n−→wz .

We recall that L(Cλ1 ) denotes the lateral sides of the cylinder Cλ1 , T (Cλ1 ) its top and B(Cλ1 ) its bottom.
We apply Gauss-Green theorem for −→σ in (w + C) ∩ (x+ Cλ1 ):

0 =
∫

(w+C)∩(x+Cλ1 )
div−→σ dLd

=
∑
y∈Zdn:
〈w,y〉∈Edn

(∫
P(〈w,y〉)

ns1
−→v · −→wy1x+Cλ1 (z) dHd−1(z)

)
+
∫

(C+w)∩(x+∂Cλ1 )
s1
−→v · −→n x+Cλ1 (u)dHd−1(u)

=
∑
y∈Zdn:
〈w,y〉∈Edn

(∫
P(〈w,y〉)

ns1
−→v · −→wy1x+Cλ1 (z) dHd−1(z)

)
+
∫

(C+w)∩(x+T (Cλ1 )∪B(Cλ1 ))
s1
−→v · −→n x+Cλ1 (u)dHd−1(u)

(4.49)

where we use in the last equality that if u ∈ (x + L(Cλ1 )) then −→v · −→n x+Cλ1 (u) = 0. Note that for
u ∈ (x+ T (Cλ1 )) = (x+ l2−→v +B(Cλ1 )) we have −→n x+Cλ1 (u) = −−→n x+Cλ1 +l2−→v (u) = −→ed . It follows that∑

x:x+Cλ∈T(C)

∫
(C+w)∩(x+T (Cλ1 )∪B(Cλ1 ))

s1
−→v · −→n x+Cλ1 (u)dHd−1(u) = 0

and thanks to equality (4.49), we have∑
x:x+Cλ∈T(C)

∑
y∈Zdn:
〈w,y〉∈Edn

∫
P(〈w,y〉)

ns1
−→v · −→wy1x+Cλ1 (z) dHd−1(z) = 0 .

By similar arguments, we can prove that∑
x:x+Cλ∈T(C)

∑
y∈Zdn:
〈w,y〉∈Edn

∫
P(〈w,y〉)

ns2
−→v · −→wy1x+Cλ2 (z) dHd−1(z) = 0 .

Hence, we have ∑
y∈Zdn:
〈w,y〉∈Edn

∫
P(〈w,y〉)

n−→σ (z) · −→wy dHd−1(z) = 0

and fn satisfies the node law at w. We recall that g1(ε) ≤ 1, so fn satisfies the capacity constraint in C
on the event F ∩ ∩F∈T(C)GF . Finally, we have fn ∈ Sn(C).

Write ν = (λs1 + (1− λ)s2)−→v 1CLd. We want to upper bound the distance d(−→µ n(fn), ν). To do so,
we introduce another measure ν̃ and we upper bound separately the quantities d(−→µ n(fn), ν̃) and d(ν̃, ν).
We set

ν̃ =
∑

z: (Cλ+z)∈T(C)

(s11Cλ1 +z + s21Cλ2 +z)−→v 1CLd = −→σ 1CLd .

We denote for short −→µ n(fn) by −→µ n. Notice that for z such that (Cλ + z) ∈ T(C) and (Cλ + z) ⊂ C, we
have

‖ν(Cλ + z)− ν̃(Cλ + z)‖2 = 0 .
Let k ≥ 1 such that l ≤

√
εC/d2−k where εC was defined in lemma 2.4. It follows that dl2 ≤ εC2−2k ≤

εC2−k. Such a k exists when l is small enough. Let x ∈ [−1, 1[d and β ∈ [1, 2]. Let Q ∈ ∆k
β .
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• Let us first assume that (Q+ x) ⊂ C then

‖ν(Q+ x)− ν̃(Q+ x)‖2 ≤
∑

z:(Cλ+z)⊂(Q+x)

‖ν(Cλ + z)− ν̃(Cλ + z)‖2

+
∑

z:(Cλ+z)∩(∂Q+x)6=∅

‖ν((Q+ x) ∩ (Cλ + z))− ν̃((Q+ x) ∩ (Cλ + z))‖2

≤
∑

z:(Cλ+z)∩(∂Q+x)6=∅

2(|s1|+ |s2|)Ld(Cλ) .

Moreover, using lemma 2.4, we have that T is a paving and diam(Cλ) ≤ dl2 ≤ εCβ2−k, it follows that

∣∣{z : (Cλ + z) ∩ (∂Q+ x) 6= ∅
}∣∣ ≤ 4H

d−1(∂Q)
Ld(Cλ) diam(Cλ) .

Finally, we get

‖ν(Q+ x)− ν̃(Q+ x)‖2 ≤ 8(|s1|+ |s2|)dl2Hd−1(∂Q) . (4.50)

• Let us assume now that (Q+ x) ∩ ∂C 6= ∅. Thus, we have

‖ν(Q+ x)− ν̃(Q+ x)‖2 ≤
∑

z:(Cλ+z)⊂(Q+x)∩C

‖ν(Cλ + z)− ν̃(Cλ + z)‖2

+
∑

z:(Cλ+z)∩∂((Q+x)∩C)6=∅

‖ν((Q+ x) ∩ (Cλ + z))− ν̃((Q+ x) ∩ (Cλ + z))‖2

≤
∑

z:(Cλ+z)∩∂((Q+x)∩C)6=∅

2(|s1|+ |s2|)Ld((Q+ x) ∩ C ∩ (Cλ + z))

where we used in the last inequality that ν and ν̃ are null outside C. It follows that∑
Q∈∆k

β
:(Q+x)∩∂C 6=∅

‖ν(Q+ x)− ν̃(Q+ x)‖2

≤
∑

Q∈∆k
β :

(Q+x)∩∂C6=∅

∑
z:(Cλ+z)∩∂((Q+x)∩C)6=∅

2(|s1|+ |s2|)Ld((Q+ x) ∩ C ∩ (Cλ + z))

≤
∑

Q∈∆k
β :

(Q+x)∩∂C6=∅

∑
z:(Cλ+z)∩∂C 6=∅

2(|s1|+ |s2|)Ld((Q+ x) ∩ C ∩ (Cλ + z))

+
∑

Q∈∆k
β :

(Q+x)∩∂C6=∅

∑
z:(Cλ+z)∩∂(Q+x))6=∅

2(|s1|+ |s2|)Ld((Q+ x) ∩ C ∩ (Cλ + z))

≤
∣∣{z : (Cλ + z) ∩ ∂C 6= ∅

}∣∣ 2(|s1|+ |s2|)Ld(Cλ)

+
∑

Q∈∆k
β :

(Q+x)∩∂C6=∅

∣∣{z : (Cλ + z) ∩ ∂(Q+ x) 6= ∅
}∣∣ 2(|s1|+ |s2|)Ld(Cλ) .

Using again lemma 2.4, we obtain∑
Q∈∆k

β
:(Q+x)∩∂C6=∅

‖ν(Q+ x)− ν̃(Q+ x)‖2

≤ 8(|s1|+ |s2|)(diamCλ)
(
Hd−1(∂C) + |{Q ∈ ∆k

β : (Q+ x) ∩ ∂C 6= ∅}|Hd−1(∂Q)
)
.

(4.51)
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Combining inequalities (4.50) and (4.51), it follows that∑
Q∈∆k

β

‖ν(Q+ x)− ν̃(Q+ x)‖2 ≤
∑

Q∈∆k
β :

(Q+x)⊂C

‖ν(Q+ x)− ν̃(Q+ x)‖2 +
∑

Q∈∆k
β :

(Q+x)∩∂C6=∅

‖ν(Q+ x)− ν̃(Q+ x)‖2

≤ 8(|s1|+ |s2|)dl2
(
|{Q ∈ ∆k

β : (Q+ x) ∩ C 6= ∅}|Hd−1(∂Q) +Hd−1(∂C)
)

≤ 8(|s1|+ |s2|)dl2
(
Ld(3C)
(β2−k)d 2d(β2−k)d−1 + 2d

)
≤ 8(|s1|+ |s2|)dl2

(
2 3dd2k + 2d

)
≤ Cd(|s1|+ |s2|)l

where in the last inequality we use the fact that 2k ≤
√
εC/d/l and where Cd is a positive constant

depending only on d. It follows that
∞∑
k=1

1
2k

∑
Q∈∆k

β

‖ν(Q+ x)− ν̃(Q+ x)‖2

≤
∑

k:2−k≥l
√
d/εC

1
2k

∑
Q∈∆k

β

‖ν(Q+ x)− ν̃(Q+ x)‖2 +
∑

k:2−k<l
√
d/εC

1
2k

∑
Q∈∆k

β

‖ν(Q+ x)− ν̃(Q+ x)‖2

≤ 2Cd(|s1|+ |s2|)l + 2(|s1|+ |s2|)
∑

k:2−k<l
√
d/εC

1
2k

∑
Q∈∆k

β :
(Q+x)∩C 6=∅

Ld(Q)

≤ 2Cd(|s1|+ |s2|)l + 2(|s1|+ |s2|)
∑

k:2−k<l
√
d/εC

1
2kL

d(3C)

≤ 23d
(
Cd + 2

√
d

εC

)
(|s1|+ |s2|)l .

Consequently, we have

d(ν, ν̃) ≤ 2
(
Cd + 23d

√
d

εC

)
(|s1|+ |s2|)l .

Let us now compute the distance d(−→µ n, ν̃). Using lemma 2.6 and lemma 2.4, on the event F∩∩F∈T(C)GF
we have

d(−→µ n, ν̃) ≤
∑

F=(w+Cλ)∈T:F⊂C

d(−→µ n1w+Cλ1 , s1
−→v 1w+Cλ1 L

d) + d(−→µ n1w+Cλ2 , s2
−→v 1w+Cλ2 L

d)

+
∑

F=(w+Cλ)∈T:F∩∂C6=∅

4(|s1|+ |s2|)Ld(Cλ)

≤
∑

F=(w+Cλ)∈T:F⊂C

g0(ε)Ld(Cλ) + 16d(|s1|+ |s2|)Hd−1(∂C)l2 ≤ g0(ε) + 16d2l2(|s1|+ |s2|) .

Note that if I(s1
−→v ), I(s2

−→v ) are finite then necessarily for any ε > 0, then we have

P(t(e) ≥ g1(ε) max(|s1|, |s2|)‖v‖∞) > 0 .

Indeed, let us assume that P(t(e) ≥ g1(ε0)|s1|‖v‖∞) = 0 for some ε0 > 0 and I(s1
−→v ) < ∞, thanks to

theorem 1.1, we have

∀ε > 0 lim inf
n→∞

1
nd

logP(∃fn ∈ Sn(C) : d
(−→µ n(fn), s1

−→v 1CLd) ≤ ε) ≥ −I(s1
−→v ) .

By doing the same reasoning of proposition 2.7, we can extract a subsequence and choose a sequence of
configurations (ωn)n≥1 such that −→µ n(fn)(ωn) weakly converges towards s1

−→v 1CLd. Let i ∈ {1, . . . , d}
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such that |vi| = ‖v‖∞. Without loss of generality, we can assume that vi ≥ 0 and s1 ≥ 0. Then for any
e ∈ Edn we have fn(e) · −→ei ≤ g1(ε0)s1vi and∫

C

−→µ n(fn)(ωn) · −→eidLd ≤ g1(ε0)s1vi <

∫
C

s1
−→v · −→eidLd .

This is a contradiction, it follows that if I(s1
−→v ) is finite then P(t(e) ≥ g1(ε0)|s1|‖v‖∞) > 0.

On the event ∩F∈T(C)GF ∩ F , there exists fn ∈ Sn(C) such that

d(−→µ n(fn), ν) ≤ d(−→µ n(fn), ν̃) + d(ν̃, ν) ≤ g0(ε) +K1l

where K1 is a constant depending only on d, s1 and s2. It follows that for ε small enough depending on
l

P
(
∩F∈T(C)GF ∩ F

)
≤ P

(
∃fn ∈ Sn(C) : d(−→µ n(fn), (λs1 + (1− λ)s2)−→v 1CLd) ≤ 2K1l

)
.

Notice that |B|/nd goes to 0 when n goes to infinity, it follows that

lim sup
n→∞

1
nd

logP(F) = lim sup
n→∞

1
nd
|B| logP

(
t(e) ≥ g1(ε) max(|s1|, |s2|)‖v‖∞

)
= 0 . (4.52)

We have for F ∈ T(C), using the independence:

P(GF ) = P(En(Cλ1 + x, s1
−→v , g0(ε), g1(ε)))P(En(Cλ2 + x, s2

−→v , g0(ε), g1(ε))) .

By lemma 4.8, we obtain

− lim inf
ε→0

lim sup
n→∞

1
nd

logP(GF ) ≤ (λI(s1
−→v ) + (1− λ)I(s2

−→v ))Ld(Cλ) . (4.53)

Since the events (GF , F ∈ T(C)) and F are independent and using (4.52), we have

− lim sup
n→∞

1
nd

logP (∃fn ∈ Sn(C) : d(−→µ n(fn), (λs1 + (1− λ)s2)−→v ) ≤ 2K1l)

≤ −|T(C)| lim sup
n→∞

1
nd

logP(GF0)− lim sup
n→∞

1
nd

logP(F) = −|T(C)| lim sup
n→∞

1
nd

logP(GF0)

where F0 ∈ T(C). Since the previous result holds for any ε small enough depending on l, inequality
(4.53) yields

− lim sup
n→∞

1
nd

logP (∃fn ∈ Sn(C) : d(−→µ n(fn), (λs1 + (1− λ)s2)−→v ) ≤ 2K1l)

≤ |T(C)|(λI(s1
−→v ) + (1− λ)I(s2

−→v ))Ld(Cλ) .

Besides, we have

|T(C)| ≤ L
d((1 + 2l2)C)
Ld(Cλ) .

Hence, we obtain

− lim sup
n→∞

1
nd

logP (∃fn ∈ Sn(C) : d(−→µ n(fn), (λs1 + (1− λ)s2)−→v ) ≤ 2K1l)

≤ (1 + 2l2)d(λI(s1
−→v ) + (1− λ)I(s2

−→v )) .

By letting l go to 0 (the left hand side is non-decreasing in l), we obtain

− lim
l→0

lim sup
n→∞

1
nd

P (∃fn ∈ Sn(C) : d(−→µ n(fn), (λs1 + (1− λ)s2)−→v ) ≤ 2K1l) ≤ λI(s1
−→v ) + (1− λ)I(s2

−→v ) .

The result follows.
• Second Case: Let λ ∈ [0, 1] and l ∈ [0, 1]. Let −→v 1,

−→v 2 ∈ Sd−1 such that −→v 1 6= ±−→v 2 and s1, s2 > 0.
We claim that there exists −→n ∈ Sd−1 such that s1

−→v 1 · −→n = s2
−→v 2 · −→n 6= 0. Indeed, we can complete
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−→v = s1
−→v 1 − s2

−→v 2 into a normal basis (−→v ,
−→
f 2, . . . ,

−→
f d) of Rd where

−→
f 2, . . . ,

−→
f d are in Sd−1. There

exists i ∈ {2, . . . , d} such that −→v 1 ·
−→
f i 6= 0. If not, we have

∀i ∈ {2, . . . , d} −→v 1 ·
−→
f i = 0

and there exists λ ∈ R such that we have −→v 1 = λ(s1
−→v 1−s2

−→v 2). This is a contradiction with −→v 1 6= ±−→v 2.
Hence, the vector −→n corresponds to the

−→
fi such that −→v 1 ·

−→
f i 6= 0 (if there are several choices we pick

−→
f i with the smallest i). Since (−→v ,

−→
f 2, . . . ,

−→
f d) is a normal basis, we have

−→v · −→n = s1
−→v 1 · −→n − s2

−→v 2 · −→n = 0 .

−→n

λl2−→v 1

(1− λ)l2−→v 2

A

E1

E2

Figure 10 – Representation of the set E (d = 2)

Let (−→g 1, . . . ,
−→g d−1,

−→n ) be an orthonormal basis. Let A be the hyperrectangle normal to −→n whose
expression in the basis (−→g 1, . . . ,

−→g d−1,
−→n ) is [0, l2]d−1×{0}. Let E1, E2 and E be the following sets (see

figure 10)
E1 = cyl(A, λl2,−→v 1), E2 = cyl(A, (1− λ)l2,−−→v 2) and E = E1 ∪ E2 .

We have Ld(E1) = λl2d and Ld(E2) = (1− λ)l2d. We consider the following set T of translated of E:

T =
{
E +

d−1∑
i=1

kil
2−→g i + kdl

2(λ−→v 1 + (1− λ)−→v 2) : (k1, . . . , kd) ∈ Zd
}
.

Let T(C) be the following set
T(C) = {F ∈ T : F ∩ C 6= ∅} .

Let F ∈ T(C) write F = E + x. We denote by FF the following event

FF = En(cyl(A, λl2,−→v 1) + x, s1
−→v 1, g0(ε), g1(ε)) ∩ En(cyl(A, (1− λ)l2,−−→v 2) + x, s2

−→v 2, g0(ε), g1(ε))

where g0 and g1 are the functions defined in lemma 4.8. On FF , we denote by f1,F
n and f2,F

n the streams
corresponding to these events (chosen according to a deterministic rule if there are several possible
choices). We denote by B the following set of edges:

B =

e ∈ Edn ∩ C : P(e) ∩
⋃

F=x+E∈T(C)

(x+ ∂ cyl(A, λl2,−→v 1)) ∪ (x+ ∂ cyl(A, (1− λ)l2,−−→v 2)) 6= ∅

 .
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We denote by F the following event

F = {∀e ∈ B t(e) ≥ max(s1‖v1‖∞, s2‖v2‖∞)} .

Set
−→σ =

∑
z: (E+z)∈T(C)

(s1
−→v 11cyl(A,λl2,−→v 1))+z + s2

−→v 21cyl(A,(1−λ)l2,−−→v 2)+z)1C .

On the event ∩F∈T(C)GF ∩ F , we define the following stream fn ∈ Sn(C) obtained by concatenating all
the streams f i,E+x

n , ∀e = 〈y, w〉 ∈ Edn ∩ C:

fn(e) =


f1,E+x
n (e) if P(e) ⊂ cyl(A, λl2,−→v 1) + x, E + x ∈ T(C)
f2,E+x
n (e) if P(e) ⊂ cyl(A, (1− λ)l2,−−→v 2) + x, E + x ∈ T(C)
g1(ε)nd−1

(∫
P(e)
−→σ (x) · (n−→yw) dHd−1(x)

)
n−→yw if e ∈ B.

Let y ∈ A. Without loss of generality, we can assume that−→v 1·−→n > 0. Hence, we have−→n cyl(A,λl2,−→v 1)(y) =
−−→n . We have

s1
−→v 1 · −→n cyl(A,λl2,−→v 1)(y) = −s1

−→v 1 · −→n = s2
−→v 2 · −→n = −s2

−→v 2 · −→n cyl(A,(1−λ)l2,−−→v 2)(y) .

Hence, by same arguments than in the previous case, we have that the node law is satisfied at any point
in C ∩ Zdn.

By the same computations than in the previous case, we can prove that there exists a positive constant
K2 depending only on d, s1 and s2 such that on the event F ∩F∈T(C) GF , for l small enough, we have

d
(−→µ n(fn), (λs1

−→v 1 + (1− λ)s2
−→v 2)1CLd

)
≤ g0(ε) +K2l

and by similar arguments

I(λs1
−→v 1 + (1− λ)s2

−→v 2)

= − lim
l→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(C) : d

(−→µ n(fn), (λs1
−→v 1 + (1− λ)s2

−→v 2)1C

)
≤ 2K2l

)
≤ λI(s1

−→v 1) + (1− λ)I(s2
−→v 2) .

This yields the result.

4.5 Control of the elementary rate function
In this section, we aim to obtain a control on the elementary rate function in terms of G.

Proposition 4.9. For any −→v ∈ Rd such that G([‖−→v ‖∞,M ]) > 0, we have

I(−→v ) ≤ −d logG([‖−→v ‖∞,M ]) .

Proof. Let −→v ∈ Rd such that G([‖−→v ‖∞,M ]) > 0. Let ε > 0. We consider the following stream fdiscn

that is the discretized version of −→v 1C defined by

∀e = 〈x, y〉 ∈ C fdiscn (e) = n2(−→v · −→xy)−→xy .

In particular, if −→xy = −→ei /n, for i ∈ {1, . . . , d}, we have

fdiscn (e) = vi
−→ei .

We aim to compute the distance d(−→µ n(fdiscn ),−→v 1CLd). We write −→µ n for −→µ n(fdiscn ). Let z ∈ [−1, 1[d,
k ≥ 1 and λ ∈ [1, 2]. Let Q ∈ ∆k

λ. We have

nd−→µ n((Q+ z) ∩ C) =
∑

x∈Zdn∩(Q+z)∩C

−→v +
∑

x∈Zdn\((Q+z)∩C)

d∑
i=1

−→v i−→ei1(x+−→ei/(2n))∈(Q+z)∩C

−
∑

x∈Zdn∩(Q+z)

d∑
i=1

−→v i−→ei1(x+−→ei/(2n))/∈(Q+z)∩C
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Using proposition 1.7, it follows that for n large enough depending on Q

‖−→µ n((Q+ z) ∩ C)−−→v Ld((Q+ z) ∩ C)‖2

≤
(
|Zdn ∩ (Q+ z) ∩ C|

nd
− Ld((Q+ z) ∩ C)

)
‖−→v ‖2 + 2d |Z

d
n ∩ V∞(∂((Q+ z) ∩ C), 1/n)|

nd
‖−→v ‖∞

≤ Ld(V2(∂((Q+ z) ∩ C), d/n))(‖−→v ‖2 + 2d‖−→v ‖∞)

≤ 4d
n
Hd−1(∂((Q+ z) ∩ C)(‖−→v ‖2 + 2d‖−→v ‖∞)

and ∑
Q∈(z+∆λ

k
)

‖−→µ n(Q ∩ C)−−→v Ld(Q ∩ C)‖2 ≤
4d
n

(
Hd−1(∂C) + L

d(2C)
Ld(Q) H

d−1(∂Q)
)

(‖−→v ‖2 + 2d‖−→v ‖∞)

≤ 4d
n

(2d+ 2d2d2k)(‖−→v ‖2 + 2d‖−→v ‖∞)

Let k0 ≥ 1 be the smallest integer such that

10dM2−k0 ≤ ε/2 .

With this choice of k0, we have for n large enough
∞∑

k=k0

1
2k

∑
Q∈(z+∆λ

k
)

‖−→µ n(Q ∩ C)−−→v Ld(Q ∩ C)‖2 ≤
∞∑

k=k0

1
2k 5dM = 10dM2−k0 ≤ ε/2

We can choose n large enough depending on ε and k0 such that

k0−1∑
k=0

1
2k

4d
n

(2d+ 2d2d2k)(‖−→v ‖2 + 2d‖−→v ‖∞) ≤ ε

2 .

It follows that for n large enough depending on ε, we have

d(−→µ n(fdiscn ),−→v 1CLd) ≤ ε .

Note that on the event {∀e ∈ C t(e) ≥ ‖−→v ‖∞}, the stream fdiscn belongs to Sn(C). We recall that

|{e ∈ Edn : e ∈ C}| = |{e = 〈x, y〉 ∈ Edn : x ∈ C, ∃i ∈ {1, . . . , d} n−→xy = −→ei }| = d|C ∩ Zdn| = dnd .

Using the independence of the family (t(e))e∈Edn , it follows that for n large enough depending on ε

− 1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn),−→v 1CLd) ≤ ε) ≤ −
1
nd

logP(∀e ∈ C t(e) ≥ ‖−→v ‖∞)

= −d logG([‖−→v ‖∞,M ]) (4.54)

Finally, by taking first the limsup in n and then letting ε goes to 0 in the previous inequality, we obtain
that

I(−→v ) ≤ −d logG([‖−→v ‖∞,M ]) .

This yields the proof.

5 Upper large deviations for the stream in a domain
The aim of this section is to prove that the function Î (defined in (1.2)), build from the elementary

rate function I, is the rate function corresponding to the probability that a stream fn ∈ Sn(Γ1,Γ2,Ω) is
close to some continuous stream −→σ ∈ Σ(Γ1,Γ2,Ω). This is the purpose of theorem 1.5.

We will need to approximate −→σ by a regular vector field.
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5.1 Approximation by a regular stream
Define the function η ∈ C∞c (Rd,R) by

η(x) =
{

c exp
(

1
‖x‖2−1

)
if ‖x‖2 < 1

0 if ‖x‖2 ≥ 1

where the constant c > 0 is adjusted such that
∫
Rd η(x)dx = 1. For any n ≥ 1, we denote by Kn the

following function

∀x ∈ Rd Kn(x) = ndη(nx) . (5.1)

The sequence (Kn)n≥1 is a sequence of mollifiers. Note that since for any x ∈ Ω we have I(−→σ (x)) ≥ 0,
it follows that Î(−→σ ) = ‖I(−→σ ))‖L1 and x 7→ I(−→σ (x)) ∈ L1(Rd → R,Ld).

Proposition 5.1. Let −→σ ∈ Σ(Γ1,Γ2,Ω) such that Î(−→σ ) < ∞. Let (Kn)n≥1 be the sequence as defined
in (5.1). We have

lim
n→∞

Î(−→σ ∗Kn) = Î(−→σ )

where ∗ denotes the convolution operator.

Proof. Let n ≥ 1. Write −→σ n = −→σ ∗Kn. By classical properties (see for instance theorem 4.1. in [12]),
we have

∀p ≥ 1 lim
n→∞

−→σ n = −→σ in Lp (5.2)

and
lim
n→∞

−→σ n(x) = −→σ (x) for Ld-almost every x .

Using Fatou lemma and the fact that I is lower semi-continuous on Rd (proposition 4.5), we have

lim inf
n→∞

Î(−→σ n) = lim inf
n→∞

∫
Ω
I(−→σ n(x))dLd(x) ≥

∫
Ω

lim inf
n→∞

I(−→σ n(x))dLd(x) ≥
∫

Ω
I(−→σ (x))dLd(x) = Î(−→σ ) .

(5.3)

Besides, using the fact that I is convex (theorem 4.6) and Jensen’s inequality, we have

Î(−→σ n) =
∫

Ω
I

(∫
Rd
−→σ (x− y)Kn(y)dLd(y)

)
dLd(x) ≤

∫
Ω

∫
Rd
I(−→σ (x− y))Kn(y)dLd(y)dLd(x) .

Hence, it yields

Î(−→σ n)− Î(−→σ ) ≤
∫

Ω
(I(−→σ ) ? Kn)(x)− I(−→σ (x))dLd(x)

≤
∫

Ω
|(I(−→σ ) ∗Kn)(x)− I(−→σ (x))|dLd(x) = ‖I(−→σ ) ∗Kn − I(−→σ )‖L1 . (5.4)

Since x→ I(−→σ (x)) ∈ L1(Rd → R,Ld), it follows that

lim
n→∞

‖I(−→σ ) ∗Kn − I(−→σ )‖L1 = 0

and by inequality (5.4)

lim sup
n→∞

Î(−→σ n) ≤ Î(−→σ ) . (5.5)

The result follows by combining inequalities (5.3) and (5.5).
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5.2 Proof of theorem 1.5
We prove theorem 1.5 in two steps. These two steps correspond to the two following propositions.

Proposition 5.2. Let −→σ ∈ Σ(Γ1,Γ2,Ω). We have

lim
ε→0

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)
≤ −

∫
Ω
I(−→σ (x))dLd(x) .

Proposition 5.3. Let −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω). We have

lim
ε→0

lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)
≥ −

∫
Ω
I(−→σ (x))dLd(x) .

The result of theorem 1.5 follows immediately from propositions 5.2 and 5.3. To prove proposition
5.2, on the event that there exists a stream fn ∈ Sn(Γ1,Γ2,Ω) such that d(−→µ n(fn),−→σ Ld) ≤ ε, we pick
such a stream fn. We can divide Ω into a collection of small cubes (Bi)i∈J . Thanks to the choice of
the distance, the restriction of fn to these cubes is close to the restriction of −→σ to these cubes, i.e.,
the quantity d(−→µ n(fn)1Bi ,−→σ 1BiLd) is small. By independence, we will be able to upper-bound the
probability that there exists a stream fn ∈ Sn(Γ1,Γ2,Ω) such that d(−→µ n(fn),−→σ Ld) ≤ ε by a product
of probabilities of more elementary events related to the elementary rate function I we have defined
in theorem 1.1. To prove proposition 5.3, we do the reverse. Namely, starting with a collection of
elementary events, we try to reconstruct the event that there exists a stream fn ∈ Sn(Γ1,Γ2,Ω) such
that d(−→µ n(fn),−→σ Ld) ≤ ε. The proof of this proposition is much more difficult and technical than the
proof of proposition 5.2.

5.2.1 Proof of proposition 5.2

To prove proposition 5.2, we will need the following lemma that enables to compare the probability
of an event in a dilation of C with the rescaled version of this event in C.

Lemma 5.4 (Scaling and Translation 2). Let −→σ ∈ Σ(Γ1,Γ2,Ω). Let n ≥ 1 and x ∈ Zdn. Let n0 ≤ n.
The application πx,n0/n defines a bijection from Edn0

to Edn (we recall that πx,n0/n was defined in (1.6))
and

P

(
∃fn ∈ Sn(πx,n0/n(C)) : d

(−→µ n(fn),−→σ 1πx,n0/n(C)Ld
)
≤ 1

2
nd+1

0
nd+1 ε

)
≤ P

(
∃fn0 ∈ Sn0(C) : d

(−→µ n0(fn0),−→σ ◦ πx,n0/n1CLd
)
≤ ε
)
.

We postpone the proof of lemma 5.4 after the proof of proposition 5.2.

Proof of proposition 5.2. Let −→σ ∈ Σ(Γ1,Γ2,Ω). Write ν = −→σ Ld. Let ε ∈ [0, 1].
On the event {∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn), ν
)
≤ ε}, we pick fn ∈ Sn(Γ1,Γ2,Ω) such that

d
(−→µ n(fn), ν

)
≤ ε. If there are several choices, we pick one according to a deterministic rule.

Step 1. Dividing Ω into a collection of small cubes. Let i = i(ε) be the integer such that

2i ≤ ε−
1
d+5 < 2i+1 .

We set
λi = dn2−ie

n2−i .

We have λin2−i ∈ N and for n large enough λi ∈ [1, 2]. Let z ∈ Zd and B = 2−iλi(C + z). Using lemma
2.5 with δ = λi2−i and ρ = εCδ

3, we have

d(−→µ n1B ,−→σ 1BLd) ≤ β1
ε

ρ
+ β2ρδ

d−1 = β1
ε

εCδ3 + β2εCδ
d+2 ≤ β1

εC
δd+2 + β2εCδ

d+2 .

There exists a constant β0 depending on d, β1 and β2 such that

d(−→µ n1B ,−→σ 1BLd) ≤ β0δ
d+2 .
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Using the independence, we have

P
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)

≤
∏

B∈∆i
λi

:B⊂Ω

P
(
∃fn ∈ Sn(B) : d

(−→µ n(fn)1B ,−→σ 1BLd
)
≤ β0δ

d+2) .
Let η0 > 0. We consider a small enough ε such that 2dλi2−i ≤ η0. Hence, it yields

− 1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)

≥
∑

B∈∆i
λi

:B⊂Ω

− 1
nd

logP
(
∃fn ∈ Sn(B) : d

(−→µ n(fn)1B ,−→σ 1BLd
)
≤ β0δ

d+2)
≥
∫

Ω\V2(∂Ω,η0)
− 1
ndLd(Bi(x)) logP

(
∃fn ∈ Sn(Bi(x)) : d

(−→µ n(fn)1Bi(x),
−→σ 1Bi(x)Ld

)
≤ β0δ

d+2) dLd(x)

(5.6)

where Bi(x) corresponds to the unique B ∈ ∆i
λi

such that x ∈ B. Of course, Bi(x) depends on ε and x.
Using Fatou lemma twice and inequality (5.6), we obtain

lim inf
ε→0

lim inf
n→∞

− 1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)

≥
∫

Ω\V2(∂Ω,η0)
lim inf
ε→0

lim inf
n→∞

− 1
ndLd(Bi(x)) logP

(
∃fn ∈ Sn(Bi(x)) :

d
(−→µ n(fn)1Bi(x),

−→σ 1Bi(x)Ld
)
≤ β0δ

d+2

)
dLd(x) .

(5.7)

Step 2. We now prove that for Ld-almost all x ∈ Ω, we have

lim inf
ε→0

lim inf
n→∞

− 1
ndLd(Bi(x)) logP

(
∃fn ∈ Sn(Bi(x)) : d

(−→µ n(fn)1Bi(x),
−→σ 1Bi(x)Ld

)
≤ β0δ

d+2)
≥ I(−→σ (x)) .

Let x ∈ Ω\V2(∂Ω, η0). There exists a unique w ∈ Zd such that Bi(x) = λi2−i(C+w). Since λi2−in ∈ N,
it follows that λi2−iw ∈ Zdn, we will write c(x) for λi2−iw. Let n0 = λi2−in and so δ = n0/n. We recall
that δ ≤ 4ε1/(d+5). By lemma 5.4, we have

P
(
∃fn ∈ Sn(Bi(x)) : d

(−→µ n(fn)1Bi(x),
−→σ 1Bi(x)Ld

)
≤ β0δ

d+2)
≤ P

(
∃fn ∈ Sn(Bi(x)) : d

(−→µ n(fn)1Bi(x),
−→σ 1Bi(x)Ld

)
≤ 4β0ε

1/(d+5)
(n0

n

)d+1
)

≤ P
(
∃fn0 ∈ Sn0(C) : d

(−→µ n0(fn0),−→σ ◦ πc(x),δ1CLd
)
≤ 8β0ε

1/(d+5)
)
. (5.8)

By a change of variable, we get∫
C

‖−→σ ◦ πc(x),δ(y)−−→σ (x)‖2dLd(y) = nd

nd0

∫
Bi(x)

‖−→σ (y)−−→σ (x)‖2dLd(y) . (5.9)

According to Definition 7.9 in [24], the set Bi(x) shrinks nicely to x as ε goes to 0. Indeed, we have
Bi(x) ⊂ B(x, dδ) and

Ld(Bi(x)) = δd = 1
αddd

αdd
dδd = 1

αddd
Ld(B(x, dδ))

where αd is the volume of the d-dimensional unit Euclidean ball. Moreover when ε goes to 0, δ goes to
0. Since −→σ ∈ L1(Rd → Rd,Ld), using Lebesgue differentiation theorem on Rd, there exists a subset Ω̂
of Ω such that Ld(Ω \ Ω̂) = 0 and

∀y ∈ Ω̂ lim
ε→0

1
Ld(Bi(y))

∫
Bi(y)

‖−→σ (w)−−→σ (y)‖2dLd(w) = 0 . (5.10)
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Using equality (5.9), it follows that

‖−→σ ◦ πc(x),δ1C −−→σ (x)1C‖L1 =
∫
C

‖−→σ ◦ πc(x),δ((y)−−→σ (x)‖2dLd(y)

= nd

nd0

∫
Bi(x)

‖−→σ (y)−−→σ (x)‖2dLd(y)

= 1
Ld(Bi(x))

∫
Bi(x)

‖−→σ (y)−−→σ (x)‖2dLd(y) .

Using lemma 2.3, it yields that

d(−→σ ◦ πx,δ1CLd,−→σ (x)1CLd) ≤ 2‖−→σ ◦ πx,δ1C −−→σ (x)1C‖L1 ≤ 2
Ld(Bi(x))

∫
Bi(x)

‖−→σ (y)−−→σ (x)‖2dLd(y) .

(5.11)

We set
∀x ∈ Ω ∀ε > 0 hx(ε) = 2

Ld(Bi(x))

∫
Bi(x)

‖−→σ (y)−−→σ (x)‖2dLd(y) .

Thanks to equality (5.10), we have

∀x ∈ Ω̂ lim
ε→0

hx(ε) = 0 .

Finally, using inequalities (5.8) and (5.11), we have

lim inf
n→∞

− 1
ndδd

logP
(
∃fn ∈ Sn(Bi(x)) : d

(−→µ n(fn)1Bi(x),
−→σ 1Bi(x)Ld

)
≤ β0δ

d+2)
≥ lim inf

n→∞
− 1
nd0

logP
(
∃fn0 ∈ Sn0(C) : d

(−→µ n0(fn0),−→σ (x)1CLd
)
≤ 8β0ε

1/(d+5) + hx(ε)
)

≥ lim inf
n0→∞

− 1
nd0

logP
(
∃fn0 ∈ Sn0(C) : d

(−→µ n0(fn0),−→σ (x)1CLd
)
≤ 8β0ε

1/(d+5) + hx(ε)
)
.

Using theorem 1.1 and (5.10), by letting ε goes to 0, we get for any x ∈ Ω̂

lim inf
ε→0

lim inf
n→∞

− 1
ndδd

logP
(
∃fn ∈ Sn(Bi(x)) : d

(−→µ n(fn)1Bi(x),
−→σ 1Bi(x)Ld

)
≤ β0δ(ε)d+2) ≥ I(−→σ (x)) .

Using inequality (5.7) and the previous inequality, we obtain

lim
ε→0

lim inf
n→∞

− 1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)
≥
∫

Ω\V2(∂Ω,η0)
I(−→σ (x))dLd(x) .

Finally, since I(−→σ (x)) ≥ 0 for any x ∈ Ω, using the monotone convergence theorem, we obtain by letting
η0 go to 0:

lim
ε→0

lim inf
n→∞

− 1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)
≥
∫

Ω
I(−→σ (x))dLd(x) .

This yields the result.

Proof of lemma 5.4. Let n ≥ 1 and x ∈ Zdn. Let n0 ≤ n. We set δ = n0/n. Let us consider ω ∈ (R+)Edn
a configuration for which there exists fn ∈ Sn(πx,δ(C)) such that

d
(−→µ n(fn),−→σ 1πx,δ(C)Ld

)
≤ 1

2δ
d+1ε . (5.12)

Let fn = fn(ω) be such a stream in the configuration ω (if there are several such streams, we pick one
according to a deterministic rule). We set −→µ n = −→µ n(fn). We aim to prove that on the configuration
ω ◦ πx,δ ∈ (R+)E

d
n0 the stream fn ◦ πx,δ is in Sn0(C) and

d
(−→µ n0(fn ◦ πx,δ),−→σ ◦ πx,δ1CLd

)
≤ ε .
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Set gn0 = fn ◦ πx,δ the stream in the lattice Edn0
defined as follows

∀e ∈ Edn0
gn0(e) = fn(πx,δ(e)) .

We also set
−→µ n0 := −→µ n0(gn0) = 1

nd0

∑
e∈Edn0

gn0(e)δc(e) .

It is clear that gn0 ∈ Sn0(C) on the configuration ω ◦ πx,δ.
Let us compute the distance d

(−→µ n0(gn0),−→σ ◦ πx,δ1CLd
)
. Let k ≥ 1, λ ∈ [1, 2], y ∈ [−1, 1[d and

w ∈ Zd. Let Q ∈ ∆k
λ, we have

−→µ n0(Q+ y) = 1
nd0

∑
e∈Edn0 :

c(e)∈(Q+y)

fn(πx,δ(e)) = 1
nd0

∑
e∈Edn:

c(e)∈πx,δ(Q+y)

fn(e) = nd

nd0

−→µ n(πx,δ(Q+ y)) .

We have
πx,δ(Q+ y) = n0

n
(Q+ y) + x = n0

n
Q+ n0

n
y + x .

Write z = n0
n y + x. Let i ≥ 1 be such that

1
2i < λ

n0

n
≤ 1

2i−1 .

Let λ′ ∈ [1, 2] such that
λ
n0

n
= λ′2−i .

It yields that
πx,δ(Q+ y) ∈

(
z + ∆k+i

λ′

)
.

Let us compute Ld(B)/Ld(πx,δ(B)) for B = Q+ y:

Ld(B)
Ld(πx,δ(B)) = Ld(B)

δdLd(B) = nd

nd0
.

Write ν = −→σ 1πx,δ(C)Ld and ν ◦ πx,δ = −→σ ◦ πx,δ1CLd . We have by change of variable

ν ◦ πx,δ(B) =
∫
B

−→σ (πx,δ(y))1y∈CdLd(y) =
∫
B∩C

−→σ (πx,δ(y))dLd(y)

= nd

nd0

∫
πx,δ(B∩C)

−→σ (y)dLd(y) = nd

nd0
ν(πx,δ(B)) .

Using inequality (5.12), we have

∞∑
k=0

1
2k

∑
Q∈∆k

λ

‖−→µ n0(Q+ y)− ν ◦ πx,δ(Q+ y)‖2 = nd

nd0

∞∑
k=0

1
2k

∑
Q∈∆k+i

λ′

‖−→µ n(Q+ z)− ν(Q+ z)‖2

≤ 2in
d

nd0

∞∑
k=0

1
2k

∑
Q∈∆k

λ′

‖−→µ n(Q+ z)− ν(Q+ z)‖2

≤ λ′

λ

nd+1

nd+1
0

d(−→µ n,−→σ 1πx,δ(C)Ld) ≤ ε .

On the configuration ω ◦ πx,δ, we thus get

d
(−→µ n0(gn0),−→σ ◦ πx,δ1CLd

)
≤ ε .

It yields the result.
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5.2.2 Proof of proposition 5.3

Let us explain the strategy of the proof of proposition 5.3. The general idea of this proof is to build
a discrete stream that is close to −→σ by reconnecting constant streams in cubes. To do so, we need to
work with regular continuous streams that are close to −→σ . However, we cannot use the regularization
sequence directly on −→σ since −→σ ? Kp do not have null divergence close to the sources and the sinks. To
avoid this issue, we first need to build a prolongated version −→σ ′ of −→σ defined in an extended version of
Ω where the sources and the sinks have been pushed away. Doing so ensures that −→σ p = −→σ ′ ? Kp has
null divergence almost everywhere on Ω.

Next, we till Ω into small cubes (Bi)i∈J centered at (xi)i∈J such that −→σ p ≈ −→σ p(xi) on Bi for any
i ∈ J . We consider the family of elementary events: in each cube Bi there exists a discrete stream f

(i)
n

close to the constant continuous stream −→σ p(xi)1Bi . We use again corridors to reconnect these streams
altogether and create a stream fn, where outside the cubes and their corridors in Ω \∪i∈JBi, the stream
fn coincides with the discretized version of the stream −→σ p (defined as in the proof of lemma 4.8). Note
that unlike the proof of theorem 1.1, where the node law at the macroscopic level was straightforward
(because the continuous stream was constant and so the flow through the adjacent faces always match),
here the stream −→σ p is not constant and so the node law at the macroscopic level is harder to get. A
major difficulty of this proof is to build −→σ ′ in such away we can build a discretized version of −→σ p that
belongs in SMn (Γ1,Γ2,Ω).

The aim of the following proposition is to push away the sink and source for −→σ . We postpone its
proof until the section 5.3.

Proposition 5.5 (Prolongation of a continuous stream). Let −→σ ∈ Σ(Γ1,Γ2,Ω)∩ΣM (Γ1,Γ2,Ω) (we recall
that ΣM (Γ1,Γ2,Ω) was defined in (2.3)) such that Î(−→σ ) < ∞. For any η > 0, there exist ρ = ρ(η) > 0
and Ω̃, Γ̃1, Γ̃2 and −→σ ′ ∈ Σ(Γ̃1, Γ̃2, Ω̃) such that
— Ω ⊂ Ω̃, Γ̃1 ∪ Γ̃2 ⊂ ∂Ω̃, d2(Γ̃1 ∪ Γ̃2,Γ) = ρ and (Ω̃ \ Ω) ∩ V2(Γ \ (Γ1 ∪ Γ2), ρ/2) = ∅ (see figure 11)
— ‖−→σ −−→σ ′1Ω‖L1 ≤ η and Î(−→σ ′1Ω) ≤ Î(−→σ ) + η .

Figure 11 – Example of possible (Ω̃, Γ̃1, Γ̃2)

Proof of proposition 5.3. Let −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω). If Î(−→σ ) = ∞, the result is straightfor-
ward. Let us assume that Î(−→σ ) <∞.

Let η > 0. Let ρ, Ω̃, Γ̃1, Γ̃2 and −→σ ′ be as in the statement of proposition 5.5.
Step 1. Approximation of −→σ ′ by a regular function. Let (Kp)p≥1 be the sequence of mollifiers
(defined in (5.1)). Write −→σ p = −→σ ′ ∗Kp. We have −→σ p ∈ C∞(Rd,Rd). Let p ≥ 4/ρ. We claim that

∀x ∈ V2(Ω, ρ/2) div−→σ p(x) = 0 .
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Since −→σ ′ ∈ Σ(Γ̃1, Γ̃2, Ω̃), we have (see remark 13 in [9])

div−→σ ′ = −(−→σ ′ · −→n Ω̃)Hd−1|
∂Ω̃ = −(−→σ ′ · −→n Ω̃)Hd−1|Γ̃1∪Γ̃2 .

Let h ∈ C∞c (Rd,R). We get∫
Rd
hdiv−→σ pdLd = −

∫
Rd
−→σ p ·

−→
∇hdLd

= −
∫
Rd

∫
Rd
Kp(y)−→σ ′(x− y) · −→∇h(x)dLd(y)dLd(x)

= −
∫
Rd

∫
Rd
Kp(y)−→σ ′(z) · −→∇h(z + y)dLd(y)dLd(z) .

Since h ∈ C∞c (Rd,R), we have for Ld-almost every y ∈ Rd∫
Rd
Kp(y)−→∇h(z + y)dLd(y) = −→∇

∫
Rd
Kp(y)h(z + y)dLd(y) = −→∇(Kp ∗ h)(z) .

It follows that∫
Rd
hdiv−→σ pdLd =

∫
Rd
Kp ∗ hdiv−→σ ′dLd = −

∫
Γ̃1∪Γ̃2

(−→σ ′ · −→n Ω̃)Kp ∗ h dHd−1 .

Hence, if h has its support included in V2(Ω, ρ/2), the function Kp ∗ h has its support included in
V2(Ω, 3ρ/4). For any x ∈ Γ̃1 ∪ Γ̃2, we have Kp ∗ h(x) = 0 and∫

Rd
hdiv−→σ pdLd = 0 .

It follows that div−→σ p = 0 on V2(Ω, ρ/2).
Moreover, since for i = 1, . . . , d we have |−→σ ′(x) · −→ei | ≤M for Ld-almost every x in V2(Ω, ρ), we have

|−→σ p(x) · −→ei | ≤ M for Ld-almost every x in V2(Ω, ρ/2). For p large enough, by proposition 5.1, we have
Î(−→σ p) < ∞. Let n ≥ 1. Let ε > 0. The function −→σ p is uniformly continuous on Ω, that is there exists
δ = δ(ε) > 0 such that

∀x, y ∈ Ω ‖x− y‖2 ≤ δ =⇒ ‖−→σ p(x)−−→σ p(y)‖2 ≤ ε . (5.13)

In what follows, m = bε−αc where α = (2(3d + 1))−1 was defined in (4.7), κ = κ(m,n, δ) must satisfy
κ ≤ δ(ε)/(2d), we set

κ = 2m
n

⌊
nδ

4dm

⌋
.

We have nκ ∈ N and nκ(1 + 2d/m)/2 ∈ N. Besides, we get by definition of κ

lim
n→∞

κ(n) = δ

2d .

We divide Ω into small cubes of side-length κ(1 + 2d/m). Write Mκ the set of the centers of the cubes
of side-length κ(1 + 2d/m) included in Ω, that is

Mκ =
{
x ∈ κ

(
1 + 2d

m

)
Zd : πx,κ(1+2d/m)(C) ⊂ Ω \ V∞(∂Ω, dκ)

}
.

We define ∂intMκ as the centers of the cubes in Mκ that are in the boundary of Mκ, i.e.,

∂intMκ =
{
x ∈Mκ : ∃y ∈ κ

(
1 + 2d

m

)
Zd, ‖y − x‖∞ = κ

(
1 + 2d

m

)
, y /∈Mκ

}
.

We denote by −→σ κp the approximation of −→σ p at scale κ defined as follow

−→σ κp =
∑
x∈Mκ

−→σ p(x)1πx,κ(1+2d/m)(C) .
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Note that

Ω \ V2(∂Ω, d(d+ 2)κ) ⊂ Ω \ V∞(∂Ω, (d+ 2)κ) ⊂
⋃

x∈Mκ

πx,κ(1+2d/m)(C) . (5.14)

Thanks to (5.13) and proposition 1.7, we have for κ small enough depending on Ω

‖−→σ κp −−→σ p1Ω‖L1 ≤ εLd(Ω) + 2dMLd (V2(∂Ω, d(d+ 2)κ)) ≤ εLd(Ω) + 10d3MHd−1(Γ)κ . (5.15)

Step 2. Prove that −→σ p · −→n Ω̃ = 0 Hd−1- almost everywhere on ∂Ω̃ ∩ V2(Γ̃1 ∪ Γ̃2, ρ/2)c. Let
u ∈ C∞c (Rd,R), by inequality (2.7), we have∫

∂Ω̃
(−→σ p · −→n Ω̃)u dHd−1 =

∫
Rd
−→σ p ·

−→
∇udLd

=
∫
Rd

∫
Rd
−→σ ′(x− y) · −→∇u(x)Kp(y)dLd(y)dLd(x) .

Since u ∈ C∞c (Rd,R), there exist a bounded subset Fu of Rd and a constant Cu > 0 such that

∀x ∈ Rd ‖
−→
∇u(x)‖2 ≤ Cu1x∈Fu .

We have∫
Rd

∫
Rd
|−→σ ′(x− y) · −→∇u(x)Kp(y)|dLd(y)dLd(x) ≤

∫
Rd

∫
Rd

2dMCuKp(y)1x∈FudLd(y)dLd(x)

= 2dMCuLd(Fu) <∞ .

Hence, we can apply Fubini Tonelli theorem∫
∂Ω̃

(−→σ p · −→n Ω̃)u dHd−1 =
∫
Rd

∫
Rd
−→σ ′(x− y) · −→∇u(x)Kp(y)dLd(x)dLd(y)

=
∫
Rd
Kp(y)

∫
Rd
−→σ ′(z) · −→∇u(z + y)dLd(z)dLd(y)

=
∫
Rd
Kp(y)

∫
∂Ω̃

(−→σ ′ · −→n Ω̃)(x)u(x+ y)dHd−1(x)dLd(y)

Since |(−→σ ′ · −→n Ω̃)(x)| ≤ 2dM , we can again apply Fubini Tonelli theorem:∫
∂Ω̃

(−→σ p · −→n Ω̃)u dHd−1 =
∫
∂Ω̃

(−→σ ′ · −→n Ω̃)(x)
(∫

Rd
u(x+ y)Kp(y)dLd(y)

)
dHd−1(x)

=
∫

Γ̃1∪Γ̃2
(−→σ ′ · −→n Ω̃)(x)(Kp ∗ u)(x)dHd−1(x) . (5.16)

We recall that 1/p ≤ ρ/4. Let u ∈ C∞c (V2(Γ̃1 ∪ Γ̃2, ρ/2)c,R). Then, Kp ∗ u has its support included in
V2(Γ̃1 ∪ Γ̃2, ρ/4)c and ∫

∂Ω̃
(−→σ p · −→n Ω̃)u dHd−1 = 0 .

It follows that

−→σ p · −→n Ω̃ = 0 Hd−1-almost everywhere on ∂Ω̃ ∩ V2(Γ̃1 ∪ Γ̃2, ρ/2)c (5.17)

Step 3. Construction of a stream in ∪x∈Mκ
πx,κ(1+2d/m)(C) close to −→σ . Set

z0 =
(
− 1

2n, . . . ,−
1

2n

)
.
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We denote by Eκ(x) the following event:

Eκ(x) =

∃fn ∈ Sn(πx,κ(C)) :
d(−→µ n(fn),−→σ p(x)1πx,κ(C)) ≤ 12εα0κd,
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)

ψ�i (fn, πx,κ(A)) = (1− εα/4)
(∫

πx+z0,2υ(C�
i
)
−→σ p(y) · −→eidHd−1(y)

)
nd−1

md−1


we recall that P−i (m) and P+

i (m) were defined in (4.3) and (4.4) and α0 in (4.18). The choice of z0
is to compensate the shift due to integrating over the plaquettes. This choice will be clear in the next
step. Let fxn be a stream that satisfies the conditions of the event Eκ(x) (if there are several possible
choices, we choose according to a deterministic rule). Let x ∈Mκ, we have on the event Eκ(x) that for
any i ∈ {1, . . . , d} and � ∈ {+,−}:

ψ�i (fxn , πx,κ(C�i )) =
∑

A∈P�
i

(m)

ψ�i (fxn , πx,κ(A)) = (1− εα/4)
(∫

πx+z0,2υ(C�
i
)

−→σ p(y) · −→eidHd−1(y)
)
nd−1 .

We define the corridor Cor as follows:

Cor = Ω \
⋃

x∈Mκ

πx,κ(C) .

We proceed similarly as in the proof of lemma 4.8. Let � ∈ {+,−}, x ∈Mκ, i ∈ {1, . . . , d} such that x+
κ(1+d/m)−→ei ∈Mκ. For ∀A ∈ P�i (m), by lemma 3.1, there exists a stream f

x,A

n in cyl(πx,κ(A), κd/m, �−→ei )
such that

∀e ∈ Ei,�n [πx,κ(A)] f
x,A

n

(
e �
−→ei
n

)
= fxn (e)

and
∀e ∈ Ei,�n

[
πx,κ

(
A � d

m
−→ei
)]

f
x,A

n (e) = ψ�i (fxn , πx,κ(A))
|Ei,�n [πx,κ(A)]|

.

If x+κ(1+d/m)−→ei /∈Mκ, by lemma 3.1, there exists a stream f
x,A

n in cyl(πx,κ(A), κd/m−1/n,−→ei ) such
that

∀e ∈ Ei,+n [πx,κ(A)] f
x,A

n

(
e+
−→ei
n

)
= fxn (e)

and
∀e ∈ Ei,+n

[
πx,κ

(
A+ d

m
−→ei
)
− 1
n
−→ei
]

f
x,A

n (e) = ψ�i (fxn , πx,κ(A))
|E+,�
n [πx,κ(A)]|

.

This stream mixes the inputs in such a way the outputs are uniform. We build fpreln in ∪x∈Mκπx,κ(1+2d/m)(C)
as follows

fpreln =
∑
x∈Mκ

fxn +
∑

A∈∪i=1,...,dP+
i

(m)∪P−
i

(m)

f
x,A

n

 . (5.18)

We claim that on the event ∩x∈Mκ
Eκ(x),the stream fpreln satisfies the node law everywhere inside

∪x∈Mκπx,κ(1+2d/m)(C). Indeed, for any x, y ∈ Mκ such that ‖x − y‖1 = κ(1 + 2d/m), we can write
without loss of generality y−x = κ(1+2d/m)−→ei . On the event Eκ(x)∩Eκ(y), we have for any A ∈ P+

i (m)

ψ+
i (fxn , πx,κ(A)) = (1−εα/4)

(∫
πx+z0,κ(1+2d/m)(C+

i
)

−→σ p(y) · −→eidHd−1(y)
)

nd−1

md−1 = ψ−i (fyn , πy,κ(A−−→ei )) .

The latter equality combined with the fact that |Ei,+n [πx,κ(A)]| = |Ei,−n [πy,κ(A−−→ei )]| (since Ei,+n [πx,κ(A)] =
Ei,−n [πy,κ(A−−→ei )] + 2κd/m−→ei and 2κd/m ∈ Zn) ensures that the node law is satisfied along the common
face of πx,κ(1+2d/m)(C) and πy,κ(1+2d/m)(C).

At this stage, we have constructed the stream inside the cubes πx,κ(1+2d/m)(C), for x ∈ Mκ. The
remaining part is the most technical part of the proof. The aim is to prolongate this stream in Ω \
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∪x∈Mκ
πy,κ(1+2d/m)(C) in such a way the node law is respected everywhere except in Γ1

n ∪ Γ2
n. To do

so, we are going to build the discretized version −→σ discp of −→σ p. Note that −→σ p have been built in such
a way that its discretized version is in SMn (Γ1,Γ2,Ω). We have the stream fpreln in the cubes and the
stream −→σ discp outside the cubes. At this point the node law is not respected inside Ω along the common
faces. For these common faces, the stream fpreln has been built in such a way that its flow match with
the flow of −→σ discp . However, the inputs and the outputs do not perfectly match. We need to correct this
difference by doing a mixing, but without corridor. This is the most technical part of the proof.
Step 4. Construction of a discrete stream. We recall that C is the cube of side-length 1/n centered
at 0, that is

C =
[
− 1

2n,
1

2n

]d
.

We consider the following stream −→σ discp that is the discretized version of −→σ p defined as follows: for any
i ∈ {1, . . . , d}, for any e = 〈x, y〉 ∈ Edn such that x, y ∈ Ωn and −→xy = −→ei /n ,

−→σ discp (e) = (1− εα/4)nd−1

(∫
P(e)

−→σ p(u) · −→ei 1Ω̃dH
d−1(u)

)
−→ei .

Let x ∈ Ωn \ (Γ1
n ∪ Γ2

n). We want to prove that −→σ discp satisfies the node law at x. We distinguish
several cases.
Case 1. We have x + C ⊂ Ω. Since div−→σ p = 0 on Ω, we obtain by applying Gauss-Green theorem to
−→σ p in x+ C:∫

x+∂C

−→σ p(u) · −→n x+C(u)dHd−1(u) =
∑
y∈Zdn:
〈x,y〉∈Edn

∫
P(〈x,y〉)

−→σ p(u) · (n−→xy) dHd−1(u) = 0 .

It follows that −→σ discp satisfies the node-law at x.
Case 2. We have (x+C)∩Γ 6= ∅. The amount of water d−→σ discp (x) created at x for the stream −→σ discp is
equal to

d−→σ discp (x) = (1− εα/4)nd−1
∑

y∈Ωn:〈x,y〉∈Edn

∫
P(e)

−→σ p · (n−→yx)1Ω̃dH
d−1

We claim that for any y /∈ Ωn such that 〈x, y〉 ∈ Edn, we have P(e) ∩ Ω̃ = ∅. We distinguish two cases.
— Let us assume (x+C)∩(Γ1∪Γ2) 6= ∅. If there exists y /∈ Ωn such that 〈x, y〉 ∈ Edn then x ∈ Γ1

n∪Γ2
n

and this is a contradiction.
— Let us assume that (x+C)∩(Γ1∪Γ2) = ∅. Since by construction (Ω̃\Ω)∩V2(Γ\(Γ1∪Γ2), ρ/2) = ∅,

then we have (x + C) ∩ Ω̃ = (x + C) ∩ Ω. If there exists y such that e = 〈x, y〉 ∈ Edn and
P(e) ∩ Ω̃ = P(e) ∩ Ω 6= ∅ then d∞(y,Ω) ≤ 1/2n and y ∈ Ωn.

It yields that

d−→σ discp (x) = (1− εα/4)nd−1
∑

y∈Zdn:〈x,y〉∈Edn

∫
P(e)

−→σ p · (n−→yx)1Ω̃dH
d−1 .

By applying the Gauss-Green theorem to −→σ p in (x+ C) ∩ Ω̃, we have

−
∑

y∈Zdn:〈x,y〉∈Edn

∫
P(e)

−→σ p · (n−→yx)1Ω̃dH
d−1 +

∫
(∂Ω̃∩C)\∂C

−→σ p · −→n Ω̃dH
d−1 = 0 .

Using equality (5.17), we get

d−→σ discp (x) = 0 .
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We conclude that −→σ discp satisfies the node law at x for any x ∈ Ωn \ (Γ1
n ∪ Γ2

n).
Step 5. Correcting the stream Let us now consider x ∈ ∂intMκ. Let us denote by Eκ(x) the set of
faces of πx,κ(1+2d/m)(C) that are external, i.e.,

Eκ(x) =
{
κ

(
1 + 2d

m

)
C�i + x : x � κ

(
1 + 2d

m

)
−→ei /∈Mκ, i ∈ {1, . . . , d}, � ∈ {−,+}

}
.

For those faces, the stream fpreln (defined in (5.18)) does not perfectly coincide with the discretized
version of −→σ p but their flow match. To overcome this issue, we are going to build a stream that corrects
these differences. We here want to mix, but without using a corridor. This means that we need to
be particularly cautious that the stream we build does not exceed the capacity constraint. Let us first
consider F0 = x+ κ(1 + 2d/m)C−i ∈ Eκ(x) ⊂ Ω. We recall that P(e) denote the dual of the edge e. Set
υ = κ(1 + 2d/m)/2. Since nυ ∈ N and x ∈ Zdn, we have

F0 + z0 =
[
−υ − 1

2n, υ −
1

2n

]i−1
×
{
−υ − 1

2n

}
×
[
−υ − 1

2n, υ −
1

2n

]d−i
+ x

=
⋃

x∈F0∩Zdn

P
(〈

x− 1
n
−→ei , x

〉)
=

⋃
e∈Ei,+n [F0]

P(e) .

It follows that

ψ−i (fpreln , F0) = (1− εα/4)
(∫

F0+z0

−→σ p(y) · −→eidHd−1(y)
)
nd−1

= (1− εα/4)

∫
∪

e∈Ei,+n [F0]
P(e)

−→σ p(y) · −→eidHd−1(y)

 nd−1 = ψ+
i (−→σ discp , F0) . (5.19)

Let us now consider the case where F0 = x+ κ(1 + 2d/m)C+
i ∈ Eκ(x) ⊂ Ω. We have

F0 + z0 =
[
−υ − 1

2n, υ −
1

2n

]i−1
×
{
υ − 1

2n

}
×
[
−υ − 1

2n, υ −
1

2n

]d−i
=

⋃
x∈(F0− 1

n
−→ei)∩Zdn

P
(〈

x, x+ 1
n
−→ei
〉)

=
⋃

e∈Ei,−n [F0− 1
n
−→ei ]

P(e) .

It follows that

ψ+
i

(
fpreln , F0 −

1
n
−→ei
)

= (1− εα/4)
(∫

F0+z0

−→σ p(y) · −→eidHd−1(y)
)
nd−1

= (1− εα/4)

∫
∪

e∈Ei,−n [F0− 1
n
−→ei]
P(e)

−→σ p(y) · −→eidHd−1(y)

 nd−1

= ψ+
i (−→σ discp , F0 −

1
n
−→ei ) . (5.20)

We refer to figure 12 for the illustration of the choice of z0.
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Figure 12 – Choice of z0. The edges in bold represent edges where we will affect the value given by
−→σ discp .

• Let us first assume that −→σ p(x) · −→ei ≥ 0. Up to a translation of −1/n−→ei the case + is treated in
the same way as the case −. To avoid cumbersome notations, we only treat the case where � = − but
by seak of generality we do not replace � by −. We have

∀e ∈ Ei,�n
[
κ

(
C�i �

d

m
−→ei
)

+ x

]
fpreln (e) = 1− εα/4

κd−1

(∫
F0+z0

−→σ p(y) · −→eidHd−1(y)
)
−→ei .

Besides, using (5.13), we have∣∣∣∣∣ 1
κd−1

∫
F0+z0

−→σ p(y) · −→eidHd−1(y)−
(

1 + 2d
m

)d−1
−→σ p(x) · −→ei

∣∣∣∣∣ ≤ ε
(

1 + 2d
m

)d−1

and ∣∣∣∣∣nd−1
∫
P(e)

−→σ p(u) · −→ei dHd−1(u)−−→σ p(x) · −→ei

∣∣∣∣∣ ≤ ε .
It follows that for any e ∈ Ei,�n

[
κ
(
C�i � d

m
−→ei
)

+ x
]

(1− εα/4)
(

1 + 2d
m

)d−1
(−→σ p(x) · −→ei − ε) ≤ fpreln (e) · −→ei ≤ (1− εα/4)

(
1 + 2d

m

)d−1
(−→σ p(x) · −→ei + ε)

(5.21)

and for any e ∈ Ei,�n [F0]

(1− εα/4)(−−→σ p(x) · −→ei − ε) ≤ −−→σ discp (e) · −→ei ≤ (1− εα/4)(−−→σ p(x) · −→ei + ε) . (5.22)
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Combining the two previous inequalities for e ∈ Ei,�n
[
κ
(
C�i � d

m
−→ei
)

+ x
]
, we obtain

(−−→σ discp (e) + fpreln (e)) · −→ei ≤ (1− εα/4)
((

1 +
(

1 + 2d
m

)d−1
)
ε+

((
1 + 2d

m

)d−1
− 1
)
−→σ p(x) · −→ei

)

≤ 2dε+ 2d−1 2d
m
M ≤ 2d+1dMεα

for small enough ε depending on d and M where we recall that m = bε−αc. Moreover, we have

(−−→σ discp (e) + fpreln (e)) · −→ei ≥ (1− εα/4)
(((

1 + 2d
m

)d−1
− 1
)
−→σ p(x) · −→ei − 2dε

)
≥ −2dε ≥ −M

for ε small enough depending on M . For e ∈ Ei,�n [F0] \ Ei,�n
[
κ
(
C�i � d

m
−→ei
)

+ x
]
, we have fpreln (e) = 0,

(−−→σ discp (e) + fpreln (e)) · −→ei = −−→σ discp (e) · −→ei = −(1− εα/4)nd−1
∫
P(e)

−→σ p(u) · −→ei dHd−1(u) ≥ −M

and using inequality (5.22)

(−−→σ discp (e) + fpreln (e)) · −→ei = −−→σ discp (e) · −→ei ≤ (1− εα/4)(−−→σ p(x) · −→ei + ε) ≤ ε .

We recall that we assume here that −→σ p(x) · −→ei ≥ 0.
We can index the edges of Ei,�n [F0] by {1, . . . , κ(1 + 2d/m)n}d−1. We recall the definition of pi in

(4.16). We set

∀e ∈ Ei,�n [F0] ζ(e) = npi(c(e)) +
(⌊

κ(1 + 2d/m)n
2

⌋
+ 1
) ∑
j∈{1,...,d}\{i}

pi(−→ej ) .

It is easy to check that ζ(e) ∈ {1, . . . , κ(1 + 2d/m)n}d−1 (we recall that κ(1 + 2d/m)n ∈ Z). Set for any
e in Ei,�n [F0]

fin(ζ(e)) = (−−→σ discp (e) + fpreln (e))−→ei .

If e is such that ζ(e) /∈ {κdn/m+ 1, κ(1 + d/m)n}d−1, then

fin(ζ(e)) = −−→σ discp (e) · −→ei .

It follows that
∀y ∈ {1, . . . , κ(1 + 2d/m)n}d−1 −M ≤ fin(y) ≤ 2d+1dMεα .

To apply lemma 3.4, we have to check that the sequence (fin(y), y ∈ {1, . . . , κ(1 + 2d/m)n}d−1) satisfies
the conditions stated in this lemma. First note that thanks to inequality (5.19), we have∑

y∈{1,...,κ(1+2d/m)n}d−1

fin(y) = 0 .

By (5.13), we have

∀e0, e1 ∈ Ei,�n [F0] |−→σ discp (e0) · −→ei −−→σ discp (e1) · −→ei | ≤ ε . (5.23)

We distinguish two cases.
. We assume that 0 ≤ −→σ p(x) · −→ei ≤ 2dε1−α. In that case, for any e0 ∈ Ei,�n [F0], using (5.21), we have

|fpreln (e0) · −→ei | ≤ 2d−1(2dε1−α + ε). It follows that for any y, z ∈ {1, . . . , κ(1 + 2d/m)n}d−1, we have

|fin(y)− fin(z)| ≤ ε+ 2d(2dε1−α + ε) ≤ εα

for ε small enough depending on d where we recall that α < 1/2 (see (4.7)).
.We assume that −→σ p(x)·−→ei ≥ 2dε1−α ≥ 2dεm. Let l ∈ {1, . . . , d−2} and u ∈ {1, . . . , κ(1+2d/m)n}l,

if u /∈ {κdn/m+ 1, κ(1 + d/m)n}l then we have

∀y ∈
{

1, . . . , κ
(

1 + 2d
m

)
n

}d−1−l
fin(u, y) = −−→σ discp (ζ−1(u, y)))
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and using (5.23), we have

∀y0, y1 ∈
{

1, . . . , κ
(

1 + 2d
m

)
n

}d−1−l
|fin(u, y0)− fin(u, y1)| ≤ ε .

If u ∈ {κdn/m+ 1, κ(1 + d/m)n}l using inequalities (5.21) and (5.22)∑
y∈{1,...,κ(1+2d/m)n}d−1−l

fin(u, y)

= −
∑

y∈{1,...,κ(1+2d/m)n}d−1−l

−→σ discp (ζ−1(u, y)) · −→ei +
∑

y∈{κdn/m,...,κ(1+d/m)n}d−1−l

fpreln (ζ−1(u, y)) · −→ei

≥ (1− εα/4)
(

(−−→σ p(x) · −→ei − ε)
(

1 + 2d
m

)d−1−l
+
(

1 + 2d
m

)d−1
(−→σ p(x) · −→ei − ε)

)
(κn)d−1−l

= (1− εα/4)
(
−→σ p(x) · −→ei

((
1 + 2d

m

)l
− 1
)
− ε

(
1 +

(
1 + 2d

m

)l))
(κn)d−1−l

(
1 + 2d

m

)d−1−l

≥ (1− εα/4)
(

2d
m
−→σ p(x) · −→ei − 2d−1ε

)
(κn)d−1−l

≥ (1− εα/4)(2d+1d− 2d−1)ε ≥ 0 .

In both cases, the conditions to apply lemma 3.4 are fulfilled. By lemma 3.4, there exists a stream gx,F0
n

in cyl(F0, (d− 1)κ(1 + 2d/m), �−→ei ) ⊂ Ω such that

∀e ∈ Ei,�n [F0] gx,F0
n

(
e �
−→ei
n

)
= −−→σ discp (e) + fpreln (e) .

The stream gx,F0
n satisfies the node law everywhere except for points in Zdn ∩ F0. Moreover, we have for

any edge e ∈ Edn ∩ cyl(F0, (d− 1)κ, �−→ei ) parallel to −→ei :

gx,F0
n (e) · −→ei ∈ [−M, 2d+1dMεα]

and by (5.13)
gx,F0
n (e) · −→ei +−→σ discp (e) · −→ei ≥ −M +−→σ p(x) · −→ei − ε ≥ −M − ε

and
gx,F0
n (e) · −→ei +−→σ discp (e) · −→ei ≤M + ε+ 2d+1dMεα .

For an edge e parallel to −→ej with j 6= i:

‖gx,F0
n (e)‖2 ≤ 2d+1dMεα .

• Let us assume that −→σ p(x) · −→ei < 0. Hence, we have (−−→σ p(x)) · −→ei ≥ 0. We can apply the previous
case for −−→σ discp and −fpreln . Then, we multiply by −1 the stream we obtained. We end up with a
discrete stream gx,F0

n in cyl(F0, (d− 1)κ(1 + 2d/m), �−→ei ) ⊂ Ω such that

∀e ∈ Ei,�n [F0] gx,F0
n

(
e �
−→ei
n

)
= −−→σ discp (e) + fpreln (e) .

Moreover, we have for any edge e ∈ Edn ∩ cyl(F0, (d− 1)κ, �−→ei ) parallel to −→ei :

gx,F0
n (e) · −→ei ∈ [−2d+1dMεα,M ]

and by (5.13)
gx,F0
n (e) · −→ei +−→σ discp (e) · −→ei ≤M +−→σ p(x) · −→ei + ε ≤M + ε

and
gx,F0
n (e) · −→ei +−→σ discp (e) · −→ei ≥ −M − ε− 2d+1dMεα .
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For an edge e parallel to −→ej with j 6= i:

‖gx,F0
n (e)‖2 ≤ 2d+1dMεα .

Finally, we build fn ∈ Sn(Γ1,Γ2,Ω) as follows

∀e = 〈w, z〉 ∈ Ω ∩ Edn fn(e) =
{
fpreln (e) if w, z ∈ ∪Q∈Mκ

Q
−→σ discp (e) +

∑
x∈∂intMκ

∑
F∈Eκ(x) g

x,F
n (e) otherwise.

The node law is satisfied everywhere in Ωn for fn. Note that by construction of Mκ each e ∈ cyl(F0, (d−
1)κ(1 + 2d/m), �−→ei ) belongs at most to 2d such cylinder (one for each direction): for each j ∈ {1, . . . , d}
there exists at most one ◦ ∈ {+,−} and y ∈ ∂intMκ such that F1 = πy,κ(1+2d/m)(C◦i ) ∈ Eκ(y) and
e ∈ cyl(F1, (d − 1)κ(1 + 2d/m), ◦−→ei ). Indeed, let us assume there exists x, y ∈ ∂intMκ with κ(1 +
2d/m)C+

i + x ∈ Eκ(x) and κ(1 + 2d/m)C−i + y ∈ Eκ(y) such that

e ∈ cyl
(
κ

(
1 + 2d

m

)
C+
i + x− 1

n
−→ei , (d− 1)κ

(
1 + 2d

m

)
,−→ei
)

∩ cyl
(
κ

(
1 + 2d

m

)
C−i + y, (d− 1)κ

(
1 + 2d

m

)
,−−→ei

)
.

It follows that y−x = t−→ei with t < κ(1+2d/m)+2(d−1)κ(1+2d/m) = 2dκ(1+2d/m). Since x, y ∈Mκ,
we have d∞(πx,κ(1+2d/m), ∂Ω) ≥ dκ and d∞(πy,κ(1+2d/m), ∂Ω) ≥ dκ. It yields that πx,κ(2d+1+2d/m)(C) ∪
πy,κ(2d+1+2d/m)(C) ⊂ Ω. Since ‖y−x‖∞ ≤ 2dκ(1 + 2d/m) ≤ κ(2d+ 1 + 2d/m) (the last inequality holds
for large enough m). It is easy to check that d∞(πx+κ(1+2d/m)−→ei ,κ(1+2d/m), ∂Ω) ≥ dκ. Hence, it follows
that x+ κ(1 + 2d/m)−→ei ∈Mκ, this contradicts the fact that κ(1 + 2d/m)C+

i + x ∈ Eκ(x).
It follows that for any e ∈ Ω, we have

‖fn(e)‖2 ≤M + 2d+1d2Mεα + ε ≤M(1 + εα/2)

for ε small enough depending on d and M .
Conclusion. By proposition 1.7 and (5.14), we have for κ small enough depending on Ω,

Ld(Cor) ≤ Ld(V2(∂Ω, 2d2κ)) + L
d(Ω)
κd

κd

((
1 + 2d

m

)d
− 1
)

≤ 8Hd−1(∂Ω)d2κ+ Ld(Ω)2d+1 d

m
≤ 8Hd−1(∂Ω)dδ(ε) + Ld(Ω)2d+1 d

m(ε)

where we use (4.41) in the second inequality. We recall that δ(ε) and 1/m(ε) goes to 0 when ε goes to
0, we recall that δ(ε) depends on p. We set

H(ε) = inf
{
a > 0 : G([M − a,M ] ≤ 8Hd−1(∂Ω)dδ(ε) + Ld(Ω)2d+1 d

m(ε)

}
.

We can prove as in the proof of theorem 1.1 equality (4.30), that limε→0 H(ε) = 0 and for any p ≥ 1

lim
ε→0

lim sup
n→∞

Ld(Cor) logG([M −H(ε),M ]) = 0 . (5.24)

Besides, we have

Hd−1(∂Cor) ≤ |Mκ|2dκd−1 +Hd−1(∂Ω) ≤ Ld(Ω)2d
κ

+Hd−1(∂Ω) .

Using an inequality similar to (4.24), it follows that for n large enough (depending on ε)

|{e ∈ Edn : e ∈ Cor}| ≤ 3dndLd(Cor) . (5.25)

We set f̃n = (1− εα/2)(1−H(ε)/M)fn. Hence for any e ∈ Ω, we have

‖f̃n(e)‖2 ≤ (1− εα/2)
(

1− H(ε)
M

)
M(1 + εα/2) ≤M −H(ε) .
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Hence, on the event ∩x∈Mκ
Eκ(x) ∩ {∀e ∈ Cor t(e) ≥ M − H(ε)}, we have f̃n ∈ Sn(Γ1,Γ2,Ω). Using

lemmas 2.3 and 2.6, we have for n large enough

d(−→µ n(fn),−→σ κpLd) ≤
∑
x∈Mκ

d(−→µ n(fn)1πx,κ(C),
−→σ p(x)1πx,κ(C)Ld) + 2‖−→σ κp1πx,κ(1+2d/m)(C)\πx,κ(C)‖L1

+ 2
nd

∑
e∈Edn∩Cor

‖fn(e)‖2

≤ 12εα0Ld(Ω) + 6dMLd(Cor) .

Using inequality (5.15) and lemma 2.3, it follows that

d(−→σ κpLd,−→σ Ld) ≤ d(−→σ κpLd,−→σ p1ΩLd) + d(−→σ p1ΩLd,−→σ ′1ΩLd) + d(−→σ ′1ΩLd,−→σ Ld)
≤ 2‖−→σ κp −−→σ p1Ω‖L1 + 2‖−→σ ′ −−→σ p‖L1 + 2‖−→σ ′1Ω −−→σ ‖L1

≤ 2εLd(Ω) + 20d3MHd−1(Γ)κ+ 2‖−→σ ′ −−→σ p‖L1 + 2η . (5.26)

Moreover, using inequality (5.26), we have

d(−→µ (f̃n),−→σ Ld) ≤ d(−→µ (f̃n),−→µ (fn)) + d(−→µ (fn),−→σ κpLd) + d(−→σ κpLd,−→σ Ld)

≤ 2dLd(V∞(Ω, 1))
(

H(ε)
M

(1− εα/2) + εα/2
)
M + 6dMLd(Cor) + (2ε+ 12εα0)Ld(Ω)

+ 20d3MHd−1(Γ)κ+ 2‖−→σ ′ −−→σ p‖L1 + 2η .

Hence, using the independence, we have for p large enough depending on η for ε small enough depending
on p, d and M and then n large enough depending on ε∏

e∈Cor∩Edn

P(t(e) ≥M −H(ε))
∏
x∈Mκ

P(Eκ(x)) ≤ P(∃f̃n ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(f̃n),−→σ Ld) ≤ 3η) (5.27)

where we recall that κ goes to 0 when ε goes to 0. We set n0 = nκ. Let x ∈ Ω \ Cor. Note that
‖−→σ p(x)1C −−→σ p(c(x))1C‖L1 ≤ ε where c(x) ∈Mκ such that x ∈ πc(x),κ(C). By lemma 2.3, it yields

d(−→µ n0(fn0),−→σ p(c(x))1CLd) ≤ d(−→µ n0(fn0),−→σ p(x)1CLd) + 2ε .

We can apply lemma 4.4 and use the previous inequality

P(Eκ(c(x)) = P

 ∃fn ∈ Sn(πc(x),κ(C)) : d(−→µ n(fn),−→σ p(c(x))1πc(x),κ(C)) ≤ 12εα0κd,

∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)
ψ�i (fn, πc(x),κ(A)) = (1− εα/4)

(∫
πc(x)+z0,2υ(C�

i
)
−→σ p(y) · −→eidHd−1(y)

)
nd−1

md−1


≥ P

 ∃fn0 ∈ Sn0(C) : d(−→µ n0(fn0),−→σ p(c(x))1CLd) ≤ 3εα0 ,
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)

ψ�i (fn0 , A) = (1− εα/4)
(∫

πc(x)+z0,κ(1+2d/m)(C�i )
−→σ p(y) · −→ei dHd−1(y)

)
nd−1

0
(mκ)d−1


≥ P

 ∃fn0 ∈ Sn0(C) : d(−→µ n0(fn0),−→σ p(x)1CLd) ≤ εα0 ,
∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P�i (m)

ψ�i (fn0 , A) = (1− εα/4)
(∫

πc(x)+z0,κ(1+2d/m)(C�i )
−→σ p(y) · −→ei dHd−1(y)

)
nd−1

0
(mκ)d−1

 .

(5.28)

We check that the conditions to apply lemma 4.2 are satisfied. Since div−→σ p = 0, we have by Gauss-Green
theorem applied to −→σ p in πc(x)+z0,κ(1+2d/m)(C)

d∑
i=1

∫
πc(x)+z0,κ(1+2d/m)(C−i )

−→σ p(y) · −→ei dHd−1(y) =
d∑
i=1

∫
πc(x)+z0,κ(1+2d/m)(C+

i
)

−→σ p(y) · −→eidHd−1(y)
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Moreover, for all � ∈ {+,−}, for all i ∈ {1, . . . , d}, and for all A ∈ P�i (m), we have∣∣∣∣∣ 1
(mκ)d−1

∫
πc(x)+z0,κ(1+2d/m)(C�i )

−→σ p(y) · −→eidHd−1(y)−Hd−1(A)−→σ p(x) · −→ei

∣∣∣∣∣
= 1

(mκ)d−1

∣∣∣∣∣
∫
πc(x)+z0,κ(1+2d/m)(C�i )

−→σ p(y) · −→eidHd−1(y)−Hd−1(πc(x)+z0,κ(C�i ))−→σ p(x) · −→ei

∣∣∣∣∣
≤ 1

(mκ)d−1

∫
πc(x)+z0,κ(C�

i
)
‖−→σ p(y)−−→σ p(x)‖2dHd−1(y) + 1

(mκ)d−1κ
d−1

((
1 + 2d

m

)d−1
− 1
)
‖−→σ p · −→ei ‖L∞

≤
(
ε+ 2dM d

m

)
Hd−1(A) .

where we use in the last inequality that 2d/m ≤ 1 and inequality (4.41). We recall that m = bε−αc,
hence we have for ε small enough∣∣∣∣∣ 1

(mκ)d−1

∫
πx+z0,κ(1+2d/m)(C�i )

−→σ p(y) · −→eidHd−1(y)−Hd−1(A)−→σ p(x) · −→ei

∣∣∣∣∣ ≤ 2d+2MdεαHd−1(A) .

It follows that the conditions to apply lemma 4.2 are fulfilled. Thanks to theorem 1.1 and inequality
(5.28), it yields

lim sup
ε→0

lim sup
n→∞

− 1
nd0

logP(Eκ(c(x)) ≤ lim sup
ε→0

lim sup
n0→∞

− 1
nd0

logP(Eκ(c(x)) ≤ I(−→σ p(x)) . (5.29)

Besides, we have

lim sup
ε→0

lim sup
n→∞

∑
x∈Mκ

− 1
nd

logP(Eκ(x)) = lim sup
ε→0

lim sup
n→∞

∫
Ω
− 1
nd0

logP(Eκ(c(x))1 ∪
w∈Mκ

πw,κ(C)(x)dLd(x) .

(5.30)

We would like to use the reverse Fatou Lemma. Fix ε > 0. To be able to use this lemma we need to
upperbound the integrand uniformly on ε and n by an integrable function. To do so, we need to use
inequalities from the proofs of lemma 4.1 and lemma 4.2. We have using inequalities (5.28), (4.19) and
(4.20)

− 1
nd0

logP(Eκ(c(x)) ≤ − 1
nd0

logP
(
∃fn0 ∈ Sn0(C) : ∀� ∈ {+,−}∀i ∈ {1, . . . , d} ∀A ∈ P

�
i (m) ψ�i (fn0 , A) = λ�A

and d
(−→µ n0(fn0),−→σ p(x)1CLd

)
≤ εα

)
− κ′d logG

([
‖−→σ p(x)‖2

2d ,+∞
[)

where (λ+
A)A and (λ−A) are the families defined in lemma 4.1 associated with −→σ (x) and ε. Note that

K ≥ 1 in (4.20). Finally, using equality (4.10), we obtain

− 1
nd0

logP(Eκ(c(x)) ≤ − 1
nd0

logP
(
∃fn0 ∈ Sn0(C) : d

(−→µ n0(fn0),−→σ p(x)1CLd
)
≤ ε
)

− 2dmd−1

nd0
log
(

md−1√ε
4κdεαnd−1

0

)
− κ′d logG

([
M√
2d
,+∞

[)
. (5.31)

Besides, using lemma 2.3, we have

P
(
∃fn0 ∈ Sn0(C) : d

(−→µ n0(fn0),−→σ p(x)1CLd
)
≤ ε
)

≥ P
(
∃fn0 ∈ Sn0(C) : d

(−→µ n0(fn0), (1− ε/(4dM))−→σ p(x)1CLd
)
≤ ε/2

)
.

It follows that using inequality (4.54) for n large enough

− 1
nd0

logP
(
∃fn0 ∈ Sn0(C) : d

(−→µ n0(fn0),−→σ p(x)1CLd
)
≤ ε
)
≤ −d logG([(1− ε/(4dM))‖−→σ p(x)‖∞,M ])

≤ −d logG([(1− ε/(4dM))M,M ]) .
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We can therefore use reverse Fatou lemma for a fixed ε, we obtain

lim sup
n→∞

∑
x∈Mκ

− 1
nd

logP(Eκ(x)) ≤
∫

Ω
lim sup
n→∞

− 1
nd0

logP(Eκ(c(x))1 ∪
w∈Mκ

πw,κ(C)(x)dLd(x)

≤
∫

Ω
lim sup
n0→∞

− 1
nd0

logP(Eκ(c(x))1 ∪
w∈Mκ

πw,κ(C)(x)dLd(x) .

Using inequality (5.31), we have

lim sup
n0→∞

− 1
nd0

logP(Eκ(c(x))

≤ lim sup
n0→∞

− 1
nd0

logP
(
∃fn0 ∈ Sn0(C) : d

(−→µ n0(fn0),−→σ p(x)1CLd
)
≤ ε
)
− κ′d logG

([
M√
2d
,+∞

[)
≤ I(−→σ p(x))− κ′d logG

([
M

2d ,+∞
[)

and the right hand side is integrable on Ω, we can use again the reverse Fatou lemma, we obtain

lim sup
ε→0

lim sup
n→∞

∑
x∈Mκ

− 1
nd

logP(Eκ(x)) ≤
∫

Ω
lim sup
ε→0

lim sup
n0→∞

− 1
nd0

logP(Eκ(c(x))1 ∪
w∈Mκ

πw,κ(C)(x)dLd(x) .

Combining inequalities (5.30) and (5.29), we obtain

lim sup
ε→0

lim sup
n→∞

∑
x∈Mκ

− 1
nd

logP(Eκ(x)) ≤
∫

Ω
I(−→σ p(x))dLd(x) = Î(−→σ p) . (5.32)

Finally, using inequalities (5.24), (5.25), (5.27) and (5.32), we obtain

lim sup
n→∞

− 1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ ) ≤ 3η) ≤ Î(−→σ p) .

By proposition 5.1, we have
lim
p→∞

Î(−→σ p) = Î(−→σ ′) .

By the properties of −→σ ′, we have

lim sup
n→∞

− 1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ ) ≤ 3η) ≤ Î(−→σ ) + η .

The result follows by letting η go to 0.

5.3 Proof of proposition 5.5
Proof of proposition 5.5. Let −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω) such that Î(−→σ ) < ∞. By hypothesis 2,
there exist S1, . . . ,Sl hypersurfaces of class C1 such that Γ ⊂ ∪i=1,...,lSi.
Step 1. Decomposition of −→σ . Let p ≥ 1. We denote by Np the following subset of Γ.

Np = (Γ ∩ V2(∂ΓΓ1 ∪ ∂ΓΓ2 ∪i=1,...,l ∂Γ(Si ∩ Γ), 1/p)) ∪
⋃

i=1,...,d
{x ∈ Γ : 0 < |−→n Ω(x) · −→ei | ≤ 1/p} .

We aim to decompose −→σ = −→σ (p) +−→σ (p),res such that
— −→σ (p),−→σ (p),res ∈ Σ(Γ1,Γ2,Ω);
— −→σ (p) · −→n Ω = 0 Hd−1-almost everywhere on Np;
— −→σ (p),res is negligible in some sense.

83



We are going to build these continuous streams as the limit of discrete streams. Since −→σ ∈ ΣM (Γ1,Γ2,Ω),
there exist an increasing function ψ : N→ N and fψ(n) ∈ SMψ(n)(Γ1,Γ2,Ω) for n ∈ N, such that

lim
n→∞

d(−→µ ψ(n)(fψ(n)),−→σ Ld) = 0 .

To lighten the notations, we will write fn instead of fψ(n). By lemma 3.5, there exists a couple
(−→Γ n, (p(−→γ ))−→γ ∈−→Γ n

) such that
fn =

∑
−→γ ∈
−→
Γ

p(−→γ )
∑

〈〈x,y〉〉∈−→γ

n−→xy1〈x,y〉

where −→Γ n is a set of self-avoiding oriented path that have both extremities in Γ1
n ∪ Γ2

n. If there are
several possible choices for this couple, we pick one according to a deterministic rule. We can decompose
the set −→Γ n into two disjoint sets −→Γ (p)

n and −→Γ (p),res
n where

−→Γ (p),res
n =

{−→γ ∈ −→Γ : −→γ has at least one extremity in V2(Np, d/n)
}

and −→Γ (p)
n = −→Γ \ −→Γ (p),res

n . We set

f (p)
n =

∑
−→γ ∈
−→Γ (p)
n

p(−→γ )
∑

−→e =〈〈x,y〉〉∈−→γ

n−→xy1e

and f (p),res
n = fn − f (p)

n . It is easy to check that

f (p)
n ∈ SMn (Γ1 \ Np,Γ2 \ Np,Ω) .

Let N ≥ 1. By compactness and lemma 2.8, up to extractions, we can assume that for any p ∈
{1, . . . , N} the measure −→µ n(f (p)

n ) converges weakly towards a stream −→σ (p)Ld where −→σ (p) ∈ Σ(Γ1,Γ2,Ω)
and −→σ (p) · −→n Ω = 0 Hd−1-almost everywhere on (Γ \ (Γ1 ∪ Γ2)) ∪ Np. Besides, we recall that by lemma
3.5, for any e0 ∈ Edn and any p ≥ 1, we have

(f (p)
n (e0)− f (p+1)

n (e0)) · fn(e0) =
∑

−→γ ∈
−→Γ (p)
n \
−→Γ (p+1)
n

p(−→γ )
∑

−→e =〈〈x,y〉〉∈−→γ

n−→xy · fn(e0)1e(e0) ≥ 0 .

It follows that

1
nd

∑
e∈Edn

N∑
p=1
‖f (p+1)
n (e)− f (p)

n (e)‖2 = 1
nd

∑
e∈Edn

N∑
p=1

(f (p+1)
n (e)− f (p)

n (e)) · fn(e)
‖fn(e)‖2

≤ 1
nd

∑
e∈Edn

‖fn(e)‖2 ≤ 2dLd(V∞(Ω, 1))M .

By inequality (2.5), it follows that

N∑
p=1
‖−→σ (p+1) −−→σ (p)‖L1 ≤ 2dLd(V∞(Ω, 1))M .

By letting N go to infinity, we obtain
∞∑
p=1
‖−→σ (p+1) −−→σ (p)‖L1 ≤ 2dLd(V∞(Ω, 1))M .

It follows that there exists −→σ 0 ∈ Σ(Γ1,Γ2,Ω) such that limp→∞ ‖−→σ (p)−−→σ 0‖L1 = 0. Note that in general,
we don’t have necessarily −→σ 0 = −→σ . However, we prove that the stream −→σ 0 −−→σ has null divergence on
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Rd and null trace on Γ. We set −→σ (p),res = −→σ −−→σ (p). By following the arguments steps 3 and 4 in the
proof of lemma 2.8 and proposition 1.7, we have for any u ∈ C∞c (Rd,R),

∣∣∣∣∫
Rd
−→σ (p),res ·

−→
∇udLd

∣∣∣∣ =

∣∣∣∣∣∣ lim
n→∞

− 1
nd−1

∑
x∈(Γ1

n∪Γ2
n)∩V2(Np,d/n)

u(x) dfn(x)

∣∣∣∣∣∣
≤ dM‖u‖∞ lim

n→∞
n
|Zdn ∩ V2(Np, d/n)|

nd

≤ dM‖u‖∞ lim
n→∞

nLd(V2(Np, 2d/n))

≤ 8d2M‖u‖∞Hd−1(Np) .

Besides, since the manifolds intersect transversally for i 6= j ∈ {1, . . . , l} the intersection Si ∩Sj is a sub-
manifold of codimension 2 (see for instance chapter 1 paragraph 5 in [16]). It follows thatHd−1(Si∩Sj) =
0 and

Hd−1(∂Γ(Si ∩ Γ)) ≤
∑
j 6=i
Hd−1(Si ∩ Sj) = 0 .

Since Hd−1(∂ΓΓ1∪∂ΓΓ2∪i=1,...l∂Γ(Si∩Γ)) = 0, we have limp→∞ 1V2(∂ΓΓ1∪∂ΓΓ2∪i=1,...l∂Γ(Si∩Γ),1/p)(x) = 0
for Hd−1-almost every x in Γ. Hence, thanks to the dominated convergence theorem

lim
p→∞

Hd−1(Γ ∩ V2(∂ΓΓ1 ∪ ∂ΓΓ2 ∪i=1,...l ∂Γ(Si ∩ Γ), 1/p))

=
∫

Γ
lim
p→∞

1V2(∂ΓΓ1∪∂ΓΓ2∪i=1,...l∂Γ(Si∩Γ),1/p)(x)dHd−1(x) = 0 .

Let i ∈ {1, . . . , d}. For Hd−1-almost every x ∈ Γ, the normal exterior vector −→n Ω(x) is well defined. For
every x ∈ Γ such that −→n Ω(x) is well defined, we have

lim
p→∞

10<|−→n Ω(x)·−→ei |≤1/p = 0 .

Thanks to dominated convergence theorem, we have

lim
p→∞

∫
Γ
10<|−→n Ω(x)·−→ei |≤1/pdHd−1(x) = 0 .

Finally, we have that
lim
p→∞

Hd−1(Np) = 0

and for any u ∈ C∞c (Rd,R), we have

lim
p→∞

∫
Rd
−→σ (p),res ·

−→
∇udLd = 0 .

We have∣∣∣∣∫
Rd

(−→σ (p),res −−→σ +−→σ 0) · −→∇udLd
∣∣∣∣ =

∣∣∣∣∫
Rd

(−→σ 0 −−→σ (p)) · −→∇udLd
∣∣∣∣ ≤ ‖−→∇u‖L∞‖−→σ 0 −−→σ (p)‖L1 .

It follows that for any u ∈ C∞c (Rd,R),

lim
p→∞

∫
Rd
−→σ (p),res ·

−→
∇udLd =

∫
Rd

(−→σ −−→σ 0) · −→∇udLd = 0 .

Hence, we have div(−→σ −−→σ 0) = 0 Ld-almost everywhere on Ω. Furthermore, by equality (2.7), we get∫
Rd

(−→σ −−→σ 0) · −→∇udLd =
∫

Γ
(−→σ −−→σ 0) · −→n Ω udHd−1 .
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Finally, for any u ∈ C∞c (Rd,R), we have∫
Γ
((−→σ −−→σ 0) · −→n Ω)udHd−1 = 0 .

Step 2. Prolongation of the discrete stream. Let r0 > 0 we will choose later. We define the
prolongated version f̃ (p)

n of f (p)
n (see figure 5.3) as follows

f̃ (p)
n = f (p)

n +
∑

x∈Γ1
n∪Γ2

n\V2(Np,d/n)

∑
i=1,...,d

(
1−→n Ω(πi(x))·−→ei≥1/p

br0nc∑
k=1

f (p)
n (〈x, x−−→ei /n〉)1〈x+(k−1)−→ei/n,x+k−→ei/n〉

+1−→n Ω(πi(x))·−→ei≤−1/p

br0nc∑
k=1

f (p)
n (〈x, x+−→ei /n〉)1〈x−(k−1)−→ei/n,x−k−→ei/n〉

)

where πi(x) ∈ Γ is the intersection between Γ and {x + λ−→ei , λ ∈ R}, if there are several intersection
points, we pick the closest from x. Note that it may exist two disjoint points x and y in Γ1

n∪Γ2
n such that

πi(x) = πi(y). However, this is not an issue since by definition of SMn (Γ1,Γ2,Ω), we have f (p)
n (〈x, y〉) = 0.

Roughly speaking, we obtain the stream f̃
(p)
n by prolongating the stream f

(p)
n through straight lines.

Figure 13 – The crosses correspond to points in Γ1
n. By sake of clarity we only represent how we prolongate

the stream in the direction −→e1 (represented by the bold lines). Note that in the figure, −→n Ω(π1(x)) ·−→e1 > 0
and −→n Ω(π1(y)) · −→e1 < 0. The corresponding p is chosen big enough.

Choice of r0. Let x ∈ Γ1 ∪ Γ2 \ Np. Since Ω is a Lipschitz domain, there exist r > 0, an hyperplane
Hx containing x of normal vector −→n x and φx : H → R a Lipschitz function such that

B(x, r) ∩ Γ = {y + φx(y)−→n x : y ∈ Hx ∩B(x, r)} .

Since x /∈ V2(∪j=1,...,l∂Γ(Sj∩Γ), 1/2p), up to choosing a smaller r, we can assume that B(x, r)∩Γ ⊂ Sj for
some j ∈ {1, . . . , l} and for any i ∈ {1, . . . , d}, if |−→n Ω(x) ·−→ei | ≥ 1/p then for any y ∈ Γ∩B(x, r), we have
|−→n Ω(y) · −→ei | ≥ 1/(2p). If −→n Ω(x) · −→ei = 0 then for any y ∈ Γ∩B(x, r), we have |−→n Ω(y) · −→ei | ≤ 1/(2p). We
used the fact that the hypersurface Sj is of class C1. To each x in Γ1∪Γ2\Np, we associate rx > 0 as above.
We can extract from the family (B(x, rx/2), x ∈ Γ1 ∪ Γ2 \ Np) a finite covering (B(xi, rxi/2), i ∈ I) of
the compact set Γ1 ∪ Γ2 \ Np. We set

r0 = 1
4 min

(
min
i∈I

rxi , 1
)
.
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We prove that the stream does not exceed the capacity constraint. Let e be an edge in the
support of f̃ (p)

n − f (p)
n . Let us assume e has its two endpoints in Ωn. Let i ∈ {1, . . . , d} be such that e is

colinear to −→ei . Then, there exists x ∈ (Γ1 ∪ Γ2) \ Np such that |−→n Ω(x) · −→ei | ≥ 1/p and y ∈ Γ such that
x− y = t−→ei with |t| ≤ r0.

Figure 14 – Illustration of the case where there exists e with its two endpoints in Ωn in the support of
f̃

(p)
n − f (p)

n .

We claim that there does not exists any y ∈ Γ such that x − y = t−→ei with |t| ≤ 2r0. Since we
prolongate the stream by the exterior the existence of such y implies that by prolongating the stream
we have crossed Ω again. Indeed, assume such a y exists. Let j ∈ I such that x ∈ B(xj , rxj/2). Since
‖x− y‖2 ≤ rxj/2, we have that y ∈ B(xj , rxj ). Moreover, since |−→n Ω(x) · −→ei | ≥ 1/p, by definition of rxj ,
we have

∀z ∈ Γ ∩B(xi, rxj ) |−→n Ω(z) · −→ei | ≥ 1/2p . (5.33)

Let us denote by x′ and y′ the points in Hxj (the hyperplane associated to xj) such that x = x′ +
φxj (x′)−→n xj and y = y′ + φxj (y′)−→n xj . Let us denote by φ0 the following mapping

∀s ∈ [0, 1] φ0(s) = φxj ((1− s)x′ + sy′) .

Since xj /∈ Np and Γ is locally C1 around x we know that φ0 is of class C1. By the mean value
theorem, there exists s ∈]0, 1[ such that φ′0(s) = φ0(1) − φ0(0) = φxj (y′) − φxj (x′). In other words,
the vector y′ − x′ + (φxj (y′) − φxj (x′))−→n xj = t−→ei belongs to the tangent space at the point zs =
((1− s)x′ + sy′ + φ0(s)−→n xj ) ∈ Γ (see figure 14). Consequently, we have

−→n Ω(zs) · −→ei = 0 .

This contradicts (5.33). The support of f̃ (p)
n − f (p)

n does not contain edges with two endpoints in Ωn.
Let us assume that there exists e ∈ Edn such that ‖f̃ (p)

n (e)‖2 > M . Necessarily e is not in Ω. Roughly
speaking, in this situation, by prolongating the stream two disjoint points of Γ use the same edge. Let
i ∈ {1, . . . , d} be such that e is colinear to −→ei . Then there exists x and y in Γ1 ∪ Γ2 \ Np such that
|−→n Ω(x) · −→ei | ≥ 1/p and x− y = t−→ei with |t| ≤ 2r0 (see figure 15. By the same reasoning than above, this
is excluded.
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Figure 15 – Illustration of the case where there exists e such that ‖f̃n(e)‖2 > M .

We prove that the stream f̃
(p)
n satisfies the node law at Γ1

n ∪ Γ2
n. Let x ∈ Γ1

n ∪ Γ2
n. If x ∈

V2(Np, d/n), then for any edge e that has x for endpoint, we have by construction f (p)
n (e) = f̃

(p)
n (e) = 0.

Let us now assume that x /∈ V2(Np, d/n). Assume there exists i ∈ {1, . . . , d} such that −→n Ω(πi(x))·−→ei = 0.
Since x /∈ V2(Np, d/n), we have that for any y ∈ B(x, d/n) ∩ Γ, −→n Ω(y) · −→ei = 0. In other words, Γ is
locally flat near πi(x). Consequently, it yields that x+−→ei /n and x−−→ei /n belong to Γ1

n∪Γ2
n. By definition

of SMn (Γ1,Γ2,Ω), we have

f (p)
n (〈x, x−−→ei /n〉) = f (p)

n (〈x, x+−→ei /n〉) = f (p)
n (〈x, x+−→ei /n〉) = 0 .

Finally, we have

df̃ (p)
n (x) =

∑
i=1,...,d

f̃ (p)
n (〈x, x−−→ei /n〉) · −→ei − f̃ (p)

n (〈x, x+−→ei /n〉) · −→ei

=
∑

i=1,...,d
1−→n Ω(πi(x))·−→ei≥1/p(f (p)

n (〈x, x−−→ei /n〉)− f (p)
n (〈x, x−−→ei /n〉) · −→ei

+ 1−→n Ω(πi(x))·−→ei≤−1/p(f (p)
n (〈x, x+−→ei /n〉)− f (p)

n (〈x, x+−→ei /n〉) · −→ei
= 0 .

Step 3. We prove that the prolongated discrete stream converges towards a continuous
stream in an extended version of Ω. We claim that the node law is satisfied for f̃ (p)

n at any point
in V2(Ω, r0/2p). We prove this result by contradiction. Assume there exists a point w ∈ V2(Ω, r0/2p)
where the node law is not satisfied (see figure 16). Necessarily, w /∈ Ωn and there exists y ∈ Γ such that
w = y+ t0

−→n Ω(y) with t0 ≤ r0/2p (see figure 16. Since the node law is not respected only at the end of a
prolongated line, i.e, for w ∈ Zdn such that there exists x ∈ Γ that satisfies w = x+t−→ei with |t| ≥ r0−1/n
and |−→n Ω(x) · −→ei | ≥ 1/p. There exists j ∈ I such that x ∈ B(xj , rxj/2) and |−→n Ω(xj) · −→ei | ≥ 1/p. Since
‖x− y‖2 ≤ 2r0 ≤ rxj/2 we have y ∈ B(xj , rxj ).
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Figure 16 – Illustration of the case where the node law is not respected in V2(Ω, r0/2p).

By the mean value theorem, there exists z ∈ B(xj , rxj )∩Γ such that y− x is in the tangent space of
z. Hence, we have (y− x) · −→n Ω(z) = 0. And so t−→ei · −→n Ω(z) = t0

−→n Ω(y) · −→n Ω(z) and |t−→ei · −→n Ω(z)| ≤ t0 ≤
r0/2p ≤ 1/2p. This contradicts the fact that |−→ei · −→n Ω(z)| ≥ 1/2p by definition of rxj .

Write
Ω̃ = Ω ∪ V2(Γ1 ∪ Γ2 \ Np, r0/2p)

and
Γ̃1 = {x ∈ Ω̃ : d2(x,Γ1) = r0/2p}

Γ̃2 = {x ∈ Ω̃ : d2(x,Γ2) = r0/2p} .

By lemma 2.8, we can prove that we can extract from −→µ n(f̃ (p)
n )1Ω̃ a sequence that converges towards

a continuous stream σ̃(p)Ld in {σ̃Ld : σ̃ ∈ Σ(Γ̃1, Γ̃1, Ω̃)} that coincides with −→σ (p)Ld on Ω. It is easy
to check that since −→σ − −→σ 0 has null divergence on Rd and null trace on Γ then (σ̃(p) + −→σ − −→σ 0)Ld in
{σ̃Ld : σ̃ ∈ Σ(Γ̃1, Γ̃1, Ω̃)} and coincides with (−→σ (p) +−→σ −−→σ 0)Ld on Ω.

Continuity of Î. Note that Î((σ̃(p) + −→σ − −→σ 0)1Ω) = Î(−→σ (p) + −→σ − −→σ 0). Since the sequence
(−→σ (p)+−→σ −−→σ 0)p≥1 converges in L1 towards −→σ , up to extraction, we can assume that (−→σ (p)+−→σ −−→σ 0)(x)
converges towards −→σ (x) for Ld-almost every x on Ω. Let η > 0. Set δ = η/(4dLd(Ω)M). We have

Î((1− δ)(−→σ (p) +−→σ −−→σ 0)) =
∫

Ω
I((1− δ)(−→σ (p) +−→σ −−→σ 0)(x))dLd(x) .

Since (1− δ)(−→σ (p) +−→σ −−→σ 0)(x) ∈ D̊I , by proposition 4.7, the function I is continuous at this point:

lim
p→∞

I((1− δ)(−→σ (p) +−→σ −−→σ 0)(x)) = I((1− δ)−→σ (x)) .

Moreover, by proposition 4.9, we have I((1 − δ)(−→σ (p) + −→σ − −→σ 0)(x)) ≤ −d logG([(1 − δ)M,M ]) for
Ld-almost every x. We can therefore apply the dominated convergence theorem:

lim
p→∞

Î((1− δ)(−→σ (p) +−→σ −−→σ 0)) = Î((1− δ)−→σ ) .

Using the convexity of Î, we obtain

lim
p→∞

Î((1− δ)(−→σ (p) +−→σ −−→σ 0)) ≤ Î((1− δ)−→σ ) ≤ (1− δ)Î(−→σ ) + δÎ(−→0 ) ≤ Î(−→σ ) .
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Let p be large enough such that

Î((1− δ)(−→σ (p) +−→σ −−→σ 0)) ≤ Î(−→σ ) + η

and
‖−→σ − (−→σ (p) +−→σ −−→σ 0)‖L1 ≤ η/2 .

We have

‖−→σ − (1− δ)(σ̃(p) +−→σ −−→σ 0)1Ω‖L1 = ‖−→σ − (1− δ)(−→σ (p) +−→σ −−→σ 0)‖L1

≤ ‖−→σ −−→σ (p)‖L1 + δLd(Ω)2dM ≤ η .

We set −→σ ′ = (1− δ)(σ̃(p) +−→σ −−→σ 0) and ρ = r0/2p. This concludes the proof.

6 Upper large deviation principle
The following little lemma will appear several times in what follows. We refer to lemma 6.7 in [5] for

a proof of this lemma.

Lemma 6.1 (Lemma 6.7 in [5]). Let f1, . . . , fr be r non-negative functions defined on ]0, 1[. Then,

lim sup
ε→0

ε log
(

r∑
i=1

fi(ε)
)

= max
1≤i≤r

lim sup
ε→0

ε log fi(ε) .

We recall that we endowM(V∞(Ω, 1))d with the topology O associated with the distance d and the
Borelian σ-field B and that Pn denotes the following probability:

∀A ∈ B Pn(A) = P(∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) ∈ A) .

Let −→σ ∈ Σ(Γ1,Γ2,Ω) and δ > 0. We denote by Bd(−→σ , δ) the open ball centered at −→σ Ld of radius δ:

Bd(−→σ , δ) =
{
ν ∈M(V∞(Ω, 1))d : d(−→σ Ld, ν) < δ

}
.

We denote U the following basis of neighborhood of the null element ofM(V∞(Ω, 1))d:

U =
{
Bd
(

0, 1
p

)
: p ≥ 1

}
.

To prove theorem 1.2, it is sufficient to prove that Ĩ is a good rate function, that the sequence of measures
(Pn)n≥1 is Ĩ-tight and that the following local estimates are satisfied (see section 6.2 in [5]). This is the
purpose of the following proposition.

Proposition 6.2. The function Ĩ is a good rate function. The sequence of measures (Pn)n≥1 is Ĩ-tight,
i.e., there exists positive constants c and λ0 such that

∀λ ≥ λ0 ∀U ∈ U lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈ Ĩ−1([0, λ]) + U) ≤ −cλ .

Moreover, the local estimates are satisfied:

∀ ν ∈M(V∞(Ω, 1))d ∀ε > 0 lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn), ν
)
≤ ε
)
≥ −Ĩ(ν) .

∀ ν ∈M(V∞(Ω, 1))d s.t. Ĩ(ν) <∞, ∀ε > 0, ∃δ = δ(ε) > 0

lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d
(−→µ n(fn), ν

)
≤ δ(ε)) ≤ −Ĩ(ν)(1− ε) .
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Before proving this proposition, we prove the following lemma.

Lemma 6.3. The set {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ΣM (Γ1,Γ2,Ω)} is compact for the topology associated
with the distance d.

Proof of lemma 6.3. Let −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω). Set ν = −→σ Ld. We have

|ν|(Ωc) = 0 and |ν|(Ω) ≤ 2dMLd(Ω) .

It follows by Prohorov theorem that the set {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω)∩ΣM (Γ1,Γ2,Ω)} is relatively com-
pact for the weak topology in the sense that for any sequence (−→σ nLd)n≥1, we can extract a subsequence
(−→σ ψ(n)Ld)n≥1 such that there exists ν0 ∈M(V∞(Ω, 1))d such that

∀f ∈ Cb(Rd,R) lim
n→∞

∫
Rd
f−→σ ψ(n)dLd =

∫
Rd
fdν0 .

By lemma 2.2, it follows that
lim
n→∞

d(−→σ ψ(n)Ld, ν0) = 0 .

Since −→σ ψ(n) ∈ ΣM it is itself the weak limit of a sequence of discrete streams: there exists φ : N→ N an
increasing function such that for all m ≥ 1 there exists fψ(n),φ(m) ∈ SMφ(m)(Γ1,Γ2,Ω) and

lim
m→∞

d(−→σ ψ(n)Ld,−→µ φ(m)(fψ(n),φ(m))) = 0 .

For any n ≥ 1, we define φ0(n) to be

φ0(n) = inf
{
φ(m) : d(−→σ ψ(n)Ld,−→µ φ(m)(fψ(n),φ(m))) ≤

1
n

}
.

It follows that
lim
n→∞

d(−→σ Ld,−→µ φ0(n)(fψ(n),φ0(n))) = 0 .

By lemma 2.8, we have that ν0 = −→σ 0Ld where −→σ 0 ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω). Hence, the set
{−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)} is compact for the topology associated with the distance
d.

Proof of proposition 6.2. Step 1. We prove that Ĩ is lower semi-continuous. Let ν ∈M(V∞(Ω, 1))d
and (νp)p≥1 be a sequence such that d(νp, ν) goes to 0 when p goes to infinity.

• If ν ∈ {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω)} and lim infp→∞ Ĩ(νp) = +∞, then

lim inf
p→∞

Ĩ(νp) ≥ Ĩ(ν) .

• If ν = −→σ Ld with −→σ ∈ Σ(Γ1,Γ2,Ω) and lim infp→∞ Ĩ(νp) <∞, then we can extract from the sequence
(νp)p≥1 the measures such that Ĩ(νp) < ∞. We will denote this subsequence sequence by (−→σ pLd)p≥1

where −→σ p ∈ Σ(Γ1,Γ2,Ω) and Î(−→σ p) = Ĩ(−→σ pLd). We use the same arguments as in proposition 4.5.
However, we cannot use this proposition because we do not have the almost sure convergence of −→σ p
towards σ. The function

ε 7→ lim inf
n→∞

− 1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)

is clearly non-increasing. Moreover, by theorem 1.5, we have

lim
ε→0

lim inf
n→∞

− 1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)

= Î(−→σ ) .

Let δ > 0, there exists ε0 = ε0(δ) > 0 such that

∀ε ≤ ε0 lim inf
n→∞

− 1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn),−→σ Ld) ≤ ε) ≥ Î(−→σ )− δ .
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Let p0 ≥ 1 be such that for any p ≥ p0, d(−→σ pLd,−→σ Ld) ≤ ε0/4. It yields that

∀ε ≤ ε0 ∀p ≥ p0 lim inf
n→∞

− 1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn),−→σ Ld) ≤ ε0)

≤ lim inf
n→∞

− 1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn),−→σ pLd) ≤ ε/4) .

It follows that

∀ε ≤ ε0 ∀p ≥ p0 lim inf
n→∞

− 1
nd

logP(∃fn ∈ Sn(C) : d(−→µ n(fn),−→σ pLd) ≤ ε/4) ≥ I(−→v )− δ .

By letting first ε goes to 0 and then taking the liminf in p, we obtain

lim inf
p→∞

Î(−→σ p) ≥ Î(−→σ )− δ .

Since the previous inequality holds for any δ > 0, it follows that

lim inf
p→∞

Î(−→σ p) ≥ Î(−→σ ) .

• If ν ∈ M(V∞(Ω, 1))d \ {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω)}, then by definition of Ĩ, we have Ĩ(ν) = +∞. Let
M > 0. By proposition 2.7, there exists ε0 > 0 such that

lim sup
n→∞

− 1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d
(−→µ n(fn), ν

)
≤ ε0) ≥M .

For any p ≥ 1 such that d(νp, ν) ≤ ε0/2, we have

∀ε ≤ ε0

2 lim sup
n→∞

− 1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d
(−→µ n(fn), νp

)
≤ ε)

≥ lim sup
n→∞

− 1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d
(−→µ n(fn), νp

)
≤ ε0/2)

≥ lim sup
n→∞

− 1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d
(−→µ n(fn), ν

)
≤ ε0) ≥M .

By first taking the limit when ε goes to 0 and then the liminf in p, we obtain

lim inf
p→∞

Ĩ(νp) ≥M .

By letting M go to infinity, we obtain

lim inf
p→∞

Ĩ(νp) = Ĩ(ν) = +∞ .

Finally, we have in any case
lim inf
p→∞

Ĩ(νp) ≥ Ĩ(ν) .

Since the space is metric, this implies that Ĩ is lower semi-continuous.
Step 2. We prove that Ĩ is a good rate function. Let us prove that its level sets are compact for
the distance d. Let λ > 0. We have

{−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω), Î(−→σ ) ≤ λ} = {ν ∈M(V∞(Ω, 1))d : Ĩ(ν) ≤ λ}
⊂ {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)} .

Since Î is lower semi-continuous, its level sets are closed for the topology associated with d. Moreover
by lemma 6.3, the set {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)} is compact. Hence, the level sets are
compact for the topology associated with d. This implies that Ĩ is a good rate function.
Step 3. We prove that Ĩ satisfies the local estimates. Let −→σ ∈ Σ(Γ1,Γ2,Ω)∩ΣM (Γ1,Γ2,Ω) such
that Î(−→σ ) <∞. The function

ε 7→ lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)
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is clearly non-decreasing. Hence, using theorem 1.5, we have

∀ε > 0 lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)

≥ lim
ε′→0

lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε′

)
= −Î(−→σ ) = −Ĩ(−→σ Ld) .

For measures ν such that Ĩ(ν) = +∞, we have

∀ε > 0 lim inf
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn), ν
)
≤ ε
)
≥ −Ĩ(ν) = −∞ .

Let −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω) such that Î(−→σ ) <∞. The function

ε 7→ − lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ ε
)

is non-increasing and thanks to theorem 1.5, the function goes to Î(−→σ ) = Ĩ(−→σ Ld) when ε goes to 0.
There exists δ = δ(ε) > 0 such that

− lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ δ(ε)

)
≥ Î(−→σ )(1− ε) = Ĩ(−→σ Ld)(1− ε) .

(6.1)

Step 4. We prove the Ĩ-tightness. Let λ ≥ 0. First note that Ĩ−1([0, λ]) = {−→σ Ld : −→σ ∈
Î−1([0, λ]) ∩ ΣM (Γ1,Γ2,Ω)}. Let U ∈ U . Let K > 0. Let ε0 > 0. For −→σ ∈ ΣM (Γ1,Γ2,Ω) such that
Î(−→σ ) < +∞, there exists δ−→σ (ε0) > 0, such that the local estimates (6.1) is satisfied for ε0. For −→σ such
that Î(−→σ ) ≤ λ, up to choosing a smaller δ−→σ , we can assume that Bd(−→σ , δ−→σ ) ⊂ (Ĩ−1([0, λ]) +U). For −→σ
such that Î(−→σ ) = +∞, there exists δ−→σ such that

lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ Ld) ≤ δ−→σ ) ≤ −K .

Since by lemma 6.3, the set {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω)∩ΣM (Γ1,Γ2,Ω)} is compact for d, we can extract
from (Bd(−→σ , δ−→σ ),−→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)) a finite covering (Bd(−→σ i, δ−→σ i), i = 1, . . . , N) of
{−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)}. We have

P
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈ Ĩ−1([0, λ]) + U

)
≤

N∑
i=1

P
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈ Ĩ−1([0, λ]) + U,−→µ n(fn) ∈ Bd(−→σ i, δ−→σ i)

)

+ P

∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈
⋃

i=1,...,N
Bd(−→σ i, δ−→σ i)

 .

Thanks to proposition 2.7, we have

lim sup
n→∞

1
nd

logP

∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈
⋃

i=1,...,N
Bd(−→σ i, δ−→σ i)

 = −∞ .

Moreover, if Î(−→σ i) ≤ λ, then (Ĩ−1([0, λ]) + U)c ∩ Bd(−→σ i, δ−→σ i) = ∅ and

P
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈ (Ĩ−1([0, λ]) + U),−→µ n(fn) ∈ Bd(−→σ i, δ−→σ i)

)
= 0 .

By lemma 6.1, it follows that

lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈ Ĩ−1([0, λ]) + U)

≤ −min
(

(1− ε0) min
{
Î(−→σ i) : i = 1, . . . , N, Î(−→σ i) > λ

}
,K
)
≤ −min((1− ε0)λ,K) .
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By letting first K go to infinity and then ε0 go to 0, we obtain

lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈ Ĩ−1([0, λ]) + U) ≤ −λ .

This concludes the proof.

Before proving theorem 1.4, we need to prove that the map −→σ Ld 7→ flowcont(−→σ ) is continuous.

Proposition 6.4. The function −→σ Ld 7→ flowcont(−→σ ) is continuous where {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω)} is
endowed with the topology associated with the distance d.

Proof of proposition 6.4. Let −→σ ∈ Σ(Γ1,Γ2,Ω) and (−→σ p)p≥1 be a sequence in Σ(Γ1,Γ2,Ω) such that

lim
p→∞

d(−→σ pLd,−→σ Ld) = 0 .

Let η > 0. Thanks to the proof of proposition 4.7. in [9] (see (4.28)), we know that there exists a finite
family of hyperrectangles A1, . . . ,AN of disjoint interiors and h ≥ 0 such that

∀−→σ ∈ Σ(Γ1,Γ2,Ω)

∣∣∣∣∣flowcont(−→σ )− 1
2h

N∑
i=1

∫
cyl(Ai,h)

−→σ · −→vidLd
∣∣∣∣∣ ≤ C0ηM (6.2)

where −→vi is normal to Ai and C0 is a constant depending on Ω and the Ai. By lemma 2.1, −→σ pLd weakly
converges to −→σ Ld. By Portmanteau theorem, we have that for any i ∈ {1, . . . ,N}

lim
p→∞

∫
cyl(Ai,h)

−→σ p · −→vidLd =
∫

cyl(Ai,h)

−→σ · −→vidLd .

Using inequality (6.2), it follows that

lim sup
p→∞

∣∣flowcont(−→σ )− flowcont(−→σ p)
∣∣ ≤ 2C0ηM .

Finally, by letting η goes to 0, we obtain

lim
p→∞

flowcont(−→σ p) = flowcont(−→σ ) .

The result follows.

We recall that

J(λ) = inf
{
Î(−→σ ) : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω),flowcont(−→σ ) = λ

}
.

Proposition 6.5. The function J is convex on R+. There exists λmax > 0 such that J is finite on
[0, λmax[ and infinite on ]λmax,+∞[. Moreover, J is increasing on [φΩ, λmax[, J(λ) = 0 on [0, φΩ] and

∀λ ∈]0, λmax[ lim
n→∞

1
nd

logP(φn(Γ1,Γ2,Ω) ≥ λnd−1) = −J(λ) .

Note that we did not study the behavior of the function at λmax since eventually we will replace the
value of J(λmax) by the value of its left limit at λmax.

Proof of proposition 6.5. Step 1. We prove that the infimum in the definition of J is attained.
Since by proposition 6.4, the function −→σ 7→ flowcont(−→σ ) is continuous then the set {−→σ ∈ Σ(Γ1,Γ2,Ω) ∩
ΣM (Γ1,Γ2,Ω), flowcont(−→σ ) = λ} is closed. Besides, by lemma 6.3, the set {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩
ΣM (Γ1,Γ2,Ω)} is compact and so the set {−→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω), flowcont(−→σ ) = λ} is also
compact. Consequently, the lower semi-continuous function Î attains its minimum over this set: there
exists −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω) such that flowcont(−→σ ) = λ and J(λ) = Î(−→σ ).
Step 2. We prove a lower bound. Let λ ≥ 0 such that J(λ) <∞. Note that we have

J(λ) = inf
{
Î(−→σ ) : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω),flowcont(−→σ ) ≥ λ

}
.

94



Indeed, for any −→σ ∈ Σ(Γ1,Γ2,Ω) such that flowcont(−→σ ) = (1 + δ)λ with δ ≥ 0, we have using the
convexity of I (theorem 4.6)

J(λ) ≤ Î
(

1
1 + δ

−→σ
)
≤ 1

1 + δ
Î(−→σ ) +

(
1− 1

1 + δ

)
Î(−→0 ) ≤ Î(−→σ ) .

Let ε > 0. Thanks to proposition 6.4, there exists δ > 0 such that for any −→σ ′ ∈ Σ(Γ1,Γ2,Ω) we have

d(−→σ ,−→σ ′) ≤ δ =⇒ |flowcont(−→σ )− flowcont(−→σ ′)| ≤ ε

2 .

We have

P(∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ Ld) ≤ δ)
≤ P(φn(Γ1,Γ2,Ω) ≥ (λ− ε)nd−1,∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ Ld) ≤ δ)

+ P(φn(Γ1,Γ2,Ω) < (λ− ε)nd−1,∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ Ld) ≤ δ) .

Let us prove that

∃n0 ≥ 1 ∀n ≥ n0 P(φn(Γ1,Γ2,Ω) < (λ− ε)nd−1,∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ Ld) ≤ δ) = 0 .
(6.3)

If not, there exists a sequence (ψ(n))n≥1 such that

P(φψ(n)(Γ1,Γ2,Ω) < (λ− ε)ψ(n)d−1,∃fψ(n) ∈ Sψ(n)(Γ1,Γ2,Ω) : d(−→µ ψ(n)(fψ(n),
−→σ Ld) ≤ δ) > 0 .

By the same arguments as in the proof of Proposition 2.7, we can choose a sequence of realizations
(ωψ(n))n≥1 and extract a subsequence from (−→µ ψ(n)(fψ(n)(ωψ(n)))n≥1 that converges weakly towards
−→σ ′Ld with −→σ ′ ∈ Σ(Γ1,Γ2,Ω). To lighten the notation we will denote by (−→µ n(fn))n≥1 this subsequence.
By Proposition 4.7. in [9], we have that

lim
n→∞

flown(fn)
nd−1 = flowcont(−→σ ′) .

By lemma 2.2, we obtain that
lim
n→∞

d(−→µ n(fn),−→σ ′Ld) = 0 .

It follows that d(−→σ Ld,−→σ ′Ld) ≤ δ and so

lim
n→∞

flown(fn)
nd−1 = flowcont(−→σ ′) ≥ λ− ε

2
This contradicts the fact that

flown(fn) ≤ φn(Γ1,Γ2,Ω) < (λ− ε)nd−1 .

It yields that

−J(λ) = −Î(−→σ ) ≤ lim inf
n→∞

1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ Ld) ≤ δ)

≤ lim inf
n→∞

1
nd

logP(φn(Γ1,Γ2,Ω) ≥ (λ− ε)nd−1) . (6.4)

Step 3. We prove an upper bound. Let K > 0. Let ε0 > 0. Thanks to proposition 6.4, to each
−→σ ∈ Σ(Γ1,Γ2,Ω), we can associate a real number δ−→σ > 0 such that

∀−→σ ′ ∈ Σ(Γ1,Γ2,Ω) d(−→σ Ld,−→σ ′Ld) ≤ δ−→σ =⇒ |flowcont(−→σ )− flowcont(−→σ ′)| ≤ ε

2 .

For −→σ such that Î(−→σ ) < +∞, up to choosing a smaller δ−→σ , we can assume that the local estimate given
by the inequality (6.1) is satisfied for ε0:

lim sup
n→∞

1
nd

logP
(
∃fn ∈ Sn(Γ1,Γ2,Ω) : d

(−→µ n(fn),−→σ Ld
)
≤ δ−→σ

)
≤ −Î(−→σ )(1− ε0) . (6.5)

95



For −→σ such that Î(−→σ ) = +∞, up to choosing a smaller δ−→σ , we can assume that

lim sup
n→∞

1
nd

logP(∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ Ld) ≤ δ−→σ ) ≤ −K . (6.6)

Since by lemma 6.3, the set {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω)∩ΣM (Γ1,Γ2,Ω)} is compact for d, we can extract
from (Bd(−→σ , δ−→σ ),−→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)) a finite covering (Bd(−→σ i, δ−→σ i), i = 1, . . . , N). We
have

P(φn(Γ1,Γ2,Ω) > (λ+ ε)nd−1) ≤
N∑
i=1

P
(
φn(Γ1,Γ2,Ω) ≥ (λ+ ε)nd−1,−→µmaxn ∈ Bd(−→σ i, δ−→σ i)

)
+ P

∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈
⋃

i=1,...,N
Bd(−→σ i, δ−→σ i)

 . (6.7)

We claim that

∃n0 ≥ 1 ∀n ≥ n0 P

∃fn ∈ Sn(Γ1,Γ2,Ω) : −→µ n(fn) /∈
⋃

i=1,...,N
Bd(−→σ i, δ−→σ i)

 = 0 .

Indeed, if it was not true, by the same arguments we used to prove (6.3) and lemma 2.8, we can prove
that there exists −→σ Ld /∈

⋃
i=1,...,N Bd(−→σ i, δ−→σ i) with −→σ ∈ ΣM (Γ1,Γ2,Ω). This contradicts the fact

that (Bd(−→σ i, δ−→σ i), i = 1, . . . , N) is a covering of {−→σ Ld : −→σ ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)}. Let
i ∈ {1, . . . , N} such that flowcont(−→σ i) < λ. By the same arguments we used to prove (6.3), we can prove
that

∃n0 ≥ 1 ∀n ≥ n0 P
(
φn(Γ1,Γ2,Ω) ≥ (λ+ ε)nd−1,−→µmaxn ∈ Bd(−→σ i, δ−→σ i)

)
= 0 .

Using lemma 6.1, inequality (6.7) and the local estimates (6.5), (6.6), it follows that

lim sup
n→∞

1
nd

logP(φn(Γ1,Γ2,Ω) ≥ (λ+ ε)nd−1)

≤ lim sup
n→∞

1
nd

log
(

N∑
i=1

P(∃fn ∈ Sn(Γ1,Γ2,Ω) : d(−→µ n(fn),−→σ iLd) ≤ δ−→σ i)1flowcont(−→σ i)≥λ

)
≤ −min

(
(1− ε0) min{Î(−→σ i) : flowcont(−→σ i) ≥ λ, i = 1, . . . , N},K

)
≤ −min((1− ε0)J(λ),K) .

By letting K go to infinity and then ε0 go to 0, we obtain

lim sup
n→∞

1
nd

logP(φn(Γ1,Γ2,Ω) ≥ (λ+ ε)nd−1) ≤ −J(λ). (6.8)

Step 4. We prove that J is convex and conclude. Let us prove that the function J is convex.
Let x, y > 0 such that J(x) <∞ and J(y) <∞. Let α ∈ [0, 1]. Let −→σ x ∈ Σ(Γ1,Γ2,Ω) ∩ ΣM (Γ1,Γ2,Ω)
(respectively −→σ y) such that Î(−→σ x) = J(x) and flowcont(−→σ x) = x (respectively Î(−→σ y) = J(y) and
flowcont(−→σ y) = y). We have

flowcont(α−→σ x + (1− α)−→σ y) = −
∫

Γ1
(α−→σ x + (1− α)−→σ y) · −→n ΩdHd−1

= α flowcont(−→σ x) + (1− α) flowcont(−→σ y)
= αx+ (1− α)y .

Using the convexity of Î, it follows that

J(αx+ (1− α)y) ≤ Î(α−→σ x + (1− α)−→σ y)

≤ αÎ(−→σ x) + (1− α)Î(−→σ y)
≤ αJ(x) + (1− α)J(y) .
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Thus, J is convex. Let λmax = sup{λ > 0 : J(λ) < ∞}. By convexity, for any λ ∈]0, λmax[, J is
continuous at λ. Using inequalities (6.4) and (6.8), we have

lim sup
n→∞

1
nd

logP(φn(Γ1,Γ2,Ω) ≥ λnd−1) ≤ − lim
ε→0

J(λ− ε) = −J(λ)

and
lim inf
n→∞

1
nd

logP(φn(Γ1,Γ2,Ω) ≥ λnd−1) ≥ − lim
ε→0

J(λ+ ε) = −J(λ) .

As a result we have
lim
n→∞

1
nd

logP(φn(Γ1,Γ2,Ω) ≥ λnd−1) = −J(λ) .

Using theorems 1.17 and 1.18, and the continuity of J , we have that J(λ) > 0 if and only if λ > φΩ.
Let us prove that J is increasing on [φΩ, λmax[. Let λ, λ′ ∈ [φΩ, λmax[ such that λ < λ′. There exists
α ∈]0, 1[ such that

λ = (1− α)φΩ + αλ′ .

Using the convexity of J , we have

J(λ) ≤ (1− α)J(φΩ) + αJ(λ′) = αJ(λ′) < J(λ′) .

The result follows.

Proof of theorem 1.4. We recall that J̃u was defined in (1.3).
• Lower bound. We prove the local lower bound:

∀λ ≥ 0 ∀ε > 0 lim inf
n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω)

nd−1 ∈]λ− ε, λ+ ε[
)
≥ −J̃u(λ) .

Let λ > 0 and ε > 0. If J̃u(λ) = +∞, there is nothing to prove. If λmin ≤ λ < φΩ such that J̃u(λ) <∞,
we have by theorem 1.3

lim inf
n→∞

1
nd−1 logP

(
φn(Γ1,Γ2,Ω)

nd−1 ∈]λ− ε, λ+ ε[
)
≥ −J̃l(λ) .

It follows that

lim inf
n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω)

nd−1 ∈]λ− ε, λ+ ε[
)
≥ 0 = J̃u(λ) .

Let us now assume that λ ≥ φΩ. We have

P
(
φn(Γ1,Γ2,Ω)

nd−1 ∈]λ− ε, λ+ ε[
)
≥ P

(
φn(Γ1,Γ2,Ω)

nd−1 ≥ λ
)
− P

(
φn(Γ1,Γ2,Ω)

nd−1 ≥ λ+ ε

)
.

Since J(λ) < J(λ+ ε), by lemma 6.1, it leads to

lim inf
n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω)

nd−1 ∈]λ− ε, λ+ ε[
)
≥ −J(λ) = −J̃u(λ) .

• Upper bound. We have to prove that for all closed subset F of R+

lim sup
n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω)

nd−1 ∈ F
)
≤ − inf

F
J̃u . (6.9)

Let F be a closed subset of R+. We consider F1 = F ∩ [0, φΩ] and F2 = F ∩ [φΩ,+∞[. Let us first
assume that F1 6= ∅. Let f1 = supF1. We distinguish two cases.
— We assume f1 ≥ λmin. Then by proposition 6.5, we have infF J̃u = 0 and inequality (6.9) is

trivially satisfied.
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— We assume f1 < λmin. Then, infF J̃u = infF2 J̃u and for n large enough, by definition of λmin

P
(
φn(Γ1,Γ2,Ω)

nd−1 ∈ F1

)
≤ P

(
φn(Γ1,Γ2,Ω)

nd−1 ≤ f1

)
= 0 .

It follows, that have

lim sup
n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω)

nd−1 ∈ F
)

= lim sup
n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω)

nd−1 ∈ F2

)
.

Hence, to prove inequality (6.9), it remains to prove that

lim sup
n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω)

nd−1 ∈ F2

)
≤ − inf

F2
J̃u .

Let us assume that F1 = ∅. If F2 = ∅ then

P
(
φn(Γ1,Γ2,Ω)

nd−1 ∈ F
)

= 0

and the inequality (6.9) follows. If F2 6= ∅, we set f2 = inf F2. We have

P
(
φn(Γ1,Γ2,Ω)

nd−1 ∈ F2

)
≤ P

(
φn(Γ1,Γ2,Ω)

nd−1 ≥ f2

)
.

Using theorem 1.5, it yields that

lim sup
n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω)

nd−1 ∈ F
)
≤ lim sup

n→∞

1
nd

logP
(
φn(Γ1,Γ2,Ω)

nd−1 ≥ f2

)
= −J(f2) = − inf

F
J̃u

since J is increasing on [φΩ,+∞[. This concludes the proof.
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