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Abstract

In bottom-up discovery proteomics, target-decoy competition (TDC) is the most pop-

ular method for false discovery rate (FDR) control. Despite unquestionable statistical

foundations, this method has drawbacks, including its hitherto unknown intrinsic lack

of stability vis-à-vis practical conditions of application. Although some consequences of

this instability have already been empirically described, they may have been misinter-

preted. This article provides evidence that TDC has become less reliable as the accuracy

of modern mass spectrometers improved. We therefore propose to replace TDC by a to-

tally di�erent method to control the FDR at spectrum, peptide and protein levels, while

bene�ting from the theoretical guarantees of the Benjamini-Hochberg framework. As this

method is simpler to use, faster to compute and more stable than TDC, we argue that it

is better adapted to the standardization and throughput constraints of current proteomic

platforms.
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Most projects involving mass spectrometry (MS)-based discovery proteomics use data-

dependent acquisition work�ows in which tandem mass (MS/MS) spectra are produced from

isolated peptides. Then, peptide identi�cation is performed by database search engines

which match the experimental spectra acquired with theoretical spectra derived from a

list of protein sequences1. The more the experimental spectrum resembles the theoretical

spectrum, the higher the matching score. This methodology has been widely adopted, but

it was soon recognized that it could lead to false positive identi�cations2. Indeed, among

the tremendous number of spectra generated by a peptide mixture prepared from a complex

biological sample, at least a few of them are expected to match an erroneous sequence,

by chance. To avoid corrupting the biological conclusions of the analysis, researchers have

come to rely on statistical procedures to limit the False Discovery Proportion (FDP) � i.e.

the proportion of mismatches among all the peptide spectrum matches (PSMs) which look

correct. As this quality control problem is ubiquitous in science, statisticians have extensively

studied it. The main conclusions of these studies (See3 for a proteomic-oriented summary)

are as follows: (i) Due to the random nature of the mismatches, it is impossible to precisely

compute the FDP; (ii) However, it can be estimated, as an FDR (False Discovery Rate);

(iii) Depending on the experiment, the FDR will provide a more or less accurate estimate

of the FDP; (iv) Therefore, practitioners should carefully select the FDR methodology, and

interpret its result cautiously, making an educated guess (e.g., like a political poll before an

election).

Target-decoy competition (TDC) has emerged as the most popular method to estimate

the FDP in MS-based discovery proteomics4. Its success is a marker both of its conceptual

simplicity and of its broad scope of application. The principle of TDC is to create arti�cial

mismatches by searching a speci�c (�decoy�) database of random sequences which di�er from

the sequences of interest (present in the �target� database) and to organize a competition

between target and decoy assignments. Under the so-called Equal Chance Assumption (or

ECA, stating that target mismatches and decoy matches are equally likely4), it is possi-
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ble, for any given cut-o� score, to estimate the number of target mismatches that will be

validated. Like any other estimator, TDC-FDR can lead to inconsistent estimates if the

theoretical assumptions on which it is based do not hold in practice. Notably, the quality

of TDC-FDR is strictly linked to the ECA validity, i.e. the decoy's capacity to adequately

fool the database search engine. If it fools it too much, the TDC-FDR will overestimate

the FDP; whereas if it is too unrealistic to fool the search engine, the FDP will be underes-

timated5. For this reason, decoy database construction and conditions of application have

been extensively studied. Results from these studies indicate that: (i) the search engine

must be compliant with TDC6; (ii) In theory, the larger the decoy database, the more pre-

cise the mismatch score distribution7,8; (iii) The decoys must respect the cleavage sites9

to avoid systematic target matching regardless of spectrum quality; (iv) The in�uence of

randomness in the construction of the decoy database can be counter-balanced by boost-

ing strategies, leading to less volatile FDRs10; (v) Decoy counting also has an in�uence8.

In addition to these restrictions, numerous parameters have been reported and discussed

to control their relative importance11. This extensive body of literature has notably con-

tributed to installing the competition step of TDC as essential, and today, target-decoy

searches without competition12,13 are scarcely ever reported. Despite the wide acceptance of

TDC, a series of letters from Bret Cooper14,15 initiated a controversy regarding the observed

downfall of TDC validation levels with data produced by high-resolution mass spectrome-

ters. He provided experimental arguments to reject the idea that such downfall was simply

a positive consequence of instrument evolution, leading to an increase in the numbers of

peptides identi�ed. Notably, he pointed out that very low-quality spectra incompatible with

con�dent peptide identi�cations could be validated despite application of a stringent FDR

cut-o�. Moreover, as this phenomenon was observed with multiple widely-used search en-

gines (Mascot, X!tandem and MS-GF+), he concluded that there was an �inherent bias�

of �peptide presumption� (i.e., only peptides already listed in the target database could be

identi�ed). As this stance contradicted both empirical and theoretical evidence, a few ar-
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ticles were published arguing against this view16,17 while others con�rmed18,19, maintaining

the statu quo.

However, Cooper's observations can be reconciled with statistical theory. In fact, the

correctness of any statistical estimate is only asymptotic: if the quality of the empirical

model depicting the mismatches is improved (for instance, by increasing the size of the

decoy database7,8 or by averaging a growing number of TDC-FDRs resulting from randomly

generated decoy databases, in a boosting-like strategy10), we should end-up with a series of

estimates that theoretically converges towards the FDP. Although essential, this asymptotic

property is unfortunately not su�cient for practitioners, who work with a �nite number

of decoy databases of �nite size (classically, a single decoy database of the same size as

the target database). In this context, even if TDC is asymptotically unbiased (i.e., no

systematic di�erence between the FDP and the FDR) it could sometimes lead to inaccurate

FDRs (i.e., over-conservative or anti-conservative estimates) due to excessive variance (i.e.,

extensive stochastic �uctuations).

In this article, we shed new light on Cooper's observations, which reconcile opposing

opinions: While we believe target and decoy searches can be used to accurately compute

FDRs, we uphold his concerns by showing that, with state-of-the-art high-resolution in-

struments, the risk that the TDC strongly underestimates the FDP increases. We then

describe a series of mathematical transformations of classical identi�cation scores, to which

the well-known Benjamini-Hochberg (BH) procedure20 and its numerous variants21 can be

applied at spectrum, peptide and protein levels. This leads to an original and powerful

framework that demonstrably controls the FDR without decoy databases. Altogether, the

results presented demonstrate that making TDC-FDR compliant with instrument improve-

ments requires unexpected e�orts (careful implementation, �ne-tuning, manual checks and

computational time), whereas identi�cation results from MS-based proteomics can be simply

and accurately validated by applying alternative strategies.
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Experimental Section

Sample preparation and nanoLC-MS/MS analyses

For this work, we used the data obtained with a quality control standard composed of E.

coli digest, analyzed according to a standard protocol.

Brie�y, competent E. coli DH5α cells transformed with pUC19 plasmid were grown

at 37◦C in Lysogeny broth (LB) medium containing carbenicillin before harvesting during

exponential phase (OD600 ∼ 0.6). After centrifugation at 3′000 × g during 10 min, the

pellet was washed 3 times with cold Phosphate Bu�ered Saline (PBS) before lysis of cells

using Bugbuster Protein Extraction Reagent (Novagen) containing cOmpleteTM, Ethylene-

diaminetetraacetic acid (EDTA)-free Protease Inhibitor Cocktail (Roche) and benzonase

(Merck Millipore). After centrifugation at 3′000 × g during 30 min and at 4◦C, the super-

natant was recovered and the protein amount was measured, before protein solubilisation in

Laemmli bu�er.

Proteins were stacked in a single band in the top of a SDS-PAGE gel (4-12% NuPAGE,

Life Technologies) and stained with Coomassie blue R-250 before in-gel digestion using mod-

i�ed trypsin (Promega, sequencing grade) as described in22.

Resulting peptides were analyzed by online nanoliquid chromatography coupled to tan-

dem MS (UltiMate 3000 and LTQ-Orbitrap Velos Pro, or UltiMate 3000 RSLCnano and

Q-Exactive Plus, Thermo Scienti�c). The equivalent of 100 ng of starting protein material

was used for each injection. Peptides were sampled on 300 µm × 5 mm PepMap C18 pre-

columns (Thermo Scienti�c) and separated on 75 µm × 250 mm C18 columns (Reprosil-Pur

120 C18-AQ, Dr. Maisch HPLC GmBH, 3 µm and 1.9 µm porous spherical silica for respec-

tively UltiMate 3000 and UltiMate 3000 RSLCnano). The nanoLC method consisted of a

linear 60-min gradient ranging from 5.1% to 41% of acetonitrile in 0.1% formic acid.

For LTQ-Orbitrap Velos Pro analyses, the spray voltage was set at 1.5 kV and the heated

capillary was adjusted to 200◦C. Survey full-scan MS spectra (m/z between 400 and 1600)
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were acquired with a resolution of 60'000 at m/z of 400 after the accumulation of 106 ions

(maximum �lling time 500 ms). The twenty most intense ions from the preview survey scan

delivered by the Orbitrap were fragmented by collision-induced dissociation (collision energy

35%) in the LTQ after accumulation of 104 ions (maximum �lling time 100 ms). MS and

MS/MS data were acquired using the software Xcalibur (Thermo Scienti�c). For Q-Exactive

Plus analyses, the spray voltage was set at 1.5 kV and the heated capillary was adjusted

to 250◦C. Survey full-scan MS spectra (m/z between 400 and 1600) were acquired with a

resolution of 60'000 at m/z of 400 after the accumulation of 106 ions (maximum �lling time

200 ms). The ten most intense ions were fragmented by higher-energy collisional dissociation

(normalized collision energy 30%) after accumulation of 105 ions (maximum �lling time 50

ms) and spectra were acquired with a resolution of 15'000 at m/z of 400. MS and MS/MS

data were acquired using the software Xcalibur (Thermo Scienti�c).

MS data analysis

Data were processed automatically using Mascot Distiller software (version 2.6, Matrix Sci-

ence). Peptides and proteins were identi�ed using Mascot (version 2.6) through concomitant

searches against Escherichia coli K12 reference proteome (20180727 version downloaded from

UniProt), and/or custom made decoy databases (reversed or shu�ed sequences - see below).

Trypsin/P was chosen as the enzyme and 2 missed cleavages were allowed. Precursor and

fragment mass error tolerance has been variably adjusted as described in the manuscript.

Peptide modi�cations allowed during the search were: carbamidomethylation (C, �xed),

acetyl (Protein N-ter, variable) and oxidation (M, variable). Proline software23 was used to

�lter the results: conservation of rank 1 peptide-spectrum match (PSM) and single PSM per

query. 1% FDR control was performed with various methods, as described in the Results

section. Precisions regarding the choice of the score (individualized vs. contextualized) as

well as of alternative search engines can be found in Supporting Information S2.3 and S4.1.
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Decoy database generation

For classical TDC experiments (Figures 1 and 2), we used the following procedure: The target

database was reversed by using the Perl script (decoy.pl) supplied with Mascot software and

the generated decoy database was appended to the target one before concatenated search.

From our observations, slightly di�erent procedures (shu�ed vs. reversed, accounting for

tryptic cleavage site, etc.) yields similar results, which concurs with prior knowledge11.

To compute the Empirical Null (EN) FDRs24 shown in Figure 3, we relied on the model

provided by a shu�ed database not used in competition with the target database12,13 com-

bined with a boosting strategy10( i.e. a procedure averaging the FDR estimates from multiple

shu�ed decoy databases ). For this study, we used 10 shu�ed databases, each with a length

equal to that of the target database, and produced by a shu�ing procedure which respected

cleavage sites to maintain the precursor mass distribution9 (R code available in Supporting

Information S1.1).

Results and Discussion

TDC and Benjamini-Hochberg procedures yield di�erent FDRs

To counteract the the drop-o� in validation levels observed with modern MS instruments14,15,

we suspected that the Benjamini-Hochberg (BH) approach to FDR control20 could be an

interesting alternative. Discrepancies between BH and TDC have already been reported25,26,

but unfortunately direct quantitative comparisons in terms of bias (i.e., systematic error)

and variance (i.e., lack of stability) are impossible.27 Such comparisons would require the

FDP to be precisely known, although it is not accessible, even when using a controlled

dataset. Thus, to better grasp the possible di�erences in behavior between FDRs estimated

by the TDC and BH approaches, we reproduced Cooper's experiment with the following

extensions: First, both FDRs were computed simultaneously on the same datasets; Second,
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the settings for many experimental parameters were varied: we used multiple analytical

replicates, di�erent instruments, as well as various combinations of precursor and fragment

mass tolerance sets.

To compute a BH-FDR, the search engine must provide PSM scores which can be related

to p-values. Fortunately, numerous state-of-the-art search engines do so28: For instance,

Mascot provides scores in the form

S = −10 · log10(p) or p = 10−
S
10 (1)

where p is a p-value. Andromeda provides a similar calculation, although the score is not di-

rectly accessible as it is only an intermediate computation (see Supporting Information S4.1).

PepProbe, InsPecT and MyriMatch directly provide p-values as scores, and SEQUEST scores

can be transformed into p-values through the application of dedicated wrappers e.g.25,26. In

theory, p-values always distribute uniformly across the [0,1] interval3. However, when they

do not in practice, they are termed ill-calibrated or miscalibrated. As miscalibration can

a�ect BH estimates, potentially making them incorrect, tools have been developed to check

or improve the p-value calibration (see Supporting Information S1.2).

We applied both TDC and BH methodologies to results acquired with a Q-Exactive

Plus instrument on ten analytical replicates of an E. coli lysate. MS and MS/MS spectra

were acquired at relatively high resolutions (70,000 and 17,500 at m/z of 200, respectively).

We used Mascot to run a TDC search (see Experimental Section) and we considered four

combinations of mass tolerance tuning at the precursor and fragment levels: LL, HL, LH and

HH (where L stands for low precision or large tolerance, and H for high precision or narrow

tolerance), the �nal combination (HH) corresponds to the tolerance levels generally used on

our platform for Q-Exactive data analysis. In parallel, we ran target-only searches using the

same parameters. Scores were then converted into p-values using Eq. 1, and the calibration

of the resulting p-values was assessed as reported in Supporting Information S2.1. Finally,
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Figure 1: Score thresholds obtained when applying TDC (Orange) and BH (Blue) �ltering
at an FDR of 1%, as a function of the search engine mass tolerance parameters, for 10
samples analyzed with a Q-Exactive Plus (Qex) instrument. (a) Precursor and fragment
mass tolerances were tuned to the LL, LH, HL and HH settings: LL assumes the MS and
MS/MS data were acquired at low resolutions for the precursor and fragment masses (1 Da
and 0.6 Da, respectively); HL uses mass tolerances of 10 ppm and 0.6 Da, respectively; LH
uses mass tolerances of 1 Da and 25 mmu; and �nally, HH uses mass tolerances of 10 ppm and
25 mmu (which corresponds to classical parameters for database searches performed with
Qex data). The black lines encompass thresholds resulting from similar analyses performed
on an LTQ-Orbitrap Velos Pro (Velos) with LL and HL settings. (b) Re�ned analysis of
the FDR threshold's sensitivity to precursor mass tolerance tuning (Qex data, fragment
tolerance = 25 mmu). (c) Re�ned analysis of the FDR threshold's sensitivity to fragment
mass tolerance tuning (Qex data, precursor tolerance = 10 ppm).
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the classical BH step-up procedure for p-value adjustment was applied (see Data and code

availability).

Figure 1A shows the score thresholds obtained at 1% FDR as a function of the mass

tolerance combinations applied (see Supporting Information S2.2 for numerical values). At

�rst glance, the drop-o� in validation scores is obvious with TDC, whereas it is almost

immaterial with BH. To avoid drawing sweeping conclusions on this impression, we performed

complementary experiments. First, to better capture the in�uence of mass tolerance tuning,

starting from the HH setting, we progressively extended the mass tolerance range, either for

the precursor (Figure 1B) or for fragment masses (Figure 1C). The trends observed in these

analyses support the one shown in Figure 1A. Moreover, they con�rm that tolerances at

precursor and fragment levels have a greater in�uence on threshold scores determined using

TDC compared to BH.

Second, to con�rm that the results obtained by reducing the mass tolerance in the search

parameters mimics results obtained with lower-resolution instruments, we analyzed another

batch of ten analytical replicates of the E. coli lysate submitted to MS/MS on a LTQ-

Orbitrap Velos Pro with mixed resolutions: high resolution in MS mode (Orbitrap analysis)

and lower resolution in MS/MS mode (linear ion trap analysis). Database searches were

performed using the HL and LL tuning paramaters, and FDR thresholds were computed as

above. Interestingly, the matching between the results from Q-Exactive and LTQ-Orbitrap

data obtained using the same thresholds was excellent. This result justi�es our methodol-

ogy: from an FDR viewpoint, switching to analysis of a lower-resolution dataset using an

appropriately-tuned search engine, or retaining the higher-resolution data while substantially

increasing the mass tolerances, produces roughly equivalent outputs.

Therefore, we can interpret the di�erent database search sets as surrogates for the recent

improvements to instrumental capabilities: when TDC was �rst applied to data from low-

resolution instruments, TDC and BH produced roughly similar results in terms of score

cut-o� to reach 1% FDR. Since then, the resolution of MS instruments has progressively
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increased, and now TDC and BH diverge considerably when applied to the same lists of

putative PSMs, so that at least one of them (but possibly both) yields an incorrect FDR

control.

BH is more stable than TDC

Based on the results presented in Figure 1, BH appears more stable than TDC, both within

and between experimental settings: First, for each tuning taken individually, the TDC

threshold was less stable than its BH counterpart, as the set of ten cut-o� scores was more

dispersed with TDC. Second, depending on the mass tolerances applied when performing

database searches, the TDC threshold on the Mascot score varied from 1.11 to 20.73 ( with

HH and LL settings, respectively), whereas its BH counterpart was more stable (between

20.67 and 23.43).

A part of the TDC's instability (relative to BH) can be explained by the random nature

of decoy sequence generation10, regardless of the search engine used. However, at �rst glance,

there is no reason to assume that the remaining reported instability (notably the drop in

score) is: (1) speci�cally linked to the TDC; (2) not a (much more important) bias issue.

Consequently to point (1), it could make sense to question the algorithmic speci�cities of

the search engine (here Mascot), as Cooper �rst did14. Unfortunately, he then reported15

similar pitfalls (at least for the precursor tolerance parameter) with X!tandem and MS-GF+

(formerly known as MS-GFDB). In addition, we discovered similar e�ects with Andromeda

(Maxquant environment, see Supporting Information S2.3). Finally, our experiments demon-

strate that not only the precursor mass tolerance set, but also, the fragment mass tolerance

de�ned contribute to this e�ect. As for point (2), we hereafter demonstrate that even if the

dependence on the search parameter is assumed to be a stability issue only (instead of a bias

issue), it should nonetheless lead to legitimacy question TDC use.
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TDC instability can lead to anti-conservative FDRs

Naturally, more stable FDRs should be preferred, however less stable ones are not neces-

sarily untrustworthy. As di�erently parametrized searches yield distinct putative PSM lists,

di�erent (correct) FDRs would make sense. However, the gap between BH and TDC cut-o�s

in the HH setting is alarming, as the PSMs identi�ed in the target database before validation

were the same with both methods. The very low cut-o� scores obtained with TDC while

using the HH setting led us to question the TDC procedure: Even if TDC is assumed to be

unbiased, can its instability result in FDRs that are sometimes conservative (e.g. LL cases)

and sometimes not (e.g. HH cases)? This context-dependent anti-conservativeness would

clearly make use of the TDC approach less than reliable, as false discoveries would no longer

be controlled.

To answer this question, we relied on the following rationale for FDR control: When

a PSM list is �ltered at 1% FDR, it does not mean that we accept 1% of additional poor

matches in the result. On the contrary, it means that, even though all the validated PSMs

apparently correspond to matches of su�cient quality, 1% of them are spurious (randomly

distributed over the full range of scores, not necessarily matches with the lowest scores). Al-

though it appears counter-intuitive, this property has already been empirically con�rmed29.

Therefore, using only the HH setting and examining the list of PSMs with low scores vali-

dated by TDC is insightful to assess the conservativeness of this approach. We concretely

did so with the results from the �rst analytical replicate, where 12209 PSMs were validated

after applying TDC, leading to an expected number of mismatches at 1% FDR equal to 122.

From the validated list, we therefore randomly selected 150 PSMs with a Mascot score < 10.

The quality of the matches between theoretical and experimental spectra was obviously too

low to yield con�dent identi�cations in the vast majority of cases (see Supporting Informa-

tion S2.4). Based on this sample, the [1.61; 10[ interval (which corresponds to only 635

PSMs, i.e. 5.53% of 12209) already contains more mismatches than the number expected for

the entire dataset. This result is incompatible with 1% FDR validation, as random misiden-
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ti�cation depicting apparently correct matches can also be expected at higher scores29. In

other words, on this dataset using the HH setting, the TDC FDR did not conservatively

estimate the FDP.

These observations con�rm those reported by Cooper. Although they are not su�cient

to conclude on an intrinsic bias of TDC, they do con�dently show that the drop-o� in of

validation cut-o� scores is associated with, at least, an increased risk of anti-conservative

FDR.

Mechanistic explanation for TDC's downfall

The above results contrast with the theoretical guarantees that have been published for

TDC7,30,31. However, none of them account for the application of preliminary �lters which

reduce the number of decoy competitors, while Cooper's controversy is rooted in such �lters.

This distinction may explain the discrepancy: Depending on the instrument's accuracy when

measuring the precursor mass, due to variable resolving powers, and assuming the search

engine is tuned accordingly, a larger or smaller number of decoys are considered possible

competitors for a given spectrum. Thus, MS data acquired with high-resolution mass spec-

trometers and analyzed using search engines in which narrow mass tolerances are de facto

set leads to smaller numbers of decoy matches. Therefore, the ECA may no longer apply

and the FDR may be underestimated. This situation can be experimentally observed while

looking at the distributions of the PSMs identi�ed in the decoy database using the LL and

HH settings. Indeed, the number of decoy identi�cations, as well as their corresponding

scores, were strongly decreased in the HH setting compared to the LL one (see Figure 2),

and the very low number of decoy PSMs with the HH setting cannot provide an accurate

FDR estimation.

As TDC appears to be inaccurate when the number of decoy challengers is too small,

one straightforward solution would be to enlarge the database in proportion. Although the

link between mass tolerance and decoy database size can be e�ciently exploited to limit the
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Figure 2: Distributions of scores for PSMs identi�ed in the decoy database using the LL
(orange) and HH (blue) settings. Data correspond to replicate 1, Qex analysis. After con-
comitant searches in target and decoy databases using LL and HH parameters, the scores for
the PSMs identi�ed only in the decoy database, and without FDR �ltering, were collected
and represented as histograms (x-axis: score, bin 0.5; y-axis: frequency).

computational cost of repeated searches32, it was, unfortunately, ine�cient in our case (see

Supporting Information S4.2).

Decoy-based empirical null estimation and BH FDRs are consistent

An alternative means to investigate the above mechanistic intuition is to build a strategy in

which the quality of decoy matches is preserved, regardless of the stringency of the database's

preliminary search �lters; and then to examine how it estimates the FDR. The statistical

theory of empirical null estimation 24 is based on making false discoveries look like true

ones. Even though this theory has already been applied in various proteomics contexts

(giving rise to entrapment methods 27,33�37), it provided us with a nice framework to elaborate

on. Surprisingly, we found that a fair (but nevertheless unstable) empirical estimate of

the null distribution could be obtained by performing a separate decoy search, without

competition12,13. To address the lack of stability, we averaged 10 repeated estimations, each
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Figure 3: (a) Empirical Null (EN) FDRs computed for each replicate matched against 10
randomly generated (shu�ed) decoy databases, according to its 1% FDR validation score
threshold (gray dashed line), computed by applying BH (blue) and TDC (orange) method-
ologies; The black continuous lines show the average of the 10 EN FDRs (boosted estimate).
(b) and (c) Zooms of the two framed areas in (a), with di�erent shades of blue (resp. orange)
and of line types (dot or dash) for better shu�e discrimination.

based on a di�erent shu�ed database10 (see Experimental Section). For this reason, for each

of the 10 sample replicates of E. coli lysate analysed with the Q-Exactive Plus, Figure 3 shows

the 10 empirical null (EN) FDRs corresponding to the cut-o� scores obtained using BH and

TDC 1% FDR �ltering (HH setting).

The di�erence is striking: although BH thresholds (Mascot scores between 20.67 and

20.84) produced EN FDRs slightly below 1% (between 0.53% and 1.29%, with an average

≈0.84%), those obtained with TDC (scores between 1.11 and 2.37) led to 10-fold larger

EN FDRs (between 7.72% and 11.71%, with an average ≈9.1%). This result is insightful

for three reasons: (i) The fact that two orthogonal methods to compute an FDR (namely

BH and EN) provided concurring results is an evidence supporting their correctness; (ii) it
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con�rms that TDC can lead to considerable FDR under-estimations if used inappropriately;

(iii) it shows that in contrast to Cooper's concerns, the concept of �peptide presumption� is

not inherently biased, since by applying an appropriate decoy search strategy, it is possible

to cope for the cut-o� downfall and to recover coherent FDRs.

Practical comparison of EN and BH approaches

To summarize, the EN approach implemented here essentially amounts to averaging multiple

target-decoy searches without competition, and can be viewed as an improvement of a 12-

years-old method12,13 well-�tted in the proteomics landscape, yet outmoded. In contrast,

the BH approach is mainly theoretically motivated, and even though it is double the age, it

is scarcely used in proteomics. As both methods provide concurring estimates, the one to

promote mainly depends on their respective conditions of applicability and ease of use.

For BH: If we compare the EN FDRs derived from the BH-thresholds on Figure 3 with the

expectation (i.e. 1%), BH appears to provide a slight overestimation. This result is probably

due to the previously described over-conservative property of the BH estimator38. Moreover,

as previously mentioned, BH requires that the p-values �rst be checked for calibration.

Fortunately, many methods can be used to limit BH over-conservativeness, and applying the

best one can be done concomitantly with the calibration assessment, by means of a simple

visual tool21 (see CP4P description in Supporting Information S1.2). Finally, the BH FDR

is extremely rapidly computed and does not require any decoy database.

For EN: Figure 3 shows a high dependency on the di�erent decoy databases: From one

randomly generated version to another, the FDR estimated varies signi�cantly. At �rst

glance, FDRs around 1% seem slightly more stable than those around 10%. However, after

normalization relative to the mean FDR value, it is actually the opposite that occurs (mean

coe�cient of variation of 13.90% around 1% EN FDR, versus 5.82% around 10% EN FDR).

This observation can easily be explained: With lower FDR thresholds, fewer decoys passed

the threshold, and as a result, the statistics were computed on smaller sample sizes, inherently
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more sensitive to randomization. This explains why it is necessary to average multiple FDRs

with di�erent randomly generated decoy searches, despite the additional computational and

practical complexity. However, depending on the complexity of the experiment, the precise

number of searches required to stabilize the FDR cannot be estimated and will require

manual trials. Moreover, if the experimental design requires iterative �ltering of the database

search (e.g. multiple-pass identi�cations39), it is possible that the same anti-conservativeness

issue will arise as with the competition step, so that additional caution should be applied.

Therefore, compared to the EN strategy, the BH procedure is appealing for its simplicity

and stability.

FDR control at peptide level using the BH procedure

The di�culty of inferring peptide- and protein-level knowledge from spectrum-level informa-

tion, while applying quality control criteria, has been widely addressed in the literature40,41.

However, to our knowledge, all available inference systems require a preliminary decoy search

to propose a peptide- or protein-level FDR. Today, combining multiple levels of FDR control

has become accepted standard good practice. We therefore propose a generic procedure to

extend the BH-FDR approach to peptide and protein levels. Moreover, the proposed method

is independent of the chosen inference rules (see Supporting Information S3.1). Hereafter,

we assume that the inference rules selected unambiguously de�ne which PSMs should be

used in peptide scoring, as well as which peptides contribute to protein group scoring36,37,42,

and we focus on the scoring methods applied.

The most classical peptide scoring methods assume that each peptide is identi�ed by the

spectrum with the highest PSM score amongst theQmatching spectra35�37,43. In this setting,

it makes sense to de�ne the peptide score as equal to the best PSM score35. Formally, if the

PSM score between peptide sequence seqi and spectrum q is referred to as Siq, then, the

best-PSM score can be de�ned as maxq∈J1,QK Siq where J., .K denotes an integer interval.

This score can potentially be used to compute a TDC-FDR, but not a BH-FDR. Indeed,
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its probabilistic counterpart cannot be well-calibrated (the minimum of several calibrated

p-values is non-uniformly distributed, see Figure S1). Fortunately, according to the following

proposition, it is possible to modify the best-PSM score by applying a formula akin to �idák

correction44 and thus to recover correct calibration:

Proposition 1 Let S1, . . . , Sn be a set of n scores of the form S` = −10 log10(p`), (` ∈ J1, nK)

where p` is realizations of n i.i.d. R+ random variables, X1, . . . , Xn. If X` ∼ U [0, 1] ∀`, then,

Y = 1−
(
1− 10−

max` (S`)

10

)n
uniformly distributes over the range [0, 1].

Proof: See Supporting Information S3.2.

Therefore, (See Supporting Information S3.2 and S3.3 for the full derivations), the peptide

p-value p�i and peptide score S�i of peptide sequence seqi can be de�ned as:

p�i = 1−
(
1− 10−

maxq (Siq)

10

)Q
and S�i = −10 · log10 (p�i ) (2)

FDR control at protein level using the BH procedure

To de�ne protein-level scores and p-values, fragment matches for PSM scores were considered

equivalent to what peptide matches are for protein scores. This equivalence led us to rely

on Fisher's test to de�ne protein scores/p-values from the scores of the best subset of pep-

tides. Similar approaches have frequently been investigated in the literature32,36,37,42 and the

full derivation is presented in Supporting Information S3.4. To the best of our knowledge,

we are the �rst to discuss the adaptation of Fisher's methodology from its original con-

text (meta-analysis) to proteomics by explicitly considering (i) risks of anti-conservativeness

due to dependent peptides (see Supporting Information S3.5); (ii) the impact of the poorly

conclusive peptide-level evidence in an open-world assumption context (see Supporting In-
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formation S3.6). Finally, for a protein sequence seqπ identi�ed by K speci�c peptides with

scores S�1 , . . . , S
�
K , the protein p-value is de�ned as:

p?π = min
A∈2{1,...,K}

[∫ ∞
0.2 ln(10)·

∑
k∈A S

�
k

f2·|A|(x)dx

]
(3)

and the protein score as S?π = −10 log10 (p?π), where: 2{1,...,K} is the powerset of the set of

K peptides identi�ed; A is a peptide set with cardinality |A| ≤ K; and f2·|A| is the density

function of the χ2 distribution with 2 · |A| degrees of freedom. Although possibly obscure

at �rst glance, p?π simply interprets as the p-value resulting from Fisher combined probabil-

ity test applied to the subset of peptides which best explains the protein (see Supporting

Information S3.4).

Experimental assessment of BH FDR at peptide and protein levels

The ten replicate analyses of E. coli lysate were validated at 1% FDR by applying the BH

procedure to the PSM, peptide and protein scores. To do so, only a target database search

was necessary. However, and because it delivered a striking illustration of the capacity of

the proposed framework to distinguish false identi�cations, we introduced shu�ed sequences

in the searched database to assess the results (see Experimental Section). We considered

a challenging scenario where the number of decoys was set to �ve times the number of

target sequences. Table 1 summarizes the average (across the 10 replicates) cut-o� scores

as well as the average counts for validated PSMs, peptides and proteins in both target and

�vefold shu�ed databases (see Table S2). Although the corresponding proportions must

not be interpreted as FDRs, it is interesting to discuss them: First, despite the �vefold

decoy over-representation, each of the three validation levels (PSM, peptide or protein)

taken individually was su�cient to provide a decoy ratio below the FDP expectation of 1%

at any level. Second, the three validation strategies provided broadly concurring �lters and

validated protein list sizes. Third, some discrepancies between the three validation strategies
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exist (for instance, when �ltering at protein level, PSMs with low score are validated because

they belong to proteins which are con�rmed by other high scoring peptides), leaving room

to re�ne validation with appropriate multi-level �lters, as discussed below.

Table 1: Average (across the 10 E. coli replicates) minimum score and PSM, peptide and
protein counts assigned as target and decoy in the raw dataset (No validation), as well
as after validation by one of the three following rules: 1% BH-FDR at PSM level (PSM
validation), 1% BH-FDR at peptide level (Peptide validation) and 1% BH-FDR at protein
level (Protein validation).

No validation PSM validation Peptide validation Protein validation

PSM Pep. Prot. PSMs Pep. Prot. PSM Pep. Prot. PSM Pep. Prot.

Min score 0.002 0.002 0.002 21 19.676 21.187 0.023 20.963 21.163 0.013 0.021 22.534

#Targets 12020.2 9351.3 1466.5 10233.6 8180.3 1297.7 10736.2 8159.5 1297.9 11836.6 9169.4 1294.6

#Decoys 873.3 817.2 786 11.5 10.9 10.7 11.1 10.2 10 13.8 12 9.2

Conclusions

This work sheds new light on a crucial step in bottom-up proteomics experiments: the

validation of identi�cation results. First, it illustrates that the TDC and BH estimates of the

FDP have progressively diverged as MS accuracy has improved. Our results demonstrated

that this divergence originated in the TDC's lack of stability with respect to the precursor

and fragment mass tolerances set during database searches. Although this lack of stability

can be partially counteracted by suppressing the competition step of TDC12,13, the instability

induced by the random generation of decoy sequences remains10. Therefore, even though

target-decoy strategies can be re�ned to partially cope with this instability, the results are not

satisfactory as these strategies: (i) are not as stable as BH, in particular at lower FDRs; (ii)

are more complex to organize (implementation, computational cost) and require additional

manual checks; (iii) do not provide any guarantee of reliable FDR estimates in the future

(on datasets acquired with even higher resolution next generation instruments for which

narrower mass tolerances can be expected; or with pipeline modi�cations that change the

number of target and decoy candidates).

Second, this work provides new peptide and protein scores which demonstrably respect
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the calibration conditions of the BH procedure. Indeed, implementing BH-FDR at PSM-,

peptide- and protein-level is straightforward (see Data & code availability) and its practical

use within a preexisting platform pipeline requires no precise tuning. Moreover, our results

highlighted that, despite slightly di�erent behavior, any of these scores alone is su�cient to

conservatively validate a proteomics dataset at PSM, peptide and protein levels. This �nding

suggests that various strategies could be developed to comply with di�erent objectives: If

the expected output is a protein list, then it is probably most appropriate to control the FDR

at protein-level. However, in studies seeking to re�ne discrimination between proteoforms

sharing many subsequences, it may be more relevant to validate at peptide level. Finally,

when quantifying proteins, extracting the ion current for misidenti�ed spectra produces er-

roneous results, making validation at PSM level necessary. Beyond these considerations,

acting at di�erent levels of �ltering may also improve the quality of the validated identi�-

cations, although this assertion requires further investigation. For example, multiple FDRs

are classically used sequentially, following the inference process (starting at PSM level and

ending at protein level); using a reverse order or parallel �ltering may also be of interest to

preserve the calibration necessary to the BH procedure.

Based on these results, we propose an overhaul of how FDR is estimated in discovery

proteomics using database searching and suggest replacing TDC by BH-FDR. Nevertheless,

as a theoretical research �eld, TDC remains of interest. The original idea proposed by Elias

and Gygi4 has stimulated the �eld of theoretical biostatistics and led to the idea that simu-

lating null tests from the data (termed knocko�s instead of decoys) could produce e�cient

alternatives to BH procedures, which demonstrably control the FDR30,31,45. Transferring

these theoretical results into biostatistics routines that can be applied on a daily basis still

requires some investigation46,47. However, they will hopefully contribute to computational

proteomics in the future, as an example of an interdisciplinary virtuous circle.
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Data and code availability

Implementing BH-FDR at PSM-, peptide- and protein-level is straightforward. First, if the

scores of all the PSMs indicating a given peptide sequence are stored as a vector, psm.scores,

then, the peptide p-value pep.pval and peptide score pep.score can be determined by

applying the following R code:

library(Rmpfr) # to avoid roundings in p-values

psm.pvals <- mpfr(10**(-psm.scores/10), 128)

pep.pval <- 1-(1-min(psm.pvals))^length(psm.pvals)

pep.score <- -10*log10(pep.pval)

Then, the protein score prot.score and p-value prot.pval for a protein for which peptide

scores are stored in a vector pep.scores can be computed using the following code:

pep.scores=sort(pep.scores, decreasing=T)

nb.pep=length(pep.scores)

pep.cumscore=cumsum(pep.scores)*log(10)/5

tmp.scores=rep(0,nb.pep)

for(j in 1:nb.pep){

tmp.scores[j]=pchisq(pep.cumscore[j],2*j,lower.tail=F,log.p=T)

tmp.scores[j]=tmp.scores[j]/(-0.1*log(10))

}

prot.score= max(tmp.scores)

prot.pval= 10**(-prot.score/10)

Once the peptide scores and protein scores are available alongside the PSM scores pro-

vided by the search engine, the BH procedure can simply be run by applying the p.adjust()

R function (base function). All these scores (and the BH procedure) are also implemented

in Proline software23, written in Java/Scala, so that any proteomics data analyst can use
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them whatever their coding skills. The mass spectrometry proteomics data have been de-

posited to the ProteomeXchange Consortium via the PRIDE48 partner repository with the

dataset identi�er PXD016669 and 10.6019/PXD016669 (https://www.ebi.ac.uk/pride/,

Username: reviewer43825@ebi.ac.uk, Password: eA7lMPa7). A portable version of Proline

software can be downloaded at ftp://ftp.cea.fr/pub/edyp/Proline/BH-FDR/. For each

of the ten E. Coli replicates, it contains the search results from Mascot after the database

search in the target and the �vefold decoy databases.

Acknowledgments

This work was supported by grants from the French National Research Agency: ProFI project

(ANR-10- INBS-08), GRAL project (ANR-10-LABX-49-01), Data@UGA and SYMER projects

(ANR-15-IDEX-02) as well as MIAI @ Grenoble 718 Alpes (ANR-19-P3IA-0003). The au-

thors are grateful to EDyP platform engineers, who performed the various quality control

analyses used in this work, and notably to Alexandra Kraut for the sample preparation,

as well as the ProFI developers of Proline software (http://www.profiproteomics.fr/

proline/), which was used to perform all the data analyses presented. Finally, the authors

thanks the anonymous reviewers for their rich and constructive comments.

Author contributions and competing interests

Y.C. proposed the experimental methods and processed the data. C.B. developed the soft-

ware environment to perform the experiments and implemented the proposed methodology.

T.B. proposed the theoretical framework and drafted the manuscript. All authors con-

tributed to the manuscript and approved its �nal version. The authors declare no competing

interests.

23

https://www.ebi.ac.uk/pride/
ftp://ftp.cea.fr/pub/edyp/Proline/BH-FDR/
http://www.profiproteomics.fr/proline/
http://www.profiproteomics.fr/proline/


Supporting Information Available

• PDF document containing Supporting tools (S1), Supporting results (S2), Supporting

methods (S3) and Supporting discussion (S4)

• Zip folder �spectra.zip� containing 150 spectra in PNG format (S5)

References

(1) Sadygov, R. G.; Cociorva, D.; Yates, J. R. Large-scale database searching using tandem

mass spectra: looking up the answer in the back of the book. Nature methods 2004, 1,

195�202.

(2) Cargile, B. J.; Bundy, J. L.; Stephenson, J. L. Potential for false positive identi�cations

from large databases through tandem mass spectrometry. Journal of proteome research

2004, 3, 1082�1085.

(3) Burger, T. Gentle Introduction to the Statistical Foundations of False Discovery Rate

in Quantitative Proteomics. Journal of Proteome Research 2018, 17, 12�22.

(4) Elias, J. E.; Gygi, S. P. Target-decoy search strategy for increased con�dence in large-

scale protein identi�cations by mass spectrometry. Nature methods 2007, 4, 207.

(5) Danilova, Y.; Voronkova, A.; Sulimov, P.; Kertész-Farkas, A. Bias in False Discovery

Rate Estimation in Mass-Spectrometry-Based Peptide Identi�cation. Journal of Pro-

teome Research 2019, 18, 2354�2358.

(6) Gupta, N.; Bandeira, N.; Keich, U.; Pevzner, P. A. Target-decoy approach and false

discovery rate: when things may go wrong. Journal of the American Society for Mass

Spectrometry 2011, 22, 1111�1120.

24



(7) He, K.; Fu, Y.; Zeng, W.-F.; Luo, L.; Chi, H.; Liu, C.; Qing, L.-Y.; Sun, R.-X.; He, S.-

M. A theoretical foundation of the target-decoy search strategy for false discovery rate

control in proteomics. arXiv preprint arXiv:1501.00537 2015,

(8) Levitsky, L. I.; Ivanov, M. V.; Lobas, A. A.; Gorshkov, M. V. Unbiased false discovery

rate estimation for shotgun proteomics based on the target-decoy approach. Journal of

proteome research 2016, 16, 393�397.

(9) Bianco, L.; Mead, J. A.; Bessant, C. Comparison of novel decoy database designs for

optimizing protein identi�cation searches using ABRF sPRG2006 standard MS/MS

data sets. Journal of proteome research 2009, 8, 1782�1791.

(10) Keich, U.; Tamura, K.; Noble, W. S. An averaging strategy to reduce variability in

target-decoy estimates of false discovery rate. Journal of proteome research 2019, 18,

585�593.

(11) Jeong, K.; Kim, S.; Bandeira, N. False discovery rates in spectral identi�cation. BMC

Bioinformatics 2012, 13, S2.

(12) Käll, L.; Storey, J. D.; MacCoss, M. J.; Noble, W. S. Assigning signi�cance to peptides

identi�ed by tandem mass spectrometry using decoy databases. Journal of proteome

research 2007, 7, 29�34.

(13) Martínez-Bartolomé, S.; Navarro, P.; Martín-Maroto, F.; López-Ferrer, D.; Ramos-

Fernández, A.; Villar, M.; García-Ruiz, J. P.; Vázquez, J. Properties of average score

distributions of SEQUEST: the probability ratio method. Molecular & Cellular Pro-

teomics 2008, 7, 1135�1145.

(14) Cooper, B. The problem with peptide presumption and low Mascot scoring. Journal of

proteome research 2011, 10, 1432�1435.

25



(15) Cooper, B. The problem with peptide presumption and the downfall of target�decoy

false discovery rates. Analytical chemistry 2012, 84, 9663�9667.

(16) Chalkley, R. J. When target�decoy false discovery rate estimations are inaccurate and

how to spot instances. Journal of proteome research 2013, 12, 1062�1064.

(17) Bonzon-Kulichenko, E.; Garcia-Marques, F.; Trevisan-Herraz, M.; Vázquez, J. Revis-

iting peptide identi�cation by high-accuracy mass spectrometry: problems associated

with the use of narrow mass precursor windows. Journal of proteome research 2014,

14, 700�710.

(18) Ezkurdia, I.; Vázquez, J.; Valencia, A.; Tress, M. Analyzing the �rst drafts of the

human proteome. Journal of proteome research 2014, 13, 3854�3855.

(19) Ezkurdia, I.; Calvo, E.; Del Pozo, A.; Vázquez, J.; Valencia, A.; Tress, M. L. The

potential clinical impact of the release of two drafts of the human proteome. Expert

review of proteomics 2015, 12, 579�593.

(20) Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and pow-

erful approach to multiple testing. Journal of the royal statistical society. Series B

(Methodological) 1995, 289�300.

(21) Giai Gianetto, Q.; Combes, F.; Ramus, C.; Bruley, C.; Couté, Y.; Burger, T. Calibration

plot for proteomics: A graphical tool to visually check the assumptions underlying FDR

control in quantitative experiments. Proteomics 2016, 16, 29�32.

(22) Salvetti, A.; Couté, Y.; Epstein, A.; Arata, L.; Kraut, A.; Navratil, V.; Bouvet, P.;

Greco, A. Nuclear functions of nucleolin through global proteomics and interactomic

approaches. Journal of proteome research 2016, 15, 1659�1669.

(23) Bouyssié, D. et al. Proline: an e�cient and user-friendly software suite for large-scale

proteomics. Bioinformatics 2020, 36, 3148�3155.

26



(24) Efron, B. Large-scale inference: empirical Bayes methods for estimation, testing, and

prediction; Cambridge University Press, 2012; Vol. 1.

(25) Klammer, A. A.; Park, C. Y.; Noble, W. S. Statistical calibration of the SEQUEST

XCorr function. Journal of proteome research 2009, 8, 2106�2113.

(26) Howbert, J. J.; Noble, W. S. Computing Exact p-values for a Cross-correlation Shotgun

Proteomics Score Function. Molecular & Cellular Proteomics 2014, 13, 2467�2479.

(27) Granholm, V.; Noble, W. S.; Käll, L. On using samples of known protein content

to assess the statistical calibration of scores assigned to peptide-spectrum matches in

shotgun proteomics. Journal of proteome research 2011, 10, 2671�2678.

(28) Verheggen, K.; Ræder, H.; Berven, F. S.; Martens, L.; Barsnes, H.; Vaudel, M. Anatomy

and evolution of database search engines � a central component of mass spectrometry

based proteomic work�ows. Mass spectrometry reviews 2017,

(29) Bogdanow, B.; Zauber, H.; Selbach, M. Systematic errors in peptide and protein iden-

ti�cation and quanti�cation by modi�ed peptides. Molecular & Cellular Proteomics

2016, 15, 2791�2801.

(30) Barber, R. F.; Candès, E. J., et al. Controlling the false discovery rate via knocko�s.

The Annals of Statistics 2015, 43, 2055�2085.

(31) He, K.; Li, M.; Fu, Y.; Gong, F.; Sun, X. A direct approach to false discovery rates by

decoy permutations. arXiv preprint arXiv:1804.08222 2018,

(32) Spirin, V.; Shpunt, A.; Seebacher, J.; Gentzel, M.; Shevchenko, A.; Gygi, S.; Sunyaev, S.

Assigning spectrum-speci�c p-values to protein identi�cations by mass spectrometry.

Bioinformatics 2011, 27, 1128�1134.

(33) Colaert, N.; Degroeve, S.; Helsens, K.; Martens, L. Analysis of the resolution limitations

of peptide identi�cation algorithms. Journal of proteome research 2011, 10, 5555�5561.

27



(34) Vaudel, M.; Burkhart, J. M.; Breiter, D.; Zahedi, R. P.; Sickmann, A.; Martens, L. A

complex standard for protein identi�cation, designed by evolution. Journal of proteome

research 2012, 11, 5065�5071.

(35) Granholm, V.; Navarro, J. F.; Noble, W. S.; Käll, L. Determining the calibration of

con�dence estimation procedures for unique peptides in shotgun proteomics. Journal

of proteomics 2013, 80, 123�131.

(36) The, M.; MacCoss, M. J.; Noble, W. S.; Käll, L. Fast and Accurate Protein False

Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. Journal of

The American Society for Mass Spectrometry 2016, 27, 1719�1727.

(37) The, M.; Edfors, F.; Perez-Riverol, Y.; Payne, S. H.; Hoopmann, M. R.; Palmblad, M.;

Forsström, B.; Käll, L. A protein standard that emulates homology for the characteriza-

tion of protein inference algorithms. Journal of proteome research 2018, 17, 1879�1886.

(38) Storey, J. D. A direct approach to false discovery rates. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 2002, 64, 479�498.

(39) Jagtap, P.; Goslinga, J.; Kooren, J. A.; McGowan, T.; Wroblewski, M. S.; Sey-

mour, S. L.; Gri�n, T. J. A two-step database search method improves sensitivity in

peptide sequence matches for metaproteomics and proteogenomics studies. Proteomics

2013, 13, 1352�1357.

(40) Huang, T.; Wang, J.; Yu, W.; He, Z. Protein inference: a review. Brie�ngs in bioinfor-

matics 2012, 13, 586�614.

(41) Serang, O.; Noble, W. A review of statistical methods for protein identi�cation using

tandem mass spectrometry. Statistics and its interface 2012, 5, 3.

(42) Alves, G.; Yu, Y.-K. Mass spectrometry-based protein identi�cation with accurate sta-

tistical signi�cance assignment. Bioinformatics 2014, 31, 699�706.

28



(43) Savitski, M. M.; Wilhelm, M.; Hahne, H.; Kuster, B.; Bantsche�, M. A scalable ap-

proach for protein false discovery rate estimation in large proteomic data sets.Molecular

& Cellular Proteomics 2015, 14, 2394�2404.

(44) �idák, Z. Rectangular con�dence regions for the means of multivariate normal distri-

butions. Journal of the American Statistical Association 1967, 62, 626�633.

(45) Candes, E.; Fan, Y.; Janson, L.; Lv, J. Panning for gold:`model-X'knocko�s for high

dimensional controlled variable selection. Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 2018, 80, 551�577.

(46) Emery, K.; Hasam, S.; Noble, W. S.; Keich, U. Multiple competition based FDR control.

arXiv preprint arXiv:1907.01458 2019,

(47) Lu, Y.; Fan, Y.; Lv, J.; Noble, W. S. DeepPINK: reproducible feature selection in

deep neural networks. Advances in Neural Information Processing Systems. 2018; pp

8676�8686.

(48) Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.;

Kundu, D. J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M., et al. The PRIDE

database and related tools and resources in 2019: improving support for quanti�cation

data. Nucleic acids research 2018, 47, D442�D450.

29


