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S1 Supporting tools

S1.1 R code to shu�e the decoy database

library(stringr)

library(stringi)

library(Peptides)

options(warn=2)

#############################

### User defined parameters

#############################

# working directory: must be completed and uncommented

# WARNING!!! - \ should be replaced by / when copy-pasting from windows

# setwd("C: XXXX")

# the input fasta file MUST only contain the target proteins

file <- scan("UP_K12_RefProt_D_20180727_target_only.fasta",

what="character", sep="\n")

# Define which peptide to shuffle, or not

minimum.shuffled.Mass <- 400

maximum.shuffled.Mass <- 4800

minimum.length.ifnomass <- 5 #impossible to compute molecular weight if amino acid X occurs

assign("list.Of.Prec.Ions", NULL, envir = .GlobalEnv)

# Number of randomization

# If tuned to N, then, the decoy database is N times larger than the target one

# WARNING!!! doing so will break the Equal Chance Assumption

number.of.shuffling <- 1

# the name of the ouput file -- modify the first argument according to the database name

# WARNING!!! If the file already exist, delete it, or the output will be concatenated!

output.file <- paste("UP_K12_RefProt_D_20180727_target",

"_rand", number.of.shuffling, ".fasta", sep="")

##############################

### atomic functions

##############################

# finds tryspic cleavage site

getPeptides <- function(the.protein){

cleavage <- str_locate_all(the.protein, "K|R")[[1]][,1]

nbCleavage <- length(cleavage)

if((nbCleavage ==0) || ( (nbCleavage ==1) &&

(cleavage==str_length(the.protein))

) ){

pep.bounds <- matrix(c(1, str_length(the.protein)), ncol=2)

} else{

npep <- nbCleavage+1

pep.bounds <- matrix(rep(0,2*npep), ncol=2)

pep.bounds[1,1] <- 1

pep.bounds[2:npep,1] <-cleavage+1

pep.bounds[1:(npep-1),2] <-cleavage

pep.bounds[npep,2] <- str_length(the.protein)

if(pep.bounds[npep-1,2] == str_length(the.protein)){ #no last peptide

pep.bounds <- pep.bounds[-npep,]

}
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}

return(pep.bounds)

}

# shuffle a peptide if in the mass window

pepShuff <- function(the.peptide, minM=800, maxM=48000, minL=7){

if(

(dim(str_locate_all(the.peptide, "X")[[1]])[1] != 0) ||

(dim(str_locate_all(the.peptide, "U")[[1]])[1] != 0)

){

mass <- 0

} else{

mass <- mw(the.peptide) # compute molecular weight from Peptide package

assign("list.Of.Prec.Ions", c(list.Of.Prec.Ions, mass), envir = .GlobalEnv)

}

peplen <- str_length(the.peptide)

if( ( (mass>=minM) && (mass<=maxM) ) || ( (mass==0) && (peplen>=minL) ) ) {

Cter <- str_sub(the.peptide, start=peplen, end=peplen)

if( (Cter == "K") || ( Cter == "R") ){

b <- peplen-1

shuf <- paste(stri_rand_shuffle(str_sub(the.peptide, 1,b)), Cter, sep="")

} else{ # last peptide of the proteins, does not end by a cleavage site

shuf <- stri_rand_shuffle(the.peptide)

}

} else {

shuf <- the.peptide

}

return(shuf)

}

proteinShuffler <- function(the.protein){

peplist <- getPeptides(the.protein)

nbpep <- dim(peplist)[1]

tmp.seq <- ""

for(i in 1:nbpep){

the.peptide<- str_sub(the.protein,

start=(getPeptides(the.protein)[i,1]),

end=(getPeptides(the.protein)[i,2]))

newpep <- pepShuff(the.peptide,

minM=minimum.shuffled.Mass,

maxM=maximum.shuffled.Mass,

minL=minimum.length.ifnomass)

tmp.seq <- paste(tmp.seq, newpep, sep="")

}

return(tmp.seq)

}

# create shuffled database

createShuffledSeq <- function(list.tar){

list.shuf <- list()

for(i in 1:length(list.tar)){

the.protein <- list.tar[[i]]

randprot <- proteinShuffler(the.protein)

list.shuf <- c(list.shuf, randprot)

}

return(list.shuf)

}
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modifyListName <- function(list.name, j){

list.name.decoy <- list()

for(i in 1:length(list.name)){

protname <- list.name[[i]]

sp <- strsplit(protname,split='|', fixed=TRUE)

l <- length(sp[[1]])

nm <- paste(sp[[1]][1], "|",

sp[[1]][2], "|", "###REV###RANDOM",j,"###",

sp[[1]][3:l], sep="")

list.name.decoy <- c(list.name.decoy, nm)

}

return(list.name.decoy)

}

### test atomic functions

# the.protein <- list.seq[[1]];

# the.peptide

# pepShuff(the.peptide)

# str_sub(the.peptide, 35,str_length(the.peptide))

# pepShuff(str_sub(the.peptide, 35,str_length(the.peptide)))

# the.protein

# proteinShuffler(the.protein)

# list.shuf <- createShuffledSeq(list.seq)

###############################################################

# count the number of target proteins and initialize the variables

prot.name <- rep(0,length(file))

for(i in 1:length(file)){

if(substr(file[i], 1,4) == ">sp|"){

prot.name[i] <- 1

}

}

nb.prot <- sum(prot.name)

list.name <- list()

list.seq <- list()

tmp.seq <- "init"

# split the protein names and sequences, unsplit the sequences

for(i in 1:length(file)){

if(prot.name[i] == 1){

list.name <- c(list.name, file[i])

if(i !=1){list.seq <- c(list.seq, tmp.seq)}

tmp.seq <- ""

} else{

tmp.seq <- paste(tmp.seq, file[i], sep="")

}

}

list.seq <- c(list.seq, tmp.seq)

# check the number of proteins and the corresponding list length

length(list.name)

length(list.seq)

for(i in 1:nb.prot){

write(c(list.name[[i]],list.seq[[i]]), file=output.file, append=TRUE)
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}

print("Pre-processing done and targets dealt with")

for(j in 1:number.of.shuffling){

list.name.decoy <-modifyListName(list.name, j)

#write(paste("XXX DECOYS",j,"XXX",sep=""), file=output.file, append=TRUE)

list.decoys <- createShuffledSeq(list.seq)

for(i in 1:nb.prot){

write(c(list.name.decoy[[i]],list.decoys[[i]]), file=output.file, append=TRUE)

}

print(paste(j, "th randomization done and saved"))

}

hist(list.Of.Prec.Ions, breaks=100, xlim=c(0,8000),

xlab="Theoretical precusor mass", main=" ")

S1.2 Calibration tools

Here, we survey the tools available to ensure BH procedure can con�dently be applied to search engine
outputs. This section is organized from the worst case (no p-value available), to the best one (well-
calibrated p-values), and it ends with the presentation of CP4P (Calibration plot for proteomics [1]) a
versatile tool that can be used to assess the quality of the p-value calibration, to partially improve it in
case of ill-calibration, and to limit the well-known over-conservative behavior of BH procedure.

S1.2.1 Transforming scores into p-values

Few search engines do not provide any p-value while the provided score cannot be related to a p-value
(e.g. Morpheus [2] or X!tandem [3]). However, as long as the scoring system used does not involve
the PSM distribution, but on the contrary, solely relies on each spectrum sequence pair (see Supporting
Information S4.1) it is possible to follow the recommendations of [4] to obtained calibrated p-values by
means of a decoy database search. However, in absence of precisely described procedure in the article,
many implementation details are left to the reader. Based on the recommendations of [5] (which notably
highlights the importance of making a distinction between best-scoring and lower ranked decoy PSMs)
we ended up with two di�erent calibration procedures, both of which being apparently partly compliant1

with [4]:

Procedure 1

1. Generate a decoy database of length N , N being arbitrary large (the larger N , the better), and run
the search engine on this decoy database (no target database involved)

2. Order all the queried PSMs with decreasing con�dence: {S1, . . . , Si, . . . , Sm} (where m is the num-
ber of scored PSMs, m ≤ N × ` where ` is the number of spectra) and create a score to p-value
conversion table by applying the following rule:

p-value(Si) := i/m

3. For any new target database search (without decoy search), each PSM receives a p-value corre-
sponding to that of the score Si it is the closest to in the conversion table (when the PSM score
falls somewhere between Si and Si+1, it is safer to consider the latter one, leading to a larger
p-value, to enforce conservativeness).

Such approach however leads to two issues: First, some search engines do not grant access to all the
PSMs, but only to the best scoring ones, so that it is impossible to build the right-hand side of the dis-
tribution; Second, the resulting p-values will need �idák correction (see next subsection) before applying
BH procedure. Alternatively, it is possible to de�ne a procedure that is immune to both aforementioned
drawbacks. Yet, as a counterpart, it will be only available for a given target database size:

1In [4], it is reported that �In practice, the decoy database is usually the same size as the target database; however,
this is not necessary. Using a larger decoy database leads to more accurate p-value estimates at the expense of more
computation.�. However, from our experiments, Procedure 1 works to compute p-values, but cannot be straightforwardly
extended to compute an FDR, unless the decoy database if of the same size as the target one; Conversely, when we applied
Procedure 2 with a decoy database of di�erent size, we obtained uncalibrated results.
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Procedure 2

1. Generate a decoy database of length N (N being equal to the target database used), and run the
search engine on this decoy database (no target database involved)

2. Order all rank-1 PSMs with decreasing con�dence: {S1, . . . , Si, . . . , S`} (where ` is the number of
spectra; the larger `, the more accurate the p-values) and create a score to p-value conversion table
by applying the following rule:

p-value(Si) := i/`

3. For any new target database of size N , perform a search without considering the decoy database,
and assign to each PSM a p-value corresponding to that of the score Si it is the closest to in the
conversion table (when the PSM score falls somewhere between Si and Si+1, it is safer to consider
the latter one, leading to a larger p-value, to enforce conservativeness).

Beside these two procedures, p-value calibration has recently gain interest, and a growing number of
articles propose methods to convert search engine scores into well-calibrated p-values, either dedicated
to a single search engine (e.g. [6, 7, 8] for Tides and SEQUEST algorithm related software), or applicable
to many of them (e.g. [9]).

S1.2.2 �idák correction may be needed in some cases

As outlined in [7], sometimes, an additional multiple testing correction is needed. The reason is the
following: A statistical test is termed �calibrated� when the observations are tested against a distribution
corresponding to that of the null hypothesis. Thus, the level of calibration correctness tightly relates to
how the null hypothesis is de�ned. However, in our case, two null hypotheses are equally meaningful:
First, from the search engine viewpoint, the null distribution is made of all the possible mismatches.
However, the user seldom has access to this entire set of mismatch: Most of the time, only a subset
containing the best target or decoy matches is provided; or ultimately, only the best-scoring PSM. Thus,
from the user viewpoint, the null distribution is the distribution of the best-scoring mismatches (out of
several possibilities). The thing is that the minimum of several uniform p-values (corresponding to the
best-scoring peptide-spectrum mismatch) is not uniform, as illustrated on Figure S1. To cope for this [7],
it is necessary to adjust the p-value of each PSM i by accounting for the number Ni of sequences that
were tested, which is the purpose of �idák correction:

pi := 1− (1− pi)Ni

Importantly, search engines can either directly embed this �idák correction, or not. Both de�nitions are
acceptable, and both can be considered as leading to well-calibrated p-values. However, to apply BH
procedure, it is necessary to have a uniform distribution for the scores of the best mismatches, so that if
not embedded, this correction must be applied �rst.

Finally, let us mention the following warning: if the p-values are equal with or without �idák correction,
then it means Ni = 1. In other words, the preliminary �lters on the database searched are so stringent
that in practice, only a single sequence is eligible; which dramatically questions the identi�cation pipeline,
as broadly, one forces the identi�cations towards sequences of interest.
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Figure S1: Histogram of 15,000 simulated p-values, after taking the minimum out of N uniformly dis-
tributed samples, with N = 1 (upper left), N = 2 (upper right), N = 5 (lower left) and N = 15 (lower
right): by taking the minimum p-values, one promotes small p-values with respect to large p-values, so
that from a distribution with used to be uniform, one ends up with another distribution with is shifted
to the left.
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S1.2.3 Assessing the correct calibration of the p-values

Figure S2: p-value histogram for a dataset where a proportion of π0 false discoveries and of 1− π0 true
discoveries coexists (here π0 = 0.97) � borrowed from [10].

Several methods are available to determine the extent to which p-values are calibrated. We can broadly
divide them in two categories: those which have thrived on the proteomics context of extensive database
search use; and those which root on statistical metrics. The former are more intuitive to proteomics
practitioners but are often more hand-crafted too.

A �rst method [6] is to apply one of the two decoy-based procedures described above (depending on
one assumes �idák correction to be embedded or not), and to plot (in log-scale for better visibility) these
reference p-values against the p-values to be checked (on the same decoy dataset). In case of correct
calibration, the scatter plot should form a diagonal line with a unitary slope.

A second family of methods (also relying on database search engines) is referred to as entrapment
methods [11, 12, 13, 14, 15, 16]. Conceptually, entrapment databases are essentially decoy databases,
which are constructed in a speci�c way, and then searched in a speci�c way, so that the distinction between
�decoy� and �entrapment� sequences is sometimes forgotten [12]. Moreover, their use has progressively
shifted across the years: while they initially focused on p-value calibration [11], they have been extended
to approximate the FDP so as to estimate the (FDR, FDP) di�erence [14], to �nally serve as a new FDR
computation method [15].

Based on more statistical assumptions, the easiest way to check the calibration of the p-values is to
display their histogram [17] and to check visually the distribution shape: one should observe a rectangular
histogram of hight π0 (where π0 ≤ 1 depicts the proportion of null hypotheses), except for a peak on
the left-hand side which depicts the discoveries with p-values outlying from the uniform distribution,
see Figure S2. However, histograms tend to be unstable due to the binning, unless made of several
thousands of p-values. To cope for this, it is possible to replace the p-value histogram by a cumulative
distribution representation, as proposed in the early 80's by Scheweder and Spjøtvoll [18]. Let us by the
way note that according to Yoav Benjamini [19], Scheweder and Spjøtvoll paper was at the root of BH
procedures, published 13 years afterwards [20]. However, interpreting Scheweder and Spjøtvoll plot is not
straightforward. This is why, we have recently adapted it to the proteomics context (and more precisely
to the di�erential analysis problem), giving birth to the CP4P tool [1] that is presented below.

S1.2.4 How to deal with miscalibrated or ill-calibrated p-values

So far, we have only discussed how to assess the p-value calibration. If the p-values are perfectly calibrated,
it is possible to directly proceed with BH procedure. However, in practice, it is possible to observed other
situations. Broadly, we can consider three di�erent scenarios:

1. Well-calibrated p-values: As said above, it is possible to proceed with BH procedure. However,
BH is known to be slightly overly conservative. Thus, in case of very good to perfect calibration,
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it is possible to adjust the BH estimator, so as to limit its conservativeness. This is essentially
achieved by adjusting the so-called π0 estimate parameter, which quanti�es the proportion of null
tests (i.e. the proportion of mismatches in the considered set of PSMs), as proposed in [4, 21] in
the proteomics context. However, many other π0 estimators are available in the literature and a
handful of them is directly embedded in CP4P, so that they can be directly used.

2. Ill-calibrated p-values: This category contains the cases of intermediate quality, which are the
most frequent. Fortunately, in most of the case, the small BH overconservativeness is su�cient to
compensate the partial lack of calibration, so that it is nonetheless possible to proceed with the
FDR estimate. However, in those cases, ajusting the π0 parameter may require an educated eye,
so that sticking to the original BH procedure is advised.

3. Miscalibrated p-values: In those cases, the lack of calibration is obvious and applying BH
procedure will not garantee a trustworthy FDR. However, it is also possible to consider the p-values
as classical scores, and to convert them into well-calibrated p-values, following the procedures
described above.

Note that a partial lack of calibration may result from the lack of a needed �idák correction (see Supporting
Section S1.2.2); or, on the contrary, from the application of a �idák correction which was not necessary.

S1.2.5 A simple practical tool: CP4P

The principle of Scheweder and Spjøtvoll plot (as well as its CP4P version) is summarized in Figure S3:
it is to compute the cumulative sum of 1-(p-value)s, starting from the largest p-values (i.e. the right hand
side of the histogram), so that the horizontal shape of the uniform distribution turns into a slope, which
is globally less sensitive to random e�ects.

With respect to traditional Scheweder and Spjøtvoll plot, the calibration plot proposed in CP4P
display visual colored indicator that facilitates its interpretation: In red appears any deviation from
the uniform distribution; In green, one indicates the extent to which the p-values of the discoveries
(i.e. correct matches) are concentrated toward small values; and �nally, blue indications refer to the
π0 parameter, which �ne-tuning can help reduce the over-conservativeness of BH original estimator (as
illustration, Supporting Section S2 contains many calibration plots resulting from the preliminary checks
of p-value calibration, when constructing Figure 1 in the main article).

For more details on CP4P, as well as for tutorials and guidelines on how to use it, we refer previ-
ous article of our team: [1] as well as the tutorial available in its supplemental materials (also avail-
able there: https://sites.google.com/site/thomasburgerswebpage/download/tutorial-CP4P-4.

pdf); [10]; and �nally, section 4, 5 and 6 of [22], as well as the corresponding supplemental materials (also
available there: https://sites.google.com/site/thomasburgerswebpage/download/suppmat-5tips.
pdf).
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Figure S3: Schematic representation of the calibration plot construction process, starting from the p-value
histogram � borrowed from [22].

S2 Supporting results

S2.1 Mascot calibration

This section contains several calibration plots resulting from CP4P (see below, Figures S4 to S15. This
package allows adjusting the π0 estimate to limit BH over-conservativeness. However, for sakes of general
purpose use, we did not rely on this option: We practically forced π0 to 1, so as to recover BH original
estimator. The plots below correspond to 3 samples (out of the 10 involved in the study): as they are all
similar (beyond human eye capabilities), we did not plot them all. We focused on the �rst one (as the
one opening the series), the fourth one (displaying a slightly outlying behavior, see Figure 3 in the main
article) and the seventh one (randomly chosen).

The conclusions are as follows: In settings HH, HL and LH the calibrations are excellent: one observes
a well-de�ned elbow, made of a linear part on the left hand side and a sharp increment on the right hand
side. However, in the LL setting, the calibration is not as good, without being too bad (notably, no
uniformity underestimation appears): This is a small ill-calibration case. However, it contrasts with the
3 other settings. Concretely, it remains possible to compute a BH FDR and to safely rely on it. However,
it must remain overly conservative to cope for the approximate calibration. This notably explains why,
on Figure 1 (main article), the cut-o� scores are higher in the LL setting than in others.

Although not a problem with regards to our investigations and goals, we wondered on this ill-
calibration. The point was only to better understand it, not to correct for it (as modifying the p-values in
the LL setting would amount to change the Mascot score values, and thus, plotting Figure 1A in the main
article would not be possible anymore, as the scales would become di�erent for each setting). However,
following Supporting Section S1.2.2, we tried to introduced an additional �idák correction (as in LL, the
number of candidate sequences is higher), but this clearly deteriorated the calibration (see Figure S16).
This con�rmed us that Mascot is indeed calibrated according to the best-PSM assumption. However, the
LL setting being clearly outdated, this is not an issue for Mascot everyday use.
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Figure S4: Calibration plot of sample R1 in the LL setting
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Figure S5: Calibration plot of sample R4 in the LL setting
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Figure S6: Calibration plot of sample R7 in the LL setting
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Figure S7: Calibration plot of sample R1 in the HL setting

14



Figure S8: Calibration plot of sample R4 in the HL setting
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Figure S9: Calibration plot of sample R7 in the HL setting
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Figure S10: Calibration plot of sample R1 in the LH setting
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Figure S11: Calibration plot of sample R4 in the LH setting
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Figure S12: Calibration plot of sample R7 in the LH setting
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Figure S13: Calibration plot of sample R1 in the HH setting
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Figure S14: Calibration plot of sample R4 in the HH setting
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Figure S15: Calibration plot of sample R7 in the HH setting
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Figure S16: �idák correction leads to miscalibrated p-values (LL setting, sample R1).

23



S2.2 Miscelaneous supporting tables

Table S1: Quantitative summary of the results depicted in Figure 1, completed with the number of
validated PSMs.
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Table S2: Replicate-wise details of the validation results summarized in Table 1.

#Targets #Decoys min Score #Targets #Decoys min Score #Targets #Decoys min Score

R1 12319 744 0 9293 734 0 1482 712 0

R2 12347 840 0 9286 821 0 1462 795 0

R3 12149 849 0.01 9254 829 0.01 1451 803 0.01

R4 12843 714 0.01 9898 684 0.01 1427 667 0.01

R5 12092 826 0 9465 806 0 1470 775 0

R6 12332 837 0 9422 821 0 1435 784 0

R7 12201 852 0 9408 833 0 1476 807 0

R8 12095 830 0 9418 808 0 1477 780 0

R9 10908 935 0 9026 914 0 1503 869 0

R10 10916 946 0 9043 922 0 1482 868 0

Average 12020.2 837.3 0.002 9351.3 817.2 0.002 1466.5 786 0.002

#Targets #Decoys min Score #Targets #Decoys min Score #Targets #Decoys min Score

R1 10523 9 20.94 8175 9 18.9 1305 9 21.04

R2 10420 8 21.02 8115 8 20.17 1293 8 21.78

R3 10424 11 20.96 8151 11 19.84 1286 11 20.96

R4 11012 29 20.9 8723 23 19.61 1292 22 21.01

R5 10239 11 21.02 8250 11 19.96 1304 11 21.23

R6 10624 10 20.93 8309 10 19.55 1288 10 20.95

R7 10458 10 20.98 8272 10 20.23 1305 9 21.08

R8 10440 10 20.95 8327 10 19.73 1318 10 20.95

R9 9094 9 21.15 7723 9 18.53 1290 9 21.54

R10 9102 8 21.15 7758 8 20.24 1296 8 21.33

Average 10233.6 11.5 21 8180.3 10.9 19.676 1297.7 10.7 21.187

#Targets #Decoys min Score #Targets #Decoys min Score #Targets #Decoys min Score

R1 11073 8 0.04 8151 8 20.92 1304 8 21.04

R2 11032 8 0.02 8089 8 20.97 1293 8 21.78

R3 10926 11 0.02 8126 11 20.95 1286 11 20.96

R4 11537 32 0.02 8705 23 20.85 1292 22 21.01

R5 10755 10 0 8232 10 20.96 1304 10 21.23

R6 11117 9 0.01 8286 9 20.92 1287 9 20.95

R7 10975 9 0.02 8251 9 20.95 1305 8 21.08

R8 10909 9 0.01 8307 9 20.9 1318 9 20.95

R9 9484 8 0.05 7698 8 21.12 1290 8 21.54

R10 9554 7 0.04 7750 7 21.09 1300 7 21.09

Average 10736.2 11.1 0.023 8159.5 10.2 20.963 1297.9 10 21.163

#Targets #Decoys min Score #Targets #Decoys min Score #Targets #Decoys min Score

R1 12123 7 0.04 9099 7 0.08 1300 7 22.54

R2 12163 8 0.02 9103 8 0.03 1293 7 22.7

R3 11964 14 0.01 9070 14 0.01 1282 11 22.45

R4 12702 32 0.02 9760 21 0.04 1293 18 22.25

R5 11912 13 0 9288 12 0.01 1299 9 22.35

R6 12170 16 0.01 9259 14 0.01 1284 9 22.44

R7 12019 13 0 9227 12 0 1306 8 22.48

R8 11924 12 0 9247 11 0 1316 8 22.42

R9 10679 12 0.02 8801 10 0.02 1293 7 22.99

R10 10710 11 0.01 8840 11 0.01 1290 8 22.72

Average 11836.6 13.8 0.013 9169.4 12 0.021 1295.6 9.2 22.534
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S2.3 Downfall of Andromeda scores

The TDC lack of stability reported with Mascot in the main article (see Figure 1) can also be illustrated
with Andromeda, even though the conclusions should be cautiously interpreted for the following reasons:
(1) Andromeda code is not accessible, so that it is not possible to check whether the provided scores are
individual or if they should be considered as contextualized scores (see Supporting Information S4.1),
because of the ��xed additive component� which accounts for peptide dependences, as described in [23];
(2) Depending on the version, the TDC procedure is by default applied on posterior probabilities or on
delta scores, both of us being contextualized scores; (3) Due to the speci�c relationship between the
posterior probabilities and the scores of long peptides, the minimum observed Andromeda score within
the validated list is almost always near zero, so that focusing on the variations of cut-o� score is not
informative.

Concerning the �rst point, it is more a state of a�air than an issue to solve, which will only make
Andromeda more or less adapted to evaluate the TDC procedure. This is notably the reason why we do
not compute and display the BH cut-o� scores: it is impossible to make sure that Equation 1 (in the
article) is applied on the correct score. As for the second one, we have used the posterior probability,
because it is the published method. Finally, concerning the last one, we simply have to �nd a statistics
other than the minimum score which depicts the quality of the borderline validated peptides. We have
decided to rely on the lowest percentile of the score distribution. This interprets as following: a value
of x indicates that the 1% lowest PSM scores are distributed between 0 and x. As detailed in the main
article, as well as in Supporting Information S4.1, as the lowest PSM scores are expected to remain of
constant quality, it makes an interesting statistics to illustrate a potential lack of stability in the TDC.

The results are depicted on Figure S17. Although the �rst percentile can be expected to be more
stable than the minimum value, one observes an important instability, both for each tolerance tuning
taken individually, and across the tolerance tunings. However, it appears that contrarily to Mascot,
X!tandem and MS-GF+, the e�ect of the fragment mass tolerance tuning is much more important than
that of the precursor one. Moreover, the mapping between the Velos and Qex analyses is not as good
as with Mascot. However, in the LL setting, switching from a Velos to a Qex leads to a stringency loss,
while on the contrary, it leads to a stringency increment in the HL setting. Considered together, these
observations con�rms the lack of of stability of TDC procedure.

Figure S17: Same �gure as Figure 1, yet with Andromeda search engine instead of Mascot.

S2.4 TDC can lead to the validation of unreliable PSMs

For illustration purpose, the following �gures (Figures S18 to S25) display 8 randomly chosen PSMs
with scores lower than 10, out of the 150 ones which are discussed in the �TDC instability can lead to
anti-conservative FDRs� section of the article. For sakes of readability, we did not included the 150 PSMs
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as �gures in the present supporting information �le. However, they are all stored as PNG �les in the
companion zipped folder (Supporting Information S5).

Figure S18: Dubious PSM with score 1.64.

Figure S19: Dubious PSM with score 3.65.

Figure S20: Dubious PSM with score 4.14.
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Figure S21: Dubious PSM with score 4.88.

Figure S22: Dubious PSM with score 5.78.

Figure S23: Dubious PSM with score 6.85.
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Figure S24: Dubious PSM with score 8.10.

Figure S25: Dubious PSM with score 9.30.

S3 Supporting methods

S3.1 Inference rules

Peptide inference or protein inference are umbrella terms which encompass several distinct notions:
Inference rules, scoring methodologies and quality control metrics. The inference rules de�ne which
pieces of information should be considered and how they should be used in the inference process, regardless
of their quality or reliability. For the spectrum-to-peptide inference, this notably refers to the possibly
multiple ranked interpretation of a spectrum. For the peptide-to-protein inference, this refers to the
minimum number of peptides per protein, the processing of shared peptides and the de�nition of protein
groups. The scoring methodology refers to the de�nition of a con�dence value for each entity (de�ned
thanks to the inference rules), in order to rank them from the most con�dent to the least one. Finally, the
quality control metrics is used to �lter out some insu�ciently reliable entities so as to keep a shorter
list of validated ones. The metrics can either be individual (each entity is considered independently of the
others) such as with Posterior Error Probability [24, 25]; or associated to the entire �ltered list (typically,
an FDR, but other multiple test corrections methods exist [26]).

Although conceptually distinct, these notions can overlap in practice, see [27, 15, 16]: Some inference
rules directly involve the scoring methodology; Quality control metrics may tightly relate to the scoring
methodology; Inference rules and scoring systems are compared so as to �nd the combination leading to
the lowest FDRs; Etc. However, for sake of generality, we kept here a clear distinction. Concretely: (i)
We did not address the de�nition of inference rules, and we considered the most simple one (i.e. a single
peptide interpretation per spectra and only protein-group speci�c peptides, regardless their number and
the protein grouping), and leave to future work (or to any inspired reader) the application of our procedure
to more elaborated inference rules; (ii) We focused on the scoring methodology, with the objective to
preserve the [0, 1]-uniform distribution, so as to call them well-calibrated peptide/protein p-values; (iii)
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Regarding the quality control metrics, we obviously relied on BH procedure, which becomes possible
thanks to the calibration correctness.

This complete separation provides two advantages. First, it makes it possible to reason on each step
independently of the others. Notably, this article focuses on the scoring methodology independently of
the inference rules and the quality control metrics. Second, it enables a distinction between the quality
control level and and the nature of the controlled entities: While it is customary to validate a list of
proteins with an FDR of 1%, it is not as classical to validate a list of PSMs with the criterion that
less than 1% of the proteins they map on are putatively false discoveries. However, as illustrated in the
Discussion, such options are really insightful.

S3.2 Peptide score de�nition

De�nition 1 Let us have a peptide sequence seqi, a spectrum specj and a score reading

S◦ij = Score(seqi, specj) (1)

that is provided by a search engine. The triplet (seqi, specj , S
◦
ij) formally de�nes a Peptide-Spectrum-

Match (or a PSM). To avoid ambiguity with other scoring system, S◦ij is referred to as the PSM score.

In the rest of this article, we make the following assumption:

Assumption 1 The search engine provides a PSM score S◦ij of the form S◦ij = −10 log10(p◦ij) where p◦ij
is probability of a random match.

In the setting of Ass. 1, by construction, p◦ij is the p-value of a test with the following null hypothesis:

Hij
0 : specj 6= seqi

which simply means that the peptide sequence and the observed spectrum do not correspond. A direct
consequence of Ass. 1 reads:

Corollary 1 Under Hij
0 ( i.e. when considering only false PSM), p◦ij is known to distribute uniformly.

Remark 1 See [10] for justi�cations of Cor. 1.

In other words, if symbol ≈ is used to represent the term �look like�, then p◦ij corresponds to the following
conditional probability:

p◦ij = P(specj ≈ seqi | specj 6= seqi).

In practice, several spectra are acquired for each precursor ion, so that several PSMs participate to the
identi�cation of a same peptide sequence. This is why, one classically de�nes the best-PSM score of
sequence seqi (noted S

>
i ) as the maximum PSM score among the PSMs involving that peptide sequence:

S>i = max
q∈J1,QK

S◦iq (2)

where Q is the number of spectra that are possibly considered for a match onto seqi, and where J., .K
denotes an integer interval. Let us denote by p>i the corresponding probability, linked to S>i by Ass. 1.
It rewrites as:

p>i = min
q∈J1,QK

p◦iq (3)

In other words, p>i is the minimum value of a set of p-values. We would like to interpret p>i as the p-value
resulting from testing of the following null hypothesis:

Hi
0 : ∀q ∈ J1, QK, specq 6= seqi

or with a more compact notation,
Hi

0 : seq?
i

the interrogation mark simply indicating that seqi does not corresponds to any observed spectrum.
Unfortunately, this is not possible: taking the minimum promotes small p-values, so that one should not
expect the p>'s to distribute uniformly under the null hypothesis, which is required to have well-calibrated
statistical test and to apply BH procedure. Fortunately, it is possible to recover exact calibration thanks
to Prop 1.
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Proposition 1 Let S1, . . . , Sn be a set of n scores of the form S` = −10 log10(p`), (` ∈ J1, nK) where the
p`'s are realizations of n i.i.d. R+ random variables, X1, . . . , Xn. If X` ∼ U [0, 1] ∀`, then,

Y = 1−
(
1− 10−

1
10 ·max` S`

)n
uniformly distributes in [0, 1].

Proof:

P[Y ≤ t] = P
[
1−

(
1− 10−

1
10 ·max` S`

)n
≤ t
]

= P
[
1−

(
1−min

`

[
10−

S`
10

])n
≤ t
]

= P[1− (1−min
`

[p`])
n ≤ t]

= P[1− (max
`

[1− p`])n ≤ t]

= P[(max
`

[1− p`])n ≥ 1− t]

= 1− P[(max
`

[1− p`])n < 1− t]

= 1− P[max
`

[1− p`] < (1− t)1/n]

= 1− P

[⋃
`

{
(1− p`) < (1− t)1/n

}]

= 1−
n∏
`=1

P[1− p` < (1− t)1/n]

= 1−
n∏
`=1

P[p` ≥ 1− (1− t)1/n] (4)

As each p` is the realization of a U [0, 1] random variable, one has, ∀`:

P[p` ≥ 1− (1− t)1/n] = 1− (1− (1− t)1/n)
= (1− t)1/n (5)

So that

P[Y ≤ t] = 1−
n∏
`=1

(1− t)1/n

= t (6)

Consequently, the cumulative distribution function of Y is that of a uniform random variable. More-
over, Y takes its value in [0, 1], strictly. �

As well-calibration is equivalent to uniform distribution of mismatch scores, if the PSM scoring system
is well-calibrated, then according to Prop. 1, the best-PSM probability can be transformed to be well-
calibrated too. Concretely, uniformity under the null is thus recovered by applying a transform akin to
that of �idák correction [28] to p>, where one de�nes the peptide p-value of peptide sequence seqi as:

p�i = 1− (1− p>i )Q (7)

The corresponding peptide score (de�ned under Ass. 1) is noted S�i .

S3.3 Accounting for fragmentation multiplicity

To the best of our knowledge, the peptide score resulting from Prop. 1 has never been proposed so far.
However, similar mathematical derivations (i.e. also rooted in the �idák correction for multiple testing)
have already been applied in the proteomic context, notably to recalibrate scoring systems in a context
of multiple peptide interpretations of spectra [11] � which di�ers from the present context. Besides,
the aggregation of PSM scores into well-calibrated peptide-level scores has been already addressed by
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almost the same authors, notably in [14]. This article focuses on controlling the FDR at peptide-level
within a TDC context, which probably explains the numerous discrepancies between their work and
ours. Essentially, the article compare three di�erent approaches: ETWO, WOTE and Fisher's combined
probability test. ETWO and WOTE are both based on the best-PSM score, their di�erence relying in
how the �ltering of the non-best PSMs interplays with the TDC. As for Fisher's method, one converts
all the PSM scores into PSM p-values (using Eq. 1 or a similar formula, depending on the search engine),
before applying Fisher's combined probability test [29], which returns p-values at peptide level (that can
�nally be transformed back into peptide level scores). As a result of the comparisons, it appears that
the WOTE method is the best calibrated one, tightly followed by ETWO, while Fisher method provides
miscalibrated p-values. As by construction, Fisher method should provide well-calibrated p-values when
combining independent tests, the authors explain this miscalibration by underlying that di�erent PSMs
pointing toward a same peptide cannot be considered as independent. We agree with this explanation
and we believe it is possible to go further. Due to the the strong dependence of PSMs, using Fisher
method should lead to dubious peptide scores, because of the following undesirable e�ect: several PSMs
with intermediate scores pointing toward a given peptide are practically considered equivalent to a single
PSM with an excellent score, as illustrated in the following example:

Example 1 Consider six spectra pointing toward a peptide sequence seq1, all with a Mascot scores of
18. Besides, one has another peptide sequence seq2 identi�ed by a single PSM with a Mascot score of
58.084. According to Fisher method, the peptide scores of seq1 and of seq2 are equal, indicating similar
con�dence in both peptide identi�cations.

This example contradicts with peptide scoring expectations. In fact, the PSM/peptide relationship is
not the same as the peptide/protein one, so it is not surprising that Fisher method, which is helpful to
switch from peptide to protein level is not to switch from PSM to peptide level.

It is interesting to note that according to our proposal, the mathematical tool suggested in [11] is of
interest to solve the question raised in [14], even though bridging them has never been proposed so far.
This can be explained by a noticeable drawback of the proposed peptide score: The greater the number
Q of PSMs pointing toward a given peptide, the smaller the score (see Figure S26). As this contradicts
with the intuition that the more observed spectra, the likelier the peptide presence, a re�ned analysis is
necessary.

From a statistical viewpoint, this penalty is well motivated: Let us consider two ions I1 and I2. If I1 is
fragmented two times more than I2, it is two times more likely to reach a higher score thanks to random
�uctuations (by analogy, it is easier to obtain a high score when taking the best out of 2 dices than
when throwing a single dice). Thus, our �idák-like correction is essential to avoid an increment of the
peptide scores which would only result in the repetition of multiple randomized tests. Contrarily to Fisher
method (discussed above through Ex. 1), the mathematical assumption underlying our correction is not
that PSMs are independent; but only that their random �uctations are, i.e. a weaker and more realistic
assumption. However, from an analytical viewpoint, this assumption is still unrealistic. In the case of
high-�ying ions with long elution pro�les, it is possible to obtain a large number of repeated fragmentation
spectra (up to 50 or 80, depending on the dynamic exclusion tuning of the mass spectrometers, on the
LC length and on the complexity of the sample) with limited (and consequently correlated) random
�uctuations. In such a case, the assumption on which our �idák-like correction is based does not hold so
that it should not be used to deteriorate the identi�cation scores.

Finally, one has to �nd a trade-o� between the necessity of correcting for multiple testing, while
avoiding too systematic corrections. From our experience, such deterioration only marginally occurs and
only impact ions with excellent scores which are validated regardless of a small score reduction (in fact,
the higher the best-PSM score, the weaker the correction, as illustrated on Figure S27). As a result, the
increased conservativeness of the correction has globally a positive e�ect on validation (see Results), even
though more investigating for re�ned strategies can be of interest.

S3.4 Fisher combined probability test

To de�ne the protein-level counterpart to PSMs and peptides, we leverage the intuition that fragment
matches are for PSM scores what peptide matches are for protein scores. Instead of peptide sequence
seqi, one simply has a protein sequence seqπ. As for spectrum specj , one has a collection of spectra
{specj}j∈N that could potentially match to any of K subsequences of seqπ. The goal is thus to derive
score and p-value for protein sequence seqπ as counterparts to peptide score and p-value (each score/p-
value couple being linked by the −10 log10(.) transform). However, let us �rst make another assumption:
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Figure S26: Peptide scores versus best-PSM scores for the E. Coli dataset: In the logarithmic scale
induced by the conversion from p-values, the scores are de�ated by a constant (proportional to the
number of matches). Relatively, the con�dently identi�ed peptides are less impacted than other ones.

Assumption 2 The protein sequence seqπ does not share any subsequence with other proteins. As a
result, any identi�ed peptide sequence corresponds to a protein-speci�c peptide.

Remark 2 Ass 2 is rather strong. In practice, one can simply restrict the analysis to peptides that are
speci�c to a protein and discard the others, as done in many proteomic software tools. It is also classical
to de�ne equivalence classes on the peptide-protein graph, leading to so-called protein-groups.

The next step is to de�ne Hπ
0 , the null hypothesis which testing would result in the desired p-value.

Intuitively, if the protein seqπ is in the sample, one expects at least one spectrum to match on one of
the K peptide sequences; and the more matched peptide sequences, the better. However, one should
not expect that all the K peptide sequences are con�dently matched: For example some sequences may
correspond to chemical species that are di�cult to ionize. Conversely, if the protein is not in the sample,
only random match(es) should occur on one or few peptide sequence(s). This leads to the following null
hypothesis:

Hπ
0 : ∀k ∈ J1,KK, seq?

π,k

or
Hπ

0 : ∀k ∈ J1,KK,Hk
0 is true,

where seqπ,k represents the kth subsequence of seqπ. The corresponding alternative hypothesis Hπ
1 is

that among the K subsequences, at least one is matched. This reads:

Hπ
1 : ∃k ∈ J1,KK such that Hk

0 is false.

As a matter of fact, these null and alternative hypotheses are those of a combined probability test built on
the K peptide p-values p�1, . . . , p

�
K . In other words, a p-value at protein level can be computed according

to Fisher's method [29] (or possibly a related test, see [30, 27]), which relies on the fact that:

−2
K∑
k=1

ln(p�k) ∼ χ2
2K ,

where χ2
2K is the Chi-squared distribution with 2K degrees of freedom. This is equivalent to:

ln(10)

5

K∑
k=1

S�k ∼ χ2
2K .
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Figure S27: Peptide score expressed as a percentage of the best-PSM score in function of the number
Q of PSMs: Each curve corresponds to the evolution of a given score, written in orange on the right
hand side of the curve. The plot reads as follow: for Q=1, the correction is idle, so that the peptide
score equates the best-PSM score (100%). The peptide score diminishes as Q grows (the plots stopped
at Q=100, depicting an already extreme situation where 100 PSMs point toward the same peptide). For
instance, if the best-PSM has a score of 80 (fourth curve form the top), and if reaching such a high score
has required 39 additional PSMs with lower or equal scores, the peptide score is equal to 80% of the
best-PSM score, i.e. 64.

Thus, if f2K denotes the density function of χ2
2K and S⊕π =

∑K
k=1 S

�
k (i.e. the sum of the K peptide

scores for protein π), then the p-values of the combined probability test reads:

p†π =

∫ ∞
0.2 ln(10)S⊕π

f2K(x)dx (8)

Let us call p†π the Fisher p-value and S†π = −10 log10(p†π) the Fisher score.

S3.5 Enforcing the conservativeness of Fisher method

The accuracy of Fisher's method is known in the case where theK p-values derive from independent tests.
However, in case of dependent tests, it can possibly be anti-conservative, i.e. p†π can be underestimated
(or conversely S†π can be overestimated), leading to too optimistic decisions. For instance, providing a
too great score to a given protein makes the practitioner overly con�dent on the presence of the protein.

Therefore, let us analyze the possible dependencies between two tests with null hypothesesHi
0 andHj

0,
respectively. In the case where protein seqπ is not in the sample, which corresponds to being under Hπ

0 ,
the two tests are clearly independent: The quality of any random match is not related to the existence of
other spectra matching on any other sequence of the same protein. However, if protein seqπ is present
in the sample, the two tests should tend to reject Hi

0 and Hj
0, respectively: independence cannot be

assumed. Therefore, the independence assumption necessary to the conservativeness of Fisher's method
only holds under the null (in fact, this can be easily observed in practice: false PSMs are spread on
numerous proteins while true ones tend to concentrate).

As explained above, in general, anti-conservative tests cannot be used, for they lead to too optimistic
decision making. This is notably why, when using Fisher's method to combine di�erent statistical analyses
into meta-analysis, the independence of the analyses is of the utmost importance: In the case were the
meta-analysis con�rms the discovery of the analyses (which means rejecting their null hypothesis), it
may do so with a too great con�dence. This is also why, numerous alternatives to Fisher's method are
available in the literature, such as for instance [31, 32].
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However, in proteomics, one is seldom interested in providing a con�dence level for each protein
separately: Or at least, if one is, then, other tools exists, such as PEP / local FDR [24]. Most of the
time, the practitioner needs to provide a list of con�dently identi�ed proteins, endowed with a quality
control metric, such as the FDR. If within this list, all the Fisher scores are in�ated, it is ultimately not a
problem, as long as the FDR is well-controlled. In other words, it is not important to be overly optimistic
with true identi�cations, as long as one is not with false identi�cations. In fact, being anti-conservative
with true identi�cations while conservative with the false ones may be a good way to help discriminating
them, and thus, reduce the FDP induced by the cut-o� score (roughly, this leads the score histograms of
true and false discoveries to have a smaller overlap).

As a conclusion, despite the independence assumption only holds under Hπ
0 , Fisher score will not lead

to an increment of false discoveries; at least, as long as one validates the protein identi�cation list with
an FDR only.

S3.6 Accounting for poorly identi�ed peptides

A deeper look on Fisher's combined probability test behavior pinpoints an undesirable e�ect for pro-
teomics: A very low p-value can be moderated by greater p-values. This concretely makes sense in a
meta-analysis setting, where two poorly conclusive analyses will soften the conclusion of a third very
conclusive analysis. However, in proteomics, two poorly reliable peptide identi�cations should not soften
the parent protein identi�cation, if the latter is supported by a third highly reliable (speci�c) peptide.
Let us illustrate this on an example:

Example 2 Consider a protein π with 4 peptides with score S�1 = 44.09, S�2 = 1.59, S�3 = 1.59 and
S�4 = 1.59. The corresponding Fisher score is 23.90638. In fact, the 3 last peptides are so unreliable that
they moderate the score resulting from the single observation of the best peptide. Intuitively, a score of
44.09 (related to highest protein evidence) would have been preferable.

Concretely, peptides 2, 3 and 4 in Ex. 2 having small scores does not mean they are not present in the
sample, but only that one did not have su�ciently good spectra.

This outlines an intrinsic limitation of Fisher score. It originates in the fact that, contrarily to the
setting Fisher's method was originally designed for, mass spetrometry based proteomics relies on the Open
World Assumption (OWA, [33]): an absence of observation does not mean non-existence. Concretely, a
low score does not mean the peptide is not present in the sample, but only that one does not have a
su�ciently good spectrum. This is why, it intuitively makes sense to consider that, given a protein, its
score should not be the combination of all its peptides, but only the combination of the scores of the
peptide subset which gives the highest Fisher score. This leads to the following de�nition of the protein
score S?π:

S?π = max
A∈2{1,...,K}

S†A (9)

where S†A denotes the Fisher score of the subset A of the set of K peptides that maps onto protein π. If
one de�nes

p?π = 10−
S?π
10 (10)

then, the protein p-value p?π relates to the Fisher p-value by the following formula:

p?π = min
A∈2{1,...,K}

p†A (11)

Elaborating on methods akin to Fisher test to derive a protein level score has already been proposed
in the literature. Conceptually, the method closest to ours is also the oldest [30]: The authors proposed to
apply Stou�er's method [34] (which is akin to that of Fisher) on the best subset of peptides to de�ne the
protein p-value. Several di�erences are noticeable with respect to our proposal: First, their scoring system
is used in a target-decoy context. Second, the anti-conservative behaviour induced by dependencies is not
discussed. Third, the restriction to the best subset of peptides is not interpreted under the open world
assumption, so that it is accompanied with a multiple test correction. Fourth, the protein score is directly
based on the best-PSM score, without any intermediate recalibration at peptide level. This could lead to
miscalibration, however, the speci�c distribution of best-PSM scores is accounted for by a Gumble law
�t. More recently, numerous works have investigated a related path, yet with an objective that seems
closer to the comparison and the design of protein inference rules (a subject that is not investigated in
this article), rather than quality control procedures. Notably, they extensively discuss the involvement
of shared peptides with regards to the protein groups, and simply resort to use TDC to estimate a
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protein-level FDR: In [27], authors follow a path similar to that of [30]. However, several di�erences
exists: First, another variant of Fisher method [35] is used, which makes it possible to account for shared
peptides (by down-weighting them in the combination process). Second, the method is directly applied
at PSM level to derive protein-level scores. Third, it does not focus on FDR, but on individual protein-
level metric instead (PEP, E-value, etc.), despite the PSM scoring system remained strongly linked to
TDC. In a similar trend, works from overlapping teams ([15] and [16]) have recently investigated the
use Fisher method as a protein inference rule (rather than a scoring methodology) in a TDC context,
and compared it with other approaches (product of PEP, best-peptide protein surrogate, two peptide
rules, etc.). Finally and concomitantly to the reviewing process of this article, a path of investigation
related to that of [30] has been explored: Broadly, the authors of [36] elaborated on the best-PSM score
to directly de�ne a protein-level score (without peptide-level intermediate step) thanks to a Fisher-like
method (which includes a combinatorial term accounting for multiple testing) to deliver well-calibrated
p-values. However, as its predecessor, the approach is tightly attached to TDC. Investigating whether
the proposed protein score could be adapted to BH framework would be an interesting future research
direction.

S4 Supporting discussion

S4.1 Individual vs. contextualized scores

Initially, TDC was designed to operate on raw PSM scores, i.e. on scores which individually quantify
the similarity between an experimental spectrum and a theoretical one; irrespective of any additional
information concerning the distribution of other (real or tentative) matches. However, the last decade
has witnessed the publication of many �contextualized scores�: Despite being rather diverse, these scores
all leverage the same idea of relying on the target and the decoy score distributions to improve the
discrimination between correct and incorrect matches. This can be concretely achieved by de�ning a delta
score, i.e. a di�erence between the best PSM score and a statistics summarizing the score distribution (the
second best candidate in MS-GF+and in Andromeda/Maxquant, the homology threshold in Mascot) an
e-value (X!tandem) or a posterior probability (in Andromeda/Maxquant or in the Prophet post-processing
tool suites). Many comparisons have experimentally assessed the improved discrimination capabilities of
these thresholds. In a nutshell, by helping discarding the high scoring decoy matches, lower FDRs can
be achieved.

However, it has already been noticed that these lower FDRs may not re�ect the real FDP [37].
Among these contextualized scores, it is not clear which ones require a TDC, which ones require a decoy
database but not necessarily a competition step, and which ones are only de�ned on the target match
distribution. This is not necessarily an issue, as long as TDC is assumed to lead to a fair representation of
the mismatch distribution. However, in this work, we hypothesized that the Equal Chance Assumption
could be violated in some practical conditions. This hypothesis could indeed explain the results of [37],
but it raises an issue to design our experiments: If one uses a contextualized score to assess the quality of
the TDC-FDR, while the contextualized score is built on top of TDC, one faces a self-justifying loop. To
cope for this, we have decided to evaluate the quality of TDC-FDR by relying on individual / raw scores,
as pinpointed in [37]. The rational is the following: If TDC-FDR is stable with respect to the tuning
of various mass tolerance parameters in the search engine, then, the validated PSMs with the lowest
scores should have roughly the same �absolute� quality (i.e. irrespective of the other scores) whatever
the search engine tuning. Contrarily to a well-spread belief, when one �lters a PSM list at 1% FDR, it
does not mean that we allow 1% of poor matches in the result. On the contrary, it means that, despite
all the validated PSMs apparently depict matches of su�cient quality, 1% of them are spurious. In other
words, the validated PSMs with the lowest scores are not randomly selected mismatches that make the
list longer because 1% of false discoveries are tolerated; but borderline PSMs that nonetheless meet the
quality standard of a 1% FDR validation. In this context, it makes sense to assume their quality should
remain roughly constant whatever the search engine tuning.

Once it has been decided to use the lowest individual PSM scores to evaluate the stability of TDC
across various conditions of applications, one has to select a subset of search engines to perform the
experiment. This is a touchy subject as any TDC criticism can be read as a strike against a given search
engine [38, 39, 40]. In our view, the �ve most widely used search engines are the following [41]: Andromeda
(from Maxquant suite), Mascot, MS-GF+, Sequest and X!tandem. Among them, Sequest is more a core
algorithm that derives in a multitude of tools [42] with di�erent implementations, optimizations and
control parameters, which ultimately lead to di�erent identi�cation lists. As for Andromeda, it possesses
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many layers of scores that cannot be accessed, and which results in behaviours that should be questioned
before use in a TDC evaluation. Notably in case of very long peptides, it is customary to observe validated
PSMs with fairly high posterior probability, while the similarity score is zero. Obviously, this questions
the prior distributions which are involved in turning a zero score into an almost certain match, and
consequently the possible construction of these posteriors from decoy matches. Finally, the last three
search engines (i.e. X!tandem, MS-GF+ and Mascot) have already been reported to lead to similar score
downfalls [40]. As a result, we have focused on Mascot (which is the most popular among the three
of them and for which p-values can be straightforwardly derived) and we have postponed the study of
Andromeda to Supporting Information (see Supporting Section S2.3).

As a side note, let us stress that this evaluation protocol should not be over-interpreted. Its context of
use is the following, strictly: We aim at evaluating the stability of TDC, independently of the search engine
or the scoring methodology. Considering, the presented evaluation protocol should not be understood as
a prejudiced view on any search engine, or on any contextualized score. Notably, some contextualized
score could as-a-matter-of-factly over-exploit TDC, de facto leading to larger FDR under-estimations
(as demonstrated by [37]), while on the contrary, some others may partially cope for the problem by
stabilizing the FDR. Although these questions are of interest, they stand beyond the scope of this work.

S4.2 In�uence of the decoy database length

The TDC literature contains many references to target and decoy databases of di�erent size (see notably
Supporting Information S2.1, yet in the TDWC context). Recently, the subject was studied from a
theoretical point of view, so as to provide clear guidance on how to compute the FDR in such cases. The
results are as follow [43]: In principle, if d (resp. t) stands for the number of decoys (resp. targets) that
have passed the validation threshold, and r is the ratio between the sizes of the whole decoy and target
databases, the FDR should read

FDR =
d+ 1

r × t
However, as demonstrated in the Supporting Information to [43], this approximation only holds when
t → ∞ and d/t ≤ 5%. Consequently, when the validation threshold is set to an FDR of 1%, r must be
smaller than 5. Therefore, to increase r in proportion to the reduction in precursor mass tolerance, the
FDR should only be controlled at immaterial levels. This notably explains why, in our case, (i) it was
not possible to rely on an enlargement of the decoy database to recover ECA validity; (ii) we had to rely
on empirical null estimation instead.
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