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Most projects involving mass spectrometry (MS)-based discovery proteomics use datadependent acquisition workows in which tandem mass (MS/MS) spectra are produced from isolated peptides. Then, peptide identication is performed by database search engines which match the experimental spectra acquired with theoretical spectra derived from a list of protein sequences 1 . The more the experimental spectrum resembles the theoretical spectrum, the higher the matching score. This methodology has been widely adopted, but it was soon recognized that it could lead to false positive identications 2 . Indeed, among the tremendous number of spectra generated by a peptide mixture prepared from a complex biological sample, at least a few of them are expected to match an erroneous sequence, by chance. To avoid corrupting the biological conclusions of the analysis, researchers have come to rely on statistical procedures to limit the False Discovery Proportion (FDP) i.e. the proportion of mismatches among all the peptide spectrum matches (PSMs) which look correct. As this quality control problem is ubiquitous in science, statisticians have extensively studied it. The main conclusions of these studies (See 3 for a proteomic-oriented summary) are as follows: (i) Due to the random nature of the mismatches, it is impossible to precisely compute the FDP; (ii) However, it can be estimated, as an FDR (False Discovery Rate); (iii) Depending on the experiment, the FDR will provide a more or less accurate estimate of the FDP; (iv) Therefore, practitioners should carefully select the FDR methodology, and interpret its result cautiously, making an educated guess (e.g., like a political poll before an election).

Target-decoy competition (TDC) has emerged as the most popular method to estimate the FDP in MS-based discovery proteomics 4 . Its success is a marker both of its conceptual simplicity and of its broad scope of application. The principle of TDC is to create articial mismatches by searching a specic (decoy) database of random sequences which dier from the sequences of interest (present in the target database) and to organize a competition between target and decoy assignments. Under the so-called Equal Chance Assumption (or ECA, stating that target mismatches and decoy matches are equally likely 4 ), it is possi- ble, for any given cut-o score, to estimate the number of target mismatches that will be validated. Like any other estimator, TDC-FDR can lead to inconsistent estimates if the theoretical assumptions on which it is based do not hold in practice. Notably, the quality of TDC-FDR is strictly linked to the ECA validity, i.e. the decoy's capacity to adequately fool the database search engine. If it fools it too much, the TDC-FDR will overestimate the FDP; whereas if it is too unrealistic to fool the search engine, the FDP will be underestimated [START_REF] Danilova | Bias in False Discovery Rate Estimation in Mass-Spectrometry-Based Peptide Identication[END_REF] . For this reason, decoy database construction and conditions of application have been extensively studied. Results from these studies indicate that: (i) the search engine must be compliant with TDC 6 ; (ii) In theory, the larger the decoy database, the more precise the mismatch score distribution 7,8 ; (iii) The decoys must respect the cleavage sites 9 to avoid systematic target matching regardless of spectrum quality; (iv) The inuence of randomness in the construction of the decoy database can be counter-balanced by boosting strategies, leading to less volatile FDRs 10 ; (v) Decoy counting also has an inuence 8 .

In addition to these restrictions, numerous parameters have been reported and discussed to control their relative importance 11 . This extensive body of literature has notably con- tributed to installing the competition step of TDC as essential, and today, target-decoy searches without competition 12,13 are scarcely ever reported. Despite the wide acceptance of TDC, a series of letters from Bret Cooper 14,15 initiated a controversy regarding the observed downfall of TDC validation levels with data produced by high-resolution mass spectrometers. He provided experimental arguments to reject the idea that such downfall was simply a positive consequence of instrument evolution, leading to an increase in the numbers of peptides identied. Notably, he pointed out that very low-quality spectra incompatible with condent peptide identications could be validated despite application of a stringent FDR cut-o. Moreover, as this phenomenon was observed with multiple widely-used search engines (Mascot, X!tandem and MS-GF+), he concluded that there was an inherent bias of peptide presumption (i.e., only peptides already listed in the target database could be identied). As this stance contradicted both empirical and theoretical evidence, a few ar-ticles were published arguing against this view [START_REF] Chalkley | When targetdecoy false discovery rate estimations are inaccurate and how to spot instances[END_REF][START_REF] Bonzon-Kulichenko | Revisiting peptide identication by high-accuracy mass spectrometry: problems associated with the use of narrow mass precursor windows[END_REF] 

MS data analysis

Data were processed automatically using Mascot Distiller software (version 2.6, Matrix Science). Peptides and proteins were identied using Mascot (version 2.6) through concomitant searches against Escherichia coli K12 reference proteome (20180727 version downloaded from UniProt), and/or custom made decoy databases (reversed or shued sequences -see below).

Trypsin/P was chosen as the enzyme and 2 missed cleavages were allowed. Precursor and fragment mass error tolerance has been variably adjusted as described in the manuscript.

Peptide modications allowed during the search were: carbamidomethylation (C, xed), acetyl (Protein N-ter, variable) and oxidation (M, variable). Proline software 23 was used to lter the results: conservation of rank 1 peptide-spectrum match (PSM) and single PSM per query. 1% FDR control was performed with various methods, as described in the Results section. Precisions regarding the choice of the score (individualized vs. contextualized) as well as of alternative search engines can be found in Supporting Information S2.3 and S4.1.

Decoy database generation

For classical TDC experiments (Figures 1 and2), we used the following procedure: The target database was reversed by using the Perl script (decoy.pl) supplied with Mascot software and the generated decoy database was appended to the target one before concatenated search.

From our observations, slightly dierent procedures (shued vs. reversed, accounting for tryptic cleavage site, etc.) yields similar results, which concurs with prior knowledge 11 .

To compute the Empirical Null (EN) FDRs 24 shown in Figure 3, we relied on the model provided by a shued database not used in competition with the target database 12,13 com- bined with a boosting strategy 10 ( i.e. a procedure averaging the FDR estimates from multiple shued decoy databases ). For this study, we used 10 shued databases, each with a length equal to that of the target database, and produced by a shuing procedure which respected cleavage sites to maintain the precursor mass distribution 9 (R code available in Supporting Information S1.1).

Results and Discussion

TDC and Benjamini-Hochberg procedures yield dierent FDRs

To counteract the the drop-o in validation levels observed with modern MS instruments 14,15 , we suspected that the Benjamini-Hochberg (BH) approach to FDR control 20 could be an interesting alternative. Discrepancies between BH and TDC have already been reported 25,26 , but unfortunately direct quantitative comparisons in terms of bias (i.e., systematic error) and variance (i.e., lack of stability) are impossible.

27 Such comparisons would require the FDP to be precisely known, although it is not accessible, even when using a controlled dataset. Thus, to better grasp the possible dierences in behavior between FDRs estimated by the TDC and BH approaches, we reproduced Cooper's experiment with the following extensions: First, both FDRs were computed simultaneously on the same datasets; Second, the settings for many experimental parameters were varied: we used multiple analytical replicates, dierent instruments, as well as various combinations of precursor and fragment mass tolerance sets.

To compute a BH-FDR, the search engine must provide PSM scores which can be related to p-values. Fortunately, numerous state-of-the-art search engines do so 

where p is a p-value. Andromeda provides a similar calculation, although the score is not directly accessible as it is only an intermediate computation (see Supporting Information S4.1).

PepProbe, InsPecT and MyriMatch directly provide p-values as scores, and SEQUEST scores can be transformed into p-values through the application of dedicated wrappers e.g. 25,26 We applied both TDC and BH methodologies to results acquired with a Q-Exactive Plus instrument on ten analytical replicates of an E. coli lysate. MS and MS/MS spectra were acquired at relatively high resolutions (70,000 and 17,500 at m/z of 200, respectively).

We used Mascot to run a TDC search (see Experimental Section) and we considered four combinations of mass tolerance tuning at the precursor and fragment levels: LL, HL, LH and HH (where L stands for low precision or large tolerance, and H for high precision or narrow tolerance), the nal combination (HH) corresponds to the tolerance levels generally used on our platform for Q-Exactive data analysis. In parallel, we ran target-only searches using the same parameters. Scores were then converted into p-values using Eq. 1, and the calibration of the resulting p-values was assessed as reported in Supporting Information S2.1. Finally, the classical BH step-up procedure for p-value adjustment was applied (see Data and code availability).

Figure 1A shows the score thresholds obtained at 1% FDR as a function of the mass tolerance combinations applied (see Supporting Information S2.2 for numerical values). At rst glance, the drop-o in validation scores is obvious with TDC, whereas it is almost immaterial with BH. To avoid drawing sweeping conclusions on this impression, we performed complementary experiments. First, to better capture the inuence of mass tolerance tuning, starting from the HH setting, we progressively extended the mass tolerance range, either for the precursor (Figure 1B) or for fragment masses (Figure 1C). The trends observed in these analyses support the one shown in Figure 1A. Moreover, they conrm that tolerances at precursor and fragment levels have a greater inuence on threshold scores determined using TDC compared to BH.

Second, to conrm that the results obtained by reducing the mass tolerance in the search parameters mimics results obtained with lower-resolution instruments, we analyzed another batch of ten analytical replicates of the E. coli lysate submitted to MS/MS on a LTQ-Orbitrap Velos Pro with mixed resolutions: high resolution in MS mode (Orbitrap analysis) and lower resolution in MS/MS mode (linear ion trap analysis). Database searches were performed using the HL and LL tuning paramaters, and FDR thresholds were computed as above. Interestingly, the matching between the results from Q-Exactive and LTQ-Orbitrap data obtained using the same thresholds was excellent. This result justies our methodology: from an FDR viewpoint, switching to analysis of a lower-resolution dataset using an appropriately-tuned search engine, or retaining the higher-resolution data while substantially increasing the mass tolerances, produces roughly equivalent outputs.

Therefore, we can interpret the dierent database search sets as surrogates for the recent improvements to instrumental capabilities: when TDC was rst applied to data from lowresolution instruments, TDC and BH produced roughly similar results in terms of score cut-o to reach 1% FDR. Since then, the resolution of MS instruments has progressively increased, and now TDC and BH diverge considerably when applied to the same lists of putative PSMs, so that at least one of them (but possibly both) yields an incorrect FDR control.

BH is more stable than TDC

Based on the results presented in Figure 1, BH appears more stable than TDC, both within and between experimental settings: First, for each tuning taken individually, the TDC threshold was less stable than its BH counterpart, as the set of ten cut-o scores was more dispersed with TDC. Second, depending on the mass tolerances applied when performing database searches, the TDC threshold on the Mascot score varied from 1.11 to 20.73 ( with HH and LL settings, respectively), whereas its BH counterpart was more stable (between 20.67 and 23.43).

A part of the TDC's instability (relative to BH) can be explained by the random nature of decoy sequence generation 10 , regardless of the search engine used. However, at rst glance, there is no reason to assume that the remaining reported instability (notably the drop in score) is: (1) specically linked to the TDC; (2) not a (much more important) bias issue.

Consequently to point (1), it could make sense to question the algorithmic specicities of the search engine (here Mascot), as Cooper rst did 14 . Unfortunately, he then reported 15

similar pitfalls (at least for the precursor tolerance parameter) with X!tandem and MS-GF+ (formerly known as MS-GFDB). In addition, we discovered similar eects with Andromeda (Maxquant environment, see Supporting Information S2.3). Finally, our experiments demonstrate that not only the precursor mass tolerance set, but also, the fragment mass tolerance dened contribute to this eect. As for point (2), we hereafter demonstrate that even if the dependence on the search parameter is assumed to be a stability issue only (instead of a bias issue), it should nonetheless lead to legitimacy question TDC use.

TDC instability can lead to anti-conservative FDRs

Naturally, more stable FDRs should be preferred, however less stable ones are not necessarily untrustworthy. As dierently parametrized searches yield distinct putative PSM lists, dierent (correct) FDRs would make sense. However, the gap between BH and TDC cut-os in the HH setting is alarming, as the PSMs identied in the target database before validation were the same with both methods. The very low cut-o scores obtained with TDC while using the HH setting led us to question the TDC procedure: Even if TDC is assumed to be unbiased, can its instability result in FDRs that are sometimes conservative (e.g. LL cases)

and sometimes not (e.g. HH cases)? This context-dependent anti-conservativeness would clearly make use of the TDC approach less than reliable, as false discoveries would no longer be controlled.

To answer this question, we relied on the following rationale for FDR control: When a PSM list is ltered at 1% FDR, it does not mean that we accept 1% of additional poor matches in the result. On the contrary, it means that, even though all the validated PSMs apparently correspond to matches of sucient quality, 1% of them are spurious (randomly distributed over the full range of scores, not necessarily matches with the lowest scores). Although it appears counter-intuitive, this property has already been empirically conrmed 29 .

Therefore, using only the HH setting and examining the list of PSMs with low scores validated by TDC is insightful to assess the conservativeness of this approach. We concretely did so with the results from the rst analytical replicate, where 12209 PSMs were validated after applying TDC, leading to an expected number of mismatches at 1% FDR equal to 122.

From the validated list, we therefore randomly selected 150 PSMs with a Mascot score < 10.

The quality of the matches between theoretical and experimental spectra was obviously too low to yield condent identications in the vast majority of cases (see Supporting Information S2.4). Based on this sample, the [1.61; 10[ interval (which corresponds to only 635 PSMs, i.e. 5.53% of 12209) already contains more mismatches than the number expected for the entire dataset. This result is incompatible with 1% FDR validation, as random misiden-tication depicting apparently correct matches can also be expected at higher scores 29 . In other words, on this dataset using the HH setting, the TDC FDR did not conservatively estimate the FDP.

These observations conrm those reported by Cooper. Although they are not sucient to conclude on an intrinsic bias of TDC, they do condently show that the drop-o in of validation cut-o scores is associated with, at least, an increased risk of anti-conservative FDR.

Mechanistic explanation for TDC's downfall

The above results contrast with the theoretical guarantees that have been published for TDC 7,30,31 . However, none of them account for the application of preliminary lters which reduce the number of decoy competitors, while Cooper's controversy is rooted in such lters.

This distinction may explain the discrepancy: Depending on the instrument's accuracy when measuring the precursor mass, due to variable resolving powers, and assuming the search engine is tuned accordingly, a larger or smaller number of decoys are considered possible competitors for a given spectrum. Thus, MS data acquired with high-resolution mass spectrometers and analyzed using search engines in which narrow mass tolerances are de facto set leads to smaller numbers of decoy matches. Therefore, the ECA may no longer apply and the FDR may be underestimated. This situation can be experimentally observed while looking at the distributions of the PSMs identied in the decoy database using the LL and HH settings. Indeed, the number of decoy identications, as well as their corresponding scores, were strongly decreased in the HH setting compared to the LL one (see Figure 2), and the very low number of decoy PSMs with the HH setting cannot provide an accurate FDR estimation.

As TDC appears to be inaccurate when the number of decoy challengers is too small, one straightforward solution would be to enlarge the database in proportion. Although the link between mass tolerance and decoy database size can be eciently exploited to limit the 

Decoy-based empirical null estimation and BH FDRs are consistent

An alternative means to investigate the above mechanistic intuition is to build a strategy in which the quality of decoy matches is preserved, regardless of the stringency of the database's preliminary search lters; and then to examine how it estimates the FDR. The statistical theory of empirical null estimation 24 is based on making false discoveries look like true ones. Even though this theory has already been applied in various proteomics contexts (giving rise to entrapment methods 27,3337 ), it provided us with a nice framework to elaborate on. Surprisingly, we found that a fair (but nevertheless unstable) empirical estimate of the null distribution could be obtained by performing a separate decoy search, without competition 12,13 . To address the lack of stability, we averaged 10 repeated estimations, each The dierence is striking: although BH thresholds (Mascot scores between 20.67 and 20.84) produced EN FDRs slightly below 1% (between 0.53% and 1.29%, with an average ≈0.84%), those obtained with TDC (scores between 1.11 and 2.37) led to 10-fold larger EN FDRs (between 7.72% and 11.71%, with an average ≈9.1%). This result is insightful for three reasons: (i) The fact that two orthogonal methods to compute an FDR (namely BH and EN) provided concurring results is an evidence supporting their correctness; (ii) it conrms that TDC can lead to considerable FDR under-estimations if used inappropriately;

(iii) it shows that in contrast to Cooper's concerns, the concept of peptide presumption is not inherently biased, since by applying an appropriate decoy search strategy, it is possible to cope for the cut-o downfall and to recover coherent FDRs.

Practical comparison of EN and BH approaches

To summarize, the EN approach implemented here essentially amounts to averaging multiple target-decoy searches without competition, and can be viewed as an improvement of a 12years-old method 12,13 well-tted in the proteomics landscape, yet outmoded. In contrast, the BH approach is mainly theoretically motivated, and even though it is double the age, it is scarcely used in proteomics. As both methods provide concurring estimates, the one to promote mainly depends on their respective conditions of applicability and ease of use.

For BH: If we compare the EN FDRs derived from the BH-thresholds on Figure 3 with the expectation (i.e. 1%), BH appears to provide a slight overestimation. This result is probably due to the previously described over-conservative property of the BH estimator 38 . Moreover, as previously mentioned, BH requires that the p-values rst be checked for calibration.

Fortunately, many methods can be used to limit BH over-conservativeness, and applying the best one can be done concomitantly with the calibration assessment, by means of a simple visual tool 21 (see CP4P description in Supporting Information S1.2). Finally, the BH FDR is extremely rapidly computed and does not require any decoy database.

For EN: Figure 3 shows a high dependency on the dierent decoy databases: From one randomly generated version to another, the FDR estimated varies signicantly. At rst glance, FDRs around 1% seem slightly more stable than those around 10%. However, after normalization relative to the mean FDR value, it is actually the opposite that occurs (mean coecient of variation of 13.90% around 1% EN FDR, versus 5.82% around 10% EN FDR).

This observation can easily be explained: With lower FDR thresholds, fewer decoys passed the threshold, and as a result, the statistics were computed on smaller sample sizes, inherently more sensitive to randomization. This explains why it is necessary to average multiple FDRs with dierent randomly generated decoy searches, despite the additional computational and practical complexity. However, depending on the complexity of the experiment, the precise number of searches required to stabilize the FDR cannot be estimated and will require manual trials. Moreover, if the experimental design requires iterative ltering of the database search (e.g. multiple-pass identications 39 ), it is possible that the same anti-conservativeness issue will arise as with the competition step, so that additional caution should be applied.

Therefore, compared to the EN strategy, the BH procedure is appealing for its simplicity and stability.

FDR control at peptide level using the BH procedure

The diculty of inferring peptide-and protein-level knowledge from spectrum-level information, while applying quality control criteria, has been widely addressed in the literature [START_REF] Huang | Protein inference: a review[END_REF][START_REF] Serang | A review of statistical methods for protein identication using tandem mass spectrometry[END_REF] .

However, to our knowledge, all available inference systems require a preliminary decoy search to propose a peptide-or protein-level FDR. Today, combining multiple levels of FDR control has become accepted standard good practice. We therefore propose a generic procedure to extend the BH-FDR approach to peptide and protein levels. Moreover, the proposed method is independent of the chosen inference rules (see Supporting Information S3.1). Hereafter, we assume that the inference rules selected unambiguously dene which PSMs should be used in peptide scoring, as well as which peptides contribute to protein group scoring 36,37,42 , and we focus on the scoring methods applied.

The most classical peptide scoring methods assume that each peptide is identied by the spectrum with the highest PSM score amongst the Q matching spectra 3537,43 . In this setting, it makes sense to dene the peptide score as equal to the best PSM score 35 . Formally, if the PSM score between peptide sequence seq i and spectrum q is referred to as S iq , then, the best-PSM score can be dened as max q∈ 1,Q S iq where ., . denotes an integer interval.

This score can potentially be used to compute a TDC-FDR, but not a BH-FDR. Indeed, its probabilistic counterpart cannot be well-calibrated (the minimum of several calibrated p-values is non-uniformly distributed, see Figure S1). Fortunately, according to the following proposition, it is possible to modify the best-PSM score by applying a formula akin to idák Proof: See Supporting Information S3.2.

Therefore, (See Supporting Information S3.2 and S3.3 for the full derivations), the peptide p-value p i and peptide score S i of peptide sequence seq i can be dened as:

p i = 1 -1 -10 -maxq (S iq ) 10 Q and S i = -10 • log 10 (p i ) (2) 
FDR control at protein level using the BH procedure 

p π = min A∈2 {1,...,K} ∞ 0.2 ln(10)• k∈A S k f 2•|A| (x)dx (3) 
and the protein score as S π = -10 log 10 (p π ), where: 2 {1,...,K} is the powerset of the set of K peptides identied; A is a peptide set with cardinality |A| ≤ K; and f 2•|A| is the density function of the χ 2 distribution with 2 • |A| degrees of freedom. Although possibly obscure at rst glance, p π simply interprets as the p-value resulting from Fisher combined probabil- ity test applied to the subset of peptides which best explains the protein (see Supporting Information S3.4).

Experimental assessment of BH FDR at peptide and protein levels

The ten replicate analyses of E. coli lysate were validated at 1% FDR by applying the BH procedure to the PSM, peptide and protein scores. To do so, only a target database search was necessary. However, and because it delivered a striking illustration of the capacity of the proposed framework to distinguish false identications, we introduced shued sequences in the searched database to assess the results (see Experimental Section). We considered a challenging scenario where the number of decoys was set to ve times the number of target sequences. Table 1 summarizes the average (across the 10 replicates) cut-o scores as well as the average counts for validated PSMs, peptides and proteins in both target and vefold shued databases (see Table S2). Although the corresponding proportions must not be interpreted as FDRs, it is interesting to discuss them: First, despite the vefold decoy over-representation, each of the three validation levels (PSM, peptide or protein) taken individually was sucient to provide a decoy ratio below the FDP expectation of 1% at any level. Second, the three validation strategies provided broadly concurring lters and validated protein list sizes. Third, some discrepancies between the three validation strategies exist (for instance, when ltering at protein level, PSMs with low score are validated because they belong to proteins which are conrmed by other high scoring peptides), leaving room to rene validation with appropriate multi-level lters, as discussed below. 10 . Therefore, even though target-decoy strategies can be rened to partially cope with this instability, the results are not satisfactory as these strategies: (i) are not as stable as BH, in particular at lower FDRs; (ii) are more complex to organize (implementation, computational cost) and require additional manual checks; (iii) do not provide any guarantee of reliable FDR estimates in the future (on datasets acquired with even higher resolution next generation instruments for which narrower mass tolerances can be expected; or with pipeline modications that change the number of target and decoy candidates).

Second, this work provides new peptide and protein scores which demonstrably respect the calibration conditions of the BH procedure. Indeed, implementing BH-FDR at PSM-, peptide-and protein-level is straightforward (see Data & code availability) and its practical use within a preexisting platform pipeline requires no precise tuning. Moreover, our results highlighted that, despite slightly dierent behavior, any of these scores alone is sucient to conservatively validate a proteomics dataset at PSM, peptide and protein levels. This nding suggests that various strategies could be developed to comply with dierent objectives: If the expected output is a protein list, then it is probably most appropriate to control the FDR at protein-level. However, in studies seeking to rene discrimination between proteoforms sharing many subsequences, it may be more relevant to validate at peptide level. Finally, when quantifying proteins, extracting the ion current for misidentied spectra produces erroneous results, making validation at PSM level necessary. Beyond these considerations, acting at dierent levels of ltering may also improve the quality of the validated identications, although this assertion requires further investigation. For example, multiple FDRs are classically used sequentially, following the inference process (starting at PSM level and ending at protein level); using a reverse order or parallel ltering may also be of interest to preserve the calibration necessary to the BH procedure.

Based on these results, we propose an overhaul of how FDR is estimated in discovery 
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 28 For instance, Mascot provides scores in the form S = -10 • log 10 (p) or p = 10 -S 10

Figure 1 :

 1 Figure 1: Score thresholds obtained when applying TDC (Orange) and BH (Blue) ltering at an FDR of 1%, as a function of the search engine mass tolerance parameters, for 10 samples analyzed with a Q-Exactive Plus (Qex) instrument. (a) Precursor and fragment mass tolerances were tuned to the LL, LH, HL and HH settings: LL assumes the MS and MS/MS data were acquired at low resolutions for the precursor and fragment masses (1 Da and 0.6 Da, respectively); HL uses mass tolerances of 10 ppm and 0.6 Da, respectively; LH uses mass tolerances of 1 Da and 25 mmu; and nally, HH uses mass tolerances of 10 ppm and 25 mmu (which corresponds to classical parameters for database searches performed with Qex data). The black lines encompass thresholds resulting from similar analyses performed on an LTQ-Orbitrap Velos Pro (Velos) with LL and HL settings. (b) Rened analysis of the FDR threshold's sensitivity to precursor mass tolerance tuning (Qex data, fragment tolerance = 25 mmu). (c) Rened analysis of the FDR threshold's sensitivity to fragment mass tolerance tuning (Qex data, precursor tolerance = 10 ppm).

Figure 2 :

 2 Figure 2: Distributions of scores for PSMs identied in the decoy database using the LL (orange) and HH (blue) settings. Data correspond to replicate 1, Qex analysis. After concomitant searches in target and decoy databases using LL and HH parameters, the scores for the PSMs identied only in the decoy database, and without FDR ltering, were collected and represented as histograms (x-axis: score, bin 0.5; y-axis: frequency).

Figure 3 :

 3 Figure 3: (a) Empirical Null (EN) FDRs computed for each replicate matched against 10 randomly generated (shued) decoy databases, according to its 1% FDR validation score threshold (gray dashed line), computed by applying BH (blue) and TDC (orange) methodologies; The black continuous lines show the average of the 10 EN FDRs (boosted estimate). (b) and (c) Zooms of the two framed areas in (a), with dierent shades of blue (resp. orange) and of line types (dot or dash) for better shue discrimination.

correction 44 and 10 n

 4410 thus to recover correct calibration: Proposition 1 Let S 1 , . . . , S n be a set of n scores of the form S = -10 log 10 (p ), ( ∈ 1, n ) where p is realizationsof n i.i.d. R + random variables, X 1 , . . . , X n . If X ∼ U[0, 1] ∀ , then, Y = 1 -1 -10 -max (S )uniformly distributes over the range [0, 1].

  proteomics using database searching and suggest replacing TDC by BH-FDR. Nevertheless, as a theoretical research eld, TDC remains of interest. The original idea proposed by Elias and Gygi 4 has stimulated the eld of theoretical biostatistics and led to the idea that simu- lating null tests from the data (termed knockos instead of decoys) could produce ecient alternatives to BH procedures, which demonstrably control the FDR[START_REF] Barber | Controlling the false discovery rate via knockos[END_REF][START_REF] He | A direct approach to false discovery rates by decoy permutations[END_REF][START_REF] Candes | Panning for gold:`model-X'knockos for high dimensional controlled variable selection[END_REF] . Transferring these theoretical results into biostatistics routines that can be applied on a daily basis still requires some investigation 46,47 . However, they will hopefully contribute to computational proteomics in the future, as an example of an interdisciplinary virtuous circle. them whatever their coding skills. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 48 partner repository with the dataset identier PXD016669 and 10.6019/PXD016669 (https://www.ebi.ac.uk/pride/, Username: reviewer43825@ebi.ac.uk, Password: eA7lMPa7). A portable version of Proline software can be downloaded at ftp://ftp.cea.fr/pub/edyp/Proline/BH-FDR/. For each of the ten E. Coli replicates, it contains the search results from Mascot after the database search in the target and the vefold decoy databases.

  (ii) the impact of the poorly conclusive peptide-level evidence in an open-world assumption context (see Supporting In-formation S3.6). Finally, for a protein sequence seq π identied by K specic peptides with scores S 1 , . . . , S K , the protein p-value is dened as:

	To dene protein-level scores and p-values, fragment matches for PSM scores were considered
	equivalent to what peptide matches are for protein scores. This equivalence led us to rely
	on Fisher's test to dene protein scores/p-values from the scores of the best subset of pep-
	tides. Similar approaches have frequently been investigated in the literature	32,36,37,42 and the
	full derivation is presented in Supporting Information S3.4. To the best of our knowledge,
	we are the rst to discuss the adaptation of Fisher's methodology from its original con-
	text (meta-analysis) to proteomics by explicitly considering (i) risks of anti-conservativeness
	due to dependent peptides (see Supporting Information S3.5);	

Table 1 :

 1 Average (across the 10 E. coli replicates) minimum score and PSM, peptide and

	protein counts assigned as target and decoy in the raw dataset (No validation), as well
	as after validation by one of the three following rules: 1% BH-FDR at PSM level (PSM
	validation), 1% BH-FDR at peptide level (Peptide validation) and 1% BH-FDR at protein
	level (Protein validation).										
		No validation		PSM validation	Peptide validation		Protein validation
		PSM	Pep.	Prot.	PSMs	Pep.	Prot.	PSM	Pep.	Prot.	PSM	Pep.	Prot.
	Min score	0.002	0.002	0.002	21	19.676 21.187	0.023	20.963 21.163	0.013	0.021	22.534
	#Targets	12020.2 9351.3 1466.5	10233.6 8180.3 1297.7	10736.2 8159.5 1297.9	11836.6 9169.4 1294.6
	#Decoys	873.3	817.2	786	11.5	10.9	10.7	11.1	10.2	10	13.8	12	9.2
	Conclusions											
	This work sheds new light on a crucial step in bottom-up proteomics experiments: the
	validation of identication results. First, it illustrates that the TDC and BH estimates of the
	FDP have progressively diverged as MS accuracy has improved. Our results demonstrated
	that this divergence originated in the TDC's lack of stability with respect to the precursor
	and fragment mass tolerances set during database searches. Although this lack of stability
	can be partially counteracted by suppressing the competition step of TDC	12,13 , the instability
	induced by the random generation of decoy sequences remains				
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Implementing BH-FDR at PSM-, peptide-and protein-level is straightforward. First, if the scores of all the PSMs indicating a given peptide sequence are stored as a vector, psm.scores, then, the peptide p-value pep.pval and peptide score pep.score can be determined by applying the following R code: 
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