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Impact of optical coherence on the performance of
large-scale spatiotemporal photonic reservoir

computer systems
Romain Modeste Nguimdo∗, Piotr Antonik, Nicolas Marsal, and Damien Rontani

Abstract—Large-scale spatiotemporal photonic reservoir com-
puter (RC) systems offer remarkable solutions for massively
parallel processing of a wide variety of hard real-world tasks. In
such systems, neural networks are created by either optical or
electronic coupling. Here, we investigate the impact of the optical
coherence on the performance of large-scale spatiotemporal
photonic RCs by comparing a coherent (optical coupling between
the reservoir nodes) and incoherent (digital coupling between the
reservoir nodes) RC systems. Although the coherent configuration
offers significant reduction on the computational load compared
to the incoherent architecture, for image and video classification
benchmark tasks, it is found that the incoherent RC configuration
outperforms the coherent configuration. Moreover, the incoherent
configuration is found to exhibit a larger memory capacity than
the coherent scheme. Our results pave the way towards the
optimization of implementation of large-scale RC systems.

I. INTRODUCTION

A wide variety of hard tasks such as speech recognition
[1], nonlinear channel equalization and time-series prediction
[2], detection of epileptic seizures [3], robot control [4], and
automatic classification of images and videos [5]–[7] can
be solved using brain-inspired systems that do not require
explicit instructions, but rely on patterns and inferences [8],
[9]. Reservoir computing belongs to that class of systems
for information processing [10]. Over the last decade, its
photonic implementations have received considerable attention
due to their excellent performance, energy efficiency, and fast
speed [11]–[14]. A large variety of photonic architectures have
been already proposed such as single laser diode with optical
or optoelectronic feedbacks [15]–[21], free-space optics [6],
[22]–[24], optical cavities [25], [26], and photonic integrated
technology [27]–[30].

A RC architecture typically consists of three parts: an input
layer, a reservoir, and an output layer. The input and the output
layers are the stages where the pre-processing and the post-
processing are performed, respectively, while the reservoir is
a usually large recurrent dynamical network (also called echo
state network). The simplicity of the RC approach relies on
the fact that the recurrent internal weights of RC are fixed
and can be chosen randomly meaning that only the readout
layer has to be trained [2], [31]. This dramatically reduces the
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training time and also simplifies experimental implementations
of such systems. Nevertheless, the physical implementations
of RC systems have remained very challenging over a decade
due to the large number of nonlinear nodes to be coupled and
controlled. To get around this drawback, time-delay config-
urations have been successfully investigated [16], [17], [19],
[25], [32], [33]. In this approach, the reservoir size increases
linearly with the length of the feedback loop, but at the expense
of the processing speed. That is, the data cannot be fed to the
systems faster than the time-delay to get all the virtual nodes
subjected to the data [13].

To perform complex tasks requiring a large number of
nodes, a large-scale spatiotemporal photonic RC with a reser-
voir up to 2,500 nodes was, first, demonstrated [23]. Then,
Antonik et al., recently achieved the state-of-the-art experi-
mental performance on image and video classification using
spatiotemporal photonic RC system capable of implementing
neural networks up to 16,384 nodes [6], [7]. In previous
large-scale spatiotemporal photonic RC systems, complex and
recurrently connected networks have been created using either
imaging spatially structured via a diffractive optical element
[23], [24] or from a computer [6], [7].

A part from the dimensionality, which plays a crucial role in
the system performance, nonlinearity is another key attribute
of the RC systems. Various implementations with different
nonlinearities have been demonstrated, all showing good per-
formance [6], [17], [19], [25], [32], [33]. However, it is still not
clear whether a particular nonlinearity outperforms the others
when used on specific tasks. For large-scale spatiotemporal
photonic RC systems, the needed high-dimensionality and
nonlinearity can be typically created in the optical or electronic
domain using polarizers, high-dimensional cameras and spatial
light modulator (SLM) [6], [23], [24].

Few investigations have separately focused on incoherent
[6], [7] or coherent cases [22]–[24], but no comparative study
has been carried out to evaluate the benefits of each configura-
tion. In such schemes, the inherent nonlinearity implemented
in the optical domain depends on the coherence on the light
beam, which determines the internal connectivity of the net-
work. Hence, the following question arises: between coherent
and incoherent light beams, which is the most suitable for
implementing spatiotemporal photonic RC systems?

In this work, we report numerical results of two SLM-
based, large-scale, spatiotemporal RC systems, which only
differ in the nature of the light beam and the physical coupling
of the reservoir nodes. The paper is structured as follows.
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Fig. 1. ?? Caption COPIED from KTH paper, to edit slightly (Damien/Nicolas DONE) Need more editing ! ?? Scheme of our experimental setup composed
of an optical arm linked to a computer. A collimated polarized green (532 nm) LED beam is launched onto the surface of the spatial light modulator (SLM).
Through the polariser 2 and and an imaging lens (lens), the SLM is then imaged onto a camera. Both the SLM and the camera are driven by a computer
running a Matlab script. The script generates the inputs from the MNIST database images, then computes the pixels values to be loaded on the SLM, i.e.
the SLM matrix. As described in the text, larger macro-pixels made of groups of individual pixels of the SLM will be used to train the reservoir in such a
way to facilitate the separation on the raw camera images. The computer recovers from the camaera the data set to extract the reservoir states, computes the
outputs and generates the output digits.

database (see Fig. 2(a)) of handwritten digits (from 0 to 9)
[27], publicly available online, which contains 70,000 images
of handwritten digits. All images have been normalised to fit
into a 28⇥28 pixels bounding box, anti-aliased, and converted
into greyscale levels.

Feature extraction is a common approach in computer vision
to provide the classification system, in this case – a photonic
reservoir computer, with the most relevant information. In this
work, we focused on a serie of popular feature extraction
techniques (see Fig. 2(b)) , presented in Sec. IV.

The reservoir computer (see Fig. 2(c)) was trained over
60,000 images, and tested over 10,000 digits. Figure 2(d)
illustrates the 10 binary outputs, introduced to distinguish the
10 digits, with each output assigned to one digit. Each binary
output has been trained to give a “1” for an image of the digit
it is associated to, and “0” for all other digits. The winner-
takes-all approach, shown in Fig. 2(e), is used to classify each
image based on the binary output with the highest value.

The input images can be presented in several ways to
the reservoir computer, which defines how the latter is used,
and, as will be shown in Sec. V, significantly impacts the
classification error. In this study, we consider three approaches:

• The simplest idea is to process one full MNIST image
per time step k. It will be presented in Sec. V-A.

• A more advanced technique is to present a full image
and let the system process the information during several
time steps k. We will discuss this approach in Sec. V-B.

• The third procedure is inspired by [28] and consists in
dividing the image into 28 columns and presenting one
column at each time step k. The results will be presented
in Sec. V-C.

Feature extraction method Input dimensionality
Raw images 784
Zoning 2 196
Zoning 4 49
Gabor filters 40 – 1152
HOG 324 – 1296

TABLE I
FEATURE EXTRACTION TECHNIQUES INVESTIGATED IN THIS WORK

IV. FEATURE EXTRACTION APPROACHES

We implemented and compared 5 feature extraction tech-
niques, also considered in [29]. The three approaches that gave
the best results (discussed further in Sec. V) are presented
in Secs. IV-B-IV-D. The 2 other approaches that have been
considered, but did yield higher classification errors, are briefly
discussed in Sec. IV-E. Table I summarises the feature extrac-
tion techniques discussed in this work, and their respective
input dimensionalities (i.e. the number of features).

A. Raw images

We used raw images – i.e. without any pre-processing –
as a benchmark for the feature extraction methods considered
below. In this case, grey-scale values of the pixels are used as
inputs to the reservoir computer, and the dimensionality of the
input is 28 ⇥ 28 = 784. Examples of raw images are shown
in Fig. 2(a) and Fig. 3(a).

B. Zoning

Zoning [30] is the simplest feature extraction technique
considered here. It is a statistical region-based approach
that consists in dividing the image into smaller zones and
computing pixel densities in each one. In other terms, it is
a combination of a convolution of the image with a filter,

HOG

masked data

M
N

IS
T

K
T

H

Classification

“0”...“9”

Reservoir outputs

Classification

a) b)

“Run”...“Walk”

In
i

In
i

'n
i 'n

i

Incoherent architecture Coherent architecture

Fig. 1. Schemes of principle of the experimental setups. The data to be processed are the HOG features extracted from images or video streams. The features
are multiplied by a random mask before being injected into the reservoir. The reservoir structure depends on the configuration. a) Incoherent configuration. The
SLM is illuminated by an incoherent light from a LED. Then, a polarizer is used to transform the SLM phase-modulated signal into an intensity modulation
before its detection by a camera. After the camera, the computer multiplies the signal by a random coupling matrix and superimposes it with the new masked
data. The result is used to update the SLM state. b) Coherent configuration. The SLM is illuminated by a coherent light from a laser. After the second
polarizer, a diffuser is inserted to ensure interconnections between the reservoir nodes via interferences before their detection on the camera. As such, the
computer is used to inject the masked data into the reservoir and to update the phase states of the SLM.

Section I is devoted to the introduction. In Sec. II, we describe
the operating principle of each configuration and give the
corresponding numerical model. In Sec. III, we describe the
benchmark tasks used to compare the performances of the
two systems. Section IV highlights the main results and
discusses the performance of each configuration. Section V
concludes the paper while further modeling details are given
in Appendix VI.

II. SYSTEM MODELING

The two architectures of large-scale, spatiotemporal, pho-
tonic RC systems investigated in this work are shown in
Fig. 1. They are electro-optical systems composed of an optical
path and an electrical path, both built by interconnecting
stand-alone components. On one hand, a SLM is used to
transform an electrical signal into optical signal through phase
modulation, while a camera transforms the optical signal into
an electrical signal. The number of nodes of the reservoir
is essentially limited by the resolutions of the SLM and
the camera. In our current setup, the lowest resolution is
given by the SLM whose resolution equal to 512x512 could
provide up to N = 262, 144 nodes. However, we typically
use only pixels located at the center of the SLM matrix due to
physical limitations from (i) slight misalignment between the
SLM and camera optical axe and (ii) inhomogeneous intensity
distribution of the optical beam. Such a constraint limits our
study to a maximum number of nodes N up to 16384 similar
to [6].

A. Incoherent reservoirs
For the incoherent architecture, the SLM is illuminated by a

continuous-intensity light beam emitted by a LED [Fig. 1(a)].
The reflected light beam then passes through a linear polarizer
oriented at 45o with respect to the vertical axis so that it im-
plements a nonlinear sin-square function by transforming the

phase-modulation into an intensity modulation. Afterwards,
the obtained signal is detected by a camera and serves two
purposes: the first is the readout for post-processing of the
data on a computer, and the second is the implementation of
the coupling between the reservoir’s nodes by multiplying,
digitally, this signal with an N × N random matrix. Subse-
quently, the data to be processed is added and the resulting
signal is used to update the SLM phase for each pixel.

Experimentally, the camera and the SLM have a limited
resolution of 8-bits. Hence, the dynamics of the system as
shown in Fig. 1(a) can be described by the following coupled
maps:

In+1
i =

⌊
I0 sin2

⌊
N∑
k=1

wikI
n
k + β

M∑
l=1

bklU
n
l

⌋
8

⌋
8

, (1)

where b.c8 refers to the 8-bit resolution and I0 is the input
intensity which illuminates the total pixels of the SLM. Ini is
the light intensity at time step n for ith-pixel at the output
of the camera. wik ∈ RN×N are the coefficients of the
random interconnection matrix, while b ∈ RN×M is the matrix
associated to the input information U , M being the dimension
of the input vector; β is the scaling parameter for the input
data. The modeling details to obtain Eq. (1) are given in
Appendix VI-1.

B. Coherent reservoirs

The architecture for the coherent case is shown in Fig. 1(b).
It has structural similarities with the incoherent architecture
with a few noticeable differences. First, the SLM is illuminated
by a continuous-wave coherent light beam emitted by a laser
(Fig. 1(b)). Then, a diffuser is inserted after the second
polarizer (Pol. 2) so that the coherent light beam from this
polarizer is scattered creating a complex interference pattern.
Hence, the diffuser output is a randomly weighted sum of
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the different contributions from all SLM pixels. In other
words, the variability and the coupling between the RC nodes
are ensured optically so that an input image imprinted as a
phase-modulation on the SLM coherent light beam propagates
through the optical diffuser to form a speckle pattern on the
camera. Here, the computer is only used to inject the data and
to update the SLM phases. This offers significant reduction on
the computational load compared to the incoherent architec-
ture.

Under this description, the RC system shown in Fig.1(b)
can be modeled by:

In+1
i =

I0
∣∣∣∣∣
N∑
k=1

wik sin

⌊
Ink + β

M∑
l=1

bklU
n
l

⌋
8

∣∣∣∣∣
2

8

. (2)

Here, w ∈ CN×N is the complex-valued transmission matrix.
The others parameters were defined in Sec. II-A. The detailed
derivation of the Eq. (2) are given in Appendix VI-2.

Since we have assumed that the summation of the different
internal weights contributing to the ith pixel is achieved by
a diffuser, the matrix elements of w are complex numbers
fixed by this component with their phase values randomly
distributed in the interval [0, 2π]. It has been demonstrated
that the singular values of w follow the so-called “quarter-
circle law” distribution [34]. According to this law, the module
of wik is generated so that the singular values of a normally
distributed square matrix lie on a quarter circle. More details
on w are given in Appendix VI-3. Also, the elements of the
matrix b can be freely fixed during the pre-processing on the
computer. Hence, I0 and β are the key parameters which can
be tuned to observe different dynamical regimes.

For both configurations, we have normalized the matrix w so
that

∑
i,j |wij |2 = 1. Also, the training is done on the camera

readout signal, which forms the following RC outputs:

ynRC,p =

N∑
k=1

woutpk bInk c8 , (3)

where wout ∈ RP×N is a matrix whose elements are deter-
mined by the training. The number P of RC outputs depends
on the type of benchmark tasks or metrics used.

III. BENCHMARK TASKS AND PERFORMANCE METRICS

Our comparative study is carried out on two different
benchmark tasks, namely image classification of handwritten
digits and the recognition of human actions in video streams.
The image classification will be evaluated on the popular
MNIST database [35] publicly available while the recognition
of human actions in video streams will be performed on the
popular KTH database also publicly available online [36]. In
addition, we consider a memory capacity metric as a measure
of system attribute.

A. MNIST task and pre-processing

The MNIST database contains 70,000 images of handwrit-
ten digits from 0 to 9. All images have been normalized
to fit into a 28 × 28 pixels bounding box, antialiased, and

converted into gray-scale levels. We use 60,000 of these data
to train the system and 10,000 others for testing. The output
layer is composed of 10 binary outputs corresponding to the
10 different classes of digits. The pre-processing consists
in extracting relevant spatial and shape informations from
individual images. An efficient way to do this is to compute
the histograms of oriented gradients (HOG) from the original
images [7], [37]. For the HOG calculations, we used 9 bin
orientations, 7×7 pixels per cell and 2×2 cells per block [7]. In
addition, HOG values are normalized with their highest value
so that the input scaling factor becomes the amplitude of the
reservoir input signal. In such an approach, the RC input data
are the HOG features convoluted with a random mask which
ensures the variability over the reservoir nodes. The HOG
features of the same image are simultaneously injected into the
reservoir at the time step n and the next features are injected at
time step n+1 meaning that the injection time interval between
two consecutive images is the discrete time step. The order
of the image injection does not matter. The linear regression
training is applied to the different node responses so that the
RC outputs “1” for the digit corresponding to the class the
image is associated to, and “0” otherwise. The principle of
“the winner-takes-all decision” strategy is further applied to
classify each image based on the binary output with the highest
value.

B. KTH task and pre-processing

The KTH database contains video recordings of six different
motions (walking, jogging, running, boxing, hand waving, and
hand clapping) performed by 25 subjects. Each motion is
repeated four times. Similarly to [6], we limited the database to
the ”s1” scenario, i.e. videos shot over a uniform background
without zoom or lightning variations. The ”s1” subset contains
a total of 599 video sequences, that we bring up to 600 by
artificially duplicating a missing boxing sequence. Over a total
of the 600 video sequences, a subset of 450 video sequences
are used for training, while the remaining 150 sequences are
used for testing. Both for training and testing, all videos are
concatenated together and split into individual image frames.
Then, the HOG algorithm is applied to each image to extract
features, which will be used as the input for the RC. To reduce
computational cost, we reduce the number of HOG features
by further applying principal component analysis (PCA) based
on the covariance method [38]. As such, we only keep the first
2.000 components (out of 9.576), whose eigenvalues account
for 91.6% of the total variability in the data. From each video,
one constructs a matrix where the rows are image frames,
while the columns are the HOG features extracted from those
images. At each discrete time step, we inject the HOG features
of an image. The order of injecting the videos does not matter,
but the images of each video should be injected as a sequence.
In this work, the images will be injected so that the time
interval between two consecutive images corresponds to the
discrete time step of the model. In other words, the injection
time interval between two consecutive images belonging to the
same video is the same as that between two consecutive images
from two different videos. After classifying the images from
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the 600 videos through training and testing processes of our
RC system, we subsequently classify the individual frame of
these videos in their respective classes considering again “the
winner-takes-all” approach. In practice, the classifier output is
evaluated throughout the full video sequence (from the first
frame to the last) and the final result corresponds to the class
having the majority of frames within the sequence attributed
to it.

C. Memory capacity metric

Memory capacity is a common way to evaluate the ability
of machine learning systems for referring back to the past
information. For time-dependent tasks, this property is crucial
for the performance and efficiency of the information pro-
cessing system. Considering a sequence of numbers (uk)k≥0
at discrete time steps drawn from a uniform distribution in
the interval [−0.5, 0.5], a typical way to address the linear
memory capacity of a physical system consists in constructing
the copies of given inputs uk at time step k shifted by s
time steps, i.e., ŷk = uk−s with s = 0, 1, 2, ... To quantify
this capacity, we define the memory function as the cross-
correlation between uk−s and ŷk [39]:

ms =
〈
[
uk−s − 〈uk−s〉

] [
ŷk − 〈ŷk〉

]
〉〈

|uk−s − 〈uk−s〉|2
〉1/2 〈

|ŷk − 〈ŷk〉|2
〉1/2 . (4)

From this memory function, the memory capacity is calcu-
lated as:

MC =
∑
s

ms. (5)

For all tasks, the training consists in using linear regression
to determine the different weights, which should be assigned
to the reservoir readout responses so that the output signal
approaches the target as closely as possible. The simulations
are carried out on Eq. (1) for the incoherent case and Eq. (2)
for the coherent case.

IV. RESULTS AND DISCUSSIONS

A. Performances of the two system configurations

In order to identify the appropriate parameter ranges for
the tasks processing, we first scan the system’s performance
on the (β, I0)-space parameters. The results for the coherent
and incoherent configurations are shown in Fig. 2. For the
incoherent configuration, classification errors are as low as
1.8% with 1,024 nodes even with 8-bit quantization considered
in the model. Overall, classification errors less than 2% can
be obtained for a broad range of parameter sets for this
configuration. These errors are consistent with the state-of-
the-art performance for similar reservoir’s sizes reported in the
literature [7]. For the coherent configuration, however, worse
classification errors are obtained for the MNIST task in the
same parameter sets explored. The lowest classification error
obtained is 2.8%. Overall, classification errors less than 3%
can be obtained, but in a very narrow range of values for
parameters (β, I0).

Fig. 2. Classification error for the MNIST task plotted in (β, I0)-plane for
the coherent case (left) and the incoherent case (right) with a reservoir of
1,024 nodes.

Guided by the results in Fig. 2, we now choose the optimal
values of β and I0 and investigate the influence of the reservoir
size on the performance of the two configurations. These
values are I0 = 5, β = 10 for both for the coherent and the
incoherent cases. They are kept fixed for all reservoir sizes as∑
w2
ij = 1 has been adopted. The results are shown in Fig. 3.

We find that the increase of reservoir size has different effect
on the system performance depending on the configuration.
For the incoherent configuration, our results confirm a decrease
of the classification errors with the increase of the reservoir
size as previously reported in [6]. By way of illustration,
the classification errors gradually decrease from ∼ 1.8% for
N = 1.024 nodes to ∼ 0.8% for N = 9.216 nodes. For the
coherent configuration, which has not been explored before,
we observe that the classification error gradually decreases
and reaches a minimum for a particular size before becoming
worse with the increase of the reservoir size. For example,
the classification error decreases from 3.7% for 1.024 nodes
to 2.5% for 7.168 nodes, then, it increases again to 2.6% for
11.264 nodes. We have noted that, for some parameter sets,
the increase of the errors with the increase of reservoir size
after reaching the minimum is quite significant.

Next, we compare the performance of the two configurations
on the classification of video streams. Figure 4 shows the
classification errors over 150 videos (videos used for testing)
for the two configurations in the (β, I0)-plane. The analysis of
the results shows that there is a large range of parameter sets
for which misclassified videos are comprised between 20%

Fig. 3. Classification error for the MNIST task computed from Eqs. (2) and
(1) as a function of the reservoir sizes. The parameters are I0 = 5, β = 10
for both for the coherent and the incoherent cases.
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Fig. 4. Video classification error for the KTH task plotted in (β, I0)-plane
for the incoherent case (left) and the coherent case (right) with a reservoir of
1,024 nodes considering 8-bit resolution.

and 25%, and also few parameter sets with errors slightly be-
low 20% for the incoherent configuration, while misclassified
videos are in-between 25% and 30% in a narrow windows of
parameter sets for the coherent configuration. Explicitly, up
to 77.3% of videos can be successfully classified using our
incoherent RC while a maximum of 73% of videos have been
successfully classified using the coherent RC. The incoherent
configuration therefore gives rise to a more flexibility in the
choice of (β, I0) while ensuring better performance.

In Fig. 5, we again choose the optimal parameter set for
each configuration (i.e. coherent and incoherent) and plot the
classification errors score on the videos as a function of the
reservoir size. The parameters β and I0 are kept fixed for all
reservoir sizes. It is confirmed that the incoherent configuration
outperforms the coherent configuration for all the reservoir
sizes. Interestingly, the results for large reservoir sizes indicate
a significant improvement of the performance for the two
configurations. For example, we achieved an accuracy of
90% and 85% for the incoherent and coherent configurations,
respectively, we a reservoir size of 11,264 nodes.

To deep into further comparison, we show in Fig. 6 the con-
fusion matrices, which allow to have the explicit percentage of
success of specific actions for each configuration. It appears
that the two configurations achieve a good performance for the
”boxing”, ”hand clapping” and ”hand waving” actions which
are typically less constraining to learn than the ”jogging” and
the ”running” actions. For the two latter actions, the learning
performance of the two systems are limited. Both from Fig. 6

Fig. 5. Classification error of the KTH task as a function of the reservoir size
for β = 2, I0 = 2.5 for incoherent case and β = 7, I0 = 25 for coherent
case considering 8-bit resolution.
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Fig. 6. Confusion matrices for β = 2, I0 = 2.5 for incoherent case and
β = 7, I0 = 25 for coherent case considering a reservoir size of 5,120
nodes.

and our results with others reservoir sizes (not shown here), the
incoherent architecture outperforms the coherent configuration
on these two specific actions. In particular, with a relatively
large reservoir size (e.g 5,120 nodes), it is found that the clas-
sification accuracy on the ”jogging” and ”running” actions can
be increased to ∼ 65% for the coherent configuration, while
the accuracy exceeds ∼ 75% for the incoherent configuration.

One should note that the results reported here are compa-
rable but lower than those reported previously on the same
experimental setup [6], [40]. The difference stems from the
optimisation of the hyper-parameters β and I0. In this work,
to avoid excessive computational times, we chose to keep the
same hyper-parameters values for all the different reservoir
sizes, whereas in [6], [40] they were optimsied specifically for
each size of the neural network. The similarity of our results to
those reported previously shows the robustness of our system,
since accuracies comparable to state-of-the-art can be obtained
even with sub-optimal hyper-parameters.

B. Memory capacity

Another interesting property of RC systems is their memory
capacity. Although low memory capacity may be sufficient
for our above-mentioned tasks, some time-dependant ma-
chine learning tasks require a large memory capacity (e.g.
NARMA10 [25], [32]). Therefore, for further insights regard-
ing our two configurations, we show in Fig. 7 the results for

Fig. 7. Memory capacity plotted in the (β, α)-plane with a reservoir size
N = 1,024. Note the difference of the scale for the colour bars for the two
configurations.
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Fig. 8. Classification Error on MNIST task as a function of the reservoir sizes
for different quantization levels. The parameters are the same as in Fig. 3.

the memory capacity of the system scanning in the (β, I0)-
plane with a reservoir size of N = 1,024 nodes. For the
incoherent configuration, memory capacity up to 20 can be
obtained for substantial parameter sets despite the presence of
quantization noise. On the contrary, the coherent configuration
yields a poor memory capacity. Precisely, the best memory
capacity is less than 6 and only very few parameter sets allow
a memory capacity larger than 3 for this configuration.

C. Effect of quantization noise
The decrease in performance for the coherent configuration

on the MNIST task (see Fig. 3) is an unexpected result, as the
RC performance typically improves with the increase of the
dimensionality. In order to understand this result, we inves-
tigate the specific role of the bit quantization by comparing
the results with and without quantization noise (i.e., the bit
resolution is that of the computer in our simulation model
at 64-bit). Figure 8 shows the results for 64-bit resolution in
comparison with those of 8-bit resolution already reported.
For the incoherent configuration, the same classification errors
are obtained both for 64-bit and 8-bit resolutions for the same
reservoir sizes. The system is therefore robust to readout noise
introduced by bit quantization for this parameter set. For the
coherent configuration, we find classification errors as low
as those obtained for the incoherent configuration at 64-bit
resolution. This suggests that the large classification errors ob-
tained with 8-bit resolution were caused by quantization noise.
Thus, this configuration appears to be more sensitive to low bit
resolution than the incoherent configuration: For example, the
classification error increases from 1.8% for 64-bit resolution
to 3.6% for 8-bit resolution for a RC size of 1,024 nodes. In
addition, the results of the coherent configuration without bit
quantization also indicate that the unexpected degradation of
the system performance for large RC sizes is likely caused
by the data overfitting due to the fact that data become more
tricky to learn in the presence of strong noise. This suggests
that more sophisticated learning techniques, such as ridge
regularization methods [31] should be investigated to improve
the system performance, when devices with low bit resolution
are used to implement the coherent configuration. For future
studies, the overall impact of noise (additive or multiplicative)
on the performance could be investigated within the framework
developed in Ref. [41].

Based on the various benchmark tasks used here, it appears
that the incoherent configuration has a higher processing

capacities than the coherent configuration. For the sake of
clarity, Table 1 summarizes the best performances of our
two configurations on the different tasks for 8 and 64 bit
resolutions for a reservoir with 1,024 nodes. It appears that
the incoherent configuration outperforms the coherent config-
uration for all tasks. We also notice that the significant effect of
low-bit resolution on the image classification is attenuated for
the KTH task because each full video sequence is classified by
simply choosing the class with the majority of frames within
the sequence. For KTH and memory capacity, we have not
investigated the influence of bit quantization for other reservoir
sizes for 64 bits.

TABLE I
PERFORMANCES OF THE TWO RC SYSTEM CONFIGURATIONS ON THE
DIFFERENT TASKS FOR 8 AND 64 BIT RESOLUTIONS CONSIDERING A

RESERVOIR WITH 1,024 NODES.

Incoherent case Coherent case
Bit resolution 8 64 8 64
MNIST: Lowest error 1.8% 1.8% 3.7% 1.8%
KTH: Highest accuracy 77.3% 80% 73% 73%
MC: Maximum value 20 23 4.07 6

V. CONCLUSION

In this work, we have compared the performances of an
incoherent and a coherent free-space photonic RC systems on
image and video classification, while preserving as much as
possible the structure of each architectures by using similar
components.

The results have shown a trade-off between the incoherent
and the coherent architectures. On one hand, the coherent RC
architecture allows physical coupling between the reservoir
nodes and prevents the use of additional computational re-
sources needed to perform the multiplication of the adjacency
matrix with the RC’s state vector, which considerably slows
down the processing speed as the reservoir scales up. On the
other hand, our results have shown that the incoherent configu-
ration outperforms the coherent configuration in all benchmark
tasks tested, but at the cost of processing speed. Furthermore,
we have found that the incoherent configuration can exhibit
a large memory capacity while the coherent configuration
have shown comparatively low (five to tenfold lower) memory
capacity for all the hyperparameter sets explored. Based on our
simulations, we have found that the coherent configuration is
more sensitive to quantization noise generated by low-bit reso-
lution imposed by the physical component than the incoherent
configuration. In particular, the incoherent configuration shows
very-high robustness as no visible difference in performance
between the 8 bit and 64 bit quantization were observed.

Our result has unveiled the impact of optical coherence
on the processing capabilities of RC systems with similar
structures on demanding computer-vision tasks; this will po-
tentially pave the way towards informed design-choices and
optimization of future large-scale, free-space, photonic RC
architectures.
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VI. APPENDIX

1) Appendix 1: For the incoherent configuration, a LED
delivers an incident incoherent light beam propagating through
a first linear polarizer (Pol. 1) oriented at 45o such that,
according to the Jones formalism, the resulting electric field
reads E0 = E0/

√
2ejϕ0 [1, 1]T , with E0 and ϕ0 the amplitude

and the phase of E0, respectively. On each pixel of the SLM, a
specific time-discrete phase modulation is applied resulting in
a local electric field Eni for the i-th pixel at the n-th time step.
Then, the SLM output passes through a second linear polarizer
(Pol. 2) oriented at 45o with respect to the vertical axis. This
polarizer transforms the electric field Eni of each pixel into
E0/
√

2 sin(ϕni /2)[1, 1]T , where ϕni is the phase of the i-th
SLM’s pixel at the n-th time step. We have assumed here
homogeneity and constant electric field over a given SLM’s
pixel for a time-step duration. Afterwards, a camera is used to
detect the intensity of the polarized light beam and its output
gives the intensity of each pixel as [7]:

Ini = I0 sin2 (ϕni /2) , (6)

with Ii ∝ |Ei|2 and I0 ∝ |E0|2 . After the detection, the
signal Ink is multiplied with a random matrix W ∈ RN×N
whose elements are generated on computer before being added
with the randomly-masked data. The resulting signal is used to
update the programmable phase shifts of the SLM as follows

ϕn+1
i =

N∑
k=1

WikI
n
k + β

M∑
k=1

bikU
n
k . (7)

Thus, by combining Eqs. (6) and (7) and rescaling the matrices
and state variables, one finds

In+1
i = I0 sin2

(
N∑
k=1

WikI
n
k + β

M∑
k=1

bikU
n
k

)
, (8)

which is the Eq. (1) given in Sec. II-A without considering
the 8-bit quantization operation imposed on the SLM phase
values and intensities detected by the camera.

2) Appendix 2: For the coherent configuration, the SLM is
illuminated by a linearly polarized coherent light beam gener-
ated by a laser. After the second polarizer (Pol. 2) a diffuser is
inserted so that the polarized, coherent light originating from
each pixel E0/

√
2 sin(ϕni /2)[1, 1]T is scattered. The electric

field of the i-th pixel at the diffuser’s output Fni is then the
coherent sum of the different contributions from other k-th
pixels:

Fni = E0

N∑
k=1

wik sin (ϕnk/2) ei,k, (9)

where ei,k is a normalized vector giving the polarization direc-
tion at the diffuser’s output of the field amplitude contribution
of the k-th to the i-th pixel. We assume that vectors ei,k have
independent, uncorrelated, random orientations, thus leading
to a degree of polarization (DOP) of the scattered light with
respect to its initial polarization approximately equal to zero
(i.e. unpolarized light). Coefficients wik = wdike

jφik form the
complex-valued light transmission matrix with wdik and φik
the real-valued transmission coefficient in amplitude and the

phase accumulation during the propagation of light from the
k-th to the i-th pixel, respectively. The diffuser’s output is then
focused by an imaging lens to a camera. This camera reads the
intensity of the signal of each pixel as Ini ∝ |Fni |2. Similar to
the incoherent configuration, the computer is used to include
masked data and update the programmable phase-shift states
of the SLM’s i-th pixel according to the following update rule:

ϕn+1
i = Ini + β

M∑
k=1

bikU
n
k , (10)

where β is the control parameters used to rescale the SLM
phase-shift and the amplitude of the input data, respectively.
(bik)i,k is the input matrix. At time step n+1, the intensity de-

tected by the i-th camera’s pixel is such that In+1
i ∝

∣∣∣Fn+1
i

∣∣∣2,
which becomes after substituting Eq. (9):

In+1
i ∝

∣∣∣∣∣E0

N∑
k=1

wik sin
(
ϕn+1
k /2

)
ei,k

∣∣∣∣∣
2

. (11)

With a coherent light beam, there are cross terms reading
I0wikwik′ sin(ϕn+1

k /2) sin(ϕn+1
k′ /2)(ei,k · ei,k′), which come

from pixel-to-pixel interference between the diffuser output
signals detected by the i-th pixel of the camera. They play
a crucial role both in the dynamics and the RC’s processing
capabilities. To simplify the notations, we have embedded the
contribution of dot products (ei,k · ei,k′) = cos (∠ei,k, ei,k′)
directly in the transmission matrix w. Finally, using Eq. (10)
and the same rescaling procedure used in Eq. (8), the model
of the coherent RC reads,

In+1
i = I0

∣∣∣∣∣
N∑
k=1

wik sin

(
Ink + β

M∑
l=1

bklU
n
l

)∣∣∣∣∣
2

. (12)

Equation (12) corresponds to Eq. (2) of Sec. II-B without
considering the 8-bit quantization operation imposed on the
SLM phase values and intensities detected by the camera.

3) Appendix 3: For our system, the optical power is con-
served if we neglect losses which may occur during the
propagation of the light between the input of the SLM and
the output of the camera. To ensure this property, singular
value decomposition (SVD) is applied on the coupling matrix
w to find its singular values. Precisely, w is decomposed as:

w = UΣV T , (13)

where U is the unitary change of basis matrix between
transmission channels output modes and output free modes,
Σ is a diagonal matrix whose elements are singular values
λm of w, and V is a unitary change of basis matrix linking
input free modes with transmission channel input modes of
the system while the upper T refers to the matrix transpose
[34]. Since the singular values of w are the square root of
the energy transmission values of the transmission channels,
we ensure the conservation of the total power transmission by
normalizing the singular values as follows:

λm −→ λm/

√∑
j

λ2j . (14)
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After this normalization, we reconstruct w = UΣ′V T where
Σ′ is a diagonal matrix whose elements are normalized singu-
lar values.
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