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L. Mauro,1 K. Caicedo,2 G. Jonusauskas,1 and R. Avriller1, ∗

1Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
2Univ. Bordeaux, CNRS, LP2N, UMR 5298, F-33400 Talence, France

(Dated: October 9, 2020)

We investigate the chemical reactivity of molecular populations confined inside a nanofluidic
Fabry-Pérot cavity. Due to strong light-matter interactions developing between a resonant elec-
tromagnetic cavity-mode and the electric dipole moment of the confined molecules, a polariton is
formed. The former gets dressed by environmental vibrational and rotational degrees of freedom
of the solvent. We call the resulting polariton dressed by its cloud of environmental excitation
a “reacton”, since it further undergoes chemical reactions. We characterize how the reacton for-
mation modifies the kinetics of a photoisomerization chemical reaction involving an elementary
charge-transfer process. We show that the reaction driving-force and reorganization energy are
both modulated optically by the reactant concentration, the vacuum Rabi splitting and the de-
tuning between the Fabry-Pérot cavity frequency and targeted electronic transition. Finally, we
compute the ultrafast picosecond dynamics of the whole photochemical reaction. We predict that
despite optical cavity losses and solvent-mediated non-radiative relaxation, measurable signatures
of the reacton formation can be found in state-of-the-art pump-probe experiments.

I. INTRODUCTION

Electron-transfer (ET) chemical reactions in solution
constitute a paradigmatic class of chemical reactions1.
In the simplest case, an electron of charge −e (e is the
elementary charge) is transferred from an anion (A−) to
a cation (C+), following the ET reaction A− + C+ −→
A + C. In the more general class of charge-transfer
(CT) chemical reactions, a modification of the local-
charge density of states occurs between different chem-
ical groups of the reacting molecules, thus resulting in
a partially-transferred (shifted) charge δe during the CT
process. Such is the case for intramolecular CT reactions
in D − A molecules where an electron donor (D) group
is connected to an electron acceptor (A) group through
a molecular bridge (−), thus resulting in the following
intramolecular CT mechanism D − A −→ D+δe − A−δe .
The theoretical description of ET and CT reactions has
a long history1, which was fully developed after the
works of Marcus2–5, and Kestner et al.6, with later suc-
cessful applications for biological molecules7. At the
heart of Marcus theory is the necessity to take into ac-
count explicitly the solvent in the modelling of ET re-
action rates. Out-of-equilibrium fluctuations in the sol-
vent nuclear coordinates are indeed necessary to reach
the crossing point of the reactant (R) and product (P)
potential energy surfaces (PES), at which the electron-
transfer occurs. The reaction rate kET is given by the
simple result of Marcus2 kET = ke exp (−∆rG

∗/kBT ),
with ke a reaction-dependent global rate, T the tem-
perature, kB the Boltzmann constant and ∆rG

∗ =(
∆rG

0 + λS

)2
/4λS an effective activation energy de-

pending on the solvent reorganization energy λS and vari-
ation of the thermodynamic Gibbs potential ∆rG

0 (re-
action driving-force). Although this expression takes a
form similar to transition-state theory8–11, it is important
to notice that its derivation using quantum mechanical
first principles does not involve the concept of activated-

complex or transition-state4,6.

The experimental investigation of a wide variety of
ground-state chemical reactions, photoreactions, ET and
CT reactions came recently to a strong revival, due to
the ability of confining molecular ensembles inside mi-
cro or nano-optical and plasmonic cavities12,13, result-
ing in an alteration of their chemical reactivity. For
instance, it was shown that electromagnetic microcavi-
ties, can be tailored such that a single cavity-mode of
frequency ωc ≈ 2.2 eV/~ (with ~ the Planck constant)
can be tuned to resonance with the electronic transi-
tion between the ground and excited state of the cavity-
confined molecules14,15. The conjunction of a low cav-
ity volume V , large number of confined molecules N
and strong molecular electric dipole µ, results in siz-
able vacuum quantum fluctuations of the cavity electrical
field E0 =

√
~ωc/2ε0V , with ε0 the electromagnetic vac-

uum permittivity. The resulting light-matter coupling
strength between the molecular dipoles and the cavity
mode, as quantified by the collective vacuum Rabi split-
ting frequency Ω̃R = µE0

√
N/~16–18, can be as high as

Ω̃R ≈ 0.7 eV/~14, thus exceeding the cavity optical losses
κ ≈ 0.2 eV/~. In this regime of electronic light-matter
strong coupling, a collective hybrid excitation is formed
between the resonant cavity-mode and the embedded
molecules called polariton. As was reported and inves-
tigated in depth for optical spectra in semiconducting
microcavities19,20, polariton excitations are characterized
by the vacuum Rabi-splitting of cavity optical absorp-
tion spectra14. It is remarkable that the strong-coupling
regime (with Ω̃R ≈ 110 meV/~ and κ ≈ 60 meV/~) was
also recently achieved in liquid phase, in which optically
active molecules are confined inside a nanofluidic Fabry-
Pérot cavity21.

The formation of cavity polaritons has deep conse-
quences on the chemical reactivity of the embedded
molecules. It was shown experimentally that the po-
tential energy landscape of a photoisomerization chem-
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ical reaction is strongly altered under resonant condi-
tions between an electromagnetic cavity mode and the
electronic transition between ground and excited states
of the reaction product14, thus resulting in a signifi-
cant slowing-down of the reaction kinetics15. Theoret-
ical investigations have described and computed the po-
lariton potential energy surface (PPES) of such class of
reactions, taking into account the role of nuclear de-
grees of freedom in describing the light-matter interaction
mechanism22, the former inducing a vibrational dress-
ing of the polaritons23. The resulting alteration of the
PPES was shown to be responsible for the cavity-induced
slowing-down of photochemical reactions24,25. On the
other hand, ET chemical reactions for molecular popula-
tions in cavity were also predicted to be accelerated by
orders of magnitude, as a result of both the modulation of
the PPES and the influence of the collective decoupling
between nuclear motion and electronic degrees of freedom
in the light-matter strong-coupling regime26. Recent the-
oretical works on ET reactions in confined electromag-
netic environment reported a cavity-induced significant
enhancement of the ET reaction rate27, and emphasize
the role of counter-rotating terms28 (beyond rotating-
wave approximation) and self-dipole energy terms27,28 in
writing the interaction Hamiltonian: both are necessary
for preserving gauge invariance29,30 and computing accu-
rately the PPES upon entering the ultra-strong coupling
regime of cavity quantum electrodynamics (Ω̃R ≥ ωc).

In this paper, we revise the theoretical description
of the kinetics of CT chemical reactions in nanofluidic
Fabry-Pérot cavities. We investigate on the same foot-
ing the collective coupling between molecular populations
and a single electromagnetic cavity-mode, taking into ac-
count dissipation and dephasing mechanisms induced by
the solvent and cavity losses.

The organization of the paper is the following. In
Sec.II, we introduce our theoretical microscopic model
of solvated molecules interacting with a single electro-
magnetic cavity-mode. We develop an analytical scheme
based on the Born-Oppenheimer approximation that en-
ables to compute analytically the PPES in the regime for
which the collective vacuum Rabi splitting Ω̃R is larger
than the intramolecular vibrational reorganization en-
ergy λv. In this regime, we obtain approximate many-
body wave functions for the polaritons and dark states of
the molecules-cavity ensemble, in presence of coupling to
the reaction coordinate and solvent bath. In some limits,
we recover the results of Refs.26,31,32, that are based on
the use of the variational polaron ansatz33–35. We inter-
pret physically this result by introducing the concept of
reacton, which is the collective excitation of the reactant
molecules interacting strongly with the cavity-mode and
dressed by its interaction with the solvent. In Sec.III,
we derive a generalization of Marcus theory3 adapted to
the reacton’s formation inside the electromagnetic cav-
ity. We improve the already existing theory of Ref.26

by adapting a theoretical framework derived by Kest-
ner et al.6 for describing ET reactions in solution. This

enables to incorporate explicitly the solvent into the re-
action mechanism by using the separation of time-scales
between fast intra-molecular vibrational modes along the
reaction coordinate and slow vibrational modes of the
solvent bath. Compared to more recent Refs.27,28, we
improve several points of the theory by including explic-
itly both the collective coupling of N molecules to the
cavity-mode (and not of a single molecule) and the pres-
ence of dissipation by the environment. We then compute
the modification of the CT reaction rate due the forma-
tion of the reacton inside the cavity, for a specific model
of photoreaction involving a charge-transfer process in
the electronic excited-state. We show that the reacton
opens new channels for the charge-transfer mechanism.
Depending on the range of parameters, the reaction ki-
netics can either be slower or faster inside cavity com-
pared to outside cavity. In Sec.IV, we derive the dissi-
pation and dephasing rates induced by the cavity optical
losses, non-radiative relaxation induced by molecular vi-
brations, and dephasing of the reacton by the solvent
bath. For this purpose, we extend the approach derived
from quantum optics in Ref.36 using the the dressed-atom
approach37, to our case of many-body reacton basis. In
Sec.V, we solve numerically the whole ultrafast picosec-
ond kinetics of the photoreaction. We develop a rate-
equation approach that we solve numerically, obtaining
the time-dependent evolution of reactants and products
concentration inside the cavity, after a single-photon has
been absorbed to initiate the reaction. Despite strong
cavity losses and dissipation induced by the solvent, we
predict fingerprints of the reacton formation that should
be visible on picosecond time-scales. Finally, we develop
in Sec.VI some open perspectives in this field that are of
interest for the design and engineering of a new gener-
ation of open chemical reactors, the kinetics of which is
modulated by vacuum quantum fluctuations of the cavity
electromagnetic field.

II. THEORETICAL MODELLING

A. Microscopic Hamiltonian

We investigate the chemical reactivity of a solution
of molecules inside a Fabry-Pérot nanofluidic cavity.
For this purpose, bi-phenyl molecules have been stud-
ied extensively26,38, since they have interesting photo-
chemical properties due to a rotational degree of free-
dom around a C-C bond connecting the phenyl groups,
as well as a possibility of being functionalized by var-
ious chemical groups with electron donating or accept-
ing character. Other donor-acceptor molecules with an
internal high-frequency vibrational mode are also good
candidates for investigating CT reaction rates in solu-
tion. In our paper, we consider typical organic molecules
with interesting photoactive properties, embedded inside
the cavity. Such is the case for the molecule repre-
sented in Fig.1a, and written (E)-4-(2-(1-methylpyridin-
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Figure 1. (a) Pictorial representation of molecules of (E)-
4-(2-(1-methylpyridin-1-ium-4-yl)vinyl)phenolate, in solution
inside a nanofluidic Fabry-Pérot cavity. The nomenclature
describes this photoactive molecule in its aromatic form.
λc/2 = πc/nωc is the wavelength of the cavity fundamental
electromagnetic mode, with c the speed of light and n the re-
fractive index of the medium. (b) Sketch of the PES for such
molecules as a function of the RC. The electronic ground-
state minima g and g′ and excited-state minima e and f for
the molecule are presented as well as their typical energies εg,
εg′ , εe and εf in eV. The grey arrow stands for the cavity-
mode of frequency ωc that is resonant with the g − e electric
dipole transition.

1-ium-4-yl)vinyl)phenolate; this nomenclature describes
the structure of the molecule in its aromatic form. We
show in Fig.1b a sketch of the PES for such a molecule
described within Born-Oppenheimer approximation39, as
a function of the reaction coordinate (RC). The RC cor-
responds to an intra-molecular vibration or a rotation
mode of the molecule. The electronic structure of this
molecule is described by an electronic ground-state with
two relative minima labelled g and g′, and an electronic
excited-state with two minima e and f . Upon photoex-

citation from g to e, the molecule can reach the more
stable excited-state f , by changing its conformation and
undergoing an elementary CT process. For simplicity,
we approximate the complex electronic structure of the
molecule by displaced parabolic PES26, in the spirit of
the parabolic approximation in Marcus theory3.

We consider the system made of N molecules in so-
lution coupled to a single electromagnetic cavity-mode
(see Fig.1a). We write the microscopic Hamiltonian H
describing this system

H = HCaM + VM−Ca + VCT , (1)

as the sum of the Hamiltonian HCaM describing the free
electromagnetic cavity-mode (Ca) and quadratic PES of
the solvated molecules (M), plus the Hamiltonian VM−Ca

standing for electromagnetic interactions between the
molecules and the cavity-mode. We denote VCT the
Hamiltonian describing weak-coupling between electronic
excited-states e and f of the molecule, at the origin of
charge-transfer. Each of those Hamiltonian is given by

HCaM =

N∑
i=1

∑
r=g,g′,e,f

εri |ri〉 〈ri|+ ~ωc
(
a†a+

1

2

)
, (2)

εri = εr +
ω2

v

2

(
Qv,i −Qv,r

)2
+
∑
k

ω2
k

2

(
QS,ik −QS,rk

)2
,

(3)

VM−Ca =
~ΩR

2

N∑
i=1

(
|ei〉 〈gi|a+ a† |gi〉 〈ei|

)
, (4)

VCT =

N∑
i=1

(
Vef |ei〉 〈fi|+ V ∗ef |fi〉 〈ei|

)
, (5)

with εri the PES corresponding to |ri〉 the electronic
state r = g, g′, e, f belonging to the molecule number
i = 1, · · · , N . The PES in Eq.3 is the sum of an elec-
tronic part εr (bottom of the parabola in Fig.1b), plus a
quadratic dependence along the nuclear coordinate Qv,i

corresponding to the intra-molecular vibration mode of
molecule i, plus molecular vibrations QS,ik of the bath
of solvent molecules labelled with a quasi-continuum in-
dex k. We suppose that each molecule has the same
intra-molecular vibration frequency ωv and bath mode
frequency ωk along the RC, independently of its elec-
tronic state r (same curvature around each minimum of
the bare PES in Fig.1b). We label Qv,r and QS,rk the
displaced nuclear equilibrium positions associated respec-
tively to the intra-molecular and solvent modes, both de-
pending on the electronic state r.

The free electromagnetic mode of the cavity is de-
scribed in Eq.2 by a (a†) the annihilation (creation) op-
erator of a photon excitation inside the cavity of fre-
quency ωc. The light-matter interaction Hamiltonian in
Eq.4 is an electric-dipole coupling term, written within
rotating-wave approximation (RWA)17,18,37. It couples
the electronic ground-state g to the excited-state e of
each molecule i through the same cavity-mode, with a
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coupling strength given by the bare vacuum Rabi fre-
quency ΩR ≡ µE0/~. We suppose for simplicity that
there is no direct dipole coupling between the g′ and f
states, either because the corresponding dipole matrix
elements are weak, or the cavity frequency is detuned
from the corresponding electronic transition. We note
that counter-rotating and self-dipole energy terms have
been neglected in Eq.4. Those terms are derived in Ref.29

and their effects have been investigated in depth in recent
Refs.27,28. They both give rise to energy shifts of the PES
of relative order Ω̃R/ωc compared to the standard RWA.
Those terms are thus weak but sizable in the strong (but

not ultra-strong) coupling regime (~κ < ~Ω̃R < ~ωc).
As a first approximation, we neglect them in the Hamil-
tonian, in order to be able to derive tractable analyt-
ical approximations for computing the polaritonic PES
and reaction rates. For typical values of the collective
Rabi frequency ~Ω̃R ≈ 0.2− 0.7 eV and cavity frequency
~ωc ≈ 2.8 eV in a nanofluidic cavity, the corresponding
corrections are of order 7− 25%.

Finally, the matrix element Vef in Eq.5 is at the ori-
gin of the intramolecular CT process between any e and
f state of one molecule. The Hamiltonian VCT is sup-
posed to be a weak perturbation to the Hamiltonian
H0 = HCaM + VM−Ca containing the molecular popu-
lation coupled to the cavity-mode, but uncoupled to the
excited-states f and g′. This approach holds in the inco-
herent regime of electron-transfer for which |Vef | � kBT .
In the following, we denote ∆gr = εr − εg, the difference
of electronic energies between the molecular ground-state
g and the excited-state r. The detuning between the
cavity-mode frequency and the targeted electronic dipole
transition g − e is written as δ = ωc −∆ge/~.

B. Polaritonic Potential Energy Surfaces (PPES)

In this section, we compute the polariton PES (PPES),
assuming a vanishing Hamiltonian VCT in Eq.1. Upon
quantization of the intra-molecular and solvent vibra-
tional modes, H0 gets identical to the Holstein-Tavis-
Cummings Hamiltonian31,32,40. In general, its eigen-
values and eigenstates have to be computed numer-
ically. In order to have analytical insight into the
physics below this diagonalization, we make use of a
generalized Born-Oppenheimer approximation22,39, tak-
ing into account the time-scale separation between slow
nuclei motion (~ωv ≈ 50 meV) and the fast dynamics
of strongly-coupled electrons and cavity-mode (∆ge ≈
~ωc ≈ 2.8 eV). We introduce the following notations
for qv,i = Qv,i − Qv,g and qS,ik = QS,ik − QS,gk the
displacements of the intra-molecular and solvent vibra-
tional modes with respect to the ground-state equilib-
rium nuclear configuration. The shift of the equilibrium
nuclear positions ∆Qv,r = Qv,r − Qv,g and ∆QS,rk =

QS,rk −QS,gk in each excited electronic state r (see dis-
placed parabolas in Fig.1b), is due to electron-phonon in-
teractions. The corresponding electron-phonon coupling
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Figure 2. PPES for the lower polariton E− (red triangle
down), upper polariton E+ (blue triangle up) and dark states
ED (black dots). Dotted curves are computed from numerical
diagonalization of H0 (within RWA and absence of coupling
to the solvent). The corresponding plain curves are obtained
from analytical formula in Eq.13 and Eq.20. The plain green
and dashed yellow curves are the PES for the ground-state G
and excited-state F respectively. Parameters are: N = 50,
Qv,i fixed for all i = 2, · · · , N with a value equals to 10x0v
while Qv,1 is varied, εg = 0 eV, εe = 2.8 eV, εf = 2.6 eV,

~ωc = 2.8 eV, ~ωv = 50 meV, ~ΩR = 0.1 eV (~Ω̃R = 0.7 eV),
~δ = 0 eV, λv,e = 0.1 meV.

strengths are given by the reorganisation energies2,3,6 of
intra-molecular and solvent vibrations, defined respec-

tively as λv,r = ω2
v∆Q

2

v,r/2 and λS,r =
∑
k λS,rk, with

λS,rk = ω2
k∆Q

2

S,rk/2. We introduce the usual adimen-

sional Huang-Rhys factors41 gv,r = ∆Qv,r/2x0v and

gS,rk = ∆QS,rk/2x0S,k, which are nothing but the shifts
of the modes’ equilibrium positions in units of the zero-
point motions x0v =

√
~/2ωv and x0S,k =

√
~/2ωk.

Huang-Rhys factors are related to reorganisation energies
by the relations g2

v,r = λv,r/~ωv and g2
S,rk = λS,rk/~ωk.

We proceed by first pre-diagonalizing H0, in the limit
of vanishing electron-phonon coupling (λv,r = λS,r = 0).
In this limit, nuclear motion and polariton dynamics are
factorizable, so that an exact solution can be given for
the eigenstates and eigenfunctions of H0

18. Finally, we
compute analytically by perturbation theory42 the lowest
non-vanishing order corrections in the electron-phonon
coupling strength and add them to the zero-order terms
to find approximate expressions of the PPES.
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1. Ground-state

The exact many-body ground-state |G〉 and eigenen-
ergy EG of H0 are given by

|G〉 = |G〉 ⊗ |0c〉 , (6)

EG = εG +

N∑
i=1

ω2
v

2
q2
v,i +

N∑
i=1

∑
k

ω2
k

2
q2
S,ik , (7)

with |G〉 = |g1, · · · , gN 〉 the product of the electronic
ground-states for N molecules, and |0c〉 the vacuum state
of the electromagnetic cavity-mode. The ground-state
PES of Eq.7 is shown in Fig.2 (plain green curve). It is
the sum of an electronic part εG = Nεg + ~ωc/2, cor-
responding to the energy of N independent molecules in
their ground-state g and the cavity-mode in its vacuum
ground-state, plus a quadratic contribution of vibrational
oscillations around the ground-state equilibrium config-
urations of intramolecular and solvent modes. We note
that the inclusion of counter-rotating terms in Eq.4 would
induce a Lamb-shift of the ground-state energy that can
be taken into account either by second-order perturba-
tion theory28, or by full numerical diagonalization. Such
an effect (not considered here) becomes important in the
ultrastrong coupling regime, when the collective vacuum
Rabi splitting is a significant portion or larger than the
optical frequency Ω̃R ≥ ωc43.

2. Upper and lower polaritons

The RWA in Eq.4 enables to separate the energy-sector
corresponding to at most one cavity-photon or one molec-
ular excitation from the higher-energy sectors and from
the ground-state one. We obtain the first upper (|ρ = +〉)
and lower (|ρ = −〉) polariton manybody eigenstates as

|+〉 = cos(θ) |G〉 ⊗ |1c〉+ sin(θ) |E1〉 ⊗ |0c〉 , (8)

|−〉 = − sin(θ) |G〉 ⊗ |1c〉+ cos(θ) |E1〉 ⊗ |0c〉 , (9)

with

|E1〉 =
1√
N

N∑
i=1

|(ei)〉 . (10)

The coefficients in front of the manybody states in Eq.8
are cos(θ) =

√
α− and sin(θ) =

√
α+ with

αρ=± =
1

2

(
1− ρ δ

Ω̃R

)
. (11)

The totally symmetric molecular state |E1〉 is obtained
as the sum of all states containing N − 1 molecules in
the ground-state and one molecule i in the excited state
|(ei)〉 ≡ |g1, · · · , gi−1, (ei), gi+1, · · · , gN 〉. The electronic
excitation in this |E1〉 Dicke-state is thus delocalized on
the whole molecular ensemble, the former playing the role
of a giant collective dipole oscillating in phase with the
electromagnetic cavity-mode17. The polaritons in Eq.8

and Eq.9 are linear combinations of two states: one in-
volving the manybody electronic ground-state |G〉 with
one photon populating the cavity and the other the col-
lective Dicke-state |E1〉 with the cavity in its quantum
mechanical ground-state. The coefficients cos(θ) and
sin(θ) are function of both the cavity-molecule detuning

δ and collective vacuum Rabi splitting Ω̃R given by

Ω̃R =

√
δ2 +

(
ΩR
√
N
)2

. (12)

As expected, Ω̃R scales with
√
N , or more precisely

with the square-root of the molecular concentration√
N/V 16,18,20. At resonance between the cavity-mode

frequency and the molecular transition, δ = 0 and
cos(θ) = sin(θ) = 1/

√
2, such that the polaritons are half-

matter, half-light hybrid excitations. At strong-detuning
(δ → ±∞), the polariton states coincide back with the
bare molecular ground and excited states.

We obtain the PPES Eρ=± corresponding to |ρ = ±〉

Eρ = ερ +

N∑
i=1

ω2
v

2

(
qv,i −∆Qv,ρ

)2
+

N∑
i=1

∑
k

ω2
k

2

(
qS,ik −∆QS,ρk

)2
, (13)

with ερ the polariton energy

ερ = εG + ~ωc −
~
2

(
δ − ρΩ̃R

)
, (14)

δ = δ − λv,e + λS,e

~

(
1−

α2
+ + α2

−
N

)
, (15)

Ω̃R = Ω̃R −
λv,e + λS,e

~
δ

Ω̃R

(
1− 1

N

)
, (16)

and ∆Qv,ρ and ∆QS,ρk the respective shifts in the intra-
molecular and solvent modes’ equilibrium positions

∆Qv,ρ = αρ
∆Qv,e

N
, (17)

∆QS,ρk = αρ
∆QS,ek

N
. (18)

As expected, the polariton energy in Eq.14 depends on
both the molecule-cavity detuning δ and collective vac-
uum Rabi frequency Ω̃R. However, at lowest-order in
the electron-phonon coupling strength, both quantities
are renormalized in Eq.15 and Eq.16, and become ex-
plicitly dependent on the intra-molecular and solvent re-
organization energies (respectively λv,e and λS,e), as well
as on the number N of molecules. At this level of ap-
proximation, the contribution of nuclear motion to the
PPES in Eq.13 is still quadratic, but with new equilib-
rium positions ∆Qv,ρ and ∆QS,ρk for the intra-molecular
and solvent modes, both depending on detuning, collec-
tive Rabi frequency and number of molecules. The shifts
in equilibrium positions in Eq.17 and Eq.18 are the same
for each molecule, thus corresponding to the excitation of
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a long-range vibrational mode, in which each molecular
vibration couples in phase with the same polariton. In
the large-N limit, we recover the results of the collective
decoupling mechanism between nuclear motion and the
polariton, as derived in Ref.26, for which the configura-
tion of the nuclear equilibrium positions gets back to the
ground-state configuration (∆Qv,ρ ≈ 0 and ∆QS,ρk ≈ 0
when N � 1).

Eq.13 is a direct physical consequence of the gener-
alized Born-Oppenheimer approximation and perturba-
tion expansion at the lowest-order of the electron-phonon
coupling strength. This approach generalizes previous
results of Refs.26–28 by taking into account on the same
footing the finite number N of molecules, finite molecule-
cavity detuning, and dressing of the polariton by molec-
ular vibrations of the solvent environment. The PPES in
Eq.13 interpolates smoothly between the limits of single-
molecule N = 1 and large number of molecules N � 1
inside the cavity (terms of leading order ≈ 1/N). It also
consistent with previous methods of approximation based
on the use of the variational polaron ansatz26,33–35.

We present in Fig.2 the PPES for the lower polariton
state E− (plain red curve) and upper polariton state E+
(plain blue curve) as obtained from Eq.13. For compar-
ison, the PPES obtained by numerical diagonalization
of H0 (within RWA) are plotted in Fig.2 as lower and
upper triangles, standing respectively for the lower and
upper PPES. We show a very good matching of the ex-
act numerical curves and analytical results of Eq.13, in
the moderate to strong-coupling regime for which the
effective Rabi frequency is in the range ~ωc > ~Ω̃R >
λv,e, λS,e, ωv.

3. Dark states

The spectrum of H0 in the single-photon excitation
sector, also contains a manifold of N−1 degenerate states
uncoupled to the cavity-mode. The expression of those
dark states |Dp〉 is more complex than the one of the
bright polaritons44,45. It can be obtained exactly in the
case of vanishing electron-phonon coupling strength

|Dp〉 =
1√
p+ 1

 1
√
p

p∑
j=1

|(ej)〉 −
√
p |(ep+1)〉

⊗ |0c〉 ,
(19)

EDp = εD +

N∑
i=1

ω2
v

2
q2
v,i +

N∑
i=1

∑
k

ω2
k

2
q2
S,ik , (20)

with p = 1, · · · , N − 1 an index labelling the dark state,
and εD ≡ εG +∆ge the dark state energy (independent of
p). Within RWA, those states do not couple directly to
the optical cavity-mode. Their PES in Eq.20 is thus in-
dependent of the collective vacuum Rabi splitting. In the
case of finite arbitrary electron-phonon interactions, the
dark PES can only be computed numerically, similarly to
the Holstein polaron problem46. We obtain numerically

a lifting of the dark PES degeneracy, with the creation
of a miniband of states between the lower and upper po-
laritons. The miniband width is proportional to the total
reorganization energy λv,e+λS,e. The coupling to molec-
ular vibrations thus broadens the manifold of dark states
as does an inhomogeneous static disorder47. We plot in
Fig.2 the miniband of dark PES EDp obtained numeri-
cally (black dots), compared to the analytical PES given
by Eq.20 (plain black curve). The former is a good ap-
proximation to the average position of the miniband. In
the rest of the paper, we will use the analytical expres-
sion given by Eq.20, even in cases for which the electron-
phonon interaction is finite, which is a good approxima-
tion if the broadening of the miniband is smaller than
the vacuum Rabi splitting.

Finally, there are additional eigenstates of H0 that
do not couple to the optical cavity-mode and are
thus “dark”, but play an important role regard-
ing the chemical reactivity of the confined molecules.
Such is the case for the excited-states |(ri)〉 ≡
|g1, · · · , gi−1, (ri), gi+1, · · · , gN 〉 containing the molecule
number i in the excited electronic state r = f or r = g′,
while the remaining N − 1 molecules are in the ground-
state g. The corresponding manybody state |(Ri)〉 and
eigenenergy ERi

for r = f, g′ are given by

|Ri〉 = |(ri)〉 ⊗ |0c〉 , (21)

ERi
= εR +

N∑
j=1,j 6=i

ω2
v

2
q2
v,j +

N∑
j=1,j 6=i

∑
k

ω2
k

2
q2
S,jk

+
ω2

v

2

(
qv,i −∆Qv,r

)2
+
∑
k

ω2
k

2

(
qS,ik −∆QS,rk

)2
,

(22)

with εR ≡ εG + ∆gr the r-state energy. The correspond-
ing PES ERi are N -fold degenerate. We plot EFi in Fig.2
as a dashed yellow curve.

4. The concept of reacton

The PPES in the subsections Sec.II B 2 and Sec.II B 3
have a simple interpretation. They arise from the collec-
tive dipole coupling between the electronic g and e states
of the molecules and a single electromagnetic cavity-
mode, resulting in the formation of a polariton. This po-
lariton gets further dressed by interactions with a bath
of intra-molecular and solvent vibrational modes, thus
sharing some similarities with the concept of polaron46

in solid-state physics. The dressed polariton is however
more complex than a single polaron excitation, since it in-
volves many different energy scales15 ranging from molec-
ular vibrational frequencies ~ωv ≈ 10 meV, electronic
transitions and cavity optical frequency ∆ge ≈ ~ωc ≈
2 eV, as well as the collective vacuum Rabi frequency
~Ω̃R ≈ 0.7 eV that is intermediate between the vibronic
and optical frequency scales. We call this dressed and
collective polariton excitation a reacton, since, as we will
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show later, the formation of this entity modifies signifi-
cantly the chemical properties of confined and resonant
molecules inside the cavity. The concept of reacton is a
key concept that generalizes and unifies several previous
investigations in the field of polaritonic chemistry23,25,26,
and shares conceptual similarities to the dressed-atom
approach in quantum optics36,37. While in this paper
we compute the reacton properties within the range of
validity of the Born-Oppenheimer approximation22, in
general, those have to be computed numerically self-
consistently23.

III. CHARGE-TRANSFER REACTION RATE

In this section, we investigate the modification of chem-
ical reactivity for cavity-confined molecules, induced by
the reacton formation. Due to the weak but non-
vanishing matrix elements (Vef 6= 0) in the Hamiltonian
VCT (see Eq.5), molecules that are in the excited elec-
tronic state e (valley of reactant) may undergo a CT pro-
cess towards the other excited electronic state f (valley
of product), assisted by a reorganization of the molecular
nuclei configuration. The theoretical framework for de-
scribing the kinetics of such CT chemical reactions in so-
lution was developed mainly by the works of Marcus2–4,
Kestner et al.6, Freed et al.48 and Hopfield7. Our ap-
proach generalizes this framework to the case of PPES
for the chemical reaction written in the reacton basis (see
Sec.II B), rather than in the bare molecular basis.

1. Marcus theory applied to the reacton

Using standard Fermi’s Golden Rule, we compute the
CT thermal reaction rate kCT

4,6. In the reacton basis,
kCT is the sum of partial contributions to the rate kCT,Fρ
from each PPES ρ = ±,D belonging to the valley of
reactant towards the valley of products F . This sum is
ponderated by Boltzmann weights standing for thermal
occupation of the valley of reactant49

kCT =
∑

ρ=±,D

e−ερ/kBT

Ze
kCT,Fρ , (23)

kCT,Fρ = αρ
2π

~
|Vef |2Lv,ρF ? Lcl

(
∆ρF , λ̃S,ρF

)
, (24)

with ∆ρF = εF − ερ the driving-force of the chemical

reaction, and λ̃S,ρF the solvent reorganisation energies
renormalized by the reacton formation given by

λ̃S,±F =
∑
k

~ωk
(
gS,fk − α±

gS,ek

N

)2

+ α±
λS,e

2N

(
1− 1

N

)
,

(25)

and λ̃S,DF = λS,f . We write Ze the partition function
for the reactant valley, and αρ the prefactors given by
Eq.11 for α± and αD = 1. Interestingly, the CT rate

Figure 3. CT thermal reaction rate inside cavity kCT (yel-
low dotted curve) as a function of the bare reaction driving-

force ∆ef . The total rate k
(tot)
CT is presented as a purple plain

curve. Classical contributions of the PPES to kCT are shown
as dashed curves for the rates k

(cl)
CT,F− (in red), k

(cl)
CT,F+ (in

blue), and k
(cl)
CT,FD (in black). The thermal rate k

(0)
CT and clas-

sical rate k
(0,cl)
CT outside cavity (for ~Ω̃R ≈ 0.0 eV) are shown

respectively as dashed-dotted green and cyan curves. The
grey (a) and (b) arrows are two specific values of ∆ef , the first
one corresponding to the molecule of Fig.1. Chosen parame-
ters are : N = 5000, kBT = 26 meV, εg = 0 eV, εe = 2.8 eV,
εf = 2.6 eV, ~ωc = 2.8 eV, ~ωv = 50 meV, ~ωk = 0.1 meV,

~ΩR = 10 meV (~Ω̃R = 0.7 eV), ~δ = 0 eV, λv,e = 0.1 meV

(λ̃v,ρF = 80 meV), λS,e = 0 meV (λ̃S,ρF = 10 meV).

in Eq.24 is the convolution Lv,ρF ? Lcl

(
E, λ̃S,ρF

)
≡∫

dE′Lv,ρF (E′)Lcl

(
E − E′, λ̃S,ρF

)
between an intra-

molecular vibrational lineshape Lv,ρF (E) and a sol-
vent lineshape Lcl (E). As expected, the bath of sol-
vent modes broadens the intra-molecular vibrational line-
shape along the RC. We note here the usual separa-
tion of time scales between “fast” intra-molecular vibrons
(~ωv ≈ 50 meV > kBT ) and “slow” vibrational modes of
the solvent (~ωk ≈ 0.1 meV < kBT ). This implies that in
general, Lv,ρF (E) has to be computed considering quan-
tum mechanical vibrational modes6, while Lcl (E) is ob-
tained in the limit of classical vibrational modes by the
standard Gaussian lineshape3,6,50–52

Lv,ρF (E) =

+∞∑
nv,mv=0

Fnvmv
δ [E + ~ωv (mv − nv)] ,(26)

Lcl (E, λ) =
1√

4πλkBT
exp

[
− (E + λ)

2

4λkBT

]
. (27)

The coefficient Fnvmv
in Eq.26 is defined by

Fnvmv
= e−g

2
v,ρF (1+2nv)

g
2(nv+mv)
v,ρF

nv!mv!
(1 + nv)

mv nnv
v ,(28)
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with nv ≡ nB (~ωv) the thermal equilibrium Bose distri-

bution nB (E) =
(
eE/kBT − 1

)−1
for the intra-molecular

vibrational modes. It involves the Franck-Condon over-
lap | 〈nv|m̃v〉 |2 between the vibrational state |nv〉 belong-
ing to the valley of reactants and the vibrational state
|m̃v〉 belonging to the valley of products4, the former
mode being displaced by the renormalized Huang-Rhys
factors

g2
v,±F =

(
gv,f − α±

gv,e

N

)2

+ α±
g2

v,e

2N

(
1− 1

N

)
,(29)

and g2
v,DF = g2

v,f . Using Eq.24, Eq.26 and Eq.27, we
derive the final form for the CT thermal reaction rates

kCT,Fρ = αρ
2π

~
|Vef |2

+∞∑
nv,mv=0

FnvmvLcl

(
∆nvmv

ρF , λ̃S,ρF

)
,

(30)

with ∆nvmv

ρF the partial driving-force of the CT reaction
involving the exchange of mv − nv molecular phonons

∆nvmv

ρF = ∆ρF + ~ωv (mv − nv) . (31)

Eq.30 is one of the main result of this paper. Com-
pared to standard Marcus theory3 and previous works in
polaritonic chemistry26–28, we derived the CT reaction
rate, taking into account the reacton formation, which
includes the contribution of collective PPES ρ = ±,D
delocalized on the whole molecular ensemble, that are
available to the chemical reaction. We notice that due
to the collective nature of the reacton, not only the reac-
tion driving force strength ∆ρF is modified (see Eq.31),
but also the intra-molecular vibrational Huang-Rhys fac-
tors g2

v,ρF (see Eq.29) and solvent reorganisation energies

λ̃S,ρF (see Eq.25). Finally, in the limit of “slow” intra-
molecular vibrational mode ωv < kBT/~, Eq.23 formally
recovers the “semi-classical” approximation derived by
Marcus4. In this limit, we obtain the classical CT ther-

mal rate k
(cl)
CT

k
(cl)
CT =

∑
ρ=±,D

e−ερ/kBT

Ze
k

(cl)
CT,Fρ , (32)

k
(cl)
CT,Fρ = αρ

2π

~
|Vef |2Lcl

(
∆ρF , Λ̃ρF

)
, (33)

with total reorganization energy Λ̃ρF = λ̃v,ρF + λ̃S,ρF .

2. CT reaction rate inside the cavity

In the following, we focus on the case of room tem-
perature kBT = 26 meV and a cavity frequency ωc
that is resonant (δ = 0) with the molecular transi-
tion ∆ge/~ = 2.8 eV/~ in Fig.1b. For a typical Fabry-
Pérot cavity of surface 104 µm2 with distant mirrors of
the fundamental optical cavity-mode wavelength λc/2 ≈
πc/ωc ≈ 0.221 µm (for n ≈ 1), and for molecules of elec-
tric dipole moment µ ≈ 5 D, we estimate a very weak

Figure 4. Thermal reaction rate kCT (plain yellow curve)

and partial classical reaction rate k
(cl)
CT,F− (dashed red curve)

as a function of the number of coupled molecules N . The

thermal rate out of cavity k
(0)
CT is shown as a green dotted

curve. Parameters are those of Fig.3, except for N , with the
reaction driving-force fixed to the value ∆ef = −0.2 eV. The
case N = 5000 is shown by the grey arrow (a) as in Fig.3.

Figure 5. Same plot as in Fig.4, but with the reaction
driving-force fixed to the value ∆ef = −0.4 eV. The case
N = 5000 is shown by the grey arrow (b) as in Fig.3.

bare vacuum Rabi-splitting ~ΩR ≈ 0.35 µeV. In best
cases for which the molecules are in average packed 25 Å
away one from each other and equally coupled to the
cavity mode, we estimate the maximum number of em-
bedded molecules N ≈ 1011 thus leading to an upper-
bound for the collective vacuum Rabi-splitting of about
~Ω̃R = 0.11 eV. The former value is consistent with re-
ported experimental values of Ω̃R in nanofluidic Fabry-
Pérot cavities21. For simplicity and illustrative purposes,
we adopt a much larger value of the bare vacuum Rabi-
splitting ΩR = 10 meV that is consistent with the highest
single-molecule-cavity couplings (≈ 100 meV) reported
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in plasmonic cavities53. We consider a population of
N = 5000 molecules coherently coupled to the same op-
tical cavity mode, for which the collective vacuum Rabi-
splitting Ω̃R = 0.7 eV is close to reported experimen-
tal values in optical microcavities15. Finally, we choose
the frequency of intra-molecular vibrational modes ωv ≈
50 meV and solvent ones ωk ≈ 0.1 meV. The dressed
reorganization energies are fixed to λ̃v,ρF = 80 meV and

λ̃S,ρF = 10 meV leading to a total reorganization energy

Λ̃ρF = 90 meV. The former value corresponds to a sol-
vent that is sufficiently apolar54 not to screen too much
electric interactions in solution but is still sufficiently po-
lar to increase the impact of solvent fluctuations on the
kinetics of the CT reaction.

We present in Fig.3, the evolution of the CT thermal
reaction rate kCT (yellow dotted curve) computed from
Eq.23 in units of

ke ≡
2π

~
|Vef |2/

√
4πΛ̃−FkBT , (34)

as a function of the bare reaction driving-force ∆ef ≡
εf − εe, at fixed Ω̃R = 0.7 eV. For comparison, we

plotted the total rate k
(tot)
CT =

∑
ρ=±,D kCT,Fρ (purple

plain curve), which is the sum of contributions of each
PPES to the reaction rate. The partial and classical CT

rates k
(cl)
CT,Fρ given by Eq.33 are also plotted as dashed

curves. We find that the contribution of dark states
k

(cl)
CT,FD (in black) dominates over the two polariton satel-

lite peaks of half amplitudes k
(cl)
CT,F− (in red) and k

(cl)
CT,F+

(in blue). The former are strongly dependent on both
the detuning δ and collective vacuum Rabi frequency
Ω̃R. They are given by two Gaussian satellite peaks cen-

tered on ∆ef ≈ −Λ̃±F +
(
λv,e + λS,e ± ~Ω̃R

)
/2, thus

≈ ±350 meV away from the main dark state peak. The

standard deviation of those curves is ≈
√

2Λ̃±FkBT , cor-

responding to a full width at half maximum (FWHM) of
≈ 161 meV. We remark that the actual CT thermal rate
kCT is very well approximated by the classical contribu-

tion of the lower polariton k
(cl)
CT,F−. On one side, this

is due to the fact that ~Ω̃R � kBT , so that only the
lowest-energy PPES channel is significantly populated
at thermal equilibrium and is thus open for the ET re-

action: the other channels k
(cl)
CT,FD and k

(cl)
CT,F+ are far

away in energy and thus do not contribute significantly
to kCT

55. On the other side, we are not expecting a pri-
ori the classical approximation in Eq.33 to hold, since for
our range of parameters, the intra-molecular vibrational
modes are quantum mechanically frozen (kBT < ~ωv).
Departures from the Gaussian limit are indeed seen on
the numerical plots, that manifest as the appearance of
weak vibrational sidebands and asymmetries in the tails
of the kCT(∆ef ) curve. The former features are partially
smeared out by convolution of the intra-molecular line-
shape by the solvent lineshape in Eq.24, thus explaining
the unexpected good qualitative match of the CT rate
with the classical limit (see also Ref.4).

3. Tuning the CT reaction rate

Rates kGG′ kCT,−F kCT,FD kCT,F+

meV 3.7 41.4 42.2 0.001

THz 0.9 10 10.2 0.0003

Table I. Table of computed and dominant thermal reaction
rates. The parameters are those of Fig.3, for ∆ef = −0.2 eV
(see grey arrow (a)).

To complete the picture of the reaction kinetics, we
show on Fig.4 (plain yellow curve), the CT thermal rate
kCT inside cavity (with ΩR = 10 meV) and the same rate

k
(0)
CT outside cavity (for which ΩR = 0.0 meV), as a func-

tion of the number N of molecules coupled to the cavity-
mode. The parameters are those of Fig.3, with the reac-
tion driving-force fixed at ∆ef ≈ −0.2 eV. This choice of
∆ef corresponds to the PES for the chosen molecule in
Fig.1b. For the case (a) labelled by a grey arrow and cor-
responding to N = 5000 and ∆ef = −0.2 eV, we find in

both Fig.3 and Fig.4 that kCT � k
(0)
CT, so that the reac-

tion kinetics gets much slower inside than outside cavity.
Interestingly in Fig.4, the CT rate does not evolves in a
monotonous fashion with N . It first increases with N ,

reaching a maximum at N ≈ 500 for which kCT > k
(0)
CT

and finally slows down to 0 with kCT � k
(0)
CT at large

N . There is thus an optimal value of N (and thus of
molecular concentration N/V for the coupled molecules)
for which the effect of vacuum quantum fluctuations of
the cavity mode is maximum. We interpret this behavior
by the modulation of the reaction driving-force ∆ρF with

the collective vacuum Rabi splitting Ω̃R ≈ ΩR
√
N . The

maximum of k
(cl)
CT,F− in Eq.33 is obtained at the tran-

sition point to the inverted Marcus region, as is shown
on Fig.4 (dashed red curve). This optimal sensitivity
of the CT reaction rate close to the inverted region of
Marcus parabola, is in contrast to Ref.26 that reported a
monotonous increase of the reaction rate with N in the
resonant nuclear tunneling regime.

We provide on Table I typical values for the cavity-
induced CT reaction rates kCT,Fρ associated to case (a).
Furthermore, we estimate the reaction rate kG′G from the
manybody ground-state G to the other manybody state
G′, using transition-state theory8–11

kG′G = k0e
−∆GTS

kBT , (35)

with the energy barrier ∆GTS = εTS − εG between the
ground-state and the transition-state, and the typical re-
action rate k0 ≈ kBT/2π~.

Finally, for completeness, we show on Fig.5 the evolu-
tion of the CT thermal rate kCT inside cavity as a func-
tion of number N of coupled molecules, but for a different
value of reaction driving-force fixed at ∆ef ≈ −0.4 eV.
For case (b) shown as a grey arrow, for which N = 5000
and ∆ef = −0.4 eV, the kinetics of the CT reaction is
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much faster inside than outside cavity (kCT � k
(0)
CT) in

both Fig.3 and Fig.5. We find a similar trend as in Fig.4,
with a non-monotonous evolution of the CT rate with
N . It is thus interesting to notice that depending on the
range of parameters (reaction driving-force, number of
molecules, detuning), the reaction kinetics can be either
slowed down or accelerated significantly by interaction
with the cavity mode.

IV. DISSIPATION

1. Microscopic model for dissipation

Figure 6. Schematics of dissipation and dephasing rates origi-
nating from interaction between the reacton states and the ex-
ternal environment. Radiative relaxation rates are presented
as gold arrows, while non-radiative relaxation and dephas-
ing rates are both respectively shown with light-blue arrows.
The reaction rates involved in the photochemical reaction are
pictured with orange double arrows.

In this section, we introduce a minimal microscopic
model of dissipation and dephasing, induced by coupling
of the reacton states to the external environment (see
Fig.6). We consider two main external environments,
namely the electromagnetic environment (EM) of the
cavity-mode described by the HamiltonianHEM in Eq.37,
and the solvent vibrational environment (ph) modelled
by the Hamiltonian Hph in Eq.38. We denote VCa−EM (in
Eq.39) the interaction Hamiltonian between the cavity-
mode and the external EM environment at the origin of
photon-losses out of the cavity56, and VM−ph (in Eq.40)
the general Hamiltonian describing coupling between the
solvated molecules and the vibrational modes of the sol-
vent. The total Hamiltonian HR−env describing the ex-
ternal bath environments (env) and their coupling to the

reacton (R) is given by

HR−env = HEM +Hph + VCa−EM + VM−ph , (36)

HEM =
∑
q

~ωqa†qaq , (37)

Hph =

N∑
i=1

∑
k

~ωkb†ikbik , (38)

VCa−EM = i~
∑
q

(
fqa
†
qa− f∗q a†aq

)
, (39)

VM−ph =

N∑
i=1

∑
k

(
bik + b†ik

)
{λe,ik |ei〉 〈ei|

+λge,ik (|gi〉 〈ei|+ |ei〉 〈gi|)} , (40)

with ωq and ωk, the respective frequencies of the elec-
tromagnetic and vibrational modes of the baths. a†q is
the creation operator for a photon in the external EM

mode with momentum q, while b†ik the creation operator
for a vibron in the solvent bath associated to molecule
i with quasi-momentum k. In Eq.39, fq is the prob-
ability amplitude for a cavity-photon to tunnel out of
the cavity to the EM bath57,58. The electron-phonon
interactions in Eq.40 couple the quantized phonon dis-

placement operators bik + b†ik to both the electronic den-
sity of the excited state e of molecule i with amplitude
λe,ik (Holstein-like term46) and to the off-diagonal hop-
ping terms between states e and g with amplitude λge,ik
(Su-Schrieffer-Heeger-like terms59).

We note that the bare PES given by Eq.3 in Sec.II A
arises (before second quantization) from electron-phonon
interactions similar to the ones described by the Holstein-
like terms of Eq.40. There seems thus to be a redun-
dancy in the writing of VM−ph. However, this is not the
case, since the manybody reacton wavefunctions derived
in Sec.II B 2 and Sec.II B 3 are not the exact eigenstates
of the Hamiltonian H (in Eq.1), but only approximate
ones. Moreover, Eq.3 doesn’t contain off-diagonal cou-
pling terms which are present in Eq.40 and induce con-
tributions to the vibrational relaxation rates.

2. Radiative relaxation

Rates ΓG− ΓG+

meV 28 28

THz 6.8 6.8

Table II. Table of computed radiative relaxation rates due
to cavity losses. Parameters: same as in Fig.3, for ∆ef =
−0.2 eV (see grey arrow (a)). The cavity quality factor is
Q = 50, which corresponds to a bare cavity damping rate
κ ≈ 56 meV.

We consider the interaction Hamiltonian VCa−EM as a
perturbation to the HamiltonianH+HEM+Hph (see Eq.1
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and Eq.36). We use Fermi’s Golden Rule to compute the
radiative relaxation rate ΓGρ from the manybody PPES
state ρ = ± to the manybody ground-state G induced by
VCa−EM (see Fig.6, downward gold arrows). We obtain

ΓGρ = α−ρ

∫
dEκ

(
E

~

)
J (em) (E)Lph,Gρ (E −∆Gρ) ,

(41)

with ∆Gρ = ερ−εG and κ(ω = E/~) = 2π|f(ω)|2νEM(ω)
the energy-dependent radiative dissipation rate of the
cavity, given by the product of the matrix-element square
|fq|2 evaluated at energy ~ωq ≡ ~ω, and the density of
states of the external electromagnetic bath νEM(ω) =∑
q δ (ω − ωq). The factor J (em) (E) = 1 + nB(E) is as-

sociated to the emission (em) process of a photon into the
electromagnetic environment that assists the downward
transition. The decay rate ΓGρ is the convolution be-

tween the cavity spectral distribution κ(E/~)J (em) (E)
and the generalized vibrational lineshape Lph,Gρ (E) ≡
Lv,ρF ? Lcl

(
E, λ̃S,ρF

)
obtained in Sec.III 1.

Eq.41 is a generalization of Refs.36,60,61 to the case
of the manybody reacton states. We now use the simpli-
fied assumptions that i) the energy-dependent vibrational
lineshape Lph,Gρ (E) is thinner than the cavity lineshape

κ (E/~), such that ΓGρ ≈ α−ρJ
(em) (∆Gρ)κ (∆Gρ), and

ii) the energy dependence of κ(ω) ≈ κ(ωc) ≡ κ can be ne-
glected on the scale of the energy difference ∆Gρ for the
considered radiative transition (Markovian assumption),
such that

ΓGρ ≈ α−ρJ (em) (∆Gρ)κ . (42)

Within assumptions i) and ii), we obtain the correspond-
ing upward transition rates ΓρG from the ground-state G
to the polariton state ρ = ± as

ΓρG ≈ α−ρJ (abs) (∆Gρ)κ , (43)

with J (abs) (E) = nB(E) associated to the absorption
(abs) process of a photon of the electromagnetic envi-
ronment during the upward transition. We notice how-
ever, that for the cavity mode ~ωc � kBT at room
temperature, such that in practice nB (∆Gρ) � 1 and
ΓGρ ≈ α−ρκ� ΓρG ≈ 0. We note that relaxing assump-
tion ii) keeping assumption i) valid, one recovers the non-
Markovian calculation for the radiative relaxation made
in Ref.36, that is postulated to be at the origin of the
observed much shorter lifetime for the upper polariton
compared to the lower one. In the following, we will make
use of both approximations i) and ii), since those are the
ones that minimize the knowledge about the microscopic
damping mechanism. Generalization to Eq.41 is possible
if additional information about the energy-dependence
of both optical cavity and vibrational lineshapes become
available from experiments.

We estimate in Table.II the values of typical radiative
relaxation rates ΓGρ written in the reacton basis (down-
ward gold arrows in Fig.6), from the knowledge of the

bare cavity damping rate κ and optical-cavity quality
factor Q in experiments21,36,62,63.

3. Non-radiative relaxation

Rates γG′F γG± γGD γD+

meV 6.6 3 6 41.3

THz 1.6 0.7 1.4 10

Table III. Table of computed and dominant non-radiative re-
laxation rates due to electron-phonon interactions. The pa-
rameters are those of Fig.3, for ∆ef = −0.2 eV (see grey
arrow (a)). The bare vibronic relaxation rate is γv ≈ 6 meV
and the dephasing rate is chosen to be γφ ≈ 82.7 meV.

We compute the non-radiative relaxation rates induced
by the SSH-like contributions to the electron-phonon in-
teraction Hamiltonian VM−ph in Eq.40. We suppose for
simplicity that the off-diagonal matrix elements λge,ik ≡
λge(ωk) are independent of the molecular index. Using
similar approximations i) and ii) as in Sec.IV 2, we obtain
for the dominant downwards rates

γGρ ≈ αργv , (44)

γGD ≈ γv , (45)

with γv(ω) = 2π|λge(ω)|2νv(ω)/~2 the vibronic relax-
ation rate given by the product of the matrix-element
square |λge(ωk)|2 evaluated at energy ~ωk ≡ ~ω and
the density of states of the vibronic bath νv(ω) =∑
k δ (ω − ωk). From Eq.45, we see that the SSH cou-

pling terms in Eq.40 open a relaxation channel between
the dark states manifold D and the ground-state G.

Finally, the remaining Holstein-like terms in Eq.40,
induce additional vibrationally-assisted relaxation rates.
Adopting the same approximation for the diagonal ma-
trix elements λe,ik ≡ λe(ωk), we obtain

γ−+ ≈
α+α−
N

J (em) (∆−+) γφ , (46)

γ+− ≈
α+α−
N

J (abs) (∆−+) γφ , (47)

γD+ ≈ α+

(
1− 1

N

)
J (em) (∆D+) γφ , (48)

γ+D ≈
α+

N
J (abs) (∆D+) γφ , (49)

γD− ≈ α−
(

1− 1

N

)
J (abs) (∆−D) γφ , (50)

γ−D ≈
α−
N
J (em) (∆−D) γφ , (51)

with the transition energies ∆−+ = ε+ − ε−, ∆D+ =
ε+ − εD, ∆−D = εD − ε−, and the dephasing rate
γφ(ω) = 2π|λe(ω)|2νv(ω)/~2. We note that the Hol-
stein coupling terms in Eq.40, being diagonal in the bare
(uncoupled) molecular basis, thus induce pure dephasing
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rates in this initial basis (contribution to the decay of off-
diagonal matrix elements of the molecule density matrix).
However, when expressed in the dressed (coupled) reac-
ton manybody basis, those terms become responsible for
an opening of additional relaxation channels between the
polariton states ± and the dark state manifold D, as well
as relaxation between upper and lower polaritons. With
respect to the nature of the initial dephasing mechanism
in the uncoupled basis, we choose to keep the convention
of designing the bare rate γφ and dressed rates derived
above as “dephasing” rates. This is in contrast to the
convention used for instance in Ref.60.

Our theoretical approach to compute the vibrational
relaxation rates is consistent with Refs.60,61 which fo-
cused on the vibrational strong-coupling regime in
microcavities60,61. We provide in Table III typical
values21,36,62,63 for the bare vibronic relaxation rate γv,
bare vibronic dephasing rate γφ, as well as for the com-
puted and dominant dressed relaxation rates obtained
from Eq.44 to Eq.51 (see blue arrows in Fig.6) .

V. ULTRAFAST REACTION KINETICS

1. Rate-equation in the reacton basis

0 1 2 3 4 5 6 7 8 9
t[1/k0]

0.0

0.2

0.4

0.6

0.8

1.0

P i
(t)

P+
P
P
P
P ′

P

P(st)

P(st)
′

Figure 7. Probabilities Pi(t) of occupying the reacton states
i, as a function of time t in units of 1/k0 (defined in Eq.35).
The parameters are those of Fig.3 case (a), and Tables I, II
and III.

In this section, we compute the (out-of-equilibrium)
occupation probabilities Pi(t) as a function of time t of
the reacton states i involved in the whole photochem-
ical process. Chemical reactions (see Sec.III 3), radia-
tive relaxation (see Sec.IV 2) and non-radiative relax-
ation mechanisms (see Sec.IV 3) by the environment, in-
duce incoherent transitions amongst the reacton states
(see arrows in Fig.6). We describe the resulting time-
evolution of the populations by a rate-equation, written

in the reacton basis

Ṗ (t) = �P (t) , (52)

P (0) =
1

2
[0, 0, 1, 0, 1, 0] , (53)

with P (t) = [PG(t), PG′(t), P−(t), PD(t), P+(t), PF (t)],
the vector of populations Pi(t), and � the rate-matrix
with matrix-elements �ij corresponding to the total tran-
sition rate (including chemical reaction rates, radiative
and non-radiative relaxation rates) from the manybody
state j to the manybody state i. The initial condition
P (0) corresponds physically to an initial photon that has
been absorbed at t = 0− in order to initiate the photore-
action at t = 0+. For a resonant situation (δ = 0), this
leads to the choice P−(0) = P+(0) = 1/2 in Eq.53. The
solution of Eq.52 with the initial condition of Eq.53 is
found by computing numerically P (t) = e�tP (0).

The vector of populations can be expressed more
conveniently as a linear combination of exponentially
damped eigenmodes characterizing the whole photo-
chemical process

P (t) = P (st) +
∑
λ 6=0

cλvλe
λt , (54)

cλ = twλ P (0) ≡ wλ,− + wλ,+
2

, (55)

with vλ the right-eigenvector and twλ the left-eigenvector
of the �-matrix, associated to the real negative eigen-
value λ. The left and right eigenvectors of � form a bi-
orthogonal basis64, which enables by projection to find
the unique coefficient cλ in Eq.55 as a function of the ini-

tial condition. The constant vector P (st) ≡ v0 in Eq.54

is the null right-eigenvector (solution of �P (st) = 0) pro-
viding the stationary populations of the reacton states.

We finally get for P (st) and PF (t)

P (st) =
1

kG′G + kGG′
[kGG′ , kG′G , 0, 0, 0, 0] , (56)

PF (t) =
∑
λ6=0

wλ,− + wλ,+
2

vλ,Fe
λt . (57)

The stationary state in Eq.56 corresponds to a chemical
equilibrium between the electronic ground-state popula-

tions P
(st)
G and P

(st)
G′ .

2. Time-evolution of the photoreaction

We present in Fig.7 the time-evolution of Pi(t), cor-
responding to the molecule of Fig.1 and case (a) in
Fig.3. As shown in Table II and III, the dominating
relaxation rates are the radiative ones ΓG± (see gold
downward arrows in Fig.6) and the dephasing rate γD+

(downward blue arrow in Fig.6). We obtain that on
time scales t � 1/ΓG±, 1/γD+, all the populations in
the excited-states vanish, the stationary regime being
a chemical equilibrium between the states G and G′
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Figure 8. Probability PF (t) of occupying the product-state F
inside cavity (Ω̃R = 0.7 meV) shown as a plain yellow curve,
as a function of time t in units of 1/k0 (defined in Eq.35). The

corresponding occupation probability P
(0)
F (t) outside cavity

(Ω̃R ≈ 0.0 meV) is shown as a dotted yellow curve. For com-

parison, we plot the difference of occupations PF (t)−P (0)
F (t)

as a dashed yellow line. Parameters are those of Fig.3 case
(a), and Tables I, II and III.
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Figure 9. Same figure as in Fig.8, but with a modified
reaction driving-force ∆ef = −0.4 eV indicated by the arrow
(b) in Fig.3.

in Eq.56 (see plain green and losange green curves in
Fig.7). The population of the upper polariton P+(t)
(plain blue curve in Fig.7) is a monotonically decreas-
ing function of time, well approximated by a single expo-
nential decay P+(t) ≈ e−Γ+t/2. The upper polariton
lifetime 1/Γ+ = 1/ (ΓG+ + γG+ + γD+) results mainly
from both optical cavity damping (ΓG+) and fast re-
laxation (γD+) towards the dark-state manifold medi-
ated by the vibrational dephasing mechanism. The
dark states thus play the role of a sink for the up-

per polariton state (this feature was already noticed
in Ref.60). The population of the dark-states PD(t) is
shown as a plain dark curve in Fig.7. Its time-evolution
is not monotonous but well approximated by PD(t) ≈
γD+

(
e−Γ+t − e−ΓDt

)
/ [2 (ΓD − Γ+)], with the additional

dark-state lifetime 1/ΓD = 1/ (γGD + kCT,FD). The ex-
istence of a maximum of PD(t) results from a competi-
tion between the filling of the dark-state from the upper
polariton with a rate Γ+, and its emptying towards the
ground-state G and excited-state F with rate ΓD. Com-
pared to the upper polariton, the occupation of the lower
polariton P−(t) (plain red curve in Fig.7) is still a mono-
tonically decreasing function of time, but with a slower
rate due to the absence of ultrafast relaxation towards
the dark-state manifold.

Of particular interest for photochemistry is the time-
evolution of the occupation probability for the reaction
product PF (t) (yellow plain curve in Fig.7). We show in

Fig.8 a zoom on PF (t) inside the cavity (Ω̃R = 0.7 meV

for the plain yellow curve) and the same quantity P
(0)
F (t)

outside cavity (Ω̃R ≈ 0.0 meV for the dotted yellow
curve). For our range of parameters corresponding to
the reaction driving-force ∆ef = −0.2 eV (case of the
molecule in Fig.1 and case (a) in Fig.3) and choice of

initial condition, we predict that PF (t) ≤ P
(0)
F (t) at all

times. The cavity-molecule coupling has thus an effect to
slow-down the photochemical reaction compared to what
is obtained outside cavity. The same curve is plotted in
Fig.9, for the different value of ∆ef = −0.4 eV corre-
sponding to case (b) in Fig.3. In contrast to the previous

case, one observes for each times that PF (t) ≥ P (0)
F (t), so

that the effect of coupling the reactant to vacuum quan-
tum fluctuations of the electromagnetic cavity-mode is
to speed-up (and thus to enhance) the formation of the
reaction product significantly, compared to the case out-
side cavity. The cavity-induced slowing-down or acceler-
ation of the appearance rate for the photoreaction prod-
uct depends thus crucially on the reaction driving-force
∆ef (and thus choice of the coupled-molecules), which
is consistent with the analysis of the thermal CT-rate
performed in Sec.III 1.

The main feature observed in both Fig.8 and Fig.9, is
the non-monotonous dependence of PF (t) with time t.
We found an accurate analytical approximation of Eq.57
for describing PF (t) in Fig.8

PF (t) ≈
∑
ρ=±

cλρe
−λρt + cDe

−ΓDt + c+e
−Γ+t , (58)

cD =
∑
ρ=±

ηρ
ΓD − λρ

, (59)

c+ = −
∑
ρ=±

ηρ
Γ+ − λρ

, (60)

cλρ = ρ
kCT,F−

4µ
+ ηρ

[
1

Γ+ − λρ
− 1

ΓD − λρ

]
, (61)
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with two additional decay rates λρ=± given by

λρ =
ΓF + Γ−

2
− ρµ , (62)

µ =

√(
ΓF − Γ−

2

)2

+ kCT,−FkCT,F− , (63)

and prefactor

ηρ =
kCT,FDγD+

4 (ΓD − Γ+)µ

(
µ− ρΓF − Γ−

2

)
. (64)

The former expressions involve the decay-rates of the
lower-polariton Γ− = ΓG−+γG−+kCT,F− and F excited-
state ΓF = γG′F + kCT,−F . Compared to P+(t) and
PD(t), the time-evolution of PF (t) as given by Eq.58
is more complex, as it involves four different relaxation
time-scales (1/λ±, 1/ΓD and 1/Γ+). Initially, PF (0) = 0,
since the two polariton states are equally populated
(P±(0) = 1/2). At short times t ≤ 1/ΓG±, 1/γD+, the
upper polaritons decays toward the dark-states mani-
fold. When the D-states are significantly filled, the CT
chemical reaction gets initiated, mainly by the dominant
reaction rate kCT,FD (see Table I) which is modulated
by the strong light-matter coupling inside cavity. This
results in a short-time increase of the F product-state
occupancy. The existence of a maximum of PF (t) for
t ≈ 1/k0 and a later decrease of the product-state occu-
pancy, is due to the onset of the relaxation back to G′
due to the non-radiative relaxation rate γG′F (see Table
III) and to the cavity-mediated backward reaction rate
kCT,−F (see Table II). We note the importance of taking
into account the losses induced by dissipation and non-
radiative relaxation towards the environment in describ-
ing the photoreaction kinetics. The non-monotonous be-

havior of PF (t)−P (0)
F (t) in Fig.8 and Fig.9 is a signature

of the reacton formation, that should be observable using
pump-probe spectroscopy. Its sign provides the informa-
tion whether or not the strong-coupling of reactants to
the cavity-mode enhances or inhibits the formation of
the reaction product. There is a large room of possibil-
ities to engineer and optimize this reaction kinetics by
fine-tuning of the system parameters.

VI. CONCLUSION AND PERSPECTIVES

We have investigated the chemical reactivity of sol-
vated molecules confined inside a nanofluidic Fabry-Pérot
electromagnetic cavity. We studied the archetypal model
of a photochemical reaction for which a charge-transfer
process occurs from one electronic excited-state e to an-
other excited-state f of the molecule, followed by a reor-
ganisation of the nuclei molecular conformation. Upon
tuning the cavity-frequency ωc in resonance with the
molecular transition between the electronic ground and
excited states ∆ge, a collective polariton excitation is
formed, as soon as the collective vacuum Rabi splitting
Ω̃R gets larger than the total losses of the cavity κ. We

have shown that, as a result of the interaction of the
molecules and cavity with the external environment, the
polariton gets dressed by both intra-molecular and sol-
vent vibrational degrees of freedom. We called the result-
ing collective excitation shared coherently between by all
the reactant molecules a reacton, by analogy with the
polaron excitation in solid-state physics.

We computed and studied in detail the modification of
the polariton potential energy surfaces as well as of the
equilibrium positions of the molecular vibrational modes
induced by the reacton formation. The former are re-
sponsible for a modification of the chemical reactivity of
confined molecules compared to unconfined ones. We de-
rived an extension of Marcus theory of electron-transfer
reactions, taking into account the reacton formation, and
computed the kinetics of CT reaction rates for molecular
populations confined in the nanofluidic electromagnetic
cavity. We have shown the possibility to tune (accel-
eration or slowing down) the CT thermal reaction rate
kCT by changing the bare vacuum Rabi frequency ΩR,
the molecule-cavity detuning δ, the number of reacting
molecules N , the driving-force of the chemical reaction
∆ef and the reorganization energies λv and λS. Our
approach paves the way for new possibilities in molec-
ular engineering, using strong-coupling of the molecules
to vacuum quantum fluctuations of the electromagnetic
cavity-modes.

Finally, we derived the kinetics of the whole photo-
chemical process, in which the CT process is one of many
elementary steps. For doing so, we had to include explic-
itly into the theoretical description the relaxation rates
due to the optical damping of the cavity, dissipation and
dephasing induced by the intra-molecular and solvent vi-
brational modes. We developed for this purpose a gen-
eralized rate-equation approach expressed in the basis of
manybody reacton states, the solution of which provides
the ultrafast picosecond dynamics of the photochemical
reaction. Inside the cavity, we predict either an increase
or a decrease of the occupation probability PF (t) for the
product-state F compared to outside cavity, depending
on the bare reaction driving-force. We show that the
time at which a maximum amount of reaction product is
obtained, results from a delicate balance between com-
peting environment-induced dissipation tending to de-
crease the net rate of product formation and the en-
hanced chemical reactivity due to the formation of the
reacton. The signature of the CT reaction should be vis-
ible in time-scales ranging from hundreds of femtoseconds
to few picoseconds and in some cases to several hundreds
of picoseconds65; these time-scales are easily attainable
in regular pump-probe experiments.

We assign several perspectives to extend the following
paper. One of them is to investigate how to define prop-
erly a thermodynamical potential describing the reacton
thermodynamic properties inside the nanofluidic cavity.
Although pioneer studies66 investigated the thermody-
namics of cavity-confined molecules, a proper definition
and quantitative calculation of the corresponding reac-
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ton chemical potential is still missing. The former task
involves to take into account into the theoretical descrip-
tion the spatial dependence of the cavity-mode electric
field, that is responsible for spatial inhomogeneities47 in
the vacuum Rabi frequency ΩR and detuning δ expe-
rienced by each coupled molecule. Moreover, thermal
fluctuations of each molecular dipole with respect to the
local electric-field direction induces the necessity to per-
form an additional rotational averaging29, on top of the
previous spatial one.

Another interesting direction of research is to investi-
gate the case of an open chemical reactor, namely a flow
of reactants in solution that enters the optical cavity,
undergoes a chemical reaction inside, and finally leaves
the cavity with reaction products being collected out-
side. In the case of an hydrodynamic Poiseuille flow67,68,
there is a characteristic time-scale tL ≈ L/4v0, with L
the longitudinal dimension of the nanofluidic cavity and
v0 = 3Dm/2ρm the maximum velocity at the center of
the flow (Dm is the mass flow, and ρm the liquid volu-
mic mass). The ratio of tL to the typical time-scale of
the chemical reaction tχ ≈ 1/kCT, provides an adimen-

sional parameter ξ = kCTL/4v0. While in our paper, the
CT reaction is very fast compared to the flow velocity,
thus resulting in ξ � 1, it would be of interest to look
for other kinds of chemical reactions for which ξ ≈ 1.
The former case would result in an interesting non-linear
dependence of the reaction rate with the hydrodynamic
flow and reactant concentration. We hope that our study
will stimulate further theoretical and experimental inves-
tigations along those directions.
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