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Abstract

Deductive program verification seeks to eliminate bugs in software by translating pro-
grams annotated with specifications into logical formulas which are then solved using semi-
automated tools. When verifying programs using a mutable heap, it is often required to
show that pointers do not alias each other, ensuring there is only one way to modify struc-
tures in memory. This leads to cumbersome proof obligations and makes verification much
more challenging. Newer languages like Rust feature pointers as well but prevent aliasing
through the type system. This opens the door to simpler approaches to verification, free of
tedious proof obligations.

We propose a technique for the verification of Rust programs by translation to a func-
tional language. The challenge of this translation is the handling of mutable borrows, point-
ers with control of aliasing in a region of memory. To overcome this, we used a technique
inspired by prophecy variables to predict the final values of borrows. The main contribution
of this work is to prove this translation correct. We developed a proof-of-concept tool to
show the viability of this approach.

1 Introduction

Over the past 50 years programming languages have made major strides, allowing programmers
to reason about and abstract ever larger software projects. Yet, when performance and efficiency
become concerns, they resort to low-level programming languages like C/C++ or even assembly.
These languages offer control over memory and in particular allow unrestricted usage of pointers
to build complex data structures and efficient algorithms. This power comes at a cost. Reasoning
about the correctness of pointer programs is very tricky. The challenge is aliasing, when a value
can be accessed through more than one name. When two variables are aliased, changing either
also changes the other. This makes it difficult to reason about code because programmers must
keep in mind all potential aliases to understand the state of their programs.

Languages like C which have pervasive aliasing make this incredibly challenging and it often
is a source of bugs in software. For example, Figure 1, performs a swap using XOR to avoid
allocating a temporary variable[3]. But there’s a bug! If the user provides the same pointer to
both arguments, this function will write 0 to it instead. Aliasing and related issues like buffer
overflows occur constantly, and cause many safety and correctness issues in C software.

In most programs, programmers make the implicit assumption that values are not aliased, but
in C the compiler offers no help to verify this. When attempting to formally verify a C program,
such aliasing assumptions must become explicit, and it can easily turn into a nightmare [5].

1



void XorSwap( int* x, int* y ) { *x ^= *y; *y ^= *x; *x ^= *y; }

Figure 1: Swap implemented with XOR which assumes arguments are non-aliased

fn xor_swap(x: &mut i32 , y: &mut i32) {

*x ^= *y; *y ^= *x; *x ^= *y; }

Figure 2: Translation of program of Figure 1 to Rust

Many approaches exist in the literature to overcome aliasing issues in the formal verification of
programs in C-like languages. This work takes another path: instead considering a language like
Rust, which offers a strong type system to control aliasing.

1.1 The Rust Programming Language

The Rust programming language is a recent entry in the field of systems programming languages.
Its 1.0 release, published in 2015[2] aims to “empower everyone to build reliable and efficient
software”[1]. Rust provides memory-safety without requiring a garbage collector through its
type system[11]. The type system uses a system of ownership to ensure that mutable references
cannot alias. When the xorSwap program of Figure 1 is translated to Rust, as shown in Figure 2,
the bug is no longer possible: a call to that function using the same argument twice will trigger
a type checking error.

Ownership in Rust In Rust every memory cell has a unique owner, which has exclusive read
and write permissions. This is sufficient to program in Rust using a functional programming
style. The program of Figure 3 illustrates this: it constructs a pair, and then increments the
second component, not by mutation but by producing a new pair. But this style is limiting and
more imperative programming style is desirable.

Borrows and Lifetimes To perform memory mutation, Rust uses safe pointers called refer-
ences that can borrow these permissions from their owner. But then aliasing arises and it is
where the Rust-specific type system comes into play: such a borrow restricts the permission of
the original owner for a limited period of time so that aliasing is controlled. When a reference is
created it can come in one of two forms: either unique and mutable or shareable but immutable.
The Rust compiler infers the lifetime of references after which the permissions are restored to
the owner.

The program of Figure 4 illustrates this, exploiting the ownership and borrowing mechanisms
of Rust. When x is mutably borrowed into y, it transfers its read and write permissions to y and so
loses access to its own contents. The function inc, takes ownership of its argument, consuming

fn main () {

let x = Box::new ((1 ,2));

let x = Box::new((x.0, x.1 + 1));

assert_eq!(x.1, 3);

}

Figure 3: Updating a box functionally
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fn main() {

let mut x = 0;

let y = &mut x;

inc(y); inc(y);

assert_eq! (*y, 2);

}

fn inc(x: &mut i32) {

*x += 1;

}

Figure 4: Incrementing a reference twice

it, so Rust implicitly reborrows y before calling inc. Reborrowing consists in borrowing the
permissions of a borrow for a shorter lifetime than the original borrow. This mechanism makes
borrows flexible and intuitive to use, because after each call to inc, morally we should be allowed
to use y again. During compilation Rust statically verifies that borrows are used correctly,
inferring the lifetime of each borrow.

1.2 Verification

What does it mean for a program to be correct? A common answer is that the program should
satisfy a logical specification. This specification encodes the properties expected of a program.
For example, a specification of xor_swap could be that the values of x and y are exchanged. To
verify that programs satisfy specifications many techniques can be used, from model checking[7],
to dependent types[10] or deductive verification[9].

Deductive verification of programs works by translating a program and its specification into a
collection of verification conditions such that their truth implies the program follows its specifica-
tion. These verification conditions can be discharged using a variety of tools, though commonly,
automated SMT solvers are used. This highly automated approach to program verification is
appealing because it allows engineers to focus their attention on developing a specification rather
than proving logical formulas.

Verification conditions can be generated by several techniques, including the weakest precon-
dition calculus. This approach starts with the postcondition of a specification and asks what the
weakest precondition that upholds the postcondition is. A rule is determined for each syntactic
element of the language, and then recursively applied to translate a whole program to this logical
form.

Deductive verification tools for languages with aliasing like C generate non-aliasing
conditions[9] as part of the verification. By leveraging the ownership property of Rust pro-
grams, we can eliminate these conditions and simplify the verification conditions required to
prove specifications true.

1.3 Contributions

We present a schema for the deductive verification of Rust programs by translation to a functional
language. This translation handles both mutable and immutable borrows as well as owned
pointers. This paper is structured in several sections, Section 2 presents µMIR, a fragment of
Rust allowing only owned data. Using µMIR, we detail the type system which enforces ownership
and its semantics. We then present a schema for the verification of µMIR and prove it correct.

The Section 3 section extends µMIR with mutable and immutable references into MiniMir.
We explain how the introduction of references impacts the type system and semantics. Then we
present a translation of MiniMir to a functional language with non-determinism and extend the
proof of µMIR to handle references.
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〈Instruction〉 ::= 〈x 〉 ‘:=’ ‘box’ 〈x 〉
| 〈x 〉 ‘:=’ ‘unbox’ 〈x 〉 | 〈x 〉 ‘:=’ ‘copy’ 〈x 〉
| 〈x 〉 ‘:=’ ‘copy’ ‘*’ 〈x 〉
| ‘drop’ 〈x 〉 | ‘swap’ ‘(’ 〈x 〉 ‘,’ 〈x 〉 ‘)’
| 〈x 〉 ‘:=’ 〈x 〉 〈op〉 〈x 〉 | 〈x 〉 ‘:=’ 〈const〉
| ‘(’ 〈x 〉 ‘,’ 〈x 〉 ‘)’ ‘:=’ 〈x 〉 | 〈x 〉 ‘:=’ ‘(’ 〈x 〉

‘,’ 〈x 〉 ‘)’ | 〈x 〉 ‘:=’ ‘inj’i 〈x 〉
| ‘call’ f (〈x 〉, .., 〈x 〉)
| ‘assert’ 〈x 〉

〈Statement〉 ::= 〈Instruction〉 ‘;’ ‘goto’ `
| ‘match’ 〈x 〉 ‘{’ inj0 〈x 〉 → ‘goto’ `, inj1
〈x 〉 → ‘goto’ ` ‘}’

| ‘return’ 〈x 〉

〈LabelledStatement〉 ::= ` ‘:’ 〈Statement〉

〈const〉 ::= n | () | true | false

〈op〉 ::= ‘+’ | ‘-’ | ‘<’ | ‘>’ | ‘=’

〈Var, x 〉 ::= s〈T 〉

〈Type, T 〉 ::= 〈Type〉 × 〈Type〉 | 〈Type〉 +
〈Type〉 | ‘box’ 〈Type〉 | bool | unit | int

〈Signature〉 ::= ‘fn’ name ‘(’ s : 〈T 〉 ‘,’ ... ‘,’
s : 〈T 〉 ‘)’ ‘->’ 〈T 〉

Figure 5: Grammar of µMIR

In Section 4 the translation, we developed a proof-of-concept implementation and showed it
is capable of verifying real Rust programs.

2 A basic language with ownership

Rust is a complex programming language, targeted at industrial use with a large syntax and
underspecified operational semantics. During compilation, the Rust compiler translates programs
to MIR, an intermediate language with a greatly simplified syntax and a graph structure. Since
2018, with the introduction of non-lexical lifetimes, the rules for borrow checking are formulated
on the MIR graph rather than source Rust. This makes MIR an attractive starting point for
verification of Rust since, with its smaller syntax and simpler static analysis, translations and
proofs stay smaller. We begin by formalizing a fragment of MIR containing only owned values
called µMIR. This restriction makes it impossible to express many programs but gives room to
focus on the other defining characteristic of µMIR, its graph structure.

2.1 The µMIR language

A program P is a collection of function declarations, and must contain a function main which acts
as the entry point. Function declarations are in turn composed of a triple (∆, `, σ) consisting of
a set of labeled statements ∆, an entry label `, and a function signature σ. Function signatures
are made of the function name, a collection of input parameter names and types and the return
type. The syntax of µMIR is described in Figure 5.

Statements come in three forms: an instruction followed by a goto, a match on a variable or
a return. We write Pf,` to refer to the statement associated with the label ` of the function f
in program P. Instructions perform the basic operations of the language. In each instruction
the variables are annotated with their types. There are instructions to allocate, dereference and
deallocate an owned pointer on the heap. In µMIR a box type is an owned pointer to a value,
granting the owner exclusive access to the pointed region of memory. Values of certain types
can be copied, and the contents of a box can be as well. Appendix A includes the rules for
determining if a value can be copied. Dropping is the mechanism through which variables are
freed. In µMIR, writing to memory is done by swapping values. Finally, primitive operations like
assigning literals, arithmetic and comparisons are supported. µMIR also includes instructions to
interact with products and sums.
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` 0: t1 := 1; t2 := 2; t3 := (t1, t2); x := box t3; goto `4
` 4: t4 := unbox x; (t5, t6) := t4; t7 := t6 + 1; goto ` 5;
` 5: t8 := (t5, t7); x := box t8; goto ` 9;
` 9: t9 := unbox x; (x1, x2) := t9; goto ` 12
` 12: t10 := 3; t11 := x2 = t10; assert t11; goto ` 14
` 14: drop x2; drop t10; drop t11; goto ` 17
` 17: ret := (); return ret

Figure 6: Figure 3 translated to µMIR

Figure 6 displays how the program of Figure 3 is expressed in µMIR. To save space we
put several statements on a single line. The code size blows up but decomposes the individual
operations that happened in Figure 3 in a manner very similar to actual MIR.

2.2 A type system for ownership

The type system of µMIR is responsible for enforcing the unique ownership of every value in a
program. Operations which manipulate boxes consume their inputs, removing them from the
typing context and introducing new bindings for the results. Because of the imperative, graph
structure of µMIR, the typing judgements take a different form from most languages. The
presence of cycles within a graph make traditional natural deduction trees impossible to use.
Instead, each program point is assigned a typing context, and typing relates the contexts before
and after the evaluation of a statement.

Each label ` of a function is associated with a partial variable context Γ. The partial variable
context is a collection of items of the form x : T , where x is a variable name and T is a type.
In a µMIR program P, each function f is given a whole context Ξ which is the collection of the
partial contexts for all labels in f . Additionally, we use Σ to refer to the collection of signatures
found in a program.

Typing judgements for instructions have the form Γ `f I a Γ′, which relate the partial
contexts before and after executing the instruction I in the function f . In this representation,
the mechanism of ownership becomes clearer, for example looking at (box) shows how when a
box is created, the original variable y is destroyed to ensure the new pointer x remains the unique
owner.

(box)
Σ; y : T,Γ `f xboxT := box yT a Γ, x : box T

Typing judgements for statements have the form Σ; Ξ;P `f,a S and verify that the statement
with label a in function f , types with the expected partial context.

Σ; Ξa `f I a Σ; Ξ`
(sequence)

Σ; Ξ;P `f,a I; goto `

The rule for (box) checks that the instruction I can be typed using Ξa, producing Ξ`. In
this approach, each statement checks an edge of the µMIR graph. The rules for (function)
and (program) check that each function forms a graph. The full typing rules can be found in
Appendix A.
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2.3 Operational Semantics of µMIR

The operational semantics of µMIR is given by a reduction relation over an abstract heap ma-
chine. The configurations of the µMIR machine are of the form 〈f ; ` | S | F | H〉, where f is the
name of the function being executed and ` is a label in f , S is the call stack, F is the frame, and
H is the heap. The stack is composed of triples [f ; `, x,F] of a return label, a variable name for
the result and a frame. A frame F is a partial function from variable names to addresses. We
support pointer arithmetic: adding an address and an integer to obtain an address. The heap
maps those addresses to a value which is either: an address, an integer, a boolean value, or unit.
Complex values such as pairs or sums are stored in contiguous regions of the heap. Operations
which must move or copy these values calculate the size of the values from their types:

|T1 × T2| = |T1|+ |T2|
|T1 + T2| = 1 +max(|T1|, |T2|)
|box T | = |bool| = |int| = |unit| = 1

Definition 2.1 (Notations). If F is a partial function, and A is a subset of its domain, then
A /− F denotes the domain restriction removing A from the domain of F , and is defined as

A /− F = {(x, v) | (x, v) ∈ F, x 6∈ A}

Below, we include the rule for drop, which deallocates a variable. When a variable is dropped,
we lookup it’s address in the current frame and remove it from the heap. The remaining reduc-
tions are given in Appendix B.

Pf ;` = drop xT ; goto `’
(drop)

〈f ; ` | S | F⊕{(x, a)} | H〉 →P 〈f ; `′ | S | F | {a} /− H〉

2.4 Type preservation by reduction

We would like to ensure that the only way for a well-typed µMIR program to get stuck is by
failing an assertion. This property allows us to reduce the safety of a program to the validity of its
assertions. But if we look at the semantics from Section 2.3, it is clear that the machine can easily
get stuck when the frame and heap contain invalid addresses or missing data. To correct this, we
define a notion of well-typed configurations which restrict us to only the configurations that could
appear when evaluating a well-typed program. We can then prove the standard preservation of
typing for these configurations, showing that for well-typed programs only assertions can block
evaluation.

Definition 2.2 (Heap Fragment Type). When we write H ` a : T , we mean to say that the
heap fragment H starting at location a, corresponds to a value of type T .

H1 ` a : T1 H2 ` a+ |T1| : T2 H = H1⊕H2

H ` a : T1 × T2

H ` a+ 1 : Ti

H⊕{(a, i)} ` a : T0 + T1

H ` p : T

H⊕{(a, p)} ` a : box T

c is a literal of T T ∈ {int, bool, unit}
{(a, c)} ` a : T

A well-typed configuration is just a configuration where the heap H contains exactly the
variables accessible in the frame F.
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Definition 2.3. A frame F is well-typed at f ; ` for a portion of a heap H if f is typed with Ξ
in P, and:

H =
⊕
x∈F

Hx dom(F) = dom(Ξ`)

∀x ∈ F,Hx ` x : Ξ`(x)

A configuration 〈f ; ` | S | F | H〉 is well-typed for a well-typed program P when it satisfies the
following conditions:

∀i ∈ [1, |S|], S[i] = [fi; `i, xi,Fi]⇒ well-typed Fi fi; `i Hi

well-typed F f ; ` H0

H = H0⊕
⊕

i∈[1,|S|]

Hi

We can now define what it means for reduction to preserve types, it simply ensures that the
heap is composed exactly of the values expected at a given program point.

Theorem 2.4 (Type Preservation). Given a well-typed configuration C, if C →P C ′, then C ′

is well-typed.

We don’t prove this lemma and instead we will prove an extended version in Section 3.4.

2.5 Verification of safety for µMIR programs

To verify µMIR code, we translate it to a functional language. Then we prove that when the
translation does not get stuck, neither does the µMIR program. This might seem redundant since
Section 2.4 already proved preservation of typing, but by translating to a functional language
it becomes possible to leverage existing deductive verification tools. To verify µMIR code, we
will translate it to a functional language and use existing tools to verify the translated program.
This approach is also easily extensible to arbitrary specifications which can be represented as
pure logical functions.

Simplification In the following sections, we only consider programs without function calls,
and therefore we ignore the stacks of the µMIR machine. The problems raised by function calls
are orthogonal to the primary challenge of this proof and the one in Section 3.5.3. As a result,
programs only consists in the body of the main function.

2.5.1 The µML language

For µMIR, we will target a simple ML family language which we call µML. It is an untyped ML
dialect equipped with assertions, and call-by-value semantics described by an abstract machine
with environment. The rules of the µML abstract machine can be found in Appendix E.

〈Expression, e〉 ::= ‘let’ x ‘=’ 〈e’ 〉 ‘in’ 〈e〉 | 〈e〉 〈e’ 〉 | x | 〈v〉 | 〈e〉 〈op〉 〈e’ 〉 | ‘match’ 〈e〉 ‘with’
‘|’ inj0 x0 ‘->’ 〈e〉 ‘|’ inj1 x1 ‘->’ 〈e〉 ‘end’ | ‘let’ ‘(’ x, y ‘)’ = 〈e〉 | ‘assert’ ‘{’ 〈e〉 ‘}’ | ‘(’
〈e〉 ‘,’ 〈e〉 ‘)’ | inji 〈e〉 | ‘rec’ 〈FunDef 〉 ‘and’ ... ‘and’ 〈FunDef 〉

〈FunDef 〉 ::= ‘fun’ f x ... x = 〈Expr〉

〈Values, v〉 ::= ‘(’ 〈v〉 ‘,’ 〈v〉 ‘)’ | inji 〈v〉 | n | ‘rec’ 〈FunDef 〉 ‘and’ ... ‘and’ 〈FunDef 〉
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2.5.2 Translating from µMIR to µML

The translation takes a well-typed µMIR CFG and produces a set of mutually recursive µML
functions with the same entrypoint as µMIR. A labeled statement becomes a function where the
arguments are the entire domain of the partial variable context associated with the label. Each
goto ` is compiled to a function call, and the arguments are the variables in the domain of Ξ`.
Most instructions from µMIR are translated to their direct counterparts in µML. For example,
here is the traduction of the construction of a pair:

J`: x := (y, z); goto `’K , fun ` ~a = let x = (y, z) in `′ ~a′

where ~a = dom(Ξ`) and ~a′ = dom(Ξ`′)
Interestingly, the operations related to the box type are entirely erased since we are not

interested in the memory layout in µML:

J`: xboxT := box yT ; goto `’K , fun ` ~a = let x = y in `′ ~a

J`: xT := unbox yboxT ; goto `’K , fun ` ~a = let x = y in `′ ~a

where ~a = dom(Ξ`′).
The full translation rules are presented in Appendix C.

Translating Figure 6 When we run the translation we produce the following set of functions.

let rec l0 () = let t1 = 1 in let t2 = 2 in

let t3 = (t1 , t2) in let x = box t3 in l4 x

and l4 x = let t4 = x in let (t5 , t6) = t4 in

let t7 = t6 + 1 in l7 t5 t7

and l7 t5 t7 = let t8 = (t5 , t7) in let x = t8 in l9 x

and l9 x = let t9 = x in let (x1 , x2) = t9 in l11 x1 x2

and l11 x1 x2 = let t10 = 3 in let t11 = (x2 = t10) in

assert { t11 }; l14 x1 t10 t11

and l14 x1 t10 t11 = let ret = () in ret

2.5.3 Correctness of the translation

We have a translation, but what does it actually produce? To ensure the translation is correct,
we will show that whenever the µML translation of a program is safe, that is, it does not get
stuck, then so is the original program.

Theorem 2.5 (Safety). Given a well-typed program Γ ` P, if JPK is safe, then P is safe.

In order to prove Theorem 2.5, we establish a simulation ∼P between the input program P
and its translation JPK. We will give the exact definition of ∼P later, but what’s important is that
it restricts the µMIR heap and µML environment to ensure that the values in the environment
correspond to regions of heap memory. Using this simulation we prove auxiliary lemmas, from
which the proof to Theorem 2.5 will be formed.

The proof of safety is achieved using the following three lemmas.

Lemma 2.6 (Preservation of Simulation). Given a µMIR configuration C and a µML configu-
ration K such that C ∼P K, if C →P C ′ then K → K ′ and C ′ ∼P K ′.

Lemma 2.7 (Progress). Given a µMIR configuration C and a µML configuration K such that
C ∼P K, if K is not stuck then C is not stuck.
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Lemma 2.8 (Terminal Configurations). Given a terminal µML configuration K, for any µMIR
configurations C such that C ∼P K, then C is terminal.

Proof of Theorem 2.5. Suppose that C is not safe, therefore there exists a trace C →∗P C ′ which
gets stuck. By iterating Lemma 2.6, there exists K ′, such that C ′ ∼P K ′. Because K ′ is
safe, it cannot be stuck and must either be terminal or continue reducing. If K ′ is a terminal
configuration then by Lemma 2.8 there is a contradiction since C ′ is not terminal. If K ′ is not
terminal then there exists K ′′ such that K ′ →K K ′′ and by Lemma 2.7 there exists C ′′ such that
C ′ →P C ′′, therefore C ′ is not stuck.

2.5.4 Simulation Invariant

In order to describe the simulation relation ∼P which relates µMIR and µML programs, we show
how to translate a region of a heap into a µML value. This relation is called the readback of the
heap. The region of memory associated with each µMIR variable will be translated to a µML
value. Because µMIR features only owned values and no borrowing, heap regions are intrinsically
separated, which makes the readback a fairly direct and natural operation.

The readback of a heap region is guided by the type of the variable, it extends the heap typing
relation covered in Section 2.4, associating a µMIR value to the concerned region of memory.

Definition 2.9 (Readback). R(H, a, T, v) is a 4-place relation between a heap, address, type
and a µML value.

R(H1, a, T1, v1) R(H2, a+ |T1|, T2, v2) H = H1⊕H2

R(H, a, T1 × T2, (v1, v2))

R(H, a+ 1, Ti, v)

R(H⊕{(a, i)}, a, T0 + T1, inji v)

R(H, p, T, v)

R(H⊕{(a, p)}, a, box T, v)

c is a literal of T T ∈ {int, bool, unit}
R({(a, c)}, a, T, c)

The correspondence between a heap, frame and environment is given by HeapEnv which
selects the correct elements from the readback to populate the environment.

Definition 2.10 (HeapEnv). HeapEnv(F,H,Γ, E) is a 4-place relation between a µMIR frame
and heap, a partial variable environment and a µMIR environment where:

dom(F) = dom(E) H =
⊕

x∈dom(F)

Hx

∀x ∈ dom(F),R(Hx,F(x),Γ(x), E(x))

The final simulation relation ∼P uses HeapEnv to relate a µMIR heap to a µML environment
and restricts µML programs to the translation of the corresponding µMIR label. The full relation
is given in Appendix D along with the proof of Theorem 2.4. The proof proceeds by case analysis
on the reductions of µMIR, shuffling memory around to show that the resulting readback is
exactly what was expected. We exclude it for space considerations.

2.6 Recap

In Section 2 we presented a small unstructured language with an ownership discipline enforced
by typing. This language simulates the behavior of owned values in MIR. We then showed how
to translate µMIR programs to µML, a standard ML dialect and proved Theorem 2.5 showing
that this translation is correct and permits the verification of µMIR programs.
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〈Instruction〉 ::= 〈v〉 ‘:=’ ‘&mut’α 〈v〉 | ‘immut’ 〈v〉 | 〈v〉 ‘:=’ ‘unnest’ 〈v〉
| ‘(’ ‘ref’ 〈v〉 ‘,’ ‘ref’ 〈v〉 ‘)’ ‘:=’ *〈v〉 | ‘thaw’ α | α ≤ α

〈Statement〉 ::= ‘match’ *x ‘{’ inj0 ‘ref ’y0 → ‘goto’ `0, inj1 ‘ref’ y1 → ‘goto’ `1, ‘}’ | . . .

〈Type, T 〉 ::= ‘&mut’α 〈Type〉 | ‘&’α 〈Type〉 | . . .

〈Signature〉 ::= ‘fn’ name ‘<’ α, . . . | α ≤ α, . . . ‘>’ ‘(’ 〈v〉 ‘,’ . . . ‘)’ ‘->’ 〈Type〉

Figure 7: The syntax of MiniMir as an extension of µMIR

3 Support for borrows and lifetimes

During function calls in µMIR every argument is consumed, making it impossible to call a
function with the same argument twice. To solve this, Rust uses borrows which allow a variable
to lend its read and write permissions temporarily. While a value is borrowed, the original owner
is frozen until the end of the borrow’s lifetime. We can pass a function a borrowed reference as
an argument, giving it temporary ownership of the contents, while recovering control when the
borrow expires. We extend µMIR with the operations required to create and manipulate borrows
as well as ghost operations used to ensure their safety. We call this resulting language MiniMir,
because it’s a mini language that does the maximum! 1

3.1 The MiniMir language

Just like in µMIR, programs are collections of function declarations. The syntax of signatures is
more complex, functions can be parameterized over lifetime variables α and lifetime constraints
α ≤ β. Let us consider an example:

fn fst_proj < α| > (p : &mutαint x int) → &mutαint

The signature for fst_proj takes as input a mutable borrow alive for α of a pair of ints (rep-
resented at runtime as a pointer to a pair of ints), and returns a borrow lasting for the same
lifetime α of a single int. Here, function is parameterized over α, allowing us to instantiate it
with different lifetimes at different points in a program.

The instructions and statements are extended with operations to create a mutable borrow
(x&mutα T := &mutαy

T ), to turn a mutable borrow into an immutable borrow (immut y&mutα T ) and to
unnest borrows (x&mutα T := unnest y&mutαP T ). Unnesting is an essential operation when working
with borrows. It collapses a layer of indirection between borrows, transforming a &mutα&mutβ T
into a &mutα T . To interact with product types, a borrow of a pair can be destructed into a pair
of borrows (let (ref xP T0, ref yP T1) := *zP (T0×T1)).

The statements of MiniMir includes a new kind of match (match *x { .. }) which allows
programs to turn a borrow on a sum into a borrow on the value contained in the sum. When this
occurs, programs are free to modify the value held in the sum but cannot change the constructor
of the sum.

To verify the safety of borrows, we also add several ghost instructions, to thaw (end) a lifetime
and to impose an ordering over lifetimes.

We can see this translation applied to Figure 4 in Figure 8. In this translation we inlined the
inc function to make presentation simpler.

1Reference to the famous slogan for a French cleaning product “Mini Mir, Mini Prix, mais il fait le maximum”
reference needed
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` 1: t1 := 0; t2 := &mutα t1; goto `3

` 3: t3 := *t2; t4 := t3 + 1; t5 := &mutα t4; swap(t2, t5); goto `7
` 7: immut t5; drop t5; goto `9

` 9: t6 := *t2; t7 := t6 + 1; t8 := &mutα t7; swap(t2, t8); goto ` 13
` 13: immut t8; drop t8; goto ` 15

` 15: immut t2; drop t2; thaw α; goto ` 17
` 17: t4 := t1; assert { t4 = 2 }; drop t4; t0 := (); drop t1; return t0

Figure 8: Translation of Figure 4, with the function inc inlined.

3.2 Extending types with borrowing

By creating pointers to values, borrows introduce aliasing. To prevent that, when a value is
borrowed for a lifetime α, the original name will be made inaccessible or frozen until the end of
α. To verify this safety property, the type system tracks a partial order on lifetimes, ensuring
that borrows cannot outlive their prescribed lifetime. When the type system encounters a thaw α

instruction, it checks that all relevant borrows have been released and restores access to frozen
variables.

We extend the type system of µMIR with partial lifetime contexts, which consist of a collection
of elements α ≤ β. The partial variable context for MiniMir consists of elements of the form
x :†α T or x :• T , the first denoting a variable is frozen for lifetime α while the second denotes
it is not frozen.

The whole context of a function (Ξ,Λ) also collects the partial lifetime contexts for every
label in the function. The forms of judgements extend naturally, using the lifetime contexts
where appropriate. The judgements for instructions and statements are extended with partial
lifetime contexts, while the judgement for functions is extended with a whole lifetime context.

The typing judgement for x&mutα T := &mutαy
T expresses how the original value y is frozen until

α expires while granting x access for that lifetime. No modifications are made to the partial
lifetime context L as creating a borrow does not immediately place it in an ordered relation.

(borrow-mut)
Σ; y :• T,Γ; L `f x&mutα T := &mutαy

T a Γ, x :• &mutα T, y :†α T ; L

When a lifetime is ended using a thaw α, the type system ensures that everything borrowed
for α has been dropped and that all lifetimes β ≤ α have already been thawed. After a lifetime is
thawed, all variables in the context which were frozen for α are unfrozen, restoring access. The
complete type system for MiniMir is included in Appendix F.

3.3 Operational Semantics of MiniMir

The operational semantics of MiniMir changed little compared to µMIR. Because instructions
like thaw are ghost, they become no-ops in the semantics. The primary addition of MiniMir,
the mutable borrow, creates a new pointer to a value. The extended semantics for MiniMir is
included in Appendix G.

3.4 Type preservation by reduction

Simplification In the following sections, as in the end of Section 2, we only consider programs
without function calls. Again, the problems raised by function calls are orthogonal to the primary
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challenge of this proof and the one in Section 3.5.3.
The banality of the semantics for mutable references is exactly what we desired. They cre-

ate pointers that the type system ensures can only be used safely. To prove this we extend
Theorem 2.4 to the full language of MiniMir.

We extend the heap fragment typing of Section 2.4 to include reference types. Since mutable
references are non-aliasing, the heap fragment types must ensure that there are never two active
pointers to the same region of memory. To ensure mutable borrows are only used once in a
heap, we use a borrow store The borrow store holds tokens for the lender and the borrower. By
consuming the borrow store, the heap typing can ensure each borrow is used only once.

Definition 3.1 (Borrow Store). A borrow store is a finite set of elements of the form takerα(a, T )
or giverα(a, T ), where a is an address, T is a type and r is either i for immutable or m for mutable.

A borrow store B is safe if for every address a appearing in B it contains exactly the tokens
takemα (a, T ) and givemα (a, T ) or contains giveiα(a, T ) and zero or more takeiα(a, T ).

We extend heap fragment typing and well-typing of Section 2.4. The judgments have the
form, B; H |= a :n T , where B a borrow store and n ∈ {†α; •}. The definition of a well-typed
configuration is then extended to ensure borrow stores are safe.

Definition 3.2 (Heap Fragment Type for MiniMir). Below are the heap typing rules for mutable
and immutable references. The borrow store checks that both the lender and borrower agree on
the addresses and types borrowed. The full rules are found in Appendix I.

givemα (a, T );∅ |= a :†α T

B; H |= a :†α T

giveiα(a, T ),B; H |= a :†α T

B; H |= a :n T

takemα (a, T ),B; {(p, a)}⊕H |= p :n &mutα T takeiα(a, T ); {(p, a)} |= p :n &α T

Definition 3.3. A well-typed configuration 〈f ; ` | − | F | H〉 of a well-typed program P if it
satisfies the following conditions:

dom(Ξ`) = dom(F) H =
⊕
x∈F

Hx B =
⊕
x∈F

Bx safe(B)

Bx; Hx |= x :n Ξ`(x,n)

Using these expanded definitions, the proof of preservation extends easily to handle mutable
and immutable references. Whenever a borrow is created or dropped, the corresponding tokens
are inserted or removed from the borrow store.

Theorem 3.4 (Type Preservation). Given a well-typed MiniMir configuration C, if C →P C ′,
then C ′ is well-typed.

The interesting cases of this proof are discussed in Appendix I

3.5 Verification by translation

We extend our translation from µMIR with support for mutable and immutable references. Our
encoding of mutable borrows into a functional language relies on their non-aliasing. When a
borrow is created through x&mutα T := &mutαy

T , the type safety of MiniMir tells us that y cannot
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fun l1 () = let t1 = 0 in let t2 = (t1 , any) in let t1 = ^t2 in l3 t1 t2

and fun l3 t1 t2 = let t3 = *t2 in let t4 = t3 + 1 in

let t5 = (t4 , any) in let t4 = ^ t5 in let temp = *t2 in

let t2 = ( *t5 , ^t2) in let t5 = (temp , ^t5) in l7 t1 t2 t3

and fun l7 t1 t2 t5 = assume { * t5 = ^ t5}; l9 t1 t2

and fun l9 t1 t2 = let t6 = *t2 in let t7 = t6 + 1 in

let t8 = (t7 , any) in let t7 = ^t8 in let temp = *t2 in

let t2 = ( *t8 , ^t2) in let t8 = (temp , ^t8) in l13 t1 t2 t8

and fun l13 t1 t2 t8 = assume { * t8 = ^ t8 }; l15 t1 t2

and fun l15 t1 t2 = assume { * t2 = ^ t2 }; l17 t1

and fun l17 t1 = let t4 = t1 in assert { t4 = 2}; return ()

Figure 9: Translation of Figure 8 to MiniML

be used until the end of α. At the end of α, y will have been updated with all the changes
performed on x. In some sense, when we translate x&mutα T := &mutαy

T , we would like to replace y
with the final value pointed to by x. Since we can’t see into the future, we non-deterministically
guess a value for y. Our translation represents mutable borrows as a pair of the current and
final value being borrowed, like in RustHorn[12]. When the borrow is created we assign to y the
final value of the borrow. As the translated program executes, the current value of x is updated.
When the borrow is frozen, we rule out any executions that guessed the wrong final value by
checking that the current and final values are equal.

3.5.1 The MiniML language

MiniML is an extension of µML with non-determinism. The any expression picks an arbitrary
value, and a assume { e } evaluates an assumption e, if it doesn’t reduce to true, then it diverges.
The operational semantics of µML are extended to include these constructs in Appendix J.

〈Expression, e〉 ::= ‘any’ | ‘assume’ ‘{’ e ‘}’ | ...

3.5.2 Translating from MiniMir to MiniML

The translation of µMIR to µML is adapted to MiniMir. When a borrow is created, the borrow
is assigned the current value being borrowed and its final value. In the translation we use two
operators to access borrows defined as: *x , fst x and ^x , snd x.

J`: x&mutα T := &mutαy
T ; goto `’K , fun ` ~a = let x = (y, any) in

let y = ^x in `′ ~a′

When a mutable borrow is made immutable, we use the assume expression to equate its
current value and final value.

J`: immut y&mutα T ; goto `’K , fun ` ~a = assume { *y = ^y}; `′ ~a′

The full translation is presented in Appendix H. In Figure 9, the program of Figure 8 is translated
to MiniML. Instructions with produce no output in the translation are elided entirely.
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3.5.3 Correctness of translation

We now examine the correctness of the translation presented in the previous section. Our safety
theorem has the same structure as in µMIR but because of the non-determinism of MiniML the
notion of safety changes to be programs in which all traces are non blocking.

Theorem 3.5 (Safety). Given a well-typed MiniMir program ` P, if JPK is safe, then P is safe.

The proof of this theorem is structured in the same manner as for µMIR. To establish a
simulation between MiniMir and MiniML we must extend the translation of memory to handle
borrows.

When we define the simulation between MiniMir and MiniML, we find that mutable borrows
cause us a problem. Each time a borrow is created, the translated program must guess the final
value of the borrow, a value which appears nowhere in the memory of the MiniMir program. The
readback must make the correct guess to constrain the traces in the simulation. We simplify this
problem by supposing the existence of a prophecy map, which contains the correct final value for
every pair of borrowed address and type. Using this prophecy map, we can define the readback
of MiniMir as an extension of the heap typing just like with µMIR.

Definition 3.6 (Readback). The readback of Definition 2.9 is extended with support for mutable
and immutable borrows. For each value being readback, it will produce a mapping containing
every sub-value within.

A(a, T ) = v

R†α({givemα (a, T )}, A,∅, a, T, (a, T, v))

R†α(B, A,H, a, T,E)

R†α({giveiα(a, T )} ∪ B, A,H, a, T,E)
A(a, T ) = v

Rn({takeiα(a, T )}, A, {(p, a)}, p, &α T, (p, T, v))

Rn(B, A, {a} /− H,H(a), T, E) A(H(a), T ) = v

Rn(takemα (a, T ) ∪ B, A, {(p, a)}⊕H, p, &mutα T,E + (a, T × T, (E(H(a)), v)))

Definition 3.7 (HeapEnv). The relation HeapEnv shows how to construct an ML environment
from a MiniMir configuration. It uses the heap types of a configuration to readback memory cells
as ML values.

Formally, HeapEnv (B, A,F,H,Γ, E) is a 6-place relation between an activeness, a borrow
store, a prophecy map, a MiniMir frame and heap, a partial typing environment and a MiniML
environment where:

dom(F) = dom(E) H =
⊕

x∈dom(F)

Hx E = {(x, Vx(F (x), T )) | x :n T ∈ Γ}

∀x ∈ dom(F),Rn(Bx, A,Hx,F(x),Γ(x,n), Vx)

It turns out, rather essentially, that the prophecy map we need can be calculated from a
MiniMir trace. To do this, we take a trace and walk it backwards, each time a thaw α is
encountered, the end of a lifetime has been reached. At that moment the values of all variables
that were frozen are readback.

Pf ;l = thaw α

HeapEnv (A,B,F′,H′,Ξf ;`, E)

A′ = A⊕
⊕

giverα(a,T )∈B{E | R†α(B′a, A,H′a, a,Ξf ′;`′(a, •), E)}

McFly∗(A′, 〈[f ; `] | − | F | H〉 →P 〈f ′; `′ | − | F′ | H′ | B′〉, A)
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In order to use McFly∗ we use a simulation between MiniMir traces and MiniML configu-
rations. The simulation relation, ∼P calculates the required prophecy map using McFly∗, and
uses it to ensure that the heap translates to the MiniML environment. At the same time the
code is constrained to be the translation of the initial configuration of the trace.

We structure the proof of Theorem 3.5 using the same three lemmas as before: progress,
terminal configurations and preservation. Using these lemmas, the proof proceeds in the same
manner as Theorem 2.5. The statements of the first two lemmas change to account for the
non-determinism of MiniML but, the structure of their proofs remains the same, thus we leave
them in Appendix I, and focus on the proof of Lemma 3.8.

Lemma 3.8 (Preservation of Simulation). Given a MiniMir trace Θ = C →∗P C ′ and a MiniML
configuration K such that Θ ∼P K, if C →P C ′′, there exists a K ′ such that K → K ′ and
C ′′ →∗P C ′ ∼P K ′.

The general structure of the proof remains unchanged from µMIR, it proceeds by case analysis
on the reductions of MiniMir. The reductions relating to owned values proceed exactly as before,
shuffling information around. Instead, the essential difficulty of this proof comes down to showing
that McFly∗ finds the correct final value for every borrow. The intuition is that once a value is
frozen, it cannot change, and therefore at the moment that we find the prophecy it must have
the same value as when it was frozen.

Consider the case of immut y&mutα T , here we freeze a mutable reference x, the translation of
this gives assume { *y = ^y}; ` ~a. To preserve the simulation, the MiniMir configuration

must reduce to `′ ~a, with memory compatible with the heap. In sum, this means showing that
the final value of x is the same as it’s current value.

By the preservation of heap typing, we observe that when the borrow is frozen, the memory
Hx of x must be transferred back to the variable which was borrowed. To show that McFly∗

found the correct final value, we note that by inversion on McFly∗, the prophecy for x must come
from some future configuration C ′′ of C. We then use Lemma I.6 to show that the memory of
C ′′ can be readout. Finally, since by typing frozen cells of memory cannot change by reduction,
the readout of Hx must be the same at C ′′ as it was at C. Since this value forms the prophecy
for x, it must be the case the the current and final values of the borrow are equal and that the
MiniML program can progress.

The proof is detailed more formally in Appendix I.

4 Experimentation

As further validation of the translation presented in Section 3, we implemented a proof-of-
concept tool as an extension to the Rust compiler. This tool takes Rust programs in their MIR
representation and translates them to WhyML, the specification and programming language of
the Why3 verification suite. The translated programs can then be checked using the Why3 prover
interface. Using this tool we were able to verify simple programs working on structures such as
linked lists.

One of the primary implementation challenges is determining where the thaw should be in
MIR code. The borrow checker of Rust infers a position where it should be inserted but that
information is hidden from other passes. Extracting that information is essential as the safety
of this tool relies on correct placement of thaws to mark the end of lifetimes.

We also took advantage of this tool to test several simple extensions, such as support for pre-
conditions, post-conditions and invariants in code being verified. Each of these is lowered, nearly
directly to the equivalent Why3 constructs. This enabled us to verify the functional correctness
of several programs. A few of these programs are included in Appendix K
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5 Conclusion

During this internship, we developed a schema to verify Rust-like programs by translation to a
functional language. Our source language MiniMir, is translated to MiniML, an ML-like language
with non-determinism. In our translation we represent mutable borrows as pairs of their current
and future values. To prove that our translation is correct, we developed an original simulation
technique between an execution trace and a functional configuration. The proof requires us to
show that we can predict the future values of each borrow, and we show that we can statically
identify points in the program which can be used to predict those values. Finally, we validated
this technique experimentally by implementing this translation as a proof-of-concept tool. Our
tool was able to verify safety properties for simple programs using list operations.

Related Work. The Frama-C[9] tool for C allows the verification of C in the presence of alias-
ing through non-aliasing hypotheses which assert pair-wise non-aliasing of variables. Asserting
that all variables are non-aliasing requires quadratic amounts of hypotheses, which overwhelms
automation like SMT solvers. Other languages like Spark/Ada rule out all aliasing through their
type system. Recent work has been done on how to add aliasing references like in Rust[6].

To verify Rust programs, the team behind Prusti[4] translates programs to a separation
logic with fractional permissions. Currently, their approach is limited in the properties it is
able to prove and their implementation supports a more limited subset of Rust programs than
the approach offered by MiniMir. Another approach is that of RustHorn[12], which translates
programs to Constrained Horn Clauses using the same encoding of mutable references we use.
RustHorn however cannot represent user specifications and can only show that programs don’t
fail assertions. Additionally, their approach of translating to CHCs means that they rely entirely
on automated solvers with no method to allow human guidance.

Future Work. The approach presented in section 3 allows us to verify Rust-style programs
using both mutable and immutable references. However, the proof of correctness is complex using
an original form of simulation. Formalizing this development in Coq would give a much firmer
base for further extensions to the language. The work on RustBelt[8], could serve a starting
point for a Coq formalization, since key lemmas like type safety are already proven on the core
language λRust.

Currently, we have not considered the questions of specification languages for Rust, the
encoding for datatype invariants and ghost code more generally remains an open question. To
put this translation into application and incorporate extensions, the tool developed for this
internship needs to be extended to more gracefully handle real-world Rust programs.
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A Complete Type System of µMIR

Copy(int) Copy(bool) Copy(unit)

Copy(T0) Copy(T1)

Copy(T0 × T1)

Copy(T0) Copy(T1)

Copy(T0 + T1)

y : T ∈ Γ Copy(T )
(copy-val)

Σ; Γ `f xT := copy yT a Γ, x : T

y : box T ∈ Γ Copy(T )
(copy-ref)

Σ; Γ `f xT := copy *yP T a Γ, x : T

(unbox)
Σ; y : box T,Γ `f xT := unbox yboxT a Γ, x : T

(box)
Σ; y : T,Γ `f xboxT := box yT a Γ, x : box T

x : boxT, y : boxT ∈ Γ
(swap)

Σ; Γ `f swap(xP T , yP T ) a Γ

T ∈ {int, unit}
(drop)

Σ;x : T,Γ `f drop xT a Γ

(intro-sum)
Σ; y : Ti,Γ `f xT0+T1:= inji y

T a Γ, x : T0 + T1

(intro-pair)
Σ; y : T0, z : T1,Γ `f xT0×T1:= (yT0, zT1) a Γ, x : T0 × T1

(const-intro)
Σ; Γ `f let x = C a Γ, x : TC

x : bool ∈ Γ
(assert)

Σ; Γ `f assert x a Γ

(op)
Σ; y : int, z : int,Γ `f xT := yintop zint a Γ, x : Top

(elim-pair)
Σ; z : T0 × T1,Γ `f let (xT0, yT1) := zT0×T1 a Γ, x : T0, y : T1

fn g (x0 : T0, ...xn−1 : Tn−1)→ Tn ∈ Σ
(call)

Σ;x0 : T0, .., xn−1 : Tn−1,Γ `f let x = g(x0, .., xn− 1) a Γ, x : Tn

Σ; Ξa `f I a Σ; Ξ`
(sequence)

Σ; Ξ `f,a I; goto `

Ξa = {x : Σretf}
(return)

Σ; Ξa `f,a return x

where Σret f = {Tn | fn g (x0 : T0, ...xn−1 : Tn−1)→ Tn = Σ(f)}

Ξa = x : T0 + T1,Γa Ξ`i = yi : Ti,Γa i ∈ {0, 1}
(match-val)

Σ; Ξ `f,a match xT0+T1{ inj0 y0
T0→ goto `0 , inj1 y1

T1→ goto `1 }
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Ξ` =
⋃
xi : Ti ∀S ∈ ∆,Σ; Ξ; ∆ `f,a S

(function)
Σ,Ξ ` (∆, `, fn g (x0 : T0, ...xn−1 : Tn−1)→ Tn)

Σ = {σ | ∀(∆, `, σ) ∈ P} ∀f ∈ P,Σ ` f
(program)

` P

B Complete Operational Semantics of µMIR

Definition B.1 (Notations). If F is a partial function, and A is a subset of its domain, then
A /− F denotes the domain restriction removing A from the domain of F , and is defined as

A /− F = {(x, v) | (x, v) ∈ F, x 6∈ A}

The operation A⊕B denotes the disjoint union of partial functions, it is only defined when
dom(A)∩dom(B) = ∅. The notation a ⊥ b ( disjoint sets) signifies that a∩ b = ∅. The notation
a0 ⊥ a1 ⊥ .. ⊥ an is used to denote the pairwise disjointness of the sets a0, .., an. The notation
MH(t, s, n) ( memory copy) is a shorthand for copying n cells of H starting at s to addresses
starting at t. It is defined as

MH(t, s, n) = {(t+ i,H(s+ i)) | i ∈ [n]}

The notation [n] is used for the index set {i | 0 ≤ i < n}. The notation [a, b) is used for [b]− [a],
the set representing the right-open interval from a to b

In a program P, the initial configuration is given by 〈main; `0 | ε | ∅ | ∅〉, where `0 is the
entrypoint of main in P. The terminal configurations of P are of the form 〈main; ` | ε | ∅ | ∅〉,
where Pmain,` = return x.

The stack has the following form:

S ::= ε | [f ; `, x,F]; S

As the name implies, it represents the function calls currently being evaluated. Each element
of the stack is a triple composed of a return label, a variable name for the result and a frame
obtained from the caller at the moment the call is performed.

Pf ;` = xT := copy yT ; goto `’ F(y) = a [b, b+ |T |) ⊥ dom(H)

〈f ; ` | S | F | H〉 →P 〈`′ | S | F + {(x, b)} | H +MH(b, a, |T |)〉

Pf ;` = xT := unbox yboxT ; goto `’

[b, b+ |T |) ⊥ dom(H)

A = {a} ∪ [H(a),H(a) + |T |)
〈f ; ` | S | F + {(y, a)} | H〉 →P 〈`′ | S | F + {(x, b)} | A /− H +MH(b,H(a), |T |)〉

Pf ;` = xboxT := box yT ; goto `’ {b} ⊥ [c, c+ |T |) ⊥ dom(H) A = [a, a+ |T |)
〈f ; ` | S | F + {(y, a)} | H〉 →P 〈`′ | S | F + {(x, b)} | A /− H + {(b, c)}+MH(c, a, |T |)〉

Pf ;` = drop xT ; goto `’

〈f ; ` | S | F + {(x, a)} | H〉 →P 〈`′ | S | F | {a} /− H〉
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Pf ;` = assert x; goto `’ H(F(x)) = true

〈f ; ` | S | F | H〉 →P 〈`′ | S | F | H〉

Pf ;` = swap(xP T , yP T ); goto `’ F(x) = a F(y) = b

〈f ; ` | S | F | H〉 →P
〈f ; ` | S | F | ([H(a),H(a) + |T |) ∪ [H(b),H(b) + |T |)) /− H

+MH(H(a),H(b), |T |) +MH(H(b),H(a), |T |)〉

Pf ;` = x := C; goto `’ {a} ⊥ dom(H)

〈f ; ` | S | F | H〉 →P 〈`′ | S | F + {(x, a)} | H + {(a,C)}〉

i = H(a) [b, b+ |Ti|) ⊥ dom(H)

Pf ;` = match xT0+T1{ inj0 y0
T0→ goto `0 , inj1 y1

T1→ goto `1 }

〈f ; ` | S | F + {(x, a)} | H〉 →P
〈`i | S | F + {(yi, b)} | [a, a+ |T0 + T1|) /− H

+MH(b, a+ 1, |Ti|)〉

Pf ;` = xT0×T1:= (yT0, zT1); goto `’

[c, c+ |T0|+ |T1|) ⊥ dom(H)

A = [a0, a0 + |T0|) + [a1, a1 + |T1|)

〈f ; ` | S | F + {(y, a0), (z, a1)} | H〉 →P 〈`′ | S | F + {(x, c)}
| A /− H +MH(c, a0, |T0|) +MH(c+ |T0|, a1, |T1|)〉

Pf ;` = let (xT0, yT1) := zT0×T1; goto `’

A = [c, c+ |T0|+ |T1|)
[a0, a0 + |T0|) ⊥ [a1, a1 + |T1|) ⊥ dom(H)

〈f ; ` | S | F + {(z, c)} | H〉 →P 〈`′ | S | F + {(x, a0), (y, a1)}
| A /− H +MH(a0, c, |T0|) +MH(a1, c+ |T0|, |T1|)〉

Pf ;` = xT0+T1:= inji y
T ; goto `’

s = max(|T0|, |T1|)
A = [a, a+ |Ti|) [b, b+ s+ 1) ⊥ dom(H)

〈f ; ` | S | F + {(y, a)} | H〉 →P 〈`′ | S | F + {(x, b)} | A /− H + (b, i) +MH(b+ 1, a, s)〉

Pf ;` = let x = g(x0, .., xn− 1)

〈f ; ` | S | F + {(yi, ai) | i ∈ [n]} | H〉 →P 〈g | [`, x,F]; S | {(xi, ai) | i ∈ [n]} | H〉

Pf ;` = return x

〈f ; ` | [`′, t,F′]; S | F | H〉 →P 〈`′ | S | F′ + {(y,F(x))} | H〉

C Translation from µMIR to µML

J`: xboxT := box yT ; goto `’K , let x= y in ` ~a

J`: xT := unbox yboxT ; goto `’K , let x= y in ` ~a
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J`: xT := copy yT ; goto `’K , let x= y in ` ~a

J`: xT := copy *yP T ; goto `’K , let x= y in ` ~a

J`: xT := yintop zint; goto `’K , let x = y op z in ` ~a

J`: swap(xP T , yP T ); goto `’K , let (y,x) = (x,y) in ` ~a

J`: drop xT ; goto `’K , (); ` ~a

J`: assert xbool; goto `’K , assert { x }; ` ~a

J`: x:= C; goto `’K , let x= C in ` ~a

J`: x:= g〈..|..〉(x0, ..,xn− 1); goto `’K , let x =f(x0 , ..,x_n) in ` ~a

J`: xT0×T1:= (yT0, zT1); goto `’K , let x = (y,z) in ` ~a

J`: let (xT0, yT1) := zT0×T1; goto `’K , let (x,y) = z in ` ~a

J`: xT0+T1:= inji y
T ; goto `’K , let x = inji z in ` ~a

Jreturn xK , x
u

ww
v

match xT {

inj0 y0
T0→ 0̀

inj1 y1
T1→ 1̀

}}

}

��
~ ,

begin match x with

| inj0 y0 → `0 ~a
| inj1 y1 → `1 ~a
end

JPK , JP0K, ..., JPnK

(∆, `, fn f ~a→ T ) , rec fun f ~a = ` ~a and J∆0K ... and J∆nK

D Proof of simulation preservation for µMIR

Definition D.1 (Simulation Invariant). The relation ∼P between a well-typed µMIR configura-
tion and a µML configuration is defined by the following conditions:

〈f ; ` | − | F | H〉 ∼P 〈JPf ;`,ΓK | E | K〉
K = ret E′ · ... · ret E′′

HeapEnv(F,H,Γ, E)

Proof of Lemma 2.6. The proof proceeds by case-analysis on the transition relation →P . Each
case must shuffle memory around to show that the resulting configuration will readback in a
manner which preserves the simulation.
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Case (intro-pair) Recall that the reduction for introducing a pair is the following: 〈f ; ` | S |
F⊕{(y, a0), (z, a1)} | H〉 →P 〈`′ | S | F⊕{(x, c)} | H′〉
where

A = [a0, a0 + n0)⊕ [a1, a1 + n1)

H′ = A /− H⊕MH(c, a0, n0)⊕MH(c⊕n0, a1, n1)

By inversion on ∼P , K = 〈let x = (y,z) in ` ~a | E | K〉 which reduces to K ′ = 〈` ~a |
E⊕{x, (y, z)} | K〉.
We know that y and z both have a readback judgement. When we translate their memories
to the cells of x, that readback will remain the same. Then it’s simple produce a readback
for R(A /− (H1⊕H2)⊕MH(c, a0, n0)⊕MH(c+n0, a1, n1), c, T1 × T2, (v1, v2)). With this
we can translate the memory of C ′ to the environment of K ′, preserving the simulation.

Case (assert) When when we evaluate an assertion, assert xbool, we know that H(F(x)) =
true. By hypothesis, we know that x can be translated to a µMIR value, which tells us
that E(x) = true. From this we can easily see that the assertion must then also evaluate
to true in µMIR. From this we preserve the simulation.

Case (swap) When we evaluate a swap, we produce from C = 〈[f ; `] | − | F | H〉 a configuration
who’s heap is:

A = [H(a),H(a) + |T |) ∪ [H(b),H(b) + |T |)
H′ = A /− H +MH(H(a),H(b), |T |) +MH(H(b),H(a), |T |)

All this amounts to is that the memories of x and y are each translated to the other’s
position. The readbacks will therefore swap as well. This corresponds to the translation of
the swap which also swaps the two variables in µML, preserving the simulation.

The other cases work in the same manner, memory is translated between cells following
the motion of data in and out of sum and product types.

E Complete Operational Semantics of µML

〈 f e | E | K 〉 −→ 〈 f | E | arg e ·K 〉

〈 v | E | arg e ·K 〉 −→ 〈 e | E | fun v ·K 〉

〈 v | E | fun rec f x = e and ... and g y = e’ ·K 〉 −→
〈 e | [f 7→ rec f x = e and ... and g y = e’, .., g 7→ ...] · E′ | ret E ·K 〉

〈 v | E | ret E′ ·K 〉 −→ 〈 (v, E) | E′ | K 〉

E(x) = (rec f x = e and ... and g y = e’, E′)

〈 v | E | K 〉 −→ 〈 fst E(x) | [x 7→ fst E(x)] · snd E(x) | K 〉
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〈 x | E | K 〉 −→ 〈 E(x) | E | K 〉

〈 let x = e in e’ | E | K 〉 −→ 〈 e | E | let x e′ ·K 〉

〈 v | E | let x e′ ·K 〉 −→ 〈 e’ | [x 7→ (v,E)] · E | K 〉

〈 let (x, y) = e in e’ | E | K 〉 −→ 〈 e | E | unpair x y e′ ·K 〉

〈 (v0 , v1 ) | E | unpair x y e′ ·K 〉 −→ 〈 e’ | [x 7→ (v0, E)] · [y 7→ (v1, E)] · E′ | K 〉

〈 match e with | inj0 x0 → e0 | inj1 x1 → e1 end | E | K 〉 −→
〈 e | E | match x0 e0 x1 e1 ·K 〉

〈 inji v | E | match x0 e0 x1 e1 ·K 〉 −→ 〈 ei | [xi 7→ (v,E)] · E′ | K 〉

〈 (e0 , e1 ) | E | K 〉 −→ 〈 e0 | E | fst e1 ·K 〉

〈 v0 | E | fst e1 ·K 〉 −→ 〈 e1 | E | snd v0 ·K 〉

x, y 6∈ dom(E)

〈 v1 | E | snd v0 ·K 〉 −→ 〈 (x, y) | [x 7→ (v1, E)] · [y 7→ (v2, E
′)] · E | K 〉

〈 inji e | E | K 〉 −→ 〈 e | E | inji ·K 〉

〈 v | E | inji ·K 〉 −→ 〈 inji v | E | K 〉

〈 e0 op e1 | E | K 〉 −→ 〈 e0 | E | leftop op e1 ·K 〉

〈 v0 | E | leftop op e1 ·K 〉 −→ 〈 e1 | E | rightop op v0 ·K 〉

op((v0, E), (v1, E
′)) = r

〈 v1 | E | rightop op v0 ·K 〉 −→ 〈 r | E | K 〉

〈 assert { e } | E | K 〉 −→ 〈 e | E | assert ·K 〉

〈 true | E | assert ·K 〉 −→ 〈 () | E | K 〉

〈 e ; e’ | E | K 〉 −→ 〈 e | E | seq e′ ·K 〉

〈 v | E | seq e′ ·K 〉 −→ 〈 e’ | E | K 〉
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F Complete Type System of MiniMir

y : T ∈ Γ Copy(T )
(copy-val)

Σ; Γ; L `f xT := copy yT a Γ, x : T ; L

y : P T ∈ Γ P ∈ {&mutα, &α, box} Copy(T )
(copy-ref)

Σ; Γ; L `f xT := copy *yP T a Γ, x : T ; L

(unbox)
Σ; y : box T,Γ; L `f xT := unbox yboxT a Γ, x : T ; L

(box)
Σ; y : T,Γ; L `f xboxT := box yT a Γ, x : box T ; L

(borrow-mut)
Σ; y : T,Γ; L `f x&mutα T := &mutαy

T a Γ, x : &mutα T, y :†α T ; L

P ∈ {box, &mutβ} α ≤ β ∈ L
(unnest)

Σ; y : &mutα P T,Γ; L `f x&mutα T := unnest y&mutαP T a Γ, x : &mutα T ; L

P ∈ {&mutα, box} x : P T, y : P T ∈ Γ
(swap)

Σ; Γ; L `f swap(xP T , yP T ) a Γ; L

T ∈ {int, unit, &α}
(drop)

Σ;x : T,Γ; L `f drop xT a Γ; L

(immut)
Σ;x : &mutα T,Γ; L `f immut x a Γ, x : &α T ; L

(intro-sum)
Σ; y : Ti,Γ; L `f xT0+T1:= inji y

T a Γ, x : T1 + T2; L

(intro-pair)
Σ; y : T1, z : T2,Γ; L `f xT0×T1:= (yT0, zT1) a Γ, x : T1 × T2; L

(const-intro)
Σ; Γ; L `f let x = C a Γ, x : TC ; L

x : bool ∈ Γ
(assert)

Σ; Γ; L `f assert x a Γ; L

y : int, z : int ∈ Γ
(op)

Σ; Γ; L `f xT := yintop zint a Γ, x : Top; L

(elim-pair)
Σ; z : T1 × T2,Γ; L `f let (xT0, yT1) := zT0×T1 a Γ, x : T1, y : T2; L

P ∈ {&mutα, &α}
(elim-pair-ref)

Σ; z : P (T1 × T2),Γ; L `f let (ref x, ref y) = z a Γ, x : P T1, y : P T2; L
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∀j, 0 ≤ j < l, βaj ≤ βbj ∈ L ∀i, 0 ≤ i < n+ 1, Ti = T ′i [α0/β0, .., αm−1/βm−1]

fn g〈α0, ..., αm−1 | αa0 ≤ αb0 , ..., αal−1
≤ αbl−1

〉(x0 : T ′0, ...xn−1 : T ′n−1)→ T ′n ∈ Σ
(call)

Σ;x0 : T0, .., xn−1 : Tn−1,Γ; L `f let x = g〈β0,..,βm− 1〉(x0,.., xn− 1) a Γ, x : Tn; L

(sub-lifetime)
Σ; Γ; L `f α ≤β a Γ; L, α ≤ β,L

α 6∈ Σexpf

L′ = L \ {α ≤ β | ∀β, α ≤ β ∈ L}
Γ′ = {thawα(v) | v ∈ Γ}

6 ∃β, β ≤ α ∈ L
∀x :n T ∈ Γ′, α 6∈ lifetimes(T )

(thaw)
Σ; Γ; L `f thaw α a Γ′; L′

where Σexp f is the set of lifetimes that survive the function f .

thawα(v) =

{
x : T v = x :†α T

v otherwise

Σ; Ξa; Λa `f I a Σ; Ξ`; Λ`
(sequence)

Σ; Ξ; Λ `f,a I; goto `

Ξa = {x : Σretf}
(return)

Σ; Ξ; Λ `f,a return x

where Σret f = {Tn | fn g 〈... | ...〉(x0 : T ′0, ...xn−1 : T ′n−1)→ T ′n = Σ(f)}

Ξ`i = yi : Ti,Ξa Λ`i = Λa i ∈ {0, 1}
(match-val)

Σ;x : T0 + T1,Ξa; Λa `f,a

match xT0+T1 {

inj0 yT0
0 → 0̀

inj1 yT1
1 → 1̀

}

Ξi = yi : P Ti,Ξa Λi = Λa i ∈ {0, 1} P ∈ {&mutα, &α}
(match-ref)

Σ;x : P (T0 + T1),Ξa; Λa `f,a

match *xP T0+T1 {

inj0 ref yP T0
0 → 0̀

inj1 ref yP T1
1 → 1̀

}

Ξ` =
⋃
xi : Ti Λ` = {βaj ≤ βbj | ∀j, 0 ≤ j < l} ∀S ∈ ∆,Σ; Ξ `f,a S

fn f〈α0, .., αm−1 | αa0 ≤ αb0 , .., αal−1
≤ αbl−1

〉(x0 : T ′0, .., xn−1 : T ′n−1)→ T ′n
(function)

Σ,Ξ ` (∆, `, σ)

Σ = {σ | ∀(∆, `, σ) ∈ P} ∀f ∈ P,Σ ` f
(program)

` P

G Complete Operational Semantics of MiniMir

The semantics of µMIR are extended with the following rules:
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Pf ;` = immut y&mutα T ; goto `’
(immut)

〈` | S | F | H〉 →P 〈`′ | S | F | H〉

Pf ;` = x&mutα T := &mutαy
T ; goto `’ F(y) = a b 6∈ dom(H)

(borrow-mut)
〈` | S | F | H〉 →P 〈`′ | S | F + {(x, b)} | H + {(b, a)}〉

Pf ;` = x&mutα T := unnest y&mutαP T ; goto `’ b 6∈ dom(H)
(unnest)

〈` | S | F + {(y, a)} | H + {(a, p)}〉 →P 〈`′ | S | F + {(x, b)} | H + {(b,H(p))}〉

Pf ;` = match *x { .. } i = H(a)
(match-ref)

〈` | S | F + {(x, a)} | H〉 →P 〈`i | S | F + {(yi,H(a) + 1)} | H〉

H Translation from MiniMir to µML
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J`: xT := copy *yP T ; goto `’K , let x = *y in ` ~a P ∈ {&α, &mutα}

J`: x&mutα T := &mutαy
T ; goto `’K ,

let x = (y, any) in

let y = ^x in

` ~a

J`: x&mutα T := unnest y&mutαP T ; goto `’K ,
let x = (**y, *^y) in

assume { ^*y = ^^y };

` ~a

P = &mutβ

J`: x&mutα T := unnest y&mutαP T ; goto `’K , let x = (*y, ^y ) in ` ~a P = box

J`: immut y&mutα T ; goto `’K , assume { *y = ^y}; ` ~a

J`: swap(xP T , yP T ); goto `’K ,

let t = *x in

let x = (*y, ^x) in

let y = (t, ^y) in

` ~a

P = &mutαT

, let (y,x) = (x,y) in ` ~a otherwise

J`: thaw α; goto `’K , ()

J`: α ≤β; goto `’K , ()

J`: let (ref xP T0, ref yP T1) := *zP (T0×T1); goto `’K ,

let (xn, yn) = *z in

let (xe, ye) = ^z in

let x = (xn, xe) in

let y = (yn, ye) in

` ~a

P = &mutα

J`: let (ref xP T0, ref yP T1) := *zP (T0×T1); goto `’K , let (x, y) = z P = &α
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match *xT {

inj0 ref y0
P T0→ 0̀

inj1 ref y1
P T1→ 1̀

}

}

��
~ ,

begin match *x with

| inj0 y0 →
let y0 = (y0, any) in

assume { ^x = inj0 ^y0 };

let x = (inj0 ^y0, ^x) in

L0
| inj1 y1 →
let y1 = (y1, any);

assume { ^x = inj1 ^y1 };

let x = (inj1 ^y1, ^x) in

L1
end
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I Proof of simulation preservation for MiniMir

Definition I.1 (Heap Fragment Type for MiniMir). The heap types of MiniMir extend the
judgements of µMIR with a borrow store, checking that every borrow has a source and that they
agree on typing.

B1; H1 |= a :n T1

B2; H2 |= a+ |T1| :n T2

H = H1 + H2

B = B1 + B2

B; H |= a :n T1 × T2

T ∈ {int, bool, unit} c is a constant of type T

∅; {(a, c)} |= a :n T

B; H |= a+ 1 :n Ti

B; H⊕{(a, i)} |= a :n T0 + T1

givemα (a, T );∅ |= a :†α T
B; H |= a :†α T

giveiα(a, T ),B; H |= a :†α T

B; H |= a :n T

takemα (a, T ),B; {(p, a)}⊕H |= p :n &mutα T
takeiα(a, T ); {(p, a)} |= p :n &α T

Theorem I.2 (Type Preservation). Given a well-typed MiniMir configuration C, if C →P C ′,
then C ′ is well-typed.

Proof. The proof proceeds by case-analysis on the reductions of MiniMir. We will show several
cases which illustrate preservation for owned data, mutable borrows and immutable borrows.

Case (intro-pair) Given a configuration C with code xT0×T1:= (yT0, zT1), we know that that
we must have By; Hy |= a0 :· T1, and Bz; Hz |= a1 :· T2. We from this we construct
By + Bz; Hx |= c :· T1 × T2, here dom(Hx) = [c, c + |T0 × T1|). It’s immediately apparent
that when we move the memories of y and z into the cells of Hx, we obtain the desired
heap typing.

Case (borrow-mut) The reduction of C with code x&mutα T := &mutαy
T , adds a new pointer x

holding the address of y to H. By hypothesis we have By; Hy |= a :· T . We need to
produce two new judgements after evaluating this instruction, one for x : &mutα T and one
for y :†α T . To preserve typing we add a pair of tokens giverα(a, T ), takerα(a, T ) to B.
Using these tokens we can construct {giverα(a, T )};∅ |= a :†α T for y and {takerα(a, T )}∪
By; {(p, a)}⊕Hy |= a :· &mutα T .

Case (immut) By hypothesis we have {takerα(a, T )} ∪ Bx; {(p, a)}⊕Hx |= p :· &mutα T . By
the safety of B we know there must be {giverα(a, T )} ∪ By; Hy |= a′ :†α T ′. By inversion,
this judgement must contain the a subtree for {giverα(a, T )};∅ |= a :†α T . We must
transform the judgement for x into one for an immutable reference. We do this by removing
giverα(a, T ), takerα(a, T ) and inserting giveiα(a, T ), takeiα(a, T ) into the borrow store. As
a result the ownership of Hx

Here we give the complete definition of the readback for MiniMir.

Definition I.3 (Readback). The readback of a MiniMir heap constructs a map of address and
type to MiniML value.
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Rn(B1, A,H1, a, T1, E1)

Rn(B2, A,H2, a+ |T1|, T2, E2)
H = H1 + H2

B = B1 + B2

Rn(B, A,H, a, T1 × T2, E1 + E2 + (a, (E1(a), E2(a+ |T1|))))

Rn(B, A,H, a+ 1, Ti, Ei)

Rn(B, A, {(a, i)}⊕H, a, T1 + T2, Ei(a, injiEi(a)))

T ∈ {int, bool, unit} c is a constant of type T

Rn(∅, A, {(a, c)}, a, T, (a, c))

A(a, T ) = v

R†α({givemα (a, T )}, A,∅, a, T, v)

R†α(B, A,H, a, T, v)

R†α({giveiα(a, T )} ∪ B, A,H, a, T, v)
A(a, T ) = v

Rn({takeiα(a, T )}, A, {(p, a)}, p, &α T, v)

Rn(B, A, {a} /− H,H(a), T, E) A(H(a), T ) = v

Rn(takemα (a, T ) ∪ B, A, {(p, a)}⊕H, p, &mutα T,E + (a, (E(H(a)), v)))

Lemma I.4 (Progress). Given a MiniMir trace C →∗P C ′ and a MiniML configuration K such
that C →∗P C ′ ∼P K, if K is not stuck then C is not stuck.

Lemma I.4. The proof proceeds by case analysis on the reductions of MiniML. In each step we
exploit our hypothesis HeapEnv(F,H,Γ, E) to show that the MiniMir heap must be well-formed
and allow reduction. In the case of assertions we note that for the MiniML assertion to evaluate
to true, the readback requires the MiniMir heap to also hold true.

Lemma I.5 (Terminal Configurations). Given a terminal MiniML configuration K, for any
MiniMir trace Θ such that Θ ∼P K, then Θ = C 6→P and C terminal.

Proof. The only terminal configurations for MiniML possible with the simulation are those in
relation with return instructions inside the main function of the MiniMir program.

Lemma I.6. If R†α(Bx, A,Hx,F(x), T, Vx), then for all R•(B′x, A′,H′x,F(x), T, V ′x), dom(Vx) ⊆
dom(V ′x).

Proof. By induction over the type T we observe that when we perform a readback with a frozen
activeness †α we will leave out subtrees of the active readback.

Definition I.7 (McFly). The McFly relation calculates the required prophecies from a MiniMir
trace.

Pf ;l = thaw α

HeapEnv (A,B,F′,H′,Ξf ;`, E)

A′ = A⊕
⊕

giverα(a,T )∈B{E | R†α(B′a, A,H′a, a,Ξf ′;`′(a, •), E)}

McFly∗(A′, 〈[f ; `] | − | F | H〉 →P 〈f ′; `′ | − | F′ | H′ | B′〉, A)

At the end of a trace we may still have active borrows (if the trace is stuck), to handle this
situation, we perform a readback of each borrowed variable. During this readback we do not
require the heap to be separated, which avoids the need for any prophecies by allowing cells to be
reused in several readbacks.
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McFly∗(A, C →∗P C ′, E) E =
⊕
Ea

∀giverα(a, T ) ∈ B,∃Ha ⊆ H,Ba ⊆ B,R·(Ba,∅,Ha, a, T,Ea)

McFly(A,C →∗P 〈f ; `′ | − | F | H〉)

Lemma I.8. Given a trace of well-typed MiniMir configurations Θ and a prophecy map A such
that McFly(A,Θ), then HeapEnv (A,B,F,H,ΞΘ0

, E).

Proof. We find ourselves required to prove that for all variables in the frame of the initial configu-
ration Θ0 we have a readback. We prove this by induction on the type of the variable. Whenever
we encounter a borrow, we must show that there is a prophecy in A for this borrow. By inversion
on McFly, either there is a thaw for the lifetime of the borrow and we have a prophecy, or it is
active until the end of the trace and we must also have a prophecy. Using this we can construct
the readback for every variable and thus translate the heap to an environment.

Definition I.9 (Simulation Relation). The relation ∼P between a well-typed MiniMir trace Θ
and a Krivine configuration is defined by the following conditions:

Θ = 〈f ; ` | S | F | H | B〉 →∗P C ∼P 〈JPlK | E | K〉
HeapEnv (A,B,F,H,Ξ`, E)

K = ret E′ · ... · ret E′′

McFly(A, 〈f ; ` | S | F | H | B〉 →∗P C)

Lemma 3.8. The proof proceeds by case-analysis on the reduction C →P C ′. The cases related
to owned data ((intro-pair), (constant)) proceed like in µMIR. The most interesting cases of
this proof are those for creating and freezing a borrow.

Case (borrow-mut) To preserve our simulation, we must ensure that the translated code re-
duces properly to the next label and that the resulting memories stay linked by HeapEnv.
Because we create a new borrow, to have a readback, we need a prophecy map which in-
cludes this new borrow. We get this by Lemma I.8, we know that there must be a prophecy
for the borrowed variable.

Case (immut) As a reminder, the operational semantics tell us that the operation is a no-op.
The translation of immut gives us

K = 〈assume { * x = ^ x }; `′ ~a | E | K〉

To preserve the simulation, the machine must reduce the assume, which means proving that
*x = ^x.

Let F(x) = a, by inversion on the HeapEnv, we know that there is Hx, Vx,Bx such that
R•(takemα (a, T ) ∪ Bx, A,Hx, a, &mutαTx, Vx) so, E(x) = (Vx(H(a), Tx), A(H(a), Tx)). By
the safety of B, there must be a variable y which consumes givemα (a, T ), by assigning y the
memory Hx in C ′, we can preserve the existence of the readback.

Let R†α(By,Hx,F(y), T, Vy,) be the readback of y in C ′. We know that (H(a), Tx) ∈
dom(Vy).

Let C ′′ be either the first configuration in Θ such that Pf ;`′′ = thaw α or the last con-
figuration of Θ. By applying Lemma I.8, we know that C ′′ must have a readback.
Since (H(a), Tx) ∈ dom(Vy), by Lemma I.6, (H(a), Tx) must be included in the read-
back of y at C ′′. This means that by inversion on the readback of C ′′, there must be a
R†α(B′x, A′,H′x,H(a), Tx, V

′
x).
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Because we froze all the memory associated with H(a) at C, we know that B′x ⊆ Bx and
Hx ⊆ H′x. By typing we know that Bx can only have immutable give and take tokens.
Since that means we control all the memory, Hx = H′x. Finally since A′ ⊆ A, it must be
that V ′x = Vx.

All of this allows us to conclude that ^x = A(H(a), Tx) = V ′x(H(a), Tx) = Vx(H(a), Tx) =
* x, so K reduces to K ′ = 〈`′ ~a | E′ | K〉, preserving the simulation.

J Operational Semantics of MiniML

MiniML extends µML with the following continuations

K ::= assume | ...

and the following reductions.

〈 assume { e } | E | K 〉 −→ 〈 e | E | assume ·K 〉

〈 true | E | assume ·K 〉 −→ 〈 () | E | K 〉

〈 false | E | assume ·K 〉 −→ 〈 false | E | assume ·K 〉

〈 any | E | K 〉 −→ 〈 v | E | K 〉

K Example programs run on Proof-of-Concept tool

pub struct List {

val: u32 ,

next: Option <Box <List >>,

}

pub fn index_mut(mut l: &mut List , mut ix: usize) -> &mut u32 {

while ix > 0 {

match l.next {

Some(ref mut n) => {

l = n;

}

None => std:: process ::abort(),

}

ix -= 1;

}

&mut l.val

}

pub fn write(l: &mut List , ix: usize , val: u32) {

*index_mut(l, ix) = val;

}
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fn main() {

let mut l = List {

val: 1,

next: Some(Box::new(List {

val: 10,

next: None ,

})),

};

write(&mut l, 0, 2);

let l2 = List {

val: 2,

next: Some(Box::new(List {

val: 10,

next: None ,

})),

};

assert(l, l2);

}

#[ derive(PartialEq , Eq, Debug)]

pub struct List {

head: Option <Box <Node >>,

}

#[ derive(PartialEq , Eq, Debug)]

pub struct Node {

val: u32 ,

next: Option <Box <Node >>,

}

pub fn rev(l: &mut List) {

let mut prev = None;

let mut head = l.head.take ();

while let Some(mut curr) = head {

let next = curr.next;

curr.next = prev;

prev = Some(curr);

head = next;

}

l.head = prev;

}

fn main() {

let mut l1 = List {

head: Some(Box::new(Node {

val: 1,

next: Some(Box::new(Node {

val: 10,

next: None ,

})),
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})),

};

rev(&mut l1);

let l2 = List {

head: Some(Box::new(Node {

val: 10,

next: Some(Box::new(Node { val: 1, next: None })),

})),

};

assert_eq!(l1, l2);

}
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