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Abstract. The surface-atom Casimir-Polder-Lifshitz force out of thermal
equilibrium is investigated in the framework of macroscopic electrodynamics.
Particular attention is devoted to its large distance limit that shows a new,
stronger behaviour with respect to the equilibrium case. The frequency shift
produced by the surface-atom force on the the center-of-mass oscillations of a
harmonically trapped Bose-Einstein condensate and on the Bloch oscillations of
an ultra-cold fermionic gas in an optical lattice are discussed for configurations
out of thermal equilibrium.

PACS numbers: 03.75.Kk, 67.40.Db, 77.22.-d, 78.20.-e

1. Introduction

The electromagnetic force felt by a neutral atom near the surface of a substrate
has been object of an intense investigation since the pioneering works by Casimir
and Polder [1] and Lifshitz, Dzyaloshinskii and Pitaevskii [2, 3]. In addition to
the fundamental character of the force, these studies [4] are presently motivated by
the possibility of technological applications [5], by searching stronger constrains on
hypothetical non Newtonian forces [6] as well as its role in biological systems [7].

New perspectives to study such a force are opened by the recent development
in storing and manipulating ultra-cold atoms. Indeed experimental and theoretical
research has been recently focused on the forces acting on ultra-cold atomic gases due
to the presence of a nearby surface. They include atomic beams [8], Bose-Einstein
condensates [9, 10, 11] and degenerate Fermi gases [12].

The surface-atom force at thermal equilibrium F eq(T, z) can be in general
separated in two parts

F eq(T, z) = F0(z) + F eq
th (T, z). (1)

The first one, F0(z), is related to zero-point fluctuations (T = 0) of the electromagnetic
field. At short distances z this force behaves like 1/z4 and is the analog of the van
der Waals-London inter-atomic force. At larger distances the inclusion of relativistic
retardation effects gives rise to the Casimir-Polder asymptotic behaviour [1, 3]

F0(z)z→∞ = −3

2

h̄cα0

πz5
ε0 − 1

ε0 + 1
φ(ε0), (2)
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where α0 and ε0 are the static polarizability of the atom and the static dielectric
function of the substrate respectively. The function φ(ε0) ∼ 1 is defined, for example,
in [9]. The second contribution to the force, F eq

th (T, z), is due to the thermal
fluctuations of the electromagnetic field. This contribution was first considered by
Lifshitz [13] who applied the theory of electromagnetic fluctuations developed by Rytov
[14]. At large distances the thermal contribution approaches the so-called Lifshitz law

F eq
th (T, z)z→∞ = −3

4

kBTα0

z4
ε0 − 1

ε0 + 1
. (3)

Such asymptotic behaviour is reached at distances larger than the thermal wavelength
λT = h̄c/kBT , corresponding to ∼ 7.6 µm at room temperature. Thus it is the leading
contribution to the total force.

The Lifshitz force was originally evaluated at thermodynamic equilibrium. A
non-trivial issue is the study of such a force out of thermal equilibrium, characterizing
configurations where the temperature of the substrate TS and environment TE, do
not coincide. For instance in typical experiments with ultra-cold atomic gases the
environment temperature is determined by the chamber containing the substrate and
the trapped atoms.

In this paper we describe the surface-atom force out of thermal equilibrium and
how to recover its asymptotic behaviour at large distances. We assume that the
radiation surrounding the atom is not able to populate its internal excited states
which are assumed to be at energies h̄ωat much higher than the thermal energy:

kBTS, kBTE ≪ h̄ωat . (4)

This condition is very well satisfied at ordinary temperatures (for example the first
optical resonance of Rb atoms corresponds to 1.8 104K). In the last part of the paper
we analyze the effects of such a force on cold atoms, and in particular on the center-
of-mass motion of a trapped Bose-Einstein condensate and on the Bloch oscillations
of ultra-cold fermionic atoms in an optical lattice.

2. Green-function formalism

In the calculation of the surface-atom force the main ingredient is clearly the
electromagnetic field and its sources. The latter, in our approach, are treated as point-
like oscillating dipoles. Furthermore it is useful to write the fields using the Green’s
function formalism, the Green’s function being the solution of the wave equation for
a point-like source. Once this solution is known, the solution due to a general source
can be obtained by the principle of linear superposition. The dyadic Green function
G describing the electromagnetic field in surface optics (for isotropic, linear and non-
magnetic media) is the solution of the equation

∇ ∧∇ ∧G[ω; r, r′]− k2ε(ω; r)G[ω; r, r′] = 4πk2Iδ(r− r′), (5)

with the boundary conditions imposed by the geometry of the problem. In previous
equation k = ω/c is the vacuum wavenumber, ε(ω; r) is the dielectric function and I

is the identity dyad. Equation (5) comes from the usual wave equation for the Fourier
transformed electric field

∇ ∧∇ ∧E[ω; r]− k2ε(ω; r) E[ω; r] = 4πk2P[ω; r], (6)

obtained from the macroscopic Maxwell equations in which the sources are described
by the effective electric polarization field P[ω; r] related to the electric current by



Surface-atom force out of thermal equilibrium and its effect on ultra-cold atoms 3

J[ω; r] = −iωP[ω; r]. The convolution of the solution obtained from Eq.(5) and the
effective electric polarization gives the electric field at the observation point r

E [ω; r] =

∫

G [ω; r, r′] ·P [ω; r′] dr′. (7)

3. Surface-atom force

Let us consider the atom described by its complex dielectric polarizability function
α(ω) = α′(ω) + iα′′(ω) in a vacuum half space V1 and placed at a distance z from the
surface of the dielectric half space V2. Let us choose an orthogonal coordinate system
with the xy plane coincident with the interface and the z axis such that the dielectric
occupies the region with z < 0 and the vacuum the region with z > 0. The force
acting on a neutral atom without a permanent electric dipole moment is [15]

F(r) =
〈

dtoti (t)∇′Etot
i (r′, t)

∣

∣

∣

r

〉

≈
〈

dindi (t)∇′Efl
i (r

′, t)
∣

∣

∣

r

〉

+
〈

dfli (t)∇′Eind
i (r′, t)

∣

∣

∣

r

〉

, (8)

where di’s are the atomic electric dipole components, we have used the Einstein’s
summation convention for repeated indices and ∇′ ≡ ∇r

′ . In Eq.(8) the average is
done with respect to the state of the atom and of the field and the lowest order in
perturbation theory has been considered. The first term describes the (spontaneous
and thermal) field fluctuations correlated with the induced dipole, and the second
term involves (spontaneous and thermal) dipole fluctuations correlated to the field
they induce. The induced electric dipole for the atom at the position r is

dind[ω] = α(ω) Etot[ω; r] ≈ α(ω) Efl[ω; r], (9)

where Efl[ω; r] is the fluctuating field, and now α(ω) is the atomic polarizability of
the atom in an unbounded space. By modeling the atom as a point-like source dipole
d(t) = d[ω]e−iωt at r, the corresponding polarization in the frequency domain is
P[ω, r′′] = d[ω] δ(r′′ − r), and the electric field at the position r′ is

Eind[ω; r′] = G[ω; r′, r] · dtot[ω] ≈ G[ω; r′, r] · dfl[ω]. (10)

Using Eq. (9) and (10), the fluctuating dipole and field contributions to the surface-
atom force (8) read
〈

dindi (t)∇′Efl
j (r

′, t)
∣

∣

∣

r

〉

=

∫ ∫

dω

2π

dω′

2π
e−i(ω−ω′)tα(ω) ∇′

〈

Efl
i [ω; r]E

fl†
j [ω′; r′]

〉 ∣

∣

∣

r

, (11)

〈

dfli (t)∇′Eind
j (r′, t)

∣

∣

∣

r

〉

=

∫ ∫

dω

2π

dω′

2π
e−i(ω−ω′)t∇′G∗

jk[ω; r
′, r]

∣

∣

∣

r

〈

dfli [ω]d
fl†
k [ω′]

〉

, (12)

where the integrations are over the whole real frequency axis.

4. Surface-atom force at thermal equilibrium

At thermal equilibrium, in order to calculate the average values in (11) and (12),
it is possible to use the fluctuation dissipation theorem [14, 16]. One finds for the
fluctuating dipoles

〈

dfli [ω] d
fl†
j [ω′]

〉

=
4πh̄ δ(ω − ω′) δij
1− e−h̄ω/kBT

α′′(ω), (13)

and for the fluctuating fields
〈

Efl
i [ω; r] E

fl†
j [ω′; r′]

〉

=
4πh̄ δ(ω − ω′)

1− e−h̄ω/kBT
Im Gij [ω; r, r

′]. (14)
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After substituting the previous equalities into Eq.(11) and (12) and using the
reciprocity theorem Gij [ω; r, r

′] = Gji[ω; r
′, r], the surface-atom force at thermal

equilibrium becomes

F eq(T, z) =
h̄

π

∫ ∞

0

dω coth

(

h̄ω

2kBT

)

Im
[

α(ω) ∂z Gii[ω; r, r
′]
∣

∣

∣

r

]

. (15)

Because of the relation coth (h̄ω/2kBT ) = 1 + 2n̄ (ω/T ), where n̄ (ω/T ) = (eh̄ω/kBT −
1)−1 is the Bose factor, one can separate in Eq.(15) the zero-point fluctuations
contribution F0(z) from the thermal contribution F eq

th (T, z). The latter term is the
sum of two contributions arising from the two terms of Eq.(8). The first one is due
to the field fluctuations and it is linear in α′. The second one arises from the dipole
fluctuations and it is linear in α′′. As long as the condition (4) is valid, the field
fluctuations contribution is the leading term in F eq

th (T, z).

5. Surface-atom force out of thermal equilibrium

A first important investigation of the surface-atom force out of thermal equilibrium
was carried out by Henkel et al. [15] who calculated the force generated by a dielectric
substrate at finite temperature by assuming that the environment temperature is zero.
The principal motivation of that paper was the study of the force at short distances.

In this section we analyze the general case of an atom placed in vacuum at a
distance z from the flat surface of a substrate that we assume to be locally at thermal
equilibrium at a temperature TS which can be equal or different from the environment
temperature TE, the global system being in or out of thermal equilibrium respectively,
but in a stationary regime [17, 18]. In this configuration it is relatively easy to describe
the radiation produced by the flat substrate,while it is less trivial to describe the
radiation coming from the environment. To face this problem we use the Lifshitz trick
[2] for which the vacuum half space is assumed to be a dielectric locally at thermal
equilibrium with temperature TE, by introducing an infinitesimal imaginary part of
its dielectric function. Using the fluctuation dissipation theorem and after integrating
over an infinite volume the vacuum half space produces a radiation corresponding to
the one that in a real systems is generated by the environment walls at TE.

We refer to the substrate as to the half space 2 occupying the volume V2 with
z < 0, with dielectric function ε2(ω) = ε′2(ω) + iε′′2(ω) and in thermal equilibrium at
the temperature TS. The vacuum half space 1 instead occupies the volume V1 with
z > 0 and is characterized by a dielectric function ε1(ω) = ε′1(ω) + iε′′1(ω) and a
temperature TE. Only after calculating the electric fields in this configuration we set
ε1(ω) = 1.
As well as for the thermal equilibrium case, the surface-atom force out of thermal
equilibrium can be written as

F neq(TS, TE, z) = F0(z) + F neq
th (TS, TE, z), (16)

where the thermal contribution F neq
th (TS, TE, z), provided the condition (4) is satisfied,

is dominated by the thermal part of the fluctuating fields correlation (11) only, as at
thermal equilibrium‡.
The physical origin of the electromagnetic field is [14] the random fluctuating

‡ It is worth noticing that since zero-point fluctuations are not affected by condition (4), in the
calculation of the zero temperature force F0(z) both dipole zero-point fluctuations (13) and field
zero-point fluctuations (14) are needed.
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polarization field P[ω; r], whose correlations, at thermal equilibrium, are described
by the fluctuation dissipation theorem

〈Pk[ω; r]P
∗
l [ω

′; r′]〉 = δ(ω − ω′)δ(r − r′)δkl h̄ ε′′(ω)

1− e−h̄ω/kBT
. (17)

Since the correlations of the source polarization field are local, the fluctuations of the
sources at different points add up incoherently. Therefore we can assume that in the
whole space the correlations of the sources are given by equation (17), valid for source
dipoles in the the two half-spaces assumed to be locally at thermal equilibrium at two
different temperatures [20]. In order to calculate the field correlation function (11)
we express the electromagnetic field in terms of its source polarization field via Eq.
(7), and using the Eq. (17) we write the thermal part of the surface-atom force out
of thermal equilibrium as

F neq
th (TS, TE, z) = F neq

th (TS, 0, z) + F neq
th (0, TE, z), (18)

where the first thermal contribution

F neq
th (TS, 0, z) =

h̄

2π2

∫ ∞

0

dω
ε′′2(ω)Re

[

α(ω)
∫

V2

Gik[ω; r, r
′]∂zG

∗
ik[ω; r, r

′] d3r′
]

eh̄ω/kBTS − 1
(19)

arises from the sources in the substrate V2, while the second one

F neq
th (0, TE, z) =

h̄

2π2

∫ ∞

0

dω
ε′′1(ω)Re

[

α(ω)
∫

V1

Gik[ω; r, r
′]∂zG

∗
ik[ω; r, r

′] d3r′
]

eh̄ω/kBTE − 1
(20)

is produced by the sources in the vacuum half space V1 §. It is possible to show that
the sum of Eq.(19) and (20), at the same temperature, reproduce the thermal part of
the force at thermal equilibrium [18]. Indeed it is possible to apply to the whole space
the Green’s functions property (see, for example, [19])

∫

Ω

dr ε′′(r, ω) Gik[ω; r1, r]G
∗
jk [ω; r2, r] = 4πIm Gij [ω; r1, r2], (21)

where the integration is on the volume Ω such that on its surface the Green function is
zero. Than we can express the complete surface-atom force out of thermal equilibrium
in the convenient form

F neq(TS, TE, z) = F eq(TE, z) + F neq
th (TS, 0, z)− F neq

th (TE, 0, z), (22)

where the equilibrium force F eq(T, z) is given by (1) and F neq
th (T, 0, z) is defined by

Eq.(19). Consistently with the assumption (4), in deriving the thermal part of Eq.(22)
we ignored terms proportional to the imaginary part of the atomic polarizability. For
the same reason the wind contribution in Eq.(19) and (20), related to α′′, can be
ignored and the real part α′(ω), corresponding to the dispersive contribution, can be
replaced with its static (ω = 0) value α0. In this non-absorbing condition the force of
Eq.(18) can be also written in the form F neq

th (TS, TE, z) = 4πα0∂zUEl(TE, TS, z) where
UEl =

〈

E(z, t)2
〉

/8π is the thermal component of the electric energy density at the

§ The Green function Gik then reduces respectively to its transmitted component in Eq.(19) [21]
and to its incident, reflected and local component in Eq.(20) [18].
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Figure 1. Surface-atom force F neq(z) calculated from Eq.(22), for different
thermal configurations.

atom position.
After some lengthy algebra we find for Eq.(19) the relevant result

F neq
th (T, 0, z) = −2

√
2h̄α0

π c4

∫ ∞

0

dω
ω4

eh̄ω/kBT − 1

∫ ∞

1

dq q e−2z
√

q2−1ω/c
√

q2 − 1

×
√

|ε(ω)− q2|+ (ε′(ω)− q2)







1
∣

∣

∣

√

ε(ω)− q2 +
√

1− q2
∣

∣

∣

2+

(

2q2 − 1
)

(q2 + |ε(ω)− q2|)
∣

∣

∣

√

ε(ω)− q2 + ε(ω)
√

1− q2
∣

∣

∣

2






, (23)

where we introduced the dimensionless variable q = Kc/ω, with K the modulus of the
electromagnetic wave-vector component parallel to the interface, and ε(ω) ≡ ε2(ω).
In Figure 1 we show the explicit results for the full force obtained from Eq.(22)
as a function of the distance from the surface for different choices of TS and TE.
The calculations have been performed for a sapphire substrate (ε0 = 9.41) and for
87Rb atoms (α0 = 47.3 10−24 cm3). For F eq(T, z) we have used the predictions of
[9]. The figure clearly shows that the thermal effects out of equilibrium are sizable
(solid lines), thereby providing promising perspectives for future measurements of
the surface-atom force at large distances. To increase the attractive nature of the
force it is much more convenient to heat the substrate by keeping the environment
at room temperature (lower solid line) rather than heating the whole system (dashed
line). When TS < TE (upper solid line) the force exhibits a characteristic change of
sign reflecting a repulsive nature at large distances (see also discussion below). At
short distances the thermal correction to the force becomes smaller and smaller and is
determined by the temperature of the substrate. The new effects are visible already
at distances z = 4÷ 7µm, where experiments are now becoming available [10].
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6. New asymptotic large distance limit

In this section we discuss in details the large z behaviour [17] of the out of equilibrium
force (22). After the substitution q2 − 1 = t2, Eq.(23) becomes

F neq
th (T, 0, z) = −2

√
2h̄α0

π c4

∫ ∞

0

dω
ω4

eh̄ω/kBT − 1

∫ ∞

0

dt t2 e−2ztω/c f(t, ω), (24)

where

f(t, ω) =
√

|ε(ω)− 1− t2|+ (ε′(ω)− 1− t2)







1
∣

∣

∣

√

ε(ω)− 1− t2 + it
∣

∣

∣

2+

(

2t2 + 1
)

(1 + t2 + |ε(ω)− 1− t2|)
∣

∣

∣

√

ε(ω)− 1− t2 + iε(ω)t
∣

∣

∣

2






. (25)

Due to the presence of the exponential e−2ztω/c in Eq.(24), it is possible to show that
only the region t ≪ 1 contribute to the large z behaviour of the force that in such
limit exhibits the non trivial asymptotic behaviour

F neq
th (T, 0, z)z→∞ = −

√
2h̄α0

z32πc

∫ ∞

0

dω
ω

eh̄ω/kBT − 1
f (ω) . (26)

This force exhibits a slower 1/z3 decay with respect to the one holding at thermal
equilibrium where it decays like 1/z4 (see Eq. (3)). In the above equation we have
introduced the low t expansion of Eq.(25)

f (ω) =
√

|ε(ω)− 1|+ [ε′(ω)− 1]
2 + |ε(ω)− 1|
|ε(ω)− 1| . (27)

Result (26) and (27) provide the large distance behaviour (z → ∞) of the force (23)
where the only assumption made was the condition (4). Due to the presence of the Bose
factor the force (26) depends on the optical properties of the substrate at frequencies
of the order of ∼ kBT/h̄.

For temperatures much smaller than h̄ωc/kB, where ωc is the lowest characteristic
frequency of the dielectric substrate, only the static value of the dielectric function is
relevant and so we can replace f(t, ω) with its low frequency limit in Eq.(24). In this
limit f(t, ω → 0) is different from zero only for 0 < t <

√
ε0 − 1, and after the t ≪ 1

expansion Eq.(24) becomes

F neq
th (T, 0, z)z→∞ = − h̄α0

z32πc

ε0 + 1√
ε0 − 1

∫ ∞

0

dω
ω

eh̄ω/kBT − 1

∫ 2z
√
ε0−1ω/c

0

du u2e−u, (28)

where we performed the change of variable u = 2ztω/c and replaced f(t, ω → 0) with
its t ≪ 1 expansion

√
2(ε0 + 1)/

√
ε0 − 1. For

z ≫ λT√
ε0 − 1

, (29)

where λT = h̄ω/kBT is the thermal wavelength, we can extend the upper limit
of integration on u to +∞ and so we obtain that the force (22) felt by the atom
approaches the asymptotic behaviour

F neq(TS, TE, z)z→∞ = −π

6

α0k
2
B(T

2
S − T 2

E)

z3 ch̄

ε0 + 1√
ε0 − 1

. (30)
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Result (30) holds at low temperature with respect to the first dielectric function
resonance (T ≪ h̄ωc/kB) and at distances satisfying the condition (29) calculated
at the relevant temperatures TS and TE. Eq.(30) shows that, at large distances, the
new force is attractive or repulsive depending on whether the substrate temperature
is higher or smaller than the environment one. Furthermore, it exhibits a stronger
temperature dependence with respect to equilibrium force (3), contains explicitly the
Planck constant and has a 1/z3 distance dependence‖.

The new dependence of F neq(T, 0, z) on temperature and distance can be
physically understood by noticing that the main contribution to the z dependent
part of the electric energy UEl arises from t ≪ 1. Such values of t correspond to the
component of the black-body radiation impinging on the surface from the dielectric
side in a small interval of angles, of order of (λT/z)

2, near the angle of total reflection.
This radiation creates slowly damping evanescent waves in vacuum. As a result
F neq(T, 0, z) turns out to be, in accordance with Eq.(30), of order of −(α0λ

2
T/z

3)UBB,
where UBB ∝ T 4 is the energy density of the black-body radiation.

Equation (30) holds for a dielectric substrate where ε0 is finite. If we want to
find the large distance limit for a metal we should use equation (26). In the limit
of small values of T we can use the Drude model. As only frequencies ω ∼ kBT/h̄
contribute, one can substitute in Eq.(27) ε′′(ω) = 4πσ/ω ≫ 1, the real part ε′(ω)
remaining finite as ω → 0. Than one finds f (ω) →

√

ε′′(ω) = 2
√

πσ/ω, where σ is
the electric conductivity, so that for a Drude metal Eq.(30) is replaced by

F neq(TS, TE, z)z→∞ = −α0ζ(3/2)
√
σ k

3/2
B (T

3/2
S − T

3/2
E )

z3 c
√
2h̄

, (31)

where ζ(3/2) ∼ 2.61 is the Riemann function. It is easy to show that Eq.(31) is valid
at the condition

z ≫ h̄3/2c
√
4πσ/(kBT )

3/2. (32)

7. Effects of the surface-atom force on ultra-cold atoms

Ultra-cold gases can provide a useful probe of the surface-atom force. A mechanical

tool sensitive to the gradient of the surface-atom force is in fact the frequency shift
of the center-of-mass oscillation of a trapped Bose-Einstein condensate [9, 10]. On
the other hand, experiments based on Bloch oscillations are interferometric tools
sensitive to the force itself [23, 12]. Finally one could also think to interference
experiments involving the macroscopic phase of Bose-Einstein condensates in a double
well potential [24, 25]. The position of the corresponding interference fringes are
sensitive to the surface-atom potential. In the last part of this paper we discuss the
first two above mentioned experiments.

7.1. Effects on the collective oscillations of a trapped BEC

Bose-Einstein condensed gases [26] are very dilute, ultra-cold samples characterized
by unique properties of coherence and superfluidity. The study of the collective
oscillations [27] of a Bose-Einstein condensate provides a useful probe of the surface-
atom potential. In fact it is possible to measure with great accuracy the frequency

‖ Instead of calculating the asymptotic behaviour (30) of the force from the general equation (23),
it is possible to produce a more direct derivation assuming from the very beginning that one can
neglect absorption and dispersion of the dielectric function of the substrate [22].
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Figure 2. (a) Relative frequency shift (33) of the center-of-mass oscillation of a
BE condensate (Rz = 2.5µm, ωz/2π = 220Hz) and (b) relative shift of the Bloch
oscillation period of a degenerate Fermi gas (34), out of thermal equilibrium (16).

of the center-of-mass motion ωCM of a condensate. For a harmonically trapped
condensate the frequency ωCM corresponds to the harmonic trap frequency ωz, where
z is the direction of the oscillations. Thus if a BEC in a harmonic trap is placed at
distance d from the surface of a substrate, the surface-atom potential Vs−a(z) perturbs
the trap potential and produces a shift in ωCM. In the limit of small oscillations (for
a complete analysis see [9]), such a shift is

ω2
CM = ω2

z +
1

m

∫ +Rz

−Rz

dz nz
0(z) ∂

2
zVs−a(z + d), (33)

where nz
0(z) is 1D column density of the gas (density integrated over the directions

perpendicular to the direction of oscillation) and Rz is the Thomas-Fermi radius in
the z direction¶. Therefore measuring ωCM it is possible to extract the surface-atom
potential Vs−a(z) [9, 10].

In fig. 2(a) we plotted, as a function of the surface-condensate separation d, the
relative frequency shift ∆ωCM/ωz = (ωz −ωCM)/ωz for the center-of-mass oscillations
of a 87Rb condensate close to a sapphire substrate. In such a calculation we used the
surface-atom potential corresponding to the force (22).

7.2. Effects on Bloch oscillations in Fermi gases

When an external force Fext is applied to a particle trapped in a periodical potential,
the particle undergoes oscillations in momentum space (the Bloch oscillations). During
this oscillations the particle quasi-momentum q evolves according to h̄q̇ = Fext. This
is what happens for example in a sample of ultra-cold atoms trapped in a 1D optical
lattice aligned along the vertical direction. Bloch oscillations produced by the effect
of the gravity force FG = mg have a period TB = 4πh̄/mgλ where λ is the lattice
wave-length and g is gravity acceleration. If now a surface is brought close to the
atomic sample the additional surface-atom force Fs−a(z) perturbs the gravitational
potential and affects the dynamics of the Bloch oscillations (for a complete analysis

¶ For a Bose-Einstein condensate in its ground state the 1D column density is easily evaluated in
the so called Thomas-Fermi approximation where nz

0
(z) = 15(1 − z2/R2

z)
2/16Rz [26].
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see [12, 23]). In particular it produces a shift of the period TB. In figure 2(b) we
plotted the relative shift ∆TB/TB for different thermal configuration as the distance
d between the center of a cloud of 40K fermionic atoms (α0 = 4.3 10−23cm3) and the
surface of a sapphire substrate is varied. We used also the approximation of a small
cloud of Fermi atoms, for which

∆TB

TB
= −Fs−a(d)

mg
. (34)

In the range of distances plotted in fig. 2(b) this approximation provides results in
good agreement with the exact calculation [12] that takes into account real experi-
mental parameters of the gas.

It is worth noticing that both effects of the surface-atom force out of thermal
equilibrium described in the last section, and plotted in Figures 2(a) and 2(b), are in
the domain of the present experimental accuracy [10, 23].
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