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Abstract 

The decentralised control of multicellular converters is an alternative to the usual control techniques. Multicellular converters 

use interleaved carriers to reduce filtering elements and potentially improve transient response. Decentralised interleaving 

techniques are scalable, avoid a complex interleaving controller for a high number of cells, and simplify reconfiguration cases 

like phase shading. Circular chain of communication (ring, or daisy chain) approaches have been proposed in the literature and 

implemented in concrete applications. However, the analytical study of the stability and dynamic response of this system 

involving several identical phase-delay local controllers connected in a dedicated communication chain with their close 

neighbours has not been conducted yet. This paper presents a behavioural discrete model for a digitally implemented 

decentralised interleaving device. The eigenvalue study gives the stability criterion and convergence speed to choose the 

appropriate parameters of the controllers. A modal decomposition technique dissociates the various types of differential 

interactions to observe their respective time response. Simulation results demonstrate that the system is unconditionally stable 

when all differential modes are properly damped. An analytical expression for the final disposition of the carriers in steady state 

depending on the start-up condition is established. Lastly, a more precise operator to overcome the singular discontinuity of the 

model is presented and discussed. Experimental validation by FPGA implementation have been done for reconfiguration and 

start-up cases. 

© 2019 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in 

Simulation (IMACS).  
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1. Introduction 

Nowadays, multicellular converters are widely used to achieve either high efficiency, high power density or fast 

transient response to load transients, or in some cases a combination of these performances. They are used for low- 

and high-power applications, such as inverters, rectifiers and isolated or non-isolated DC-DC converters. Among the 

different topologies of multicellular converters, some are composed by elementary cells made of switching power 

transistors and passive components as inductor or capacitor for local energy storage purpose. These cells can be 

arranged, like building blocks, either in series, in parallel or both. In parallel architectures, such as the multiphase 

converter shown in Fig. 1(a), each elementary converter handle a part of the output current. This current is shared 

among the several leg inductors L1 to L3 present in the structure. In series architectures, such as the Modular 

Multilevel Converter (MMC) shown in Fig. 1(b), each elementary converter handle a part of the input voltage which 

is share among the capacitors C1 to C3. Their control is complex due to the large number of cells to control, reaching 

14 or 16 in parallel topologies such as low-power Voltage Regulator Module (VRM) and even several hundred in 

the case of high-power HVDC with STATCOM or MMC for the serial case. Due to their modular nature, these 

redundant architectures are also suitable to deal with fail-operational requirements, offering multiple redundant 

paths for the power delivery in case of local default. 

(a)  (b) 

 

 (c) 

Fig. 1 Topologies of multicellular converters with 3 cells: a) Multiphase, b) MMC’s half arm, c) Multiphase 

converter waveforms. 

When using a Phase-Shifted Pulse-Width Modulation (PS-PWM) strategy to control a multicellular converter, 

the several control signals present among the cells are equally distributed in time, as shown in Fig. 1(c). To do so, 

these converter signals have equally spaced Phase-Delays (PDs), therefore interleaved. Interleaved converters 

provide an apparent frequency in the input/output passive components equal to the switching frequency multiplied 

by the number of cells, thus reducing filtering constraints and also allowing for better transient response. 

Some scalable/stackable solutions available in the market use master-slave approaches to achieve interleaving 

during reconfiguration. The master selects each slave PD with respect to the carrier number. When required, the 

reconfiguration has to detect by the master supervisor that change the positions of all the slave carriers. In any case, 

losing the master means losing the function. Numerous innovative scalable approaches with decentralised control 

have been developed for multicellular converter such as VRM [11,26] both for parallelisation [3,2,18] and for 

massive cascading [21] of switching-cells. They are applied to regulate the output variable [5,6,11,26], to balance 

either the leg currents (by shared wire [11] or by local comparisons [5,6,17,25] or the capacitor voltages [2] and to 

interleave the cell control signals. 

Concerning the specific case of the PWM signal interleaving, some solutions are able to interleave without 

dedicated communication lines, whether by detection of other modules’ switching events [8], by mitigating the sub-

harmonic oscillation on the output voltage [22,23] or in the output current [7]. However, it can lead to noise 

sensitive applications or prohibitive sub-harmonic oscillation during transient. Others use a dedicated 



communication line with time-consuming protocols, either by analogue means [19], discrete voltage levels [15,16] 

or high-speed digital communications. Nevertheless, these approaches can have availability issues because the 

shared line required is a Single Point Of Failure (SPOF). Some applications use a ring architecture to propagate a 

fixed [26,27] or adjustable delay [13,14], while others use a bidirectional circular chain of local communications 

using either analogue signals [4,25], or comparators with digital gates [24], or also fully digital [1,9,10] solutions. 

These approaches are costly in communication lines but overcome noise sensitivity, sub-harmonic oscillation, and 

SPOF issues. A solution with a unidirectional communication set was also proposed in [20]. 

The approach shown in [9,10] describes a decentralized carrier interleaving system that provides a good answer 

to Single Point Of Failure (SPOF) issues by removing the notion of master. Each Carrier Generator (CG) is 

associated to a Phase-Delay Local Controller (PDLC), and all the PDLCs are connected in between them in a 

circular chain of communications, as shown in Fig. 2. Then each PDLC adjust its local PD in between its 

neighbouring PDs to provide a natural and automatic interleaving of the carriers. This circular chain approach is 

theoretically extensible to an infinite number of elements. If non-active PDLCs are present, they are simply 

bypassed by making a direct link between their respective neighbours in order to keep the chain of communications 

closed. A supervisor can be associated with each PDLCs to manage the number of active PDLCs for either 

efficiency, performance or fault-tolerance concerns. When a reconfiguration is required by the local supervisor, by 

either inserting or removing an active cell of the converter, this decision is used to bypass or not the local 

communications, so that the active PDLCs reconfigure automatically their respective PDs. As a result, a centralised 

decision is no longer required. 

 

P: previous 

N: next  
� = ������	�


� = 2π �0.000.250.500.75� 

Fig. 2 Circular chain of inter-cell communications with four PDLCs and four carrier generators (N = 4) 

The challenge related to this system is the PDs’ stability analysis and its global convergence time obtained, 

mainly because of the large number of variables to manage and their coupling, i.e. the multiplicity of feedback loops 

involved due to the circular chain of communications. The PDs are state variables and must be studied all together. 

Several differential excitation modes exist. Therefore, the stability of the decentralised interleaving device must be 

carefully analysed for both start-up and reconfiguration singular cases. 

This paper provides an exhaustive analytical study of a digital iterative decentralised interleaving system with an 

adjustable parameter α, named the convergence coefficient, to guarantee its unconditional stability. Then, several 

design criteria are exposed to optimize the global transient response. Moreover, the PDLC implementation 

guidelines are given with recommendations to prevent wrong interleaving and undesired disturbances. Then, 

experimental validation by FPGA implementation are shown for reconfiguration and start-up cases. 

Section 2 recalls the decentralised interleaving principle using a digital method and develops a discrete analytical 

model. In Section 3, the analytical modal decomposition is presented as well as the stability analysis of the complete 

system and the dynamic responses to modal disturbances. Section 4 details the target value calculation to avoid 

wrong interleaving, followed by a reconfiguration and start-up response analysis. The same study is carried out in 

Section 5 for the particular case of one fixed PD into the system. 

2. Decentralised Interleaving and Analytic Model 

This section provides an analytical model of the digital iterative decentralised interleaving system described in 

[9,10]. A global synchronisation clock signal at the switching frequency is used as a phase reference, i.e. the rising 

edge of the clock signal is considered as the zero angle position. Each cell interleaving system is composed by two 

elements: a PDLC and a carrier generator. The PDLC computes the PD of the local carrier with respect to the 



neighbours PDs, while the carrier generator generates triangular signal with the given PD value with respect to the 

phase reference, i.e. the global synchronisation clock. During modelling, the PD values treated in this work are 

normalised, i.e. in between 0 and 1, and the quantisation effects are not taken into account. 

The PDLC involves a digital feedback loop to put the local PD in between the PDs of its neighbouring cells. For 

modelling, all the iterations are considered synchronous, so an iteration is done once all PDs have been updated. 

2.1. Local Controller Modelling 

The PDs are considered causal discrete-time signals, i.e. null for k < 0. The discrete-domain step function is 

denoted uk. The evolution of one PD is illustrated in Fig. 3 where neighbouring PDs, ���
 and ���

, cannot move. 

The values of ���
 and ���

 are the Previous and Next neighbouring PDs of the considered PDLC. Their average 

value is the target position ��� for the next iteration, computed at the iteration k, evaluated simply by Eq. (1) as the 

neighbours PDs average. ��� = 0.5 � ���� � ���� (1) 

(a) (b) 

Fig. 3 Iterative local PD control phasor diagram: a) phase diagram, b) discrete-time diagram. �� is the actual local PD, and ��� is the local PD error evaluated by Eq. (2). ��� = ��� � �� (2) ∆�� is the correction applied for the next iteration, given by Eq. (3) where α is a proportional gain called here 

the “convergence coefficient”. The stability study has to define the α values to ensure convergence. ��� = � ��� (3) 

Eq. (4) gives the new PD obtained �� � for the PDLC at the iteration k+1. �� � = �� � ��� (4) 

The block diagram of a PDLC is shown in Fig. 4. 

 

Fig. 4 Block diagram of the Phase-Delay Local Controller (PDLC) using digital feedback and a carrier generator. 

Eq. (5) is the PDLC’s recurrence relation found by successively replacing (3) and (2) in (4). The initial value �! 

appears at the iteration k = 0 by means of the Dirac delta function ", then �! = �!. �� � = #1 � �% �� � �! "� � � � ��� (5) 

Eq. (6) is the unilateral Z-transform of the recurrence relation (5). This is the system’s transfer function in the Z-

domain. It shows one discrete pole whose value is 1 – α. 

�#&% = && � #1 � �% �! � �& � #1 � �% ��#&% (6) 



Discrete systems theory establishes that the system is stable if the absolute value of the pole is less than 1. 

Therefore, for the case of a single loop with constant adjacent PDs, the system is stable for the values of α between 0 

and 2. The optimal value of α is 1 (z = 0) because it equals the output to the input (target) in only one iteration. If the 

z pole is equal to −1 (α equals to 2), the damping is null and the response oscillates. The system diverges if the pole 

absolute value is greater than 1, i.e. if α is negative or bigger than 2. 

However, since the local target �� is a combination of the previous and next PDs, i.e. other state variables, 

connected through the circular chain, as shown in Fig. 2. Therefore, the study of the system response by only 

focusing on the behaviour of local loops is not accurate. The stability of the local loop does not guarantee the 

stability of the overall system. 

2.2. Overall System Modelling 

The study of the system’s stability with a generic number N of PDLCs has to be performed. The overall system 

will be then modelled using a matrix approach. The PD values from θ1 to θN are then represented by a column vector 

θ (in bold in the following equations). 

The circular chain connection architecture is represented using the matrix L, similar to the Laplacian matrix in 

graph theory. The matrix L for N equal to 6 and θ in ascending order (1 to N) is shown in Eq. (7). It is an N-order 

square matrix composed of a negative unitary diagonal surrounded by factors 0.5. 

This matrix is used to calculate the PD errors εθ1 to εθN present in the column vector εθ derived from θ. The error 

is calculated with Eq. (8), where ' is an additive term that will be discussed latter. The ' vector is considered here 

constant and will be calculated by the “target operator”. Its value does not affect the stability study. 

 

(7) 

(�� = ) �� � ' (8) 

From now on, all composing elements of the model are known, remarkably the matrix L for the communication 

links and the vector ' for the error calculation. Fig. 5 shows a block diagram using a matrix operator with N = 6. 

This system is linear, and the stability study can be easily performed. 

 

Fig. 5 Matrix representation of the complete system with N = 6. 

This system can be written in a small signal formulation represented by Eq. (9) that is comparable with Eq. (5) 

(monovariable), where I is the identity matrix and θ0 is a column vector filled with the starting values. The local 

errors are evaluated with Eq. (10). �� � = #* � � )% �� � �+ "� � � � ' ,� (9) (�� = ) �� � ' ,� (10) 

This system can also be written in a discrete state space representation for simulation and stability study. The 

PDs are the state variables, and the local errors are placed as output variables for observation. The input u is an 

unidimensional unit step function. No other connection is required because the system is already in the closed-loop 

form. So, the natural response found is directly that of a well-known N-order closed-loop system. - = �, / = (� (11) 

)0
=

122
223
�1 0.5 0 0 0 0.50.5 �1 0.5 0 0 00 0.5 �1 0.5 0 00 0 0.5 �1 0.5 00 0 0 0.5 �1 0.5455

556 



From Eq. (9) and (10), the equivalent matrices for space state representation are shown in (12). These matrices 

are defined and used in MathWorks MATLAB® to perform all the simulations. It should be noted that the function 

“ss” is used to define the space-state model and the function “lsim” realises the simulation and gives results.  7 = * � � ), 8 = � ', 9 = ), : = ' (12) 

The stability can be demonstrated in many different ways, such as passivity, transfer function diagonalization or 

eigendecomposition. Nevertheless passivity does not reveal the dynamics such as settle time. Table 1 shows a 

summary of some stability and dynamics study methods for Multiple Input Multiple Output (MIMO) systems. 

 

Table 1 
Summary of stability and dynamics study methods. 

Parameter Passivity Diagonalisation Eigendecomposition 

Stability criteria yes yes yes 

Settle time no yes yes (without zeros) 

Difficulty medium medium easy 

 

As this system has no zeros, so the eigendecomposition is chosen due to its simplicity. The stability study and 

settle time will be performed analytically with respect to α. The system’s stability and settle time are defined by the 

state matrix A that depends on the value of α. The matrices A and L are very similar because A is a linear 

combination of the matrix L and the identity matrix I. 

The diagonalisation is also used to reveal the decoupled system dynamics, called the modal responses, and which 

determine the response of the overall system to external excitations. The system is stable if all the modal dynamics 

are stable. 

3. Change of Basis and Modal Responses 

The matrix L and the feedback loops couple all PDs. A change of basis allows to decompose the original coupled 

system into independent first-order systems. The matrices L and A are real, symmetric and circulant due to the 

circular chain architecture. The matrix A has the same properties as L because Eq. (12) does not change the 

characteristics of the matrix. Several interesting properties come from the fact that a matrix is circulant. Circulant 

matrices of order N are diagonalisable with the Discrete Fourier Transform Matrix (DFT) [12] for N samples. The 

change of basis matrix ; is the unitary DFT matrix, so ;<� � ; = *, and ;<� is equal to ;∗, its conjugate 

transpose. Thus, the multiplication of ;<� with the PD vector θ produces the DFT of the PD. 

The state matrix A diagonalisation is described in Eq. (13), where ; is the change of basis matrix 

(eigenvectors), ;<� is its inverse, and >7 is the eigenvalue diagonal matrix of A. 7 = ; >7 ;<� (13) 

The matrices A and L are simultaneous diagonalisable, i.e. similar. Therefore A and L have the same change of 

basis matrix, as shown in Eq. (14). ) = ; > ;<� (14) 

It is clear now that this system can be studied using the eigenvalues and the transformation matrices of L. The 

matrix L will be deeply studied thereafter. The eigenvectors of L decouple the system, and the eigenvalues reveal its 

stability. As L is real and symmetric, a real orthogonal representation of its eigenvectors also exists, however the 

DFT matrix ; will be used here because it has more interesting properties. 

3.1. System Diagonalisation 

A change of basis expressed by the set of Eq. (15) is applied to the system. �∗ = ;<? �, '∗ = ;<? ', �+∗ = ;<? �+ (15) 

The system’s recurrence relation, described in Eq. (9), is rewritten in a diagonal form by Eq. (16). 



�∗@ � = >7 �∗@ � � '∗ ,@ � �+∗ "@ � (16) 

As the eigenvalue matrix >7 is diagonal, Eq. (16) can be rewritten in N independent modal responses as denoted 

in Eq. (17) using the diagonal index i. The N diagonal elements λAii of >7 are denoted λAi, and λii of > are denoted λi 

for i = 0 … N − 1. �A∗@ � = λCA  �A∗@ � � DA∗ ,@  � �!A∗  "@ �, E = 0 … G � 1 (17) 

By analogy of Eq. (17) with Eq. (5) and (6), it can be noticed that the eigenvalues are the modal discrete poles of 

the linear system, as expected. 

3.2. Error Disturbance 

As all the treated variables are real, a reduced representation with H complex components can be used to 

represent the carried information. This decomposition matrix, denoted I, is N-by-M and is composed of the H first 

columns of ;. M is an integer that satisfies the condition in Eq. (18). 

H = J G � 12 , EK G EL MNN.
  G2 � 1, EK G EL OPOQ.   (18) 

The columns of I are denoted P#R% with m = 0 … M − 1. Each of those has an equivalent row at I∗, denoted P∗#R%, that has a number of cycles m related to its fundamental frequency. The rows of I∗ and their respective 

spectrum with N = 8 (M = 5) are shown in Fig. 6. This number of cycles m will be used thereafter as the modal 

index. The eigenvectors of the double modes (N = 8, m from 1 to 3) are complex (red lines are imaginary values) 

and are naturally in quadrature (orthogonal) with their real part. 

 

Fig. 6 Rows of I∗ and their Spectrum (N = 8), real values in blue and imaginary values in red. 

The error vector (� is decomposed with the matrix I∗, as shown in Eq. (19). By taking its absolute value, the 

components of (�∗ can be used to visualise the residual perturbation contained in each mode during simulation. (�∗S = TUL� I∗ (�S� (19) 

Each element of (�∗ is shown in Eq. (20). It has to converge to zero as the system goes to steady state. ��∗V� = TUL� W∗#R% (�S�, R = 0 … H � 1 (20) 

3.3. Eigenvalues 

All eigenvalues of A have to be identified to ensure the stability of all modal responses and to adjust the 

convergence speed. Thanks to the eigenvalue properties, the eigenvalue matrix X7 can be written as a function of the 
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eigenvalue matrix X as shown in Eq. (21) and (22). The revealed eigenvalues are similar to the case of one single 

loop (6), but with the eigenvalues λi playing as a multiplicative factor, instead of the constant −1. X7 = Y � � X (21) λCA = 1 � � λA , E = 0 … G � 1 (22) 

Eq. (22) shows an important point of this approach, that is to say the modes cannot be independently controlled 

because the feedback matrix L is imposed by the circular chain architecture of Fig. 2 and it uses only a single and 

common adjustment factor, called the convergence coefficient α. Using different α values for each PDLC invalidates 

the approach presented here. 

Gerschgorin’s theorem shows that the eigenvalues of L are real and in between −2 and 0. The eigenvalues of the 

circulant matrix are indeed known. Eq. (23) shows the values of this type of matrix for any value of N. Eq. (23) can 

be rewritten in many different ways using complex exponential functions. 

λA = cos 2 ] EG � 1, E = 0 … G � 1  (23) 

Fig. 7 illustrates the M values found with Eq. (23) for N odd and even. To regroup double eigenvalues, for i ≥ M, 

i can be written as i − N. In this way, the duplicated values have the same index. These duplicated values are related 

to the double modes shown in Fig. 7. If N is even, a last eigenvalue equal to 2 is found for i equal to N/2. In both 

cases, the first eigenvalue λ! is null. The study of the system using A is now easer because the diagonal matrices and 

the eigenvalues of L are known and determined by Eq. (23). 

3.4. Eigenvalues and Stability Concern 

The eigenvalues λAi are easily computed as a function of α from Eq. (22) and (23). To guarantee the stability, the 

absolute values of all eigenvalues have to be less than 1. Taking into account the greater eigenvalue of L in absolute 

value (−2) in Eq. (23), the convergence factor α has to be between 0 and 1 to ensure stability. This is already a huge 

difference with respect to the model taking into account a single loop, as seen in Section 2.1, where the system 

seemed to be stable for α between 0 and 2. 

The eigenvalues will be studied in the α range where the system is stable, demonstrating how this factor 

interferes in the response of each mode and consequently in the whole system. The eigenvalues are revealed as a 

function of α in Fig. 8 for the cases of N ranging from 5 to 8. Several lines are drawn expressing the values of the 

existing eigenvalues that are related to N. 

 

Fig. 8 Eigenvalues vs. Convergence Coefficient α (N = 5…8) 

(a) (b) 

Fig. 7 Eigenvalues of L for a) N = 5, b) N = 6. 



λA0 is related to the common mode and represents the average value of all PDs. As λ0 is null, λA0 does not 

depends on α and remains constant, equal to 1, because the system is made to control only PD differences. It should 

be noted that this system is not able to detect if an identical amount of phase shift is added to each PD. As a 

consequence, this system is not able to impose any PD value because the common mode is not controllable; only 

relative values are controlled. The average PD values may have any value. If this is an issue, it can be avoided in 

noise sensitive applications using one fixed PD for instance, but this solution may raise other stability considerations 

that are treated in section 5 One Fixed Carrier Phase-Delay. 

All differential modes are controllable because their eigenvalues depend on the parameter α. The differential 

modes are double and overlap themselves two-by-two (studied together), from 1 to (N−1)/2. If N is even, the last 

mode (N/2) is a single mode. 

When α is equal to 1 with N even, the last mode N/2 reaches the stability limit. Nevertheless, if N is odd, the 

value of the last mode does not reach −1, only if N tends towards infinity. Thus, the limit of stability is never 

reached for α equals to 1 in the case of N odd. Therefore, this system is stable for any value of N if α is strictly less 

than 1. 

Fig. 9 shows the different eigenvalues found for α equal to 1 and 2/3. It shows the trade-off made with the choice 

of α between stability and the system dynamics. Increasing α from 0 to 0.5 decreases λAi absolute values. When α is 

greater than 0.5, some eigenvalues become negative and their absolute value increase. Those modes are still stable, 

but they have an oscillating damped response. 

(a)  

α = 1 

 

α = 2/3 

α = 1/2 

(b) 

Fig. 9 Eigenvalue analysis for N = 8. a) Eigenvalue λ^_ vs. Convergence Coefficient α, b) Root locus for α equal to 

1, 2/3 and 1/2. 

The settling time depends on the sample time and on the number of iterations because there is no physical 

process behind this interleaving system. The sample time is limited mainly by the communication bandwidth. As in 

a simple first-order system, the number of iterations for convergence can be computed, for example, by the number 

k of iterations necessary to reduce each differential mode disturbance to 5% of its initial value. Eq. (24) shows the 

general formula derived from Eq. (17), where m is the mode number. 

`a%_d = eMf#0.05%eMf�TUL#λ^d%� � 1, R = 0 … H � 1 (24) 

Table 2 shows the number of iterations for convergence of the differential modes in the cases of Fig. 9. The 

mode 4 is in stability limit and oscillates for α = 1. The modes 1 and 2 slow down when α is reduced. 

 

Table 2 

Number of iterations for 5% response (N = 8). 

gain k5%_4 k5%_3 k5%_2 k5%_1 

α = 1 +∞ 9.6 1 9.6 

α = 2/3 3.7 2.5 3.7 15 
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α = 1/2 1 2.6 5.3 20 

 

Table 2 shows explicitly the number of iterations required for each differential mode with a given α parameter. 

With different configurations observed, it is not easy to guess which would be the optimal one. As numerous 

variables depend on the same parameter, a criterion has to be established to find a trade-off helping to choose α. 

Each differential mode eigenvalue has to be reduced in absolute value to speed up the response. One option is to 

improve the worst case by reducing as much as possible the absolute value of the larger eigenvalue. A second option 

is to improve the response globally such as minimising either the quadratic sum of the Xg eigenvalues or the number 

of iterations k5% of each mode. The results of these three approaches are shown in Fig. 10 for N = 8. 

 

Fig. 10 Optimised Convergence Coefficient α. Minimising criterion: absolute maximum, least squares of λ^d and 

least squares of k5%_m. 

The minimum value using the absolute maximum criterion is found with α = 0.87. It is also the point where the 

absolute values of λ^� and λ^
 are equal. The minimum value using the Xg eigenvalues’ least squares criterion is 

found with α = 0.62. Lastly, the minimum value using the k5% least squares criterion is found with α = 0.78. Each 

criterion gives different optimum values. For this configuration with N = 8, a convenient value is about 2/3. 

In this system, the convergence dynamics depend also on which modes are excited, i.e. if only fast modes are 

excited, the convergence is faster. For instance, if mode 1 is not excited with α = 2/3, its convergence would be 

faster than the case where α is close to 1 and all modes are excited. An example will be shown latter. 

3.5. Modal Response 

At this point, the system model is established, and the stability criterion is defined. The dynamic behaviour of 

the overall system can be simulated and compared with the one predicted. In the simulations performed hereafter, 

the system starts in its expected equilibrium state with all the carriers well interleaved. 

Fig. 11 shows a system simulation response with eight PDLCs (N = 8) and α equal to either 2/3 or 1 where each 

mode is excited individually one after the other, from the common mode (λA0) to the last one (λA4). The vector h, i.e. i1 to iN, is a disturbance summed to their respective PDLC correction ∆��
i shown in Eq. (3). The vector h∗ is the 

absolute value modal decomposition of h equals to  |I∗ h|. Fig. 11(a1) shows the modal disturbance magnitudes h∗ 

and the related time events. Fig. 11(a2) shows the PD θ waveforms. It is possible to distinctly observe the modal 

excitations being applied successively. The deviations that appear have the eigenvectors’ shape (like sine wave) and 

cycle number shown in Fig. 6. Fig. 11(a3) shows the local error εθ, and Fig. 11(a4) shows its modal decomposition 

εθ*, to show the total mode disturbance. 

The PD values behave as expected. The mode 0 (λA0 = 1) behaves as a pure integrator All differential modes are 

damped for the case in Fig. 11(a). For the case in Fig. 11(b), λA1 behaves like a non-oscillating first-order system 

(orange circle in the figure) because the pole value is positive real and less than 1, λA2 cancels the perturbation in a 

single iteration (yellow circle) because the pole value is zero, λA3 has damped oscillations (purple circle), and λA4 

shows the stability limit, so it oscillates without damping because the pole value is equal to −1. 

This simulation confirms the number of iterations required for convergence revealed in Table 2. For the α = 1 

case, ��∗� and ��∗	 take about 10 iterations to be damped, and mode ��∗� takes only one. Mode ��∗
 is not damped, 

and � oscillates without damping after being excited. 



3.6. Eigenvalues and Stability vs. Number of Active PDLCs 

A reconfiguration event is the modification during operation of the number N of active PDLCs. Non-active 

PDLCs are bypassed and become invisible to active PDLCs. As seen before, all eigenvalues depend on a single 

convergence factor α, and a trade-off has to be made. On the other hand, when a reconfiguration is made, α remains 

the same and the eigenvalues have to continue in a convenient range to ensure stability and fast convergence time. 

 

(a1) 

 

(b1) 

(a2) (b2) 

(a3) (b3) 

(a4) (b4) 

  

Fig. 11 Dynamic modal response (N = 8) a) α = 2/3; b) α = 1. 

The bypassed PDLCs are not taken into account in the stability issues. Fig. 12 shows the pole locations for 

different values N of active PDLCs with α equal to 2/3 and 1. As shown in the figure, the number of existing modes 

is a function of N. As N increases, the eigenvalues shift to the right, and the new ones appear on the left. As the 

eigenvalues change, they stay always in the same range between 1−2α and 1, e.g. [-1/3 1] for α equal to 2/3 and [-1 

1] for α equal to 1. As previously demonstrated in Section 3.3, this system is stable for any value of N if α is smaller 

than 1. 

As soon as the state of an PDLC changes, activated to be inserted into or deactivated to be removed from the 

chain, the remaining PDLCs have to evolve their PDs to reach a new steady-state disposition where all the carriers 

are correctly interleaved again. One can notice that these simulations of reconfiguration proposed here illustrate a 

real case of a decentralised interleaving operation. A reconfiguration event excites the different modes, and the 

convergence towards the correct interleaving must be guaranteed. 
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The reconfiguration responses are analysed hereafter, first with the removal case, followed by the insertion case 

and then with specific case studies of start-up. 

 

Fig. 12 Root locus for α equal to 2/3 and 1 and N ranging from 6 to 10 

4. Target Operator Formulation and Wrong Interleaving Discussion 

The principle of correction by comparison with the neighbours has been used previously in the literature for 

different purposes. For instance, in [17] a current balance system equalises the values of several inductor currents 

with this technique. With this principle applied for the interleaving, it should be noticed the system equalises the PD 

differences between the neighbours. In the approach presented in [4], the PD differences and correction are made in 

a manner relative to the local carrier. 

In the approach presented here, the PDs are related to a global phase reference, as shown in Fig. 3. Thus, there is 

a discontinuity between the last and the first PD, and therefore the operator L does not work for all PDs. Using 

normalised PD, the discontinuity appears when the PD approaches the value 1 from the negative side, as shown in 

the Fig. 13(a), but also when the PD approaches 0 from the positive side. Fig. 13(b) shows a well-interleaved system 

with five carriers (N = 5) where the PD differences are all equal to 0.2 (1/N). The error has to be equal to zero. Fig. 

13(c) shows the expected position ��� for the first carrier and the computed average value of its neighbours. These 

two values are in phase opposition. 

(a) (b) (c) 

Fig. 13 PD representation: a) PD discontinuity around 1 and 0, b) Well-interleaved system with five carriers, c) 

Expected target ��� and neighbours’ average. 

This system requires then additional operations such as those described in [9,10,20]. Issues are described in [1] 

as “ambiguous phase ordering” and “ambiguity in steady state”, linked with the error signal calculation. The 

operators proposed here are able to evaluate the error and compute a new PD value despite the discontinuity. This is 

a required condition to ensure that the model and results presented in the previous section are valid. 



The first operator required is called the “target operator”. To illustrate the target operator necessity, the values 

of the PD column vectors θ and L θ are shown in Eq. (25) and Eq. (26) respectively, relative to the well-interleaved 

system shown in Fig. 13(b). � = k0.1 0.3 0.5 0.7 0.9no (25) ) � = k0.5 0.0 0.0 0.0 �0.5no (26) 

As anticipated, the L θ operation does not give the null error expected for a well-interleaved system. The PDLCs 

having a neighbour across the discontinuity (θ1 and θ5) have a local error different from zero. This value can be 

compensated by an additive term ' introduced earlier, as shown in Eq. (8). In this particular case, the required ' 

value evaluated from a well-interleaved system is given in Eq. (27). ' = �) � = k�0.5 0.0 0.0 0.0 0.5no (27) 

The sum of all the elements of the ' vector is always null. This vector has always the same shape and can be 

generalised for any value of N. The PD discontinuity is in between its non-null values, in this case between the 5th 

and the 1st. Their signs define if the PD values are in an increasing or decreasing sequence. In the real system, each DA value is evaluated locally in the ith PDLC taking into account the local and the neighbours’ PDs. For this reason, 

special attention has to be paid to the initial values of the PDs to avoid any mistake in the interleaving. 

Fig. 14 shows another case where the system is well interleaved but all the PDs are shifted by −0.2 units. It uses 

the same ' vector described in Eq. (27). As shown, the discontinuity position is no longer around zero, and �� may 

be smaller than zero. Thus, some PDs values may be now outside the range from 0 to 1. 

 

Fig. 14 Correct interleaving obtained using the ' vector (some PDs values are outside the range [0, 1]). 

Eq. (28) shows the solution for θ and ' related to the Fig. 14. � = k�0.1 0.1 0.3 0.5 0.7no ' = k�0.5 0.0 0.0 0.0 0.5no (28) 

A negative value is obtained because a second operator is required to keep each PD in the range [0, 1]. It is 

called the “modulo operator” and gives a positive remainder after division by 1 (normalised value, equivalent to 

360° or 2π). The modulo operator removes 1 if the value is higher than 1 and adds 1 if the value is smaller than 0. 

The updated θ and ' vectors are shown in Eq. (29). All PD values in θ are now in the range [0, 1], and ' is 

updated. Both vectors are circularly shifted of one element to the right with respect to θ and ' in Eq. (25) and Eq. 

(27), respectively. Any circularly shifted version of these vectors are valid and give a correctly interleaved system. 

The amount of zero elements in sequence in the ' vector has to be equal to N − 2. � = k0.9 0.1 0.3 0.5 0.7no ' = k0.5 �0.5 0.0 0.0 0.0no (29) 

The whole algorithm implemented in the PDLC is shown in the flowchart of Fig. 15. The first condition prevents 

undesired disturbances during start-up, when neighbouring PD can be coincident. It can be seen in [9], during start-

up, the PD in phase opposition moving while it is correctly in the middle of its neighbours. This condition makes PD 

in phase opposition fixed only at the beginning, achieving better transient response and avoiding undesired 

disturbances. When neighbouring PD are different, the target phase-delay is corrected depending on the 

neighbouring PD order and on the local PD. 

The discontinuity handler adjusts the target value. It is trigged when the neighbours PDs are in a decreasing 

sequence, i.e. �� p ��, then a correction is made based on the local PD value. It should be noted the target value 

can be outside the PD normal range. It happens when the PD has to across the discontinuity. After the control 



routine, i.e. error calculation and correction, the modulo operator is applied to keep the local PD in the expected 

range. 

With all these precautions, the PD discontinuity around 1 and 0 is overcome and considered as if it does not 

exist. In the simulations, the ' vector is kept constant and the second operator is applied using post-processing. 

 

Fig. 15 Phase-Delay Local Controller Flowchart. 

Fig. 16(a) and (b) show other cases where the phase differences are equal to 2/N. In the case (a), as the number 

of elements is odd, the system to be well interleaved. In case (b), in contrast, where the number of elements is even, 

there is an evident interleaving problem because some PDs are coincident. The case (b) can happen during a 

reconfiguration of the case (a) or if a bypassed PD is not pre-positioned during a reconfiguration, so these two 

conditions have to be avoided. This issue appears if the phase differences (1/N) are multiplied by any integer in 

between 2 and N. In the limit case, all PDs are coincident. 

(a) (b) 

Fig. 16 Interleaving issue when phase differences are equal to 2/N: a) N odd case (N = 5), b) N even case (N = 6). 

Countless types of solutions for θ and ' in case (b) can justify this arrangement. Two particular cases are shown 

in Eq. (30) and Eq. (31). A wrong interleaving with successive PD differences of 2/N is observed in both cases. The 

first one is not possible because the error operator can only compensate ±0.5 in the ' vector. The second one, 

however, is possible. This shows the presence of two discontinuities. � = k0.1 0.5 0.9 1.3 1.7no ' = k�1.0 0.0 0.0 0.0 1.0no (30) � = k0.1 0.5 0.9 0.3 0.7no ' = k�0.5 0.0 0.5 �0.5 0.5no (31) 

To ensure a correct interleaving, the ' vector has to contain only one discontinuity (0.5 and −0.5 values), so 

special care has to be taken during start-up and reconfigurations. To do so, the PD values have to be in an ascending 

order and coincident values can be tolerated. The removal of a carrier (or PDLC) during operation is easy because 

the system normally is already correctly interleaved and so ordered. On the other hand, the PD of a “sleeping” 

PDLC has to be pre-positioned between the neighbouring PDs to anticipate an insertion, such as it being active but 



not visible. The start-up disposition of the PDs requires also special care. Examples of these cases will be given in 

the next section. 

4.1. PDLC Removal 

The simulation of a reconfiguration proposed here illustrates the cases of an PDLC removal (the PDLC is 

bypassed). The removal is the simplest reconfiguration case because the system is already interleaved and there is 

no initial value to care about. 

Fig. 17 shows two reconfiguration simulations starting with nine well-interleaved PDLCs. The phase-delay local 

controller PDLC3 is disabled and bypassed at the first iteration, then the eight active PDLCs reconfigure and reach 

another interleaving state. These eight PDLCs have the same dynamics revealed previously. Fig. 17(a) shows the 

reconfiguration response with α = 2/3, and Fig. 17(b) shows the reconfiguration response with α = 1. 

(a) (b)  

Fig. 17 Reconfiguration response (N from 9 to 8): Phase-Delay Local Controller 3 is bypassed, a) α = 2/3, b) α = 1. 

The simulations show that all differential modes are excited at the beginning. All modes are damped with respect 

to the values shown in Table 2. In (a), it is clear that the ��∗� (the slowest) dominates the response time after all fast 

modes are damped. In (b), ��∗� is damped faster, but mode 4 is in stability limit so ��∗
 response is clearly not 

damped and oscillates indefinitely. These two responses correspond exactly to the expected theoretical modal 

response detailed previously. 

To validate the algorithm proposed and verify the required clock periods for convergence, the PDLC flowchart 

shown in Fig. 15 has been implanted using hardware description (VHDL) in Intel Quartus II software. Quartus 

generate an appropriated digital circuit able to be “wired” in a FPGA to perform the described operations. The PD 

values �#q% are denoted theta(x)p in these Quartus results. The theta(x)p use a fixed dot representation composed by 

1000 entire units which are shown in the results and 4 (2 bits) fractional parts which are hidden. As a result, 1000 is 

the conversion factor between the implementation representation and the previous one “normalized” used for 

modelling purposes. As the objective here is to validate the functionality of the proposed PDLC and the number of 
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iterations required for convergence, only Quartus functional results are shown. Feasibility matters, such as 

propagation delays or maximum clock frequency, are avoided. 

Fig. 18 shows the Quartus results for the reconfiguration case illustrated and simulated previously in Fig. 17(a). 

It can be noted, at the beginning, the 9 PDs are equally spaced (delta = 1000/9 ≈ 111) to generate a correct 

interleaving of the carriers. At t = 20 ns, the PDLC3 is bypassed (en3 = 0), then the reconfiguration sequence starts 

with the next clock rising-edge. 15 clock periods later (t = 175ns), mode 1, the slowest excited mode, is mostly 

damped and the PD values are quite close to the steady-state values reached 9 clock periods latter (t = 265ns). In 

steady-state, the 8 active PDLC’s PDs are equally spaced (delta = 1000/8 = 125) and the bypassed PDLC3 theta3p is 

exactly pre-positioned in the middle of its active neighbours PDLC2 and PDLC4 because its local controllers is 

bypassed, but stays active. The values obtained using the Quartus functional results are remarkably close to the ones 

found using Matlab simulation, validating the proposed convergence performance. 

 

Fig. 18 Quartus results for a reconfiguration response with N from 9 to 8 (PDLC3 is disabled). 

4.2. PDLC Insertion 

The simulation of a reconfiguration proposed here illustrates the cases of an PDLC insertion, i.e. a bypassed 

PDLC becomes visible to its neighbouring PDLCs in the communication chain. This event also excites all the 

different modes, and the convergence towards the correct interleaving must be guaranteed. Fig. 19 shows two 

reconfiguration simulations with eight PDLCs. At the beginning, seven PDLCs are well interleaved, then PDLC5 is 

inserted. Fig. 19(a) shows the reconfiguration response where PD5 is pre-positioned in between its neighbours, and 

Fig. 19(b) shows the case where its initial value is null. These eight PDLCs have the same dynamics as those 

revealed previously with α = 2/3 to ensure stability. 

The simulations shown in Fig. 19(a) and (b) converge to steady state with phase differences of 1/N and 2/N, 

respectively. The correct interleaving state is reached in Fig. 19(a) because �a is pre-positioned. Consequently, ' 

keeps the same value. On the other hand, this is not the case in in Fig. 19(b). The null starting value of �a disturbs 

PDLC4’s target operator, and that disturbance causes a nonconforming modification in '. After the first iteration, 

PDLC5’s target operator is also disturbed because �
 and �0 cross each other and modify again '. These ' values 

lead to a wrong interleaving arrangement. 

To avoid wrong interleaving arrangements, at the beginning, the � vector has to respect a specific shape to 

generate a proper ' vector. To do so, inactive PDLCs (bypassed) have to keep their PD computations active and 

correctly positioned. 

Fig. 20(a) and (b) shows the Quartus results for the reconfiguration case illustrated and simulated previously in 

Fig. 19(a) and (b), respectively, but using α = 1/2. In both cases, the 7 active PDLC’s PDs (PDLC5 is bypassed) are 

equally spaced at the beginning (delta = 1000/7 ≈ 143) to generate a correct interleaving of the carriers. The 

Start values k5%_1 Steady-state values 



bypassed PDLC5’s PD value is pre-positioned in between its active neighbours PDLC4 and PDLC6 in (a), while in 

(b) the bypassed PDLC5’s PD value is set to zero. 

(a) (b)  

Fig. 19 Reconfiguration response (N from 7 to 8, α = 2/3): Phase-Delay Local Controller 5 is inserted a) in the 

middle of its neighbours, b) with a null starting value. 

 

(a) (b) 

Fig. 20 Quartus functional results for the reconfiguration response with PDLC5 insertion (N from 7 to 8, α = 1/2). 

At the beginning PDLC5 is a) pre-positioned b) is set to zero. 

In case illustrated in Fig. 20(a), the Quartus functional results shows the pre-positioned PDLC5 converges to the 

expected correct interleaving state (delta = 1000/8 = 125) respecting as well the 15 iterations (t = 160 ns) to damp 
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the slowest mode as shown in Table 2. The non-pre-positioned case shown in Fig. 20(b) leads to a wrong 

interleaving arrangement where 2 discontinuities can be observed (delta = 2 x 1000/8 = 250), i.e. two increasing 

sequences, such as described in Fig. 16(b). As the number of active PDLCs is even, the PDs are coincident 2 by 2. 

Quartus functional results fully validate proposed strategy of keeping of non-active PDLC’s PD pre-positioning 

to handle correctly any type of reconfiguration event. As a result, the discontinuity handler is behaviour is controlled 

and the ' vector is proper, then the final interleaving state is always correct and can be easily estimated. 

4.3. Convergence and Steady-State Value 

It is well understood now that the steady-state value depends on the target vector ', which, in turn, depends on 

the vector �. The vector ' is constant if the vector � is properly chosen at the beginning. In this way, as this system 

is causal, the value � converges in steady state towards the value �rr that can be calculated using the Final Value 

Theorem (FVT) if all differential modes are damped. The mathematical expression to calculate the steady-state 

value for this discrete system is shown in Eq. (32). �rr = lim�→w �� = limx→�  #& � 1% �#&% (32) 

The expression of �#&% shown in Eq. (33) can be derived from Eq. (9). �#&% = #& * � 7%<� & �+ � #& * � 7%<� 8 y#&% (33) 

With two conditions: 0 < α < 1 and L,R#'% = 0, i.e. the sum of all elements of ' has to be null, the result in 

Eq. (34) is found by replacing Eq. (33) and solving Eq. (32). �rr = �+zzz � )  ' (34) 

where �+zzz is a vector in which each element is the average value of �+, and )  is the pseudo-inverse of ). It 

should be noted that L is a singular because one eigenvalue is null and so has no inverse. )  can be evaluated using 

Eq. (35). ) = ; >  ;<� (35) 

where >  is formed from > by taking the reciprocal of all the non-zero elements. 

Eq. (34) reveals that, as expected, the steady state depends on the start-up configuration �+ that provides also ', 

and, more importantly, on )  that comes from the communication chain configuration L. The steady-state value do 

not depends on the convergence factor α. If �rr is outside the range 0 to 1, the correct result can be obtained by 

applying the modulo operator to each value. 

4.4. Convergence Behaviour vs. Start-up Positions 

Fig. 21 shows a classical start-up procedure such as described in [4,9,10] where one PD is put in phase 

opposition to the others. The starting values are chosen to avoid � values going outside the range 0 to 1 and then to 

avoid any changes in the ' vector. 

The � values at the beginning determine the disturbed modes. In this case, the differential modes 1, 2 and 3 are 

disturbed. In both cases, with α equal 2/3 or 1, the correct steady-state interleaving disposition is reached. The case 

(b) converges because the mode 4, which is in stability limit, is never disturbed. However, it should be noted that a 

reconfiguration event can trigger the non-damped mode 4 and produce oscillations. 

Fig. 22 shows an alternative start-up procedure where the PDs are put in two successive groups. The starting 

values are also chosen to avoid � values going outside the range 0 to 1 and then to avoid any changes in the ' 

vector. 

In this case, only the differential modes 2 and 4 are disturbed. The disturbance in case (a) is damped very fast 

because mode 1, the slowest, is not disturbed. The responses of modes 2 and 4 have the same convergence time, but 

different starting values. In case (b), mode 4, in stability limit, is disturbed inducing sustained oscillations, so that 

the steady state is never reached. The case (a) brings also redundancy during start-up because more than one PD is 

in phase opposition. It is an important feature for fault tolerant systems and gives more flexibility during start-up. 



 

(a) 

 

 (b) 

 

 

Fig. 21 Start-up response (N = 8) with one element in phase opposition (1+7): a) α = 2/3, b) α = 1. 

 

 

 (a) 

 

 (b) 

 

 

Fig. 22 Start-up response (N = 8) with groups (4+4): a) α = 2/3, b) α = 1 

Fig. 23(a) and (b) shows the Quartus results for the start-up case illustrated and simulated previously in Fig. 

21(a) and Fig. 22(a), respectively, where α = 2/3. It can be noted the convergence in case (b) is much faster than in 

case (a), as predicted by the Matlab simulation, because the slower mode (mode 1) is not excited in (b). 

Convergence is almost achieved after 4 clock periods according to the values predicted in Table 2. Moreover, the 

Quartus functional results are again remarkably close to the ones found using Matlab simulation, validating the 

proposed convergence performances. 
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(a)  (b) 

Fig. 23 Quartus results for start-up case with 8 PDLCs and α = 2/3, a) Phase opposition (1+7), b) By groups (4+4). 

5. One Fixed Carrier Phase-Delay 

In some applications [9,10,20], one PD is fixed to overcome instability with α = 1. Other applications have 

specific requirements to avoid noise issues. For example, one PD is imposed to overcome the impact of the 

switching noise. This section introduces the eigenvalue study, the time response and its dynamic analysis for the 

case with one fixed PD. When a PD is fixed, the corresponding row of the LN matrix is null because the 

computations made inside its PDLC are turned off. The communication chain configuration with six carriers (N = 

6), where θ1 is fixed, is denoted L6−1 and expressed in Eq. (36). 

 

(36) 

The LN−1 eigenvalues are real, ranging between −2 and 0. It is no longer circulant, so the diagonalisation matrix 

V−1 is not the DFT matrix any more. Then, the concepts of common mode and cycles are no longer valid. The 

eigenvalues of LN−1 are computable from Eq. (37) for any N value. 

λA = cos ] EG � 1, E = 0 … G � 1  (37) 

The new eigenvalues of A can still be evaluated as a function of α by Eq. (20). The eigenvalues λCA  of the 

differential modes #E = 1 … G � 1% are shown in Fig. 24 for N from 5 to 8. There are three major differences in this 

configuration. Firstly, all the modes are simple; secondly, the common mode is imposed only by the fixed PD; and 

finally, the most important result, the system is unconditional stable even if α is equal to 1. 

 

Fig. 24 One carrier fixed: Eigenvalues vs. Convergence Coefficient for N from 5 to 8. 
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Table 3 shows the iteration number for convergence for the case with N = 8 and one fixed PD, for α = 1, α = 2/3 

and α = 1/2. The last mode, mode 7 in this case, is no longer in stability limit with α = 1. However, mode 1 is almost 

4 times slower than the one when PD is not fixed. 

 

Table 3 

Iteration number for 5% response (N = 8) with one PD fixed. 

gain k5%_7 k5%_6 k5%_5 k5%_4 k5%_3 k5%_2 k5%_1 

α = 1 39 9.4 4.1 1 4.1 9.4 39 

α = 2/3 3.4 2.5 2.1 3.7 6.6 15 59 

α = 1/2 1.9 2.6 3.5 5.3 9.1 20 78 

 

Table 3 presents the same pattern seen in Table 2, and all the previous observations are still valid, such as the 

convergence depending on the type of modes that are excited. 

5.1. Reconfiguration Response 

Fig. 25 shows two simulation results using the same conditions described previously, but �1 is fixed to 0. At the 

first iteration, PDLC3 is removed from the chain of communications. As PDLC1 is fixed, its error is never corrected 

(blue line), and the other PDs have to change to cancel their own local error. In case (a), ��∗{ is quickly reduced to 

zero while ��∗� dominates the response. Indeed, it is much slower than the other modes. In case (b), ��∗� and ��∗{ 

have the same convergence speed, but ��∗{ has a much higher disturbance at start-up, so it dominates the response. 

No sustained oscillation is observed, confirming the unconditional stability of this approach. 

(a) (b)  

Fig. 25 Reconfiguration response: PD1 �1 is fixed, and PDLC3 is disabled and bypassed (N = 8), a) α = 2/3, b) α = 1. 
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To validate the poor transient response when using a fixed PD, Fig. 26 shows the Quartus functional results for 

the reconfiguration case illustrated and simulated in Fig. 25(a). As previously described in the non-fixed approach, 

at the beginning, the 9 PDs are equally spaced (delta = 1000/9 ≈ 111) to generate a correct interleaving of the 

carriers. 

 

Fig. 26 Quartus results for a reconfiguration case from 9 to 8 where PDLC1 is fixe and PDLC3 is bypassed. 

At t = 20 ns, the PDLC3 is bypassed (en3 = 0), then the reconfiguration sequence starts with the next clock 

rising-edge. 59 clock periods later (t = 615 ns), mode 1, the slowest excited mode, is mostly damped and the PD 

values are quite close to the steady-state values reached 26 clock periods latter (t = 880 ns). In steady-state, the 8 

active PDLC’s PDs are equally spaced (delta = 1000/8 = 125) and the bypassed PDLC3 theta3p is exactly pre-

positioned in the middle of their active neighbours PDLC2 and PDLC4. The Quartus functional results are 

remarkably close to the convergence time predictions, validating the proposed model. 

6. Conclusions 

In this paper, a complete analytical study of a digital iterative decentralised interleaving strategy has been 

developed. It highlights the existence of several modal responses whose number and dynamics depend on the 

number of carriers involved in the system. The stability criterion has been established for any number of active 

Phase-Delay Local Controllers (PDLC) used. A convergence factor has been defined and guidelines have been 

given to choose an appropriate convergence speed adapted for each application case. Examples have been given to 

show the resulting modal dynamics for different values of convergence factor. 

The robustness of the decentralised interleaving strategy and its ability to quickly converge towards the expected 

steady state has been demonstrated both for the particular case of system reconfiguration during operation with the 

removal or the insertion of a PDLC and for the case of system start-up with different phase-delay arrangements. The 

stabilising effect of using a fixed position for one carrier has been also highlighted. In that particular case, an 

unconditional stability is obtained at the cost of a loss of dynamic performance, even when using the best value for 

the convergence coefficient. 

Guidelines for the implementation of the PDLC are provided, ensuring correct steady-state disposition. 

Recommendations for the reconfiguration and start-up dispositions are also provided with an analytical expression 

of the dispositions reached after convergence. The functional implementation in VHDL on FPGA confirmed all the 

theoretical simulations made with Matlab and proves the relevance of the proposed method of automatic 

interleaving. 

Finally, this study provides a very useful mathematical answer to handle the difficult stability study and transient 

response of such a decentralised control architecture involving a circular chain of communications. 

Start values k5%_1 Steady state values 
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