

D-xylose and L-arabinose laurate esters: enzymatic synthesis, characterization and physico-chemical properties

Thomas Méline, Murielle Muzard, Magali Deleu, Harivony Rakotoarivonina, Richard Plantier-Royon, Caroline Rémond

▶ To cite this version:

Thomas Méline, Murielle Muzard, Magali Deleu, Harivony Rakotoarivonina, Richard Plantier-Royon, et al.. D-xylose and L-arabinose laurate esters: enzymatic synthesis, characterization and physico-chemical properties. Enzyme and Microbial Technology, 2018, 112, pp.14-21. 10.1016/j.enzmictec.2018.01.008. hal-02962676

HAL Id: hal-02962676 https://hal.science/hal-02962676

Submitted on 9 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 2 physico-chemical properties
- 4 Thomas Méline^a, Murielle Muzard^b, Magali Deleu^c, Harivony Rakotoarivonina^a, Richard
- 5 Plantier-Royon^b, Caroline Rémond*^a.
- ⁶ ^aFARE laboratory, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA,
- 7 51686 Reims Cedex, France.
- ⁸ ^bInstitut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims
- 9 Champagne-Ardenne, 51687 Reims Cedex, France.
- 10 ^cUniversité de Liège, Gembloux AgroBio Tech, Laboratoire de Biophysique Moléculaire
- 11 aux Interfaces, 2 Passage des Déportés, B-5030 Gembloux, Belgium.
- 12 * Corresponding author
- 13 Email address : caroline.remond@univ-reims.fr
- 14

15 Abstract

- 16 Efficient enzymatic synthesis of D-xylose and L-arabinose lauryl mono- and diesters has
- 17 been achieved by transesterification reactions catalyzed by immobilized *Candida*
- 18 antarctica lipase B as biocatalyst, in organic medium in the presence of D-xylose or L-
- 19 arabinose and vinyl laurate at 50 °C. In case of L-arabinose, one monoester and one
- 20 diester were obtained in a 57 % overall yield. A more complex mixture was produced
- 21 for D-xylose as two monoesters and two diesters were synthesized in a 74.9 % global
- 22 yield. The structures of all these pentose laurate esters was solved. Results
- 23 demonstrated that the esterification first occurred regioselectively onto the primary
- 24 hydroxyl groups. Pentose laurate esters exhibited interesting features such as low
- 25 critical aggregation concentrations values all inferior to 25 μ M. Our study

26	demonstrates that the enzymatic production of L-arabinose and D-xylose-based esters	
27	represents an interesting approach for the production of green surfactants from	
28	lignocellulosic biomass-derived pentoses.	
29		
30	Keywords: D-xylose-laurate esters, L-arabinose laurate esters, lipase, surfactants,	
31	biorefinery.	
32		
33	1. Introduction	
34		
35	For several years, there has been an increasing interest for bio-based	
36	surfactants derived from annually renewable resources [1]. Among bio-based	
37	surfactants, alkyl glycosides and sugar fatty esters are non-ionic surface active	
38	compounds which present numerous advantages such as no toxicity for humans and	
39	for the environment, biodegradability, absence of odor and color [2-4]. The main fields	
40	of application of these non-ionic surfactants are related to personal care, cosmetics	
41	and pharmaceutical applications as well as food emulsification in case of sugar fatty	
42	esters [4-6]. The main alkyl glycosides and sugar fatty esters industrially produced or	
43	described in literature were generally obtained from hexoses, especially D-glucose, or	
44	hexose-based oligosaccharides such as sucrose, maltose and maltodextrins [1, 7].	
45	D-xylose and L-arabinose are both pentoses abundantly present in	
46	lignocellulosic plant cell walls and are main components of xylans [8]. The production	
47	of new added-value molecules from pentoses represents a challenge for the	
48	valorisation of lignocelluloses in the context of development of biorefineries [1, 7].	

Xylose is currently reduced into xylitol, converted into furfural or fermented into
ethanol [7]. Although few pentose-based surfactants were previously developed, some
recent studies described the chemical synthesis of alkyl pentosides and pentose-based
fatty esters [9-13]. These syntheses often require high energy and various catalysts
that might not be compatible with green chemistry processes.

Classical chemical routes to the formation of fatty acid esters generally require 54 esterification or transesterification reactions and the use of polar solvents (DMF, 55 56 DMSO), a basic catalyst and high reaction temperatures (80-120°C) leading to complex 57 mixtures of monoesters, di- and higher esters as different regioisomers and unreacted 58 sugar [14]. The use of fatty esters or acyl chlorides in the presence of an organic 59 solvent and pyridine can improve the reaction yields but again with various degree of substitution [15]. Selective protection of the hydroxyl groups of the carbohydrate 60 (acetyl, benzyl, isopropylidene) can orient the position of esterification reaction and 61 also sometimes to control the pyranose/furanose structure of the products [16]. 62

63

64 The use of enzymes represents an interesting alternative for the preparation of 65 surfactants from biomass [7, 17]. For example, we previously described the enzymatic synthesis and the surfactant properties of alkyl xylosides and alkyl oligoxylosides from 66 xylans and pretreated wheat bran using a transglycosylation approach with a 67 68 xylosidase (EC 3.2.1.37) or xylanases (EC 3.2.1.8) [18, 19]. Among well-known 69 biocatalysts, lipases (EC 3.1.1.3) were widely used to catalyze the ester bond formation 70 of sugar fatty esters[20, 21]. Enzymatic synthesis of sugar fatty esters is usually 71 achieved by esterification reaction from a carbohydrate and a fatty acid or by a

transesterification reaction from a carbohydrate and a fatty acid ester. Enzymatic 72 73 synthesis of sugar fatty esters with lipases represents a green alternative compared to the conventional chemical approach [20]. Moreover, lipases can be used in 74 75 immobilized form, then allowing a recyclability and reusability of the biocatalyst thus 76 reinforcing the green alternative. Lipases display high regioselectivity compared to 77 chemical acylation decreasing the complexity of mixtures of regioisomers produced [22-24]. During esterification, the amount of water present in reaction mixtures and 78 79 formed during reaction must be highly controlled as water induces hydrolysis of esters 80 products [25]. Hence, most of the lipase-based syntheses were performed in organic 81 media as water quantity can be controlled by the use of salts or molecular sieves as 82 desiccating agents [26, 27]. Transesterification catalyzed by lipases in presence of fatty acid esters, especially vinyl esters, represents an interesting strategy to overcome the 83 water production during reaction and to induce better reactions yields. The main 84 disadvantage in this latter case is the production of acetaldehyde as a by-product but 85 the most widely employed lipases seem to be quite stable in the presence of 86 87 acetaldehyde [28].

Although enzymatic synthesis of hexose-derived fatty esters was extensively described in the last twenty years, studies dealing with pentose-based fatty esters were less reported in literature [22, 29-34]. Moreover, in most of the cases, structural data related to these molecules are not described.

92

In the present paper, we report the successful enzymatic synthesis of laurate
pentose esters from D-xylose and L-arabinose catalyzed by the lipase B from *Candida*

95	antarctica (Novozym 435). Our strategy was based on transesterification reactions	
96	with vinyl laurate and allowed producing different mono- and diesters from D-xylose	
97	and L-arabinose. The structural features of these sugar esters were analysed by NMI	
98	and mass spectrometry and their surface-active properties were evaluated.	
99		
100	2. Experimental section	
101		
102	2.1. Materials	
103	2-Methylbutan-2-ol (2M2B, 99%), molecular sieves (4 Å, beads, 8-12 mesh), hexane	
104	(>95%), tetrahydrofuran (THF), Novozym 435 (immobilized lipase acrylic resin from	
105	Candida antarctica, Lot #SLBP0766V), vinyllaurate (>99%), orcinol, chloroform (99%)	
106	and D-xylose (>99%) were purchased from Sigma-Aldrich Corp. (St. Louis, USA). L-	
107	arabinose, acetic acid (AcOH, >99%), ethylacetate (EA, >99.8%), methanol (>99.9%),	
108	petroleum ether (PE, >99.9%) and <i>n</i> -butanol (BuOH, >99%) were purchased from Roth	
109	(Karlsruhe, Germany). Sulfuric acid (H $_2$ SO $_4$, 95%) was purchased from VWR (Radnor,	
110	USA). Acetonitrile (>99.9%) and propan-2-ol (>99%) were purchased from Carlo Erba	
111	Reagents (Dasit Group S.p.A, Cornaredo, Italy).	
112		
113	2.2. Methods	
114	2.2.1. Enzymatic synthesis of D-xylose and L-arabinose laurate esters	
115		
116	Enzymatic syntheses were carried out in screwed glass bottles with magnetic	
117	stirrer, 400 x rpm, in an oil bath at 50 °C. Reactants, D-xylose or L-arabinose (50 mM)	

118	and vinyllaurate (150 mM) were incubated overnight with 2M2B and molecular sieves	
119	(10% w/v). Reaction started when Novozym 435 was added to the medium at 1% w/v.	
120	Reactions were stopped by incubating samples at 100 °C for 10 min and reaction	
121	mixtures were centrifuged at 500 x g for 5 min in order to pellet molecular sieves and	
122	enzymes. Supernatant was used to monitor, sugar fatty esters production by thin layer	
123	chromatography and HPLC. Molecular sieves and enzymes were washed twice with	
124	ultrapure water in order to collect residual pentoses (HPLC quantification).	
125	Kinetic studies were achieved at 50 °C with 20 mL reaction mix and sampling	
126	occurred at 1, 2, 4, 8, 24 and 48 hours of incubation, 1 mL of reaction mixture was	
127	taken each time. These reactions were performed in triplicates.	
128	Higher volume syntheses (100 mL) occurred in similar conditions in order to	
129	produce sufficient quantities of products for purification and characterization.	
130	Reactions were stopped after 4 hours of incubation at 50 °C.	
131		
132	Recycling of the lipase was assessed in presence of D-xylose or L-arabinose (50	
133	mM), vinyllaurate (150 mM), molecular sieves (10 % w/v) and Novozym 435 (1 % w/v).	
134	Reaction was conducted during 4 h at 50°C under magnetic stirring (400 x rpm). After	
135	4h, reaction was centrifugated (45 x g) and pellets containing the lipase and the	
136	molecular sieves were further incubated with fresh D-xylose or L-arabinose and	
137	vinyllaurate. A total of 6 cycles of 4 h were performed.	
138		
139	2.2.2. Purification, characterization and quantification of the transesterification	
140	products	

142	The production of pentose fatty esters was investigated by TLC, using pre-
143	coated TLC-sheets ALUGRAM [®] Xtra SIL G/UV ₂₅₄ (Macherey-Nagel Gmbh & Co., Düren,
144	Germany) and BuOH : AcOH : water $(2/1/1)$ as the mobile phase. Products were
145	revealed using 0.2 % (w/v) orcinol in H_2SO_4 (20 % v/v in water) and heating at 250 °C.
146	After removal of enzymes and molecular sieves, 2M2B was evaporated using a
147	rotary evaporator (Büchi Labortechnik AG, Flawil, Switzerland) and crude products
148	with remaining reactants were collected. Two hexane washings were then performed
149	to eliminate the remaining vinyllaurate and a white paste was collected for both D-
150	xylose and L-arabinose-based esters. Vinyllaurate removal was qualitatively assessed
151	by HPLC. Finally, the residual pentose was precipitated in THF (100 mL) leading to
152	soluble fractions containing mono- and diesters collected for further purification.
153	Residual pentose was finally solubilized in water (50 mL) and quantified by HPLC.
154	The purification of D-xylose or L-arabinose laurate esters was performed by silica gel
155	chromatography (9385 Merck Kieselgel 60, 230–400 mesh, 40–63 μ m). Diesters were
156	eluted using PE / EA (7/3, v/v) and monoesters were eluted using pure EA. All the
157	products were obtained as a white crystalline powder.
158	NMR spectra were recorded on Bruker spectrometers (500 or 600 MHz for ¹ H, 125 or
159	150 MHz for ¹³ C). Chemical shifts are expressed in parts per million (ppm) using
160	tetramethylsilane as an internal standard. NMR spectra are presented as
161	supplementary data. Mass spectra (ESI-MS) and high resolution mass spectra (ESI-
162	HRMS) were performed on Q-TOF Micro micromass positive ESI (CV = 30 V).
163	

- 164 **5-O-lauryl-L-arabinofuranose 1.** White solid, mp 130 °C. ¹H NMR (500 MHz, CDCl₃):
- 165 α/β = undetermined ratio, δ 5.30-5.35 (m, H-1 α , H-1 β), 4.20-4.35 (m, 2 H-5 α , 2 H-
- 166 5β, H-4α or β), 4.05-4.15 (m, H-2α, H-2β, H-4α or β), 2.37 (t, *J* = 7 Hz, 2H), 1.60-1.66
- 167 (m, 2H), 1.25-1.35 (m, 16H), 0.90 (t, J = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.8
- and 174.4 (C=O α and β), 102.5 (C-1 α), 95.9 (C-1 β), 82.5 and 81.2 (C-4 α and β), 79.5
- 169 (C-3 β), 77.6 (C-2 α), 77.4 (C-3 α), 76.1 (C-2 β), 65.9 and 64.3 (C-5 α and β), 2D
- 170 experiment (HMBC): correlations between C=O and H-5; ESI-MS: 355.2 (M + Na)⁺; ESI-
- 171 HRMS : m/z calcd for C₁₇H₃₂O₆Na 355.2097, found 355.2089.
- 172

```
173 3,5-di-O-lauryl-L-arabinofuranose 2. White solid, mp 69 °C, <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) :
```

174 α/β =1/1.56, δ 5.35-5.40 (m, H-1 α , H-1 β), 4.94 (t, J = 5 Hz, H-3 β), 4.70 (dd, J = 5 Hz, J =

175 2 Hz, H-3 α), 4.29-4.44 (m, H-5 α , H-5 β , H-4 α), 4.23 (dd, J = 12 Hz, J = 5 Hz, H-5 α), 4.13-

176 4.19 (m, H-2 α , H-2 β), 4.07-4.11 (m, H-4 β), 2.38 (m, 2H), 1.59-1.65 (m, 2H), 1.20-1.38

177 (m, 16H), 0.90 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃):

178 δ 174.6, 174.4, 173.9 and 173.5 (2 C=O α and β), 102.9 (C-1 α), 96.9 (C-1 β), 81.2 (C-2),

179 81.0 (C-3 α), 79.9 and 79.8 (C-4 α and C-3 β), 79.1 (C-4 β), 76.3 (C-2 α and β), 65.0 and

180 63.4 (C-5 α and β), 2D experiments (HMBC): correlations between C=O 174.6 and

- 181 174.4 and H-3, C=O 173.9 and 173.5 and H-5; ESI-MS: 537.5 (M + Na)⁺; ESI-HRMS : *m/z*
- 182 calcd for C₂₉H₅₄O₇Na 537.3767, found 537.3773.
- 183

184 **5-O-lauryl-D-xylofuranose 3a.** White solid, mp 95 °C (lit. 93-95 °C [35]), ¹H NMR (600

185 MHz, CD₃OD): $\alpha/\beta = 1/1$, δ 5.35 (d, J = 4 Hz, H-1 α), 5.10 (d, J = 1 Hz, H-1 β), 4.40 (dd, J = 1

186 11 Hz, J = 4 Hz, H-5 β), 4.29-4.35 (m, H-4 α and β), 4.27 (d, J = 4 Hz, H-5 α), 4.25 (d, J = 4

Hz, H-5β), 4.13-4.18 (m, H-3α, H-5α), 4.05 (dd, J = 4 Hz, J = 2 Hz, H-3β), 3.96-3.98 (m, H-2β), 3.94 (t, J = 4 Hz, H-2α), 2.34 (q, J = 7 Hz, 2H), 1.59-1.65 (m, 2H), 1.25-1.35 (m, 16H), 0.90 (t, J = 7 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD): δ 175.5 and 175.4 (C=O α and β), 104.3 (C-1β), 97.8 (C-1α), 82.2 (C-2β), 80.9 (C-4β), 78.2 (C-2α), 77.7 (C-4α), 74.8 and 74.6 (C-3α and β), 65.4 (C-5α), 64.7 (C-5β), 2D experiment (HMBC): correlations between C=O and H-5; ESI-MS: 355.3 (M + Na)⁺; ESI-HRMS : m/z calcd for C₁₇H₃₂O₆Na 355.2097, found 355.2092.

194

195 **4-O-lauryl-D-xylopyranose 3b.** White solid, mp 96 °C, ¹H NMR (500 MHz, CD₃OD): α/β

196 = 2/1, δ 5.23 (d, J = 3 Hz, H-1 α), 4.85 (dd, J = 8 Hz, J = 3 Hz, H-4 β), 4.79 (td, J = 8 Hz, J =

197 5.5 Hz, H-4 α), 4.72 (d, J = 6 Hz, H-1 β), 4.14 (dd, J = 12 Hz, J = 5 Hz, H-5 β), 3.94 (t, J = 8.5

198 Hz, H-3 α), 3.72-3.83 (m, H-3 β , 2xH-5 α), 3.60 (d, J = 8.5 Hz, H-2 α), 3.47 (t, J = 7 Hz, H-

199 2β), 3.38 (dd, J = 12 Hz, J = 8.5 Hz, H-5 β), 2.34 (q, J = 6 Hz, 2H), 1.58-1.65 (m, 2H), 1.25-

200 1.35 (m, 16H), 0.87 (t, J = 7 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD): δ 173.7 (C=O α and β),

201 96.8 (C-1β), 92.4 (C-1α), 73.7 (C-2β), 72.9 (C-3β), 72.6 (C-2α), 71.7 (C-3α), 71.2 (C-

202 4 α), 71.1 (C-2 β), 62.0 (C-5 β), 59.7 (C-5 α), 2D experiment (HMBC): correlations

203 between C=O and H-4; ESI-MS: 327.2 (M + H)⁺, 355.2 (M + Na)⁺, 385.1 (M + K)⁺; ESI-

204 HRMS : *m*/*z* calcd for C₁₇H₃₂O₆Na 355.2097, found 355.2089.

205

206 **2,5-di-***O***-lauryl-D-xylofuranose 4.** White solid, mp 79 °C, ¹H NMR (600 MHz, CDCl₃):

207 $\alpha/\beta = 1/4.5$, δ 5.65 (d, J = 4 Hz, H-1 α), 5.27 (broad s, H-1 β), 5.07 (d, J = 1 Hz, H-2 β), 4.93

208 (t, J = 4 Hz, $H-2\alpha$), 4.56 (td, J = 9 Hz, J = 4.5 Hz, $H-5\beta$), 4.48 (dd, J = 12 Hz, J = 5 Hz, $H-2\alpha$)

209 5 α), 4.42 (q, J = 5 Hz, H-4 α), 4.39 (dd, J = 5 Hz, J = 4 Hz, H-3 α), 4.24-4.29 (m, H-5 β , H-

4β), 4.17 (dd, J = 12 Hz, J = 5 Hz, H-5α), 4.14-4.16 (m, H-3β), 2.30-2.39 (m, 4H), 1.58-1.62 (m, 4H), 1.19-1.39 (m, 32H), 0.90 (t, J = 7 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 175.0 (C=O β), 174.3 (C=O α), 173.8 (C=O α), 172.8 (C=O β), 100.9 (C-1β), 95.3 (C-1α), 81.1 (C-2β), 80.7 (C-4β), 79.9 (C-2α), 76.7 (C-4α), 74.2 (C-3α), 73.6 (C-3β), 62.6 (C-5β), 62.3 (C-5α), 2D experiment (HMBC): correlations between C=O (175.0 and 174.3) and H-2, and between C=O (173.8 and 172.8) and H-5; ESI-MS: 537.5 (M + Na)⁺; ESI-HRMS : m/z calcd for C₂₉H₅₄O₇Na 537.3767, found 537.3759.

- 217
- **3,5-di-***O***-lauryl-D-xylofuranose 5.** White solid, mp 77 °C, ¹H NMR (500 MHz, CDCl₃):

219 $\alpha/\beta = 1/0.2$, $\delta 5.47$ (d, J = 4 Hz, H-1 α), 5.28 (d, J = 1 Hz, H-1 β), 5.17 (dd, J = 5 Hz, J = 3

220 Hz, H-3α), 5.11 (dd, J = 5 Hz, J = 2 Hz, H-3β), 4.54-4.60 (m, H-4α, H-4β), 4.25-4.33 (m, 2

221 H-5β), 4.10-4.22 (m,2 H-5α, H-2α, H-2β), 2.25-2.35 (m, 4H), 1.55-1.64 (m, 4H), 1.20-

222 1.28 (m, 32H), 0.80 (t, J = 7 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 173.80 (C=O α), 173.7

223 (C=O β), 173.5 (C=O α and β), 103.1 (C-1 β), 96.0 (C-1 α), 80.6 (C-2 β), 78.6 (C-3 α), 78.3

224 (C-3 β), 77.8 (C-4 β), 75.7 (C-2 α), 75.0 (C-4 α), 63.1 (C-5 β), 62.2 (C-5 α), 2D experiment

225 (HMBC): correlations between C=O (173.8 and 173.5) and H-3, and between C=O

226 (173.7 and 173.5) and H-5; ESI-MS: 537.5 (M + Na)⁺; ESI-HRMS : *m/z* calcd for

- 227 C₂₉H₅₄O₇Na 537.3767, found 537.3777.
- 228

229 The quantification of sugar fatty esters was performed by HPLC using a NUCLEOSHELL®

230 RP 18 ec, 5 μm 250 x 4.6 mm (Macherey Nagel) column at 40 °C. Purified products

were used as standards. Mono- and diesters were eluted at 0.6 mL.min⁻¹, at 40 °C and

with an acetonitrile (A)/water (B) mobile phase, 0-5 minutes 80 % A and 20 % B, 5-20

233	minutes 80 to 100 % A and 20-30 minutes 100 % A. The detection was performed with	
234	a dynamic light scattering detector (PL-ELSD 1000, Polymer Laboratories) at 40 $^\circ$ C	
235	under 350 kPa azote pressure.	
236	Retention times were determined for each ester 1 : 6.7 min, 2 : 31.5 min, 3a-b (not	
237	separated in these conditons) : 6.2 min, 5 : 28.9 min and 4 : 30.4 min.	
238	The quantification of residual sugars was also performed by HPLC using a	
239	NUCLEODUR® 100-5 NH2-RP, 5 μm 250 x 4 mm (Macherey Nagel) column at 40 °C.	
240	Pure sugars were used as standards. Sugars were eluted at 1 mL.min ⁻¹ , at 40 °C and	
241	with an acetonitrile (A)/water (B) mobile phase 75/25 % in isocratic flow. The detection	
242	was performed with a dynamic light scattering detector (PL-ELSD 1000, Polymer	
243	Laboratories) at 40 °C under 350 kPa azote pressure. Retention time of D-xylose and L-	
244	arabinose were 4.5 and 4.2 minutes respectively.	
245		
246	2.2.3. Determination of D-xylose and L-arabinose laurate esters surface-active	
247	properties	
248		
249	Adsorption to an air-aqueous medium interface was analysed at 25.0 \pm 0.2 °C	
250	with an automated Langmuir Balance system equipped with a Wilhelmy plate (KSV	
251	minitrough, KSV instruments Ltd., Helsinki, Finland). Purified sugar esters, or mixtures	
252	of esters (extracted from crude reactions of 4 hours at 50 °C with no further	
253	purification of mono- and diesters) were solubilized in DMSO and injected (20 μL) into	
254	the subphase (Tris HCl 10 mM pH 7) to a range of final concentrations (C). Injections	

255 were done using a Hamilton syringe and two homemade devices allowing the injection

256	of the product without disturbing the air-water interface. These devices were placed a	
257	two fixed positions on the trough to ensure a reproducible injection process. The	
258	subphase was stirred, during the whole experimentation, using two cylindrical	
259	micromagnetic rods (8 \pm 1.5 mm ²) and two electronic stirrer heads located beneath	
260	the trough (model 300, Rank Brothers, Bottisham, U.K.). Stirring was performed at 100	
261	x rpm with an auto-reverse movement. The increasing of the surface pressure was	
262	recorded right after the injection until its value reaches equilibrium ($\Delta\Pi$ eq). CAC was	
263	determined from the plot $\Delta\Pi$ eq = f (C) at the intersection between the linear	
264	regression of the ascendant and plateau parts	
265		
266	2.2.4. pH stability investigation	
267		
268	The pH stability of purified molecules was investigated by performing	
269	incubation at room temperature of 5 mM aqueous solutions of purified products at pH	
270	varying from 4 to 9. Citrate phosphate buffer 50 mM was used to prepare pH solutions	
271	from 4 to 8 and borate buffer 50 mM was used to prepare pH 9 solution. Stability was	
272	monitored, during 72 hours with regular sampling (1, 2, 4, 8, 24, 48 and 72 hours),	
273	qualitatively by TLC and quantitatively by HPLC.	
274		
275	3. Results	
276		
277	Transesterification reactions between L-arabinose or D-xylose and vinyllaurate	
278	were performed with immobilized C. antarctica lipase B, commercially known as	

279	Novozym 435. Various conditions were tested (substrates and lipase loading, organic		
280	solvents) and led to the choice of reaction parameters (data not presented) to carry		
281	out the enzymatic catalysis: L-arabinose or D-xylose (50 mM) and vinyllaurate (150		
282	mM) with molecular sieves (10 % w/v) in screwed glass bottles for various incubation		
283	times with 2M2B as solvent and magnetic stirring (400 x rpm).		
284			
285	3.1. Enzymatic synthesis of L-arabinose laurate esters		
286			
287	Products of transesterification reactions at 50 °C were first visualized by TLC,		
288	indicating that a mixture of monoester 1 and diester 2 of L-arabinose was obtained.		
289	Those esters were purified from 100 mL reactions performed during 4 hours with		
290	conditions described above.		
291	After purification by flash chromatography over silica gel and a careful NMR study, the		
292	structure of monoester 1 was attributed to 5-O-lauryl-L-arabinofuranose and the		
293	structure of diester 2 to 3,5-di-O-lauryl-L-arabinofuranose as mixtures of α/β anomers		
294	(Figure 1A). Global conversion of L-arabinose was evaluated by HPLC by measuring L-		
295	arabinose remaining after 4 hours in reaction media. From a 100 mL reaction at 50 °C,		
296	320 and 756 mg of L-arabinose lauryl monoester 1 and diester 2 were respectively		
297	recovered corresponding to a conversion of 49.0 % of introduced L-arabinose and a		
298	yield of 48.6 % (19.2 % of monoester 1 and 29.4 % of diester 2).		
299	Kinetic of formation of L-arabinose lauryl esters obtained at 50°C was evaluated for 48		
300	hours by HPLC with 20 mL reactions (Figure 1B). During acylation of L-arabinose, both		
301	monoester 1 and diester 2 were formed during the first hour of the reaction (Figure 2)		

302	and were produced at 2.8 \pm 0.1 mg.mL $^{-1}$ and 3.2 \pm 0.3 mg.mL $^{-1}$ respectively. Maximal	
303	quantities of L-arabinose lauryl esters were detected after 4 hours of catalysis and	
304	were equivalent to 4.0 \pm 0.1 and 9.1 \pm 0.3 mg.mL ⁻¹ for 1 and 2 respectively,	
305	corresponding to a conversion of 59.2 \pm 1.5 % of introduced L-arabinose and a 56.8 %	
306	yield (22.8 % of monoester 1 and 34.0 % of diester 2). After 4 hours of reaction, a sligh	
307	decrease in concentration of diester 2 was observed maybe due to a slight hydrolysis	
308		
309	3.2. Enzymatic synthesis of D-xylose laurate esters	
310		
311	For the transesterification reactions of D-xylose with vinyllaurate at 50 $^\circ$ C	
312	during 4h, two sets of spots were detected by TLC indicating the formation of a	

complex mixture of both monoesters and diesters. From 100 mL reactions, one major 313 314 monoester 3a was separated by flash chromatography and NMR data assigned its 315 structure to the 5-O-lauryl-D-xylofuranose, as a mixture of anomers. A minor 316 monoester 3b was also detected and its structure was attributed to 4-O-lauryl-Dxylopyranose. Two diesters 4 and 5 were purified by flash chromatography over silica 317 gel. The less polar diester **4** was identified as 2,5-di-*O*-lauryl-D-xylofuranose and the 318 319 more polar diester 5 as 3,5-di-O-lauryl-D-xylofuranose as mixtures of anomers (Figure 320 2A). From 100 mL reactions, a global conversion of 53 % of initial D-xylose was 321 reached. After separation by chromatography, 340 mg of monoesters (20.5 %) and 557 322 mg of diesters 4 and 5 (25.5 %) were purified and a global yield of 45.5 % was

323 obtained.

Kinetic studies were performed during 48 hours in 20 mL reactions. During acylation 324 325 reactions of D-xylose, the first products formed were monoesters **3a-b** 3.3 ± 0.3 mg.mL⁻¹ during the first two hours of the reaction (Figure 2B). After the third hour, the 326 327 two diesters appeared with quantities of 4.8 \pm 0.1 mg.mL⁻¹ for 5 and 4.0 \pm 0.1 mg.mL⁻¹ 328 for **4** whereas the production of **3** reached $6.2 \pm 0.1 \text{ mg.mL}^{-1}$. The maximal production 329 of xylose lauryl monoesters occurred in 4 hours while the maximal yield of diester was 330 attained after 24 hours. Global conversion of D-xylose was evaluated by HPLC by 331 measuring D-xylose remaining after 4 hours in reaction media and attained 77.1 ± 2.0 332 % and a 74.8 % global overall yield (4h) (38.4% of monoesters **3**, 19.4% of diester **4** and 333 17.4 % of diester 5). Conversion of D-xylose was higher compared to this obtained with 334 the 100 mL reaction probably due to a better mass transfer.

335 Assays of recycling the enzyme were conducted in the same conditions, by performing transesterification of D-xylose and vinyllaurate during 4 hours at 50 °C. 336 Every 4 hours, the reaction medium and the immobilized enzyme were separated. 337 338 Reaction medium was analysed by HPLC and the remaining enzyme was used to 339 perform another round of transesterification reactions with fresh D-xylose (50 mM) 340 and vinyllaurate (150 mM). HPLC analysis showed that the Novozym 435 was re-usable for 5 cycles without losing significant efficiency. During the sixth cycle, the synthesis of 341 total D-xylose laurate esters reached 5 % of synthesis occurring during each previous 342 343 cycle indicating a drastic loss of lipase efficiency (data not presented). Similar results 344 were obtained for recycling experiments in presence of L-arabinose. 345

346 3.3. *pH stability of L-arabinose and D-xylose laurate esters*

348	The pH stability of the purified sugar esters produced at 50 °C was investigated	
349	by incubating aqueous solutions with pH range from pH 4 to 9. L-arabinofuranose an	
350	D-xylofuranose laurate esters solutions were incubated at room temperature and	
351	samples were taken during 72 hours. The evaluation of the stability was studied by	
352	HPLC (data not shown). The L-arabinofuranose and D-xylofuranose laurate esters w	
353	stable in solution within a pH range from 4 to 9 as no liberation of pentose indicatin	
354	hydrolysis of the ester bonds was detectable.	
355		
356	3.4. Surface-active properties of xylose and arabinose laurate esters	
357		
358	Surface-active properties were investigated for pentose esters produced at 50	
359	°C. The ability of pentose esters to adsorb to an air-aqueous medium interface was	
360	studied by measuring the surface pressure increase further to the injection of the	
361	esters in the aqueous subphase. Figure 3 shows as an example the adsorption kinetics	
362	of monoester 3a . Similar results were obtained for the other esters. For concentration	
363	below 2 μM , no surface pressure increase was observed, suggesting that at very low	
364	concentration in the subphase, the adsorption of monoester 3a to the air-water	
365	interface was too low to exert an effect on the surface pressure. At concentration \geq at	
366	$3\ \mu\text{M}\text{,}$ a surface pressure increase can be observed indicating that the monoester was	
367	able to adsorb at the air-aqueous medium interface. Before the detection of the	
368	surface pressure increase, there was a lag time, depending on the concentration	
369	(Figure 3). This suggests that the adsorption to the air–aqueous medium interface is	

370	increased according to monoester 3a concentration, indicating a higher probability of
371	interactions between the ester molecules at the interface [36]. The higher number of
372	molecules at the interface also explains the higher equilibrium surface pressure
373	reached at the plateau.
374	Critical aggregation concentrations (CAC) were determined for purified D-xylofuranose
375	and L-arabinofuranose monoesters and for mixtures of D-xylofuranose or L-
376	arabinofuranose mono- and diesters (Table 1). For pure compounds, the surface
377	pressure was measured for a range of concentrations going from 1 μM to 35 μM in the
378	aqueous subphase (pH 7, room temperature) (Figure 4). As pure D-xylofuranose
379	diesters 4 and 5 or L-arabinofuranose diester 2 showed an extreme hydrophobic
380	behavior (no solubility in aqueous media) for concentrations superior to 2 μM , no
381	measurement of CAC was possible for these molecules. D-xylofuranose monoester 3a
382	and L-arabinofuranose monoester ${\bm 1}$ presented respectively a CAC of 11.5 \pm 1.6 μM and
383	8.4 \pm 0.9 μM (Figure 4A and 4B). In case of xylose or arabinose esters mixtures, CAC
384	were estimated to 23.4 \pm 2.3 μM and 11.8 \pm 0.7 μM respectively (Figure 4C and 4D).
385	
386	4. Discussion
387	
388	Numerous studies from literature deal with esterification and
389	transesterification reactions catalysed by lipases for hexoses acylation, mainly D-
390	glucose. In this context, the selective acylation of the primary hydroxyl group for
391	hexoses and the formation of 6-O acylhexopyranoses is well known [21, 22, 37].

The enzymatic transesterification of L-arabinose was previously described with 392 393 a lipase from Pseudomonas cepiaca using oxime esters as acyl donors [38]. The reaction resulted in the selective formation of the 5-O monoacylated L-394 395 arabinofuranose in 45-70 % yield according to the length of the acyl chain [38]. In a 396 recent study, the synthesis of 5-O-palmitoyl-L-arabinofuranose monoester was 397 obtained by esterification reaction with lipase N435 [34]. The regioselective acylation 398 onto the most reactive primary hydroxyl position of the furanose isomer of L-arabinose 399 was also obtained in the present study. However, in our reaction conditions, the 400 diester 2 was also produced as the major compound in addition to the monoester 1. 401 In case of D-xylose, lipase-catalysed esterification is described to yield complex 402 mixtures of products with immobilized lipase of C. antarctica and lipase of Candida 403 rugosa [32]. In previous studies, lipase-catalysed synthesis of fatty acid xylose esters 404 was investigated but no information concerning neither the regioselectivity of the 405 reaction nor the structures of the esters were available [32, 33, 39]. Lipase-catalysed 406 esterification of 1,2-O-isopropylidene- α -D-xylofuranose with various fatty acids was 407 studied. After deprotection of the acetal, selective synthesis of 5-O-acyl D-xylofuranose 408 occurred [30, 31, 40]. Solvent-free esterification reactions at 75 °C with Rhizomucor *miehei* lipase and 1,2-O-isopropylidene- α -D-xylofuranose as acyl acceptor were carried 409 410 out with fatty acids (lauric to arachidonic acid) and N435 as biocatalyst at 50 °C [40]. 411 Conversion rate of the protected xylose reached 50 % after 24 hours with arachidonic 412 acid.

In the present study, esters produced from D-xylose and L-arabinose at 50 °C
were present as furanose isomers except a minor monoester **3b** for D-xylose as a

415 pyranose isomer. No diesters in pyranosic form were detected and no acylation on the 416 anomeric position occurred. This indicates that esterification first took place regioselectively onto the primary hydroxyl group. The pyranose / furanose equilibrium 417 418 that should exist in the reaction mixture is displaced by the better reactivity of the 419 primary hydroxyl group. Further esterification on a secondary hydroxyl group occurred 420 with monoesters as substrates for the lipase. Indeed, experiments conducted with monoester **3a** as acyl acceptor at 50 °C (in the conditions described in section 2.1.1) 421 422 showed that, after 2 hours of reactions, diesters **4** and **5** were obtained in the same 423 ratio (data not shown). For both pentoses, kinetic studies revealed that maximum 424 yields were obtained at 50 °C after 4 hours of reaction for xylose monoesters 3 and 425 arabinose monoester 1 and diester 2 and after 24 hours for xylose diesters 4, 5, with a higher conversion rate for D-xylose. However, D-xylose-based esters production was 426 slower during the first two hours of reaction compared to L-arabinose. This could be 427 428 explained by the lower ratio of the furanose isomers for D-xylose compared to L-429 arabinose in the reaction mixture as it is the case in aqueous solution [41] or by a 430 difference in dissolution kinetics as described for D-glucose and D-fructose in 2M2B 431 [42]. Monoesters 1 and 3a can undergo a second acylation reaction. For L-arabinose, only diester 2 resulting from a transesterification reaction on the hydroxyl group at C-3 432 was synthesized and was already detected in the first hour of the reaction at 50°C. No 433 434 evolution of the monoester / diester ratio was observed during the reaction course 435 even after 48 hours. In comparison, the reaction was more complex for D-xylose, as two diesters 4 and 5 were obtained from monoester 3. The second acylation proved to 436 437 be less selective and slower than for L-arabinose. These results could be rationalized

by an enhanced reactivity of the secondary hydroxyl groups on C-3 compared to the C2 position for both monoesters 1 and 3a. Indeed, for both monoesters, a second
acylation was observed at C-3 position. However, for D-xylose monoester, the
acylation on C-3 position could be in competition with acylation at C-2 maybe due to
the *cis*-relationship(s) between OH in C-3 position and the acylated C-5 position which
could generate steric hindrance.

The surface-active properties of the pentose-based esters produced a 50 °C can 444 445 be compared to other sugar-based laurate esters described in literature. The CAC 446 values were rather similar to those for xylofuranose laurate monoester for which CMC 447 value of 41 μ M or 18 μ M have been determined [43, 44]. Other laurate esters with 448 different polar heads have shown variable CMC or CAC values depending on the polar head, such as maltopyranose and glucopyranose laurate ester with respective CMC 449 values of 120 μ M and 180 μ M [44]. A CMC value of 3 mM was obtained for 450 galactopyranose laurate esters [45]. Measurement of CMC/CAC is highly dependent on 451 452 the pH and the temperature conditions. The CAC values obtained for our pentose-453 based laurate esters are inferior to 100 µM compared to hexose-based laurate esters 454 and these low values could be related to the lower hydrophobicity of the smaller polar heads (pentoses vs. hexoses) [46]. 455 The low CAC values of the D-xylofuranose and L-arabinofuranose esters produced in 456 457 the present study indicate that these molecules present interesting surfactant 458 properties as their CAC are lower than those of commercially available sugar esters such as Tween 20 (80 μM). Furthermore, the mixtures of esters also exhibit low CAC 459

values which are of interest in a context of an industrial production with limitedpurification steps.

462

463 **5.** Conclusions

464

This study dedicated to the lipase-catalysed synthesis of fatty esters from two 465 biomass-derived pentoses, D-xylose and L-arabinose, reports the full characterization 466 467 of the esters produced and a better understanding of the regioselectivity of the lipase-468 catalysed transesterification with both pentoses. In this work, the enzymatic synthesis 469 of D-xylose and L-arabinose laurate esters using C. antarctica lipase B (N435) as a 470 biocatalyst was reported. Both L-arabinose and D-xylose gave rise to the synthesis of 471 pentose laurate esters as furanose isomers indicating a regioselective first acylation onto the primary hydroxyl group. A second acylation could then occur either 472 selectively on O-3 for L-arabinose or as a mixture of diacylated products on O-2 and O-473 474 3 positions for D-xylose. The nature of the pentose influenced kinetics of production 475 and obtained yields. Kinetics of synthesis of D-xylose based esters were slower but 476 yields were higher than those obtained for L-arabinose based esters. Investigation of surfactant properties of pentoses laurate esters indicated that D-477 xylose and L-arabinose mono- and diesters exhibited good surfactant properties, such 478 479 as low CAC, whether purified or in mixtures. 480 Our study allowed developing a green route for the one step functionalization of pentoses from lignocellulosic biomass to produce sugar esters that could be useful 481 482 as surfactants for various applications (cosmetics, phytochemistry, food ...).

484 Acknowledgements

- 486 The authors are grateful to the French Region Grand Est, Grand Reims and Feder for
- 487 their financial support (chaire AFERE) as well as to the European Regional
- 488 Development Fund (ERDF) and Region Grand Est for the financial support of the
- 489 Interreg Valbran project. PhD thesis (T. Méline) was supported by the Region Grand

490 Est.

- 491 M.D. thanks the F.R.S.-F.N.R.S. (National Funds for Scientific Research, Belgium) for her
- 492 position as Senior Research Associate.

- 507 508 509 510 511
- 512
- 513

514 **References**

- 515 [1] P. Foley, E.S. Beach, J.B. Zimmerman, Derivation and synthesis of renewable surfactants,
- 516 Chemical Society Reviews 41(4) (2012) 1499-1518.
- 517 [2] I.J.A. Baker, B. Matthews, H. Suares, I. Krodkiewska, D.N. Furlong, F. Grieser, C.I.
- Drummond, Sugar fatty acid ester surfactants: Structure and ultimate aerobic biodegradability,
 J Surfactants Deterg 3(1) (2000) 1-11.
- 520 [3] S. De, S. Malik, A. Ghosh, R. Saha, B. Saha, A review on natural surfactants, RSC Adv. 5(81)
- 521 (2015) 65757-65767.
- [4] W. von Rybinski, K. Hill, Alkyl Polyglycosides—Properties and Applications of a new Class of
 Surfactants, Angew. Chem. Int. Ed. 37(10) (1998) 1328-1345.
- 524 [5] D.K.F. Santos, R.D. Rufino, J.M. Luna, V.A. Santos, L.A. Sarubbo, Biosurfactants:
- 525 Multifunctional Biomolecules of the 21st Century, Int. J. Mol. Sci. 17(3) (2016) 401.
- 526 [6] K. Hill, O. Rhode, Sugar-based surfactants for consumer products and technical
- 527 applications, Lipid / Fett 101(1) (1999) 25-33.
- 528 [7] R. Deutschmann, R.F.H. Dekker, From plant biomass to bio-based chemicals: Latest 529 developments in xylan research, Biotechnol. Adv. 30 (2012) 1627-1640.
- 530 [8] A. Ebringerova, T. Heinze, Xylan and xylan derivatives– biopolymers with valuable
- 531 properties, 1. Naturally occurring xylans structures, isolation procedures and properties,
- 532 Macromol. Rapid Commun. 21(9) (2000) 542-556.
- 533 [9] F. Bouxin, S. Marinkovic, J.L. Bras, B. Estrine, Direct conversion of xylan into alkyl
- 534 pentosides, Carbohydr. Res. 345(17) (2010) 2469-2473.
- 535 [10] M. Deleu, C. Damez, S. Gatard, K. Nott, M. Paquot, S. Bouquillon, Synthesis and physico-
- 536 chemical characterization of bolaamphiphiles derived from alkenyl d-xylosides, New J. Chem.
 537 35(10) (2011) 2258-2266.
- 538 [11] M. Deleu, S. Gatard, E. Payen, L. Lins, K. Nott, C. Flore, R. Thomas, M. Paquot, S.
- 539 Bouquillon, d-xylose-based bolaamphiphiles: Synthesis and influence of the spacer nature on
- their interfacial and membrane properties, C. R. Chim. 15(1) (2012) 68-74.
- 541 [12] N. Klai, C. Bidjou-Haiour, S. Bouquillon, d-Xylose-based surfactants: Synthesis,
- characterization and molecular modeling studies, C. R. Chim. 18(6) (2015) 599-606.

- 543 [13] F. Martel, B. Estrine, R. Plantier-Royon, N. Hoffmann, C. Portella, Development of
- 544 Agriculture Left-Overs: Fine Organic Chemicals from Wheat Hemicellulose-Derived Pentoses,

545 Carbohydrates in Sustainable Development I2010, pp. 79-115.

- 546 [14] T. Polat, R.J. Linhardt, Syntheses and applications of sucrose-based esters, Journal of
- 547 Surfactants and Detergents 4(4) (2001) 415-421.
- 548 [15] O.T. Chortyk, J.G. Pomonis, A.W. Johnson, Syntheses and Characterizations of Insecticidal
- 549 Sucrose Esters, Journal of Agricultural and Food Chemistry 44(6) (1996) 1551-1557.
- 550 [16] J. Guo, X.-S. Ye, Protecting groups in carbohydrate chemistry: influence on
- stereoselectivity of Glycosylations, Molecules 15(10) (2010) 7235-7265.
- 552 [17] C. Dumon, L. Song, S. Bozonnet, R. Fauré, M.J. O'Donohue, Progress and future prospects 553 for pentose-specific biocatalysts in biorefining, Process Biochem. 47(3) (2012) 346-357.
- 553 for pentose-specific blocatalysis in biorenning, Process Blochem. 47(3) (2012) 340-357.
 554 [18] M. Muzard, N. Aubry, R. Plantier-Royon, M. O'Donohue, C. Rémond, Evaluation of the
- 554 [18] W. Muzard, N. Aubry, K. Planter-Royon, W. O Dononde, C. Remond, Evaluation of th 555 transglycosylation activities of a GH 39 β -d-xylosidase for the synthesis of xylose-based 556 glycosides, J. Mol. Catal. B: Enzym. 58(1–4) (2009) 1-5.
- 557 [19] M. Ochs, M. Muzard, R. Plantier-Royon, B. Estrine, C. Remond, Enzymatic synthesis of alkyl
- 558 [small beta]-d-xylosides and oligoxylosides from xylans and from hydrothermally pretreated 559 wheat bran, Green Chem. 13(9) (2011) 2380-2388.
- 560 [20] S.W. Chang, J.F. Shaw, Biocatalysis for the production of carbohydrate esters, N.
 561 Biotechnol. 26(3-4) (2009) 109-16.
- 562 [21] J.F. Kennedy, H. Kumar, P.S. Panesar, S.S. Marwaha, R. Goyal, A. Parmar, S. Kaur, Enzyme-
- 563 catalyzed regioselective synthesis of sugar esters and related compounds, J. Chem. Technol.564 Biotechnol. 81(6) (2006) 866-876.
- [22] F. Cauglia, P. Canepa, The enzymatic synthesis of glucosylmyristate as a reaction model for
 general considerations on 'sugar esters' production, Bioresour. Technol. 99(10) (2008) 40654072.
- [23] P. Degn, L.H. Pedersen, J.O. Duus, W. Zimmermann, Lipase-catalysed synthesis of glucose
 fatty acid esters in tert-butanol, Biotechnol. Lett 21(4) (1999) 275-280.
- 570 [24] I. Pérez-Victoria, J.C. Morales, Complementary regioselective esterification of non-
- reducing oligosaccharides catalyzed by different hydrolases, Tetrahedron 62(5) (2006) 878-886.
- 573 [25] A.M. Klibanov, Improving enzymes by using them in organic solvents, Nature. 409(6817)574 (2001) 241-246.
- 575 [26] F. Chamouleau, D. Coulon, M. Girardin, M. Ghoul, Influence of water activity and water
- 576 content on sugar esters lipase-catalyzed synthesis in organic media, J. Mol. Catal. B: Enzym.
 577 11(4–6) (2001) 949-954.
- 578 [27] G.D. Yadav, K.M. Devi, Immobilized lipase-catalysed esterification and transesterification
- 579 reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison 580 and kinetic modeling, Chem. Eng. Sci. 59(2) (2004) 373-383.
- [28] H.K. Weber, H. Stecher, K. Faber, Sensitivity of microbial lipases to acetaldehyde formed
 by acyl-transfer reactions from vinyl esters, Biotechnol Lett 17(8) (1995) 803-808.
- [29] A.M. Gumel, M.S.M. Annuar, T. Heidelberg, C. Y., Lipase mediated synthesis of sugar fatty
 acid esters, Process Biochemistry 46 (2011b) 2079-2090.
- 585 [30] G. Fregapane, D. Sarney, S. Greenberg, D. Knight, E. Vulfson, Enzymatic synthesis of
- 586 monosaccharide fatty acid esters and their comparison with conventional products, J. Am. Oil 587 Chem. Soc 71(1) (1994) 87-91.
- 588 [31] G. Fregapane, D.B. Sarney, E.N. Vulfson, Enzymic solvent-free synthesis of sugar acetal
- 589 fatty acid esters, Enzyme Microb. Technol. 13(10) (1991) 796-800.
- 590 [32] C. Tsitsimpikou, H. Daflos, F.N. Kolisis, Microbial Lipases in the BiocatalysisComparative
- 591 studies on the sugar esters synthesis catalysed by Candida antarctica and Candida rugosa
- 592 lipases in hexane, J. Mol. Catal. B: Enzym. 3(1) (1997) 189-192.

- 593 [33] C. Bidjou-Haiour, N. Klai, Lipase catalyzed synthesis of fatty acid xylose esters and their 594 surfactant properties, Asian J. Chem. 25(8) (2013) 4347.
- 595 [34] V.M. Pappalardo, C.G. Boeriu, F. Zaccheria, N. Ravasio, Synthesis and characterization of
- arabinose-palmitic acid esters by enzymatic esterification, Molecular Catalysis 433 (2017) 383-390.
- 598 [35] J. Fernandez-Bolanos, F. Iglesias Guerra, C. Gomez Herrera, M. Lluch Colomer, Synthesis of
- 599 special surfactants. VIII: Synthesis of 3-O-acyl-D-xylopyranoses, 5-O-acyl-D-xylofuranoses and
- 600 3, 5-di-O-acyl-D-xylofuranoses, Tenside Det. 23(3) (1986) 145-149.
- 601 [36] M.N. Nasir, A. Thawani, A. Kouzayha, F. Besson, Interactions of the natural antimicrobial
- mycosubtilin with phospholipid membrane models, Colloids Surf., B 78(1) (2010) 17-23.
- 603 [37] A.M. Gumel, M.S.M. Annuar, T. Heidelberg, Y. Chisti, Thermo-kinetics of lipase-catalyzed
- 604 synthesis of 6-O-glucosyldecanoate, Bioresour. Technol. 102(19) (2011a) 8727-8732.
- [38] R. Pulido, F.L. Ortiz, V. Gotor, Enzymatic regioselective acylation of hexoses and pentoses
 using oxime esters, J. Chem. Soc., Perkin Transactions 1 (21) (1992) 2891-2898.
- 607 [39] E. Abdulmalek, N.F. Hamidon, M.B.A. Rahman, Optimization and characterization of lipase
- 608 catalysed synthesis of xylose caproate ester in organic solvents, J. Mol. Catal. B: Enzym. 132609 (2016) 1-4.
- 610 [40] O.P. Ward, J. Fang, Z. Li, Lipase-catalyzed synthesis of a sugar ester containing arachidonic 611 acid, Enzyme Microb. Technol. 20 (1997) 52-56.
- 612 [41] K.N. Drew, J. Zajicek, G. Bondo, B. Bose, A.S. Serianni, 13 C-labeled aldopentoses:
- detection and quantitation of cyclic and acyclic forms by heteronuclear 1D and 2D NMR
 spectroscopy, Carbohydr. Res. 307(3) (1998) 199-209.
- 615 [42] J.-M. Engasser, F. Chamouleau, L. Chebil, M. Ghoul, Kinetic modeling of glucose and
- 616 fructose dissolution in 2-methyl 2-butanol, Biochemical Engineering Journal 42(2) (2008) 159-617 165.
- [43] J. Fernandez Bolanos, F. Guerra, C. Herrera, M. Colomer, Synthesis of Special Surfactants,Chem.Inform. 18(2) (1987).
- 620 [44] G. Garofalakis, B.S. Murray, D.B. Sarney, Surface Activity and Critical Aggregation
- 621 Concentration of Pure Sugar Esters with Different Sugar Headgroups, J. Colloid Interface Sci. 622 229(2) (2000) 391-398.
- 623 [45] D. An, X. Zhao, Z. Ye, Enzymatic synthesis and characterization of galactosyl monoesters,
- 624 Carbohydr. Res. 414 (2015) 32-38.
- 625 [46] A. Ducret, A. Giroux, M. Trani, R. Lortie, Characterization of enzymatically prepared
- 626 biosurfactants, J. Am. Oil Chem. Soc 73(1) (1996) 109-113.

628 Figures Captions

Figure 1. (A) Transesterification reaction of L-arabinose and vinyllaurate performed by the lipase Novozym435. (B) Kinetics of synthesis of arabinose laurate esters quantified by HPLC. Reactions were performed at 50°C during 48h with 50 mM arabinose, 150

mM vinyllaurate, 1% (w/v) lipase. 1: arabinose laurate monoester, 2: arabinose laurate
 diester.

Figure 2. (A) Transesterification reaction of D-xylose and vinyllaurate performed by the
lipase Novozym435. (B) Kinetics of synthesis of xylose laurate esters quantified by
HPLC. Reactions were performed at 50°C during 48h with 50 mM xylose, 150 mM
vinyllaurate, 1% (w/v) lipase. **3a-b**: xylose laurate monoesters, **4** and **5**: xylose laurate
diesters.

Figure 3. Surface activity of the xylose laurate monoester **3a**. Kinetics of monoester
 adsorption at the air-water interface, time zero corresponds to the injection into the
 subphase

Figure 4. CAC determination of purified arabinose and xylose laurate monoesters 1 and
GA and B respectively) and of mixtures of mono- and diesters of arabinose or xylose
(C and D respectively). Results obtained at room temperature using a Langmuir
balance equipped with a Wilhelmy platinum plate.

Table 1. CAC values were measured for pure esters 1 and 3a whereas in case of
mixtures CAC values were determined with an average molecular weight of each
compound.

В

2,5-di-O-lauryl-D-xylofuranose

4

3,5-di-O-lauryl-D-xylofuranose

5

В

Table 1

	CAC
Xylose monoester (3a)	11.5 ± 1.6
	μM
Arabinose monoester (1)	8.4 ± 0.9
	μM
Xylose mono- and	23.4 ± 2.3
diesters mixture	μM
Arabinose mono- and	11.8 ± 0.7
diester mixture	μM