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Introduction

This paper provides a general theory on well-posedness (in the sense of C 0semigroups) and time asymptotics of growth-fragmentation equations @ @t u(x; t) + @ @x (r(x)u(x; t)) + (a(x) + d(x))u(x; t) = Z +1

x a(y)b(x; y)u(y; t)dy; u(x; 0) = u 0 (x); x; t > 0

with measurable nonnegative fragmentation kernel b(:; :) and positive growth rate r(:) satisfying the general structural assumptions Z y 0 xb(x; y)dx = y (1 (y)) ; 0 (y) 1 (y 0)

b(x; y) > 0 if 0 x < y (3)

r(:) 2 C (0; +1) ; Z 1 0 1 r( ) d = +1; (4) 
while the total fragmentation rate a(:) and the death (or degradation) rate d(:) are measurable nonnegative and

:= a + d 2 L 1 loc (0; +1): (5) 
Among the physical examples of growth rates we can …nd in the literature, note for instance the typical ones

r(x) = 1 or r(x) = x; (x > 0) : (6) 
The kinetic equations [START_REF] Arino | Stability of phytoplankton dynamics[END_REF] arise in the modeling of various physical or biological phenomena involving concentration of agregates which experience both growth and fragmentation. Typical biological examples are provided by phytoplankton dynamics [START_REF] Arino | Stability of phytoplankton dynamics[END_REF] [START_REF] Banasiak | On conservativity and shattering for an equation of phytoplankton dynamics[END_REF] or by prions dynamics [START_REF] Engler | Analysis of a model for the dynamics of prions[END_REF]; we refer to [START_REF] Gabriel | Eigenelements of a general agregation-fragmentation model[END_REF] and references therein for a lot of contexts where these equations arise; see also the monographs [START_REF]The Dynamics of Physiologically Structured Populations[END_REF][5] [START_REF] Perthame | Transport Equations in Biology[END_REF] for more information. The unknown u(x; t) represents the concentration at time t of "agregates" with mass x > 0 while b(x; y) (x < y) describes the distribution of mass x agregates, called daughter agregates, spawned by the fragmentation of a mass y agregates. The local mass conservation in the fragmentation process corresponds to

1 y Z y 0 xb(x; y)dx = 1
i.e. to (:) = 0: In this case, we say that the kernel b(:; :) is conservative.

Most of the literature is concerned with conservative fragmentation kernels.

On the other hand (:) 6 = 0 [START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF] amounts to saying that a mass loss takes place in the fragmentation process, i.e. We have thus a full description of the fragmentation kernels considered in this paper by means of conservative kernels. We point out that for a given concentration u(:; :), Z +1 0 u(x; t)xdx and Z +1 0 u(x; t)dx are respectively the total mass and the total number of agregates at time t 0. Thus, three natural functional spaces are of particular interest: the "…nite mass" space

X 1 := L 1 (R + ; xdx) with norm kk X 1 ,
the "…nite agregates number" space X 0 := L 1 (R + ; dx) with norm kk X 0 and the "…nite mass and agregates number" space X 0;1 := L 1 (R + ; (1 + x) dx) with norm kk X 0;1 :

Because of their physical relevance and for the sake of completeness, we consider the growth-fragmentation equations in each of the functional spaces above and for the di¤ erent types of divergence (4) (see [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] [START_REF] Mischler | Spectral analysis of semigroups and growthfragmentation equations[END_REF] below). The technical details (and assumptions) may vary a bit from one context to another but overall the general mathematical arguments are similar. We recall that semigroup generation for growth (i.e. transport) equations @ @t u(x; t) + @ @x (r(x)u(x; t)) + (x)u(x; t) = 0 [START_REF] Desch | Perturbations of positive semigroups in AL-spaces[END_REF] is known in various functional settings and under various assumptions on the growth rate r (see e.g. [START_REF] Banasiak | Analytic Methods for Coagulation-Fragmentation Models[END_REF][7] [START_REF] Bernard | Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate[END_REF] for a resolvent approach via Hille-Yosida theory). The …rst object of this paper is well-posedness of (1) in the sense of C 0 -semigroups. To this end, we give …rst a direct and systematic construction of explicit growth semigroups (U (t)) t 0 governing (13) with continuous growth rates r(:) in the functional spaces above under "optimal" (i.e. suf-…cient and "necessary") assumptions. We consider then the fragmentation operator

B : ' 2 D(T ) ! Z +1
x a(y)b(x; y)'(y)dy [START_REF] Diekmann | On the stability of the cell size distribution[END_REF] (T is the generator of (U (t)) t 0 ) as a perturbation and show a generation of a C 0 -semigroup (V (t)) t 0 by T + B with domain

D(T + B) = D(T ) (15) 
under suitable assumptions depending on the functional space we consider.

To this end, we use a perturbation theorem peculiar to positive C 0 -semigroups in L 1 -spaces by W. Desch [START_REF] Desch | Perturbations of positive semigroups in AL-spaces[END_REF]:

Theorem 1 ( [START_REF] Desch | Perturbations of positive semigroups in AL-spaces[END_REF]; see also [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF] or [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory[END_REF] Chapter 8) Let (U (t)) t 0 be a positive C 0 -semigroup with generator T on some L 1 ( )-space and let r B ( T ) 1 < 1:

B : ' 2 D(T ) L 1 ( ) ! L 1 ( )
Based on a systematic use of weak compactness arguments, the second object of this paper is to analyze, in each of the above functional spaces and for di¤erent types of divergence (4) (see [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] [START_REF] Mischler | Spectral analysis of semigroups and growthfragmentation equations[END_REF] below), the existence of a spectral gap r ess (V (t)) < r (V (t))

(r ess and r refer respectively to the essential spectral radius and the spectral radius) or equivalently

! ess (V ) < !(V )
where ! ess (V ) and !(V ) denote respectively the essential type and the type of (V (t)) t 0 , (see e.g. [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory[END_REF] Chapter 2). This property is related to stability of essential type under suitable perturbations, (see below). Note that the expression "spectral gap" is widely used in the mathematical literature but has not always a univocal meaning; we use it here in the sense above. The combination of ( 16) with some irreducibility condition implies the so-called asynchronous exponential growth of (V (t)) t 0

e t V (t) P = O(e "t ) (17) 
(for some " > 0) where P is a one-dimensional spectral projection relative to the leading isolated algebraically simple dominant eigenvalue (Malthus parameter) of the generator, (see e.g. [START_REF] Webb | An operator-theoretic formulation of asynchronous exponential growth[END_REF]). More precisely

P ' = Z +1 0 '(x)u (x) (dx) u
where (dx) = dx; xdx or (1 + x) dx (depending on the choice of X 0 ; X 1 or X 0;1 ), u is the nonnegative eigenfunction associated to the leading isolated eigenvalue of the generator and u is the dual nonnegative eigenfunction (associated to the leading isolated eigenvalue ) with a normalization

Z +1 0 u(x)u (x) (dx) = 1:
We point out that the existence of such Perron eigenelements is a consequence of the spectral gap [START_REF] Gabriel | Eigenelements of a general agregation-fragmentation model[END_REF].

The existence of Perron eigenvectors, regardless of the occurence of a spectral gap, and their asymptotic stability in weighted L 1 spaces (the weight being the dual eigenvector) rely on di¤erent tools and have been the subject of rich works in the last decade. Without pretense to completeness, we refer e.g. to [START_REF] Ph | Exponential decay for the growthfragmentation/ Cell-Division equation[END_REF] [START_REF] Cañizo | Spectral gap for the growthfragmentation equation via Harris's Theorem[END_REF] where some results combine relative entropy techniques; see also [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF] for a probabilistic approach. We refer to the introductions of [START_REF] Mischler | Spectral analysis of semigroups and growthfragmentation equations[END_REF][16] [START_REF] Bernard | Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate[END_REF][10] for a comprehensive review of the existing tools and results. In particular, we point out that asymptotic stability need not be uniform with respect to initial data and, at least in suitable weighted spaces, we cannot expect the existence of a spectral gap for bounded total fragmentation rates a(:) even if Perron eigenvectors can exist [START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF]. (We do not comment here on the case of bounded state spaces which goes back to the pioneer paper [START_REF] Diekmann | On the stability of the cell size distribution[END_REF]; see [START_REF] Banasiak | Asynchronous exponential growth of a general structured population model[END_REF] and references therein for more recent works in this direction.)

[15][21][16][22][7][8][9]
Our paper is rather in the same spirit as [START_REF] Bernard | Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate[END_REF]. The latter deals with asynchronous exponential growth [START_REF] Kato | Perturbation theory for nullity, de…ciency and other quantities of linear operators[END_REF] under the divergence ( 22) below in higher moment spaces

L 1 (R + ; (1 + x) dx) ( > ) (18) 
for a suitable threshold 1 (see also [START_REF] Mischler | Spectral analysis of semigroups and growthfragmentation equations[END_REF][10]). We deal here with the asynchronous exponential growth [START_REF] Kato | Perturbation theory for nullity, de…ciency and other quantities of linear operators[END_REF] in the natural spaces X 0 , X 1 ; X 0;1 under the general divergence (4) but at the expense of the additional assumption (:) 6 = 0 or d(:

) 6 = 0 (19) 
(mass loss or death) which does not occur in the literature on the subject. Assumption [START_REF] Marek | Frobenius theory of positive operators: Comparison theorems and applications[END_REF] opens new mathematical perspectives and allows a systematic functional analytic construction which is the object of this paper. This general theory is based on few structural assumptions only. Besides the main results on spectral gaps, many preliminary results of independent interest are also given and the role of unboundedness of total fragmentation rates a(:) is fully highlighted.

Our construction, inspired by recent contributions to other structured models [START_REF] Mokhtar-Kharroubi | Time asymptotics of structured populations with di¤usion and dynamic boundary conditions[END_REF][30] [START_REF] Mokhtar-Kharroubi | Spectra of structured di¤usive population equations with generalized Wentzell-Robin boundary conditions and related topics[END_REF], relies on three key mathematical ingredients:

(i) The weak compactness tools, for absorption semigroups in L 1 spaces, introduced in [START_REF] Mokhtar-Kharroubi | Compactness properties of perturbed substochastic C 0 -semigroups on L 1 ( ) with applications to discreteness and spectral gaps[END_REF].

(ii) The convex (weak) compactness property of the strong operator topology in Banach spaces [START_REF] Schluchtermann | On weakly compact operators[END_REF] (see also [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF] for an elementary proof in L 1 ( ) spaces).

(iii) Strict comparison of spectral radii in Frobenius theory [START_REF] Marek | Frobenius theory of positive operators: Comparison theorems and applications[END_REF]. Among linear kinetic equations, growth-fragmentation equations present a very particular trait: the state-variable is one-dimensional. This gives them a local regularizing e¤ect that does not exist in usual kinetic theory, e.g. in neutron transport, where the transport part has no local regularizing e¤ect and the perturbation (the collision operator) is non-local with respect to another (velocity) v-variable; this second state variable has a regularizing (local compactness) e¤ect with respect to space x-variable and induces the stability of the essential type [START_REF] Mokhtar-Kharroubi | Optimal spectral theory of the linear Boltzmann equation[END_REF] [START_REF] Mokhtar-Kharroubi | On L 1 spectral theory of neutron transport[END_REF]. On the other hand, for growthfragmentation equations, the compactness results (i.e. the key point behind the spectral gap property) are consequences of the local regularizing e¤ect we alluded to and of the con…ning role of singular absorptions [START_REF] Mokhtar-Kharroubi | Compactness properties of perturbed substochastic C 0 -semigroups on L 1 ( ) with applications to discreteness and spectral gaps[END_REF], hence the key role, in our construction, of unboundedness of total fragmentation rates a(:). We point out that ( 19) is needed only in the vicinity of points where a(:) gets in…nite. Finally, we note that for bounded total fragmentation rates, no spectral gap can exist in the weighted spaces

L 1 (R + ; (1 + x) dx) ( < 1); (20) 
see [START_REF] Bernard | Asymptotic behavior of the growthfragmentation equation with bounded fragmentation rate[END_REF]; we conjecture that we cannot expect spectral gaps in X 1 , X 0 or X 0;1 if the total fragmentation rate is bounded.

Our paper is organized as follows:

We provide …rst an explicit construction of growth C 0 -semigroups governing (13) by the method of characteristics. Two di¤erent growth C 0semigroups occur according as

Z 1 0 1 r( ) d = +1; Z 1 1 1 r( ) d = +1 (21) 
or

Z 1 0 1 r( ) d < +1, Z 1 1 1 r( ) d = +1 (22) 
to cover e.g. the examples [START_REF] Banasiak | Growth-fragmentation-coagulation equations with unbounded coagulation kernels[END_REF]. (For the sake of simplicity, we ignore the case 22) is complemented by a boundary condition, see [START_REF] Mokhtar-Kharroubi | Spectra of structured di¤usive population equations with generalized Wentzell-Robin boundary conditions and related topics[END_REF] below. Our main results in the spaces X 1 and X 0;1 under Assumption (21) are the following:

R 1 0 1 r( ) d = +1; R 1 1 1 r( ) d < +1:) Note that (
A transport C 0 -semigroup (U (t)) t 0 governing (13) exists in X 1 (resp. in X 0;1 ) and is given by

U (t)f = e R y X(y;t) (p)
r(p) dp f (X(y; t)) @X(y; t) @y (X(y; t) is de…ned by

R y X(y;t) 1 r( ) d = t) provided that := sup z>0 r(z) z < +1 (resp. sup z>1 r(z) z < +1); (23) 
(see Proposition 11 and Proposition 32). In addition, the assumptions [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory[END_REF] are "necessary" to a generation theory, (see Proposition 6 and Remark 26). Note that under [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF], the generation theory in X 0;1 needs no condition on the growth rate at the origin. Note also that the C 0 -semigroup (U 0 (t)) t 0 corresponding to = 0 is not contractive, (see Remarks 5 and 27).

We also "compute" the spectral bound s(T ) := sup fRe ; 2 (T )g of its generator T ; (see Proposition 13 and Proposition 34). We recall that s(T ) coincides with the type of (U (t)) t 0 ; (this is a general property of positive semigroups in Lebesgue spaces, see e.g. [START_REF] Weis | A short proof for the stability theorem for positive semigroups on L p[END_REF]). The resolvent of T is given by

( T ) 1 f (y) = 1 r(y) Z y 0 e R y x + ( ) r( ) d f (x)dx (Re > s(T ))
in both spaces X 1 and X 0;1 ; (see Proposition 12 and Proposition 33). Note the domination

U (t) U 0 (t) (t 0) and ( T ) 1 ( T 0 ) 1 ( > s(T 0 ))
where T 0 is the generator of (U 0 (t)) t 0 : We show the pointwise a priori estimate in X 1

( T 0 ) 1 f (y) 1 yr(y) kf k X 1 (f 2 X 1 ) ( > );
(see Lemma 10). In X 0;1 , if we replace the natural condition sup z>1 r(z) z < +1 by the stronger one

C := sup z>0 r(z) 1 + z < +1; (24) 
we show the pointwise a priori estimate in X 0;1

( T 0 ) 1 f (y) 1 (1 + y) r(y) kf k X 0;1 (f 2 X 0;1 ) ( > C);
(see Lemma 30). Note that by domination, the pointwise estimates above are inherited by ( T ) 1 : We show that T has a smoothing e¤ect in

X 1 for > Z +1 0 ( T ) 1 f (y) (y)ydy Z +1 0 jf (y)j ydy (f 2 X 1 );
(see Lemma 14). In X 0;1 , if we replace the natural condition sup z>1 r(z) z < +1 by the stronger one [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF], we show the smoothing e¤ect for > C

Z +1 0 ( T ) 1 f (y) (y)(1 + y)dy Z +1 0 jf (y)j (1 + y)dy (f 2 X 0;1 );
(see Lemma 35). The above estimates, combined to the general theory [START_REF] Mokhtar-Kharroubi | Compactness properties of perturbed substochastic C 0 -semigroups on L 1 ( ) with applications to discreteness and spectral gaps[END_REF] on compactness properties in L 1 spaces induced by the con…ning e¤ ect of singular absorptions, show that if the sublevel sets of

c = fx > 0; (x) < cg (c > 0)
are "thin near zero and near in…nity relatively to r" in the sense

Z +1 0 1 c ( ) r( ) d < +1 (c > 0) (25) 
where 1 c is the indicator function of c (note that 1 r(z) = 2 L 1 (0; +1)) then T is resolvent compact in both spaces X 1 and X 0;1 , i.e. ( T ) 1 is compact in X 1 and X 0;1 ; (see Theorem 20 and Theorem 42). This occurs for instance if lim

y!0 + (y) = +1; lim y!+1 (y) = +1: Note that if c has …nite Lebesgue measure then R +1 1 1 c ( ) r( ) d < +1 pro- vided that 1
r( ) 2 L p (1; +1) for some p > 1: One shows that the fragmentation operator B given par (14

) is T - bounded in X 1 and lim !+1 B( T ) 1 L(X 1 ) lim sup a(y)!+1 1 (y) 1 + d(y) a(y)
; in particular, by W. Desch's perturbation theorem (Theorem 1),

T + B : D(T ) X 1 ! X 1
generates a positive C 0 -semigroup (V (t)) t 0 on X 1 provided that

:= lim sup a(y)!+1 1 (y) 1 + d(y) a(y) < 1; (26) 
(see Theorem 16). Note that [START_REF] Mokhtar-Kharroubi | On L 1 spectral theory of neutron transport[END_REF] (y) > 0:

This explains why we need mass loss or death assumptions and why these are needed only in the vicinity of points where a(:) gets in…nite. We note that for homogeneous kernels (9), the condition [START_REF] Mokhtar-Kharroubi | On honesty of perturbed substochastic C 0 -semigroups in L 1 -spaces[END_REF] (x; y) < 1;

(see Remark 18). Under [START_REF] Mokhtar-Kharroubi | On L 1 spectral theory of neutron transport[END_REF],

T + B : D(T ) X 1 ! X 1 is resolvent compact provided that T : D(T ) ! X 1 is; (see Corollary 21). We build a C 0 -semigroup b V (t) t 0 on X 1 such that U (t) b V (t) V (t) (t 0):
By using the convex (weak) compactness property of the strong operator topology [START_REF] Schluchtermann | On weakly compact operators[END_REF][24] (see below), we show that b V (t)

t 0 and (V (t)) t 0 have the same essential type ! ess ( b V ) = ! ess (V ):
The resolvent compactness of their generators and the strict comparison results of spectral radii of positive compact operators in domination contexts [START_REF] Marek | Frobenius theory of positive operators: Comparison theorems and applications[END_REF] imply the strict comparison of the types

!( b V ) < !(V )
and consequently (V (t)) t 0 has a spectral gap [START_REF] Gabriel | Eigenelements of a general agregation-fragmentation model[END_REF] and exhibits the asynchronous exponential growth [START_REF] Kato | Perturbation theory for nullity, de…ciency and other quantities of linear operators[END_REF] in X 1 provided that the support of a(:) is not bounded; (see Theorem 23).

The analysis in X 0;1 is similar but needs a di¤erent assumption. Indeed, one shows that the fragmentation operator ( 14) is T -bounded in X 0;1 and

lim !+1 B( T ) 1 L(X 1 )
lim sup a(y)!+1

[(y (y)y) + n(y)]

(1 + y) 1 + d(y) a(y)
provided that

n(y) := Z y 0 b(x; y)dx;
(the expected number of daughter agregates spawned by a mother agregates of mass y) is such that

sup y>0 n(y) 1 + y < +1:
By appealing again to W. Desch's perturbation theorem,

T + B : D(T ) X 0;1 ! X 0;1 generates a positive C 0 -semigroup (V (t)) t 0 on X 0;1 provided that lim sup a(y)!+1
[(y (y)y) + n(y)]

(1 + y) 1 + d(y) a(y) < 1; (28) 
(see Theorem 38). As previously, mass loss or death are needed only in the vicinity of points where a(:) gets in…nite. Note that

[(y (y)y) + n(y)] (1 + y) 1 + d(y) a(y) = h y + n(y) (1 (y)) i (y + 1) (1 (y)) 1 + d(y)
a(y) so ( 28) occurs provided that lim sup

a(y)!+1 h y + n(y) (1 (y)) i (y + 1) < 1 :
In particular, if < 1 (i.e. under the generation criterion in X 1 ) and if a(:) is unbounded at zero and at in…nity only, then (28) (i.e. the generation criterion in X 0;1 ) occurs provided that max lim sup

y!0 n(y) (1 (y)) ; 1 + lim sup y!+1 n(y) y (1 (y)) < 1 ;
(see Corollary 39). This is the case e.g. if (:) = 0 and max lim sup

y!0 n(y); 1 + lim sup y!+1 n(y) y < 1 + lim inf a(y)!+1 d(y) a(y)
or if d(:) = 0 and max lim sup

y!0 n(y) (1 (y)) ; 1 + lim sup y!+1 n(y) y (1 (y)) < 1 lim inf a(y)!+1 (y) 1 : (29) 
We note that for homogeneous kernels [START_REF] Cáceres | Rate of convergence to an asymptotic pro…le for the self-similar fragmentation and growthfragmentation equations[END_REF],

n(y) = Z y 0 1 y h( x y )dx = Z 1 0 h(z)dz
and the condition (29) amounts to

Z 1 0 h(z)dz < 1:
More generally, in the case [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF], the condition (29) holds if + 1 < 1 and

lim sup y!0 b n(y) < 1 + 1 
2 and lim sup

y!+1 b n(y) y < 1 + 1 1 + 1 2 where b n(y) = R y 0 b b(x; y)dx and 1 = lim inf a(y)!+1 (x; v) and + 1 = lim sup a(y)!+1 (x; v); (30) 
(see Proposition 41).

Under Assumption [START_REF] Mokhtar-Kharroubi | Compactness properties of perturbed substochastic C 0 -semigroups on L 1 ( ) with applications to discreteness and spectral gaps[END_REF],

T + B : D(T ) X 0;1 ! X 0;1 is resolvent compact provided that T : D(T ) ! X 0;1 is; (see Corollary 43).
As previously, we deduce that (V (t)) t 0 has a spectral gap [START_REF] Gabriel | Eigenelements of a general agregation-fragmentation model[END_REF] and exhibits the asynchronous exponential growth (17) in X 0;1 provided that the support of a(:) is not bounded; (see Theorem 45). We conjecture that in X 0;1 , the results hold under the natural assumption sup z>1 r(z) z < +1 instead of ( 24), (see Remark 46).

Let us describe now very brie ‡y the situation under Assumption ( 22); (see Section 3 for the di¤erent statements). First of all, we cannot expect a generation theory in X 1 under ( 22), (see Remark 51). A growth C 0semigroup (U (t)) t 0 governing (13) with boundary condition

lim x!0 r(x)u(x; t) = 0 (31) 
exists in the space X 0;1 and is given by 24) is satis…ed. This su¢ cient condition for a generation theory in X 0;1 under ( 22) is "partly necessary", (see Remark 50). The mathematical analysis is the same as in the previous case [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] in X 0;1 . The only di¤erent result is that the resolvent compactness of T holds once the sublevel sets of

U (t)f = n R y 0 1 r( ) d >t o e R y X(y;t) (p) r(p) dp f (X(y; t)) @X(y; t) @y (32) (X(y; t) is de…ned by R y X(y;t) 1 r( ) d = t for R y 0 1 r( ) d > t) provided that (
c = fx > 0; (x) < cg (c > 0)
are "thin near in…nity r elatively to r" in the sense

Z +1 1 1 c ( ) r( ) d < +1 (c > 0);
e.g. if lim y!+1 (y) = +1; (no condition at y = 0 is needed). In particular, (V (t)) t 0 has a spectral gap and exhibits the asynchronous exponential growth (17) in X 0;1 provided that the support of a(:) is not bounded; (see Theorem 64). Section 4 is devoted to the "…nite agregates number" space

X 0 = L 1 (R + ; dx)
under Assumption ( 22); (a similar construction could also be done under Assumption ( 21)). For simplicity, we restrict ourselves to

d(:) = 0:
A growth C 0 -semigroup (U (t)) t 0 governing (13) with boundary condition [START_REF] Mokhtar-Kharroubi | Spectra of structured di¤usive population equations with generalized Wentzell-Robin boundary conditions and related topics[END_REF] exists in the space X 0 and is given by (32) but without any further condition on the growth rate r(:): As in X 1 or X 0;1 ; its generator T satis…es a smoothing e¤ect and the pointwise estimate and its resolvent is compact if the sublevel sets of a(:) are "thin near in…nity r elatively to r", e.g. if

lim y!+1
a(y) = +1;

(see Theorem 67). We show also that the fragmentation operator ( 14) is T -bounded in X 0 and

lim !+1 B( T ) 1 L(X 0 ) lim sup a(y)!+1 n(y) provided that n(:) := Z y 0 b(x; :)dx 2 L 1 (0; +1):
In particular, by W. Desch's perturbation theorem again,

T + B : D(T ) X 0 ! X 0 generates a positive C 0 -semigroup (V (t)) t 0 on X 0 provided that lim sup a(y)!+1 n(y) < 1; (33) 
(see Theorem 68). Note that (33) cannot hold for conservative fragmentation kernels, hence the necessity of the mass loss condition. In particular, for homogeneous kernels [START_REF] Cáceres | Rate of convergence to an asymptotic pro…le for the self-similar fragmentation and growthfragmentation equations[END_REF], it amounts to R 1 0 h(z)dz < 1: More generally, in the case [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF], the condition (33) is satis…ed if

lim sup a(y)!+1 b n(y) < 1 + 1 ;
(see Remark 70). We show that (V (t)) t 0 has a spectral gap and exhibits the asynchronous exponential growth [START_REF] Kato | Perturbation theory for nullity, de…ciency and other quantities of linear operators[END_REF] in X 0 provided that the support of a(:) is not bounded; (see Theorem 71). If a(:) is unbounded at zero or at in…nity only, then [START_REF] Nagel | One-Parameter Semigroups of Positive Operators[END_REF] expresses a smallness condition on n(:) at zero or at in…nity.

As far as we know, our results are new and appear here for the …rst time. The role of mass loss or death assumptions appears in the spaces X = X 1 ; X 0 or X 0;1 at two key places : In the proof that

T + B : D(T ) ! X ( 34 
)
is a generator via W. Desch's perturbation theorem and (consequently) in the fact that the resolvent compactness of T implies the resolvent compactness of T + B. A priori, we can overcome the …rst point. Indeed, if we consider for instance the space X 1 , by adapting honesty theory (see e.g. [START_REF] Mokhtar-Kharroubi | On honesty of perturbed substochastic C 0 -semigroups in L 1 -spaces[END_REF]), without mass loss or death assumptions (i.e. (:) = d(:) = 0), [START_REF] Perthame | Transport Equations in Biology[END_REF] need not be a generator but there exists a unique extension

T B T + B of (34) which generates a positive C 0 -semigroup (V (t)) t 0 in X 1 .
Unfortunately, even in the honest case (i.e. T B = T + B), if T + B is not closed, a priori we cannot infer that T B is resolvent compact when T is. This is the main obstruction to build a general theory of asynchronous exponential growth in X 1 without mass loss or death conditions. The same observation can also be made for the other spaces.

In [START_REF] Bernard | Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate[END_REF], under Assumption [START_REF] Mischler | Spectral analysis of semigroups and growthfragmentation equations[END_REF], where no mass loss or death condition is assumed and where T B = T + B (and a priori T B 6 = T + B), the asynchronous exponential growth is not obtained in the natural space X 0;1 but in higher moment spaces (18) ([8] Theorem 1.2): We note that a general construction similar to the present one holds without mass loss or death assumptions provided the growth-fragmentation equations are considered in higher moment spaces

L 1 (R + ; (1 + x) dx); L 1 (R + ; x dx) ( > )
for a suitable threshold 1 depending on the functional space [START_REF] Mokhtar-Kharroubi | On spectral gaps of growthfragmentation semigroups in higher moment spaces[END_REF]; (this is due to the fact that W. Desch's perturbation theorem can apply in higher moment spaces without resorting to mass loss or death assumptions [START_REF] Banasiak | Growth-fragmentation-coagulation equations with unbounded coagulation kernels[END_REF]). This strongly suggests the conjecture that we cannot expect the asynchronous exponential growth (17) in X 1 , X 0 or X 0;1 without mass loss or death assumptions.

The …rst construction

We deal …rst with the case

Z 1 0 1 r( ) d = +1 and Z 1 1 1 r( ) d = +1 (35) 
and start with:

Proposition 2 Let (35) be satis…ed. The partial di¤ erential equation

@ @t u(x; t) + @ @x [r(x)u(x; t)] = 0; (x; t > 0)
with initial condition u(x; 0) = f (x) has a unique solution given by u(y; t) = r(X(y; t))f (X(y; t)) r(y)

where X(y; t) > 0 is de…ned by

Z y X(y;t) 1 r( ) d = t (t > 0): (36) 
Proof. We solve @ @t u(x; t) + @ @x [r(x)u(x; t)] = 0 with intial data u(x; 0) = f (x) by the method of characteristics. Making the change r(x)u(x; t) = '(x; t) this amounts to solving

1 r(x) @ @t '(x; t) + @ @x ['(x; t)] = 0; '(x; 0) = r(x)f (x):
We introduce the characteristic equations

dt ds = 1 r(x(s)) ; dx ds = 1
with "initial" conditions

x(0) = x; t(0) = 0 (x > 0)
i.e. x(s) = s + x and

t(s) = Z s 0 1 r( + x) d = Z s+x x 1 r( ) d (s > 0): Thus [0; +1) 3 s ! r(s + x)u(s + x; Z s+x x 1 r( ) d ) is constant and then r(s + x)u(s + x; Z s+x x 1 r( ) d ) = r(x)u(x; 0) = r(x)f (x) 8s > 0:
For t > 0 and y > 0 given, we set

Z s+x x 1 r( ) d = t; s + x = y i.e. R y x 1 r( ) d = t: Since x 2 [0; y] ! R y x 1
r( ) d is (a continuous function) strictly decreasing from +1 to 0, then we denote by X(y; t) the unique x 2 (0; y) such that R y x 1 r( ) d = t: Thus r(y)u(y; t) = r(X(y; t))f (X(y; t)) which ends the proof.

Theory in the space X 1

Within assumption [START_REF] Schluchtermann | On weakly compact operators[END_REF], we …rst develop a general theory on well-posedness and spectral analysis in the "…nite mass" space

X 1 := L 1 (R + ; xdx): 2.1.1 An unperturbed semigroup (U 0 (t)) t>0
We put now the solution given in Proposition 2 in the functional space X 1 . Let

(U 0 (t)f ) (y) := r(X(y; t))f (X(y; t)) r(y)
where X(y; t) (t > 0) is de…ned by [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF].

Theorem 3 Let (35) be satis…ed. Then

(U 0 (t)f ) (y) = f (X(y; t)) @X(y; t) @y
and (U 0 (t)) t>0 is a positive C 0 -semigroup on the space X 1 if and only if sup x>0 y(x;t) x < +1 8t > 0 and

[0; +1) 3 t ! sup x>0 y(x; t) x is locally bounded ( 37 
)
where y(x; t) is de…ned by

Z y(x;t) x 1 r( ) d = t (t > 0): (38) 
If

:= sup z>0 r(z) z < +1 (39)
then ( 37) is satis…ed; more precisely y(x;t) x e t .

Proof. Let us check that U 0 (t) is a bounded operator on X 1 : Note that [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF] shows that (for t > 0 …xed) X(y; t) is strictly increasing in y and tends to 0 as y ! 0 (because X(y; t) y). Note that

(0; +1) 3 y ! X(y; t) 2 (0; +1) is continuous. Since (for t > 0 …xed) U (y; z) := Z y z 1 r( ) d t is of class C 1 in (y; z) with @U (y; z) @z = 1 r(z) 6 = 0
then the implicit function theorem shows that X(y; t) is a C 1 function in y 2 (0; +1) so that di¤erentiating (36) in y 2 (0; +1) 1 r(y) 1 r(X(y; t)) @X(y; t) @y = 0

i.e. @X(y; t) @y = r(X(y; t)) r(y) and (U 0 (t)f ) (y) = f (X(y; t)) @X(y; t) @y ; y 2 (0; +1):

Thus ku(:; t)k X 1 = Z +1 0 ju(y; t)j ydy = Z +1 0
jf (X(y; t))j @X(y; t) @y ydy:

Note that R y X(y;t) 1 r( ) d = t shows that lim y!+1 X(y; t) = +1: The change of variable x = X(y; t) gives ku(:; t)k X 1 = Z +1 0 jf (x)j y(x; t)dx
where y(x; t) is the unique y > x such that x = X(y; t); see [START_REF] Weis | A short proof for the stability theorem for positive semigroups on L p[END_REF]. Thus 

ku(:; t)k X 1 = Z +1 0 y(x; t) x jf ( 
< +1: Hence U 0 (t) : X 1 3 f ! r(X(y; t))f (X(y; t)) r(y) 2 X 1 is bounded with kU 0 (t)k L(X 1 ) = sup x>0 y(x; t) x and then [0; +1) 3 t ! U 0 (t) 2 L(X 1
) is locally bounded if and only if

[0; +1) 3 t ! sup x>0 y(x; t) x
is. It follows (see e.g. [START_REF] Davies | One-parameter Semigroups[END_REF]) that (U 0 (t)) t>0 is exponentially bounded. In this case, to show that (U 0 (t)) t>0 is strongly continuous on X 1 it su¢ ces to check that

U 0 (t)f ! f in L 1 (R + ; xdx) as t ! 0
on a dense subspace of L 1 (R + ; xdx), e.g. for f continuous with compact support in (0; +1): Note that [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF] shows that X(y; t) ! y as t ! 0 uniformly on compact sets of (0; +1). Let the support of f be included in a set c; c 1 with 0 < c < 1: Since X( c 2 ; t) ! c 2 and X(2c 1 ; t) ! 2c 1 as t ! 0 there exists t c > 0 such that X( c 2 ; t) < c; X(2c 1 ; t) > c 1 once t < t c and consequently, for t < t c ; X(y; t) < c 8y c 2 ; X(y; t) > c 1 8y > 2c 1

because y ! X(y; t) is strictly increasing. Hence

U 0 (t)f = 0 on (0; c 2 ) [ (2c 1 ; +1); t < t c :
Since X(y; t) ! y as t ! 0 uniformly on c 2 ; 2c 1 , r(X(y; t))f (X(y; t)) is uniformly bounded in y 2 c 2 ; 2c 1 as t ! 0 and 1 r is integrable on c 2 ; 2c 1 so r(X(y; t))f (X(y; t)) r(y)

! f in L 1 ( h c 2 ; 2c 1 i ; dx)
as t ! 0 by the dominated convergence theorem. In particular

U 0 (t)f ! f in L 1 (R + ; xdx) as t ! 0: It follows from (39) that r(z) z 8z > 0: (40) 
We di¤erentiate [START_REF] Weis | A short proof for the stability theorem for positive semigroups on L p[END_REF] Corollary 4 Let (35)(39) be satis…ed. Let X(y; t) be de…ned by [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF]. Then

(U 0 (t)f ) (y) := r(X(y; t))f (X(y; t)) r(y) = f (X(y; t)) @X(y; t) @y
de…nes a C 0 -semigroup (U 0 (t)) t>0 on X 1 such that kU 0 (t)k L(X 1 ) e t where = sup z>0 r(z) z :

Remark 5 Note that the fact that x < y(x; t) (for t > 0) implies that sup x x 1 y(x; t) > 1 and then kU 0 (t)k L(X 1 ) > 1 for t > 0, i.e. (U 0 (t)) t>0 is not contractive.

We strongly suspect that the su¢ cient condition (39) for ( 37) is actually necessary. Indeed, we have:

Proposition 6 Let (35) be satis…ed. If lim z!0 r(z) z = +1 or lim z!+1 r(z) z = +1
then sup x>0 y(x;t) x = +1: where y(x; t) is de…ned by [START_REF] Weis | A short proof for the stability theorem for positive semigroups on L p[END_REF]. In particular, the generation theory in X 1 fails.

Proof. We have We identify now the resolvent of the generator.

Proposition 7 Let (35)(39) be satis…ed. Let T 0 be the generator of (U 0 (t)) t>0 in X 1 : Then

( T 0 ) 1 f (y) = 1 r(y) Z y 0 e R y x r(s) ds f (x)dx; Re > s(T 0 )
where s(T 0 ) is the spectral bound of T 0 Proof. We recall that the spectral bound of T 0 is nothing but the type of (U 0 (t)) t>0 , see e.g. [START_REF] Nagel | One-Parameter Semigroups of Positive Operators[END_REF]. Note …rst that

( T 0 ) 1 f (y) = Z +1 0 e t r(X(y; t))f (X(y; t)) r(y) dt (Re > s(T 0 )):
Note that [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF] shows that t 2 (0; +1) ! x := X(y; t) is strictly decreasing from y to 0: Di¤erentiating (36) in t we get 1 r(X(y; t)) @X(y; t) @t = 1 so the change of variable x = X(y; t) gives dx = r(X(y; t))dt and Z +1 0 e t r(X(y; t))f (X(y; t)) r(y) dt = 1 r(y)

Z y 0 e X 1 (y;x) f (x)dx
where X 1 (y; x) is the inverse of t ! x = X(y; t): Observe that this inverse is nothing but

x ! t = Z x y 1 r( ) d so ( T 0 ) 1 f (y) = 1 r(y) Z y 0 e R y x 1 r( ) d f (x)dx
and this ends the proof.

Remark 8 It is possible to characterize T 0 D(T 0 ) = f 2 X 1 ; @ (rf ) @y 2 X 1 ; T 0 = @ (rf ) @y
where @(rf ) @y is the derivative (in the sense of distributions on (0; +1)) of the locally integrable function rf on (0; +1) ; see [START_REF] Banasiak | Analytic Methods for Coagulation-Fragmentation Models[END_REF].

We characterize the spectral bound of T 0 .

Proposition 9 We assume that (35)(39) are satis…ed. The spectral bound of T 0 (or equivalently the type of (U 0 (t)) t>0 ) is given by

s(T 0 ) = lim t!+1 1 t ln sup x x 1 y(x; t) = inf t>0 1 t ln sup x x 1 y(x; t) > 0
where y(x; t) is de…ned by [START_REF] Weis | A short proof for the stability theorem for positive semigroups on L p[END_REF].

Proof. In the proof of Theorem 3, kU 0 (t)k L(X 1 ) = sup x>0 y(x;t) x and the type of (U 0 (t)) t>0 is given by lim t!+1 1 t ln kU 0 (t)k L(X 1 ) :

We give now a key pointwise estimate in X 1 .

Lemma 10 Let (35)(39) be satis…ed. Let > : Then

( T 0 ) 1 f (y) 1 yr(y) kf k X 1 (f 2 X 1 ):
Proof. Since r(x)

x then

( T 0 ) 1 f 1 r(y) Z y 0 e R y x 1 d jf (x)j dx = 1 r(y) Z y 0 1 x e R y x 1 d jf (x)j xdx:
On the other hand, if > then 1 > 0 and

1 x e R y x 1 d = 1 x e ln( y x ) = 1 x e ln( x y ) = 1 x x y = x 1 y y 1 y = 1 y (8x y)
so that

( T 0 ) 1 f 1 yr(y) Z y 0 jf (x)j xdx 1 yr(y) kf k X 1 :
This ends the proof.

A …rst perturbed semigroup (U (t)) t>0

Arguing as previously, we solve

@ @t u(x; t) + @ @x [r(x)u(x; t)] + (x)u(x; t) = 0; u(x; 0) = f (x)
by the method of characteristics and get

u(y; t) = e R y X(y;t) (p) r(p) dp r(X(y; t))f (X(y; t)) r(y)
where X(y; t) is de…ned by [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF].

Proposition 11 Let (35)(39) be satis…ed. Let X(y; t) be de…ned by [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF]. Then

U (t)f : = e R y X(y;t) (p) r(p) dp r(X(y; t))f (X(y; t)) r(y) = e R y X(y;t) (p) r(p) dp f (X(y; t)) @X(y; t) @y = e R y X(y;t) (p) r(p) dp U 0 (t)f de…nes a positive C 0 -semigroup (U (t)) t>0 on X 1 .
Proposition 12 Let (35)(39) be satis…ed. Let T be the generator of (U (t)) t>0 :

Then ( T ) 1 f (y) = 1 r(y) Z y 0 e R y x + ( ) r( ) d f (x)dx:
for Re > s(T ), where s(T ) is the spectral bound of T:

Proof. We note that for Re > s(T

) ( T ) 1 f (y) = Z +1 0 e t e R y X(y;t) (p) 
r(p) dp r(X(y; t))f (X(y; t)) r(y) dt where X(y; t) is de…ned by [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF]. Arguing as in the proof of Proposition 7, the change of variable x = X(y; t) gives We study the spectral bound of T:

Proposition 13 Let (35)(39) be satis…ed. The spectral bound of T is given by

s(T ) = lim t!1 sup x>0 " t 1 Z y(x;t) x (p) r(p) dp ! + t 1 ln y(x; t) x # :
In particular

s(T ) lim t!1 inf x>0 t 1 Z y(x;t) x (p) r(p)
dp + s(T 0 ):

If b := inf p (p) r(p) > 0 (e.g. if inf > 0) then s(T ) (1 b ) s(T 0 ):
Proof. We have

kU (t)f k X 1 = Z +1 0 e R y X(y;t) (p)
r(p) dp f (X(y; t)) @X(y; t) @y ydy:

The change of variable x = X(y; t) (i.e. R y(x;t) 

x 1 r( ) d = t) gives kU (t)f k X 1 = Z +1 0 e R y
= (1 b ) sup x>0 ln y(x; t) x = (1 b ) ln sup x>0 y(x; t) x = (1 b ) ln kU 0 (t)k L(X 1 ) implies s(T ) = lim t!+1 t 1 ln kU (t)k L(X 1 ) (1 b ) lim t!+1 t 1 ln kU 0 (t)k L(X 1 )
and ends the proof.

A smoothing e¤ect of the perturbed resolvent

We give now another key estimate in X 1 .

Lemma 14 Let (35)(39) be satis…ed. Let

> : Then Z +1 0 ( T ) 1 f (y) (y)ydy Z +1 0 j(f (y)j ydy; (f 2 X 1 ) :
Proof. We note …rst that Remark 15 One can deduce from Lemma 14 that

D(T ) = ff 2 D(T 0 ); f 2 X 1 g ; T f = T 0 f f:
2.1.5 On the full perturbed semigroup (V (t)) t>0

We give now a second perturbation theorem in X 1 .

Theorem 16 Let (35)(39) be satis…ed. Then the fragmentation operator ( 14) is T -bounded in X 1 and

lim !+1 B( T ) 1 L(X 1 )
lim sup a(y)!+1

(1 (y))

1 + d(y)
a(y)

:

In particular,

T + B : D(T ) X 1 ! X 1 generates a positive semigroup (V (t)) t>0 in X 1 if lim sup a(y)!+1
(1 (y))

1 + d(y) a(y) < 1: (43) 
Proof. We observe that On the other hand, according to Lemma 14, for > and lim inf a(y)!+1 (y) > 0 holds if + 1 < 1:

kB'k X 1 Z +1 0 Z +1 x a ( 
B( T ) 1 f X 1 = Z +1 0 a(y) (1 (y)) ( T ) 1 jf j ydy = Z fa cg a(y) (1 (y)) ( T ) 1 jf j ydy + Z fa>cg a(y) (1 (y)) ( T ) 1 jf j ydy: We have Z fa cg a(y) (1 (y)) ( T ) 1 jf j ydy c ( T ) 1 f X 1
Z +1 0 ( T ) 1 f (x) (a(x) + d(x)) xdx Z +1 0 jf (x)j xdx whence B( T ) 1 L(X 1 ) c ( T ) 1 L(X 1 ) + sup fa>cg (1 (y)) 1 + d(y) a(y 
2.1.6 Compactness results in X 1 Let c = fx > 0; (x) < cg (c > 0) be the sublevel sets of : De…nition 19 If R 1 0 1 r( ) d = +1
we say that the sublevel sets of are thin near zero relatively to r (thin near zero for short) if

Z 1 0 1 c ( ) r( ) d < +1 (c > 0)
where 1 c is the indicator function of c : In particular, if lim y!0 (y) = +1 then the sublevel sets of are automatically thin near zero.

Similarly, if R 1 1 1 r( ) d = +1
we say that the sublevel sets of are thin near in…nity relatively to r (thin near in…nity for short) if

Z 1 1 1 c ( ) r( ) d < +1 (c > 0):
In particular, if lim y!+1 (y) = +1 then the sublevel sets of are automatically thin near in…nity.

The con…ning role of singular absorption potentials in compactness properties of (perturbed) positive contraction semigroups in abstract L 1 spaces has been systematically analyzed in [START_REF] Mokhtar-Kharroubi | Compactness properties of perturbed substochastic C 0 -semigroups on L 1 ( ) with applications to discreteness and spectral gaps[END_REF]. Note that growth-semigroups are not contractive and we provide here a direct analysis adapted to them.

Theorem 20 Let (35)(39) be satis…ed. If the sublevel sets of are thin near zero and in…nity (44

)
then T is resolvent compact on X 1 :

Proof. Let > and f in the unit ball of X 1 , i.e. Z +1 0 jf (x)j xdx 1:

According to Lemma 14

Z +1 0 ( T ) 1 f (x) (x)xdx 1:
Let c > 0 and " > 0 be arbitrary. We have

1 Z " 0 ( T ) 1 f (x) (x)xdx = Z " 0 1 f <cg ( T ) 1 f (x) (x)xdx + Z " 0 1 f cg ( T ) 1 f (x) (x)xdx so sup kf k X 1 1 Z " 0 1 f cg ( T ) 1 f (x) xdx 1 c :
On the other hand, according to Lemma 10,

( T ) 1 f (x) 1 xr(x) (x > 0) uniformly in kf k X 1 1 so Z " 0 1 f <cg ( T ) 1 f (x) (x)xdx c Z " 0 1 f <cg 1 xr(x) xdx = c Z " 0 1 f <cg 1 r(x) dx and sup kf k X 1 1 Z " 0 ( T ) 1 f (x) xdx 1 c + c Z " 0 1 f <cg 1 r(x) dx
can be made arbitrarily small by choosing …rst c large enough and then " small enough. Similarly,

1 Z +1 " 1 ( T ) 1 f (x) (x)xdx = Z +1 " 1 1 f <cg ( T ) 1 f (x) (x)xdx + Z +1 " 1 1 f cg ( T ) 1 f (x) (x)xdx so sup kf k X 1 1 Z +1 " 1 1 f cg ( T ) 1 f (x) xdx 1 c :
We have also

Z +1 " 1 1 f <cg ( T ) 1 f (x) (x)xdx c Z +1 " 1 1 f <cg 1 xr(x) xdx = c Z +1 " 1 1 f <cg 1 r(x) dx and sup kf k X 1 1 Z " 0 ( T ) 1 f (x) xdx 1 c + c Z " 0 1 f <cg 1 r(x) dx
can be made arbitrarily small by choosing …rst c large enough and then " small enough. Finally, the uniform estimate

( T ) 1 f (x) 1 xr(x) (x > 0) (kf k X 1 1)
gives a uniform domination by

1 (";" 1 ) xr(x) 2 X 1 1 (";" 1 ) ( T ) 1 f (x) 1 (";" 1 ) xr(x) (kf k X 1 1) so 1 (";" 1 ) ( T ) 1 f ; kf k X 1 1 is relatively weakly compact.
Finally, ( T ) 1 f ; kf k X 1 1 is as close to a relatively weakly compact set as we want and consequently is weakly compact. Hence ( T ) 1 is weakly compact operator and consequently (see [START_REF] Mokhtar-Kharroubi | Compactness properties of perturbed substochastic C 0 -semigroups on L 1 ( ) with applications to discreteness and spectral gaps[END_REF] 

Lemma 14) ( T ) 1 is compact.
We can state:

Corollary 21 Let (35)(39)(44)(43) be satis…ed. Then

T + B : D(T ) X 1 ! X 1 is resolvent compact in X 1 .
Proof. Theorem 16 implies P +1 j=0 (B( T ) 1 ) j 2 L(X 1 ) and

( T B) 1 = ( T ) 1 +1 X j=0 (B( T ) 1 ) j
so Theorem 20 ends the proof.

2.1.7 Spectral gap of the full semigroup (V (t)) t>0 in X 1

We start with:

Lemma 22 Let (35)(39) be satis…ed. We assume that the support of a(:) is not bounded. Then ( T B) 1 is positivity improving, i.e.

( T B) 1 f > 0 a.e.
for any nontrivial nonnegative f 2 X 1 ; or equivalently (V (t)) t>0 is irreducible in X 1 .

Proof. Note that and consequently

( T B) 1 f = ( T ) 1 +1 X n=0 B( T ) 1 n f > ( T ) 1 +1 X n=1 B( T ) 1 n f and ( T ) 1 ' (y) = 1 r(y)
( T ) 1 +1 X n=1 B( T ) 1 n f > 0 a.e.
for any nontrivial nonnegative f . This ends the proof.

We are now ready to show the main result of Subsection 2.1.

Theorem 23

We assume that (35)(39)(43)(44) are satis…ed and that the support of a(:) is not bounded. Then (V (t)) t>0 has a spectral gap in X 1 , i.e.

r ess (V (t)) < r (V (t));
and satis…es the asynchronous exponential growth. 

b k(x; y) k(x; y) then b B( T ) 1 L(X 1 ) B( T ) 1 L(X 1 ) < 1 for large enough so T + b B : D(T ) ! X 1 generates a positive semigroup ( b V (t)) t>0 : Note that (V (t)) t>0 is generated by T + b B + B
where B is a bounded operator on X 1 : Actually the kernel of B is compactly supported in (0; +1) (0; +1) and bounded and consequently B is a weakly compact operator on X 1 : On the other hand

V (t) = b V (t) + Z t 0 b V (t s)B b V (s)ds
and, by the convex (weak) compactness property of the strong operator topology (see [START_REF] Schluchtermann | On weakly compact operators[END_REF] or [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF]), the strong integral (not a Bochner integral)

Z t 0 b V (t s)B b V (s)ds
de…ned just strongly, i.e. by

X 1 3 ' ! Z t 0 b V (t s)B b V (s)'ds 2 X 1 ;
is a weakly compact operator. It follows that b V (t) and V (t) have the same essential spectrum [START_REF] Kato | Perturbation theory for nullity, de…ciency and other quantities of linear operators[END_REF] and therefore

r ess ( b V (t)) = r ess (V (t)) (t > 0) (45) 
or, equivalently, the identity of their essential types

! ess ( b V ) = ! ess (V ):
On the other hand b

V (t) V (t) ( T b B) 1 ( T B) 1 and ( T b B) 1 6 = ( T B) 1
because B 6 = 0: Since, by Lemma 22, ( T B) 1 is positivity improving (and thus irreducible) and compact (by Corollary 21) then

r h ( T b B) 1 i < r ( T B) 1 see [19]. Moreover r h ( T b B) 1 i = 1 s(T + b B) and r ( T B) 1 = 1 s(T + B)
(see e.g. [START_REF] Nagel | One-Parameter Semigroups of Positive Operators[END_REF]) whence s(T + b B) < s(T + B): This implies in particular that s(T + B) > 1:

Note that the type of a positive semigroup on L 1 coincides with the spectral bound of its generator so that

r ( b V (t)) = e s(T + b B)t < e s(T +B)t = r (V (t)): Since r ess ( b V (t)) r ( b V (t)
) then (45) gives r ess (V (t)) < r (V (t)) i.e. (V (t)) t>0 has a spectral gap. Finally, the asynchronous exponential growth follows from the irreducibility of (V (t)) t>0 :

Remark 24 Note that if the sublevel sets of a(:) are thin at in…nity then the support of a(:) is not bounded.

Theory in the space X 0;1

Within assumption [START_REF] Schluchtermann | On weakly compact operators[END_REF], we develop now a general theory on well-posedness and spectral analysis in the "…nite mass and number of agregates" space

X 0;1 := L 1 (R + ; (1 + x)dx) : 2.2.1 First generation result in X 0;1
We put now the solution given in Proposition 2 in the functional space X 0;1 .

Theorem 25 Let (35) be satis…ed and X(y; t) be given by [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF]. Then (U 0 (t)f ) (y) := r(X(y; t))f (X(y; t)) r(y) = f (X(y; t)) @X(y; t) @y de…nes a stongly contiuous semigroup (U 0 (t)) t>0 on X 0;1 if and only if

sup x>0 1 + y(x; t) 1 + x < +1 8t > 0 (46) 
and

[0; +1) 3 t ! sup x>0 1 + y(x; t) 1 + x is locally bounded (47) 
where y(x; 0) = x and y(x; t) is de…ned for t > 0 by (38): If

1 := sup z>1 r(z) z < +1 (48) 
then (47) is satis…ed.

Proof. We have

kU 0 (t)f k X 0;1 = Z +1 0 ju(y; t)j (1 + y) dy = Z +1 0
jf (X(y; t))j @X(y; t) @y (1 + y) dy:

By the change of variable x = X(y; t), we have

kU 0 (t)f k X 0;1 = Z +1 0 jf (x)j (1 + y(x; t)) dx = Z +1 0 1 + y(x; t) 1 + x jf (x)j (1 + x)dx
so U 0 (t) is a bounded operator on X 0;1 if and only if (46) holds; in this case,

kU 0 (t)k L(X 0;1 ) = sup x>0 1 + y(x; t) 1 + x : (49) 
This shows the …rst claim. Note that under (

x 1 r( ) d = t implies that lim x!0 y(x; t) = 0 uniformly in t bounded so

lim x!0 1 + y(x; t) 1 + x = 1 (t > 0)
uniformly in t bounded. In particular (46) holds if and only if

sup x>1 1 + y(x; t) 1 + x < +1 (t > 0)
and 

[0; +1) 3 t ! sup x>1 1 + y(x; t) 1 +
lim z!+1 r(z) z = +1
then sup x>1 y(x;t) x = +1 and consequently the generation theory in X 0;1 fails.

Remark 27

We observe that in contrast to the X 1 -generation theory, we need no assumption on the growth rate function at the origin. The fact that y(x; t) > x and (49) show that (U 0 (t)) t>0 is not contractive in X 0;1 : 2.2.2 On the generator of (U 0 (t)) t>0 in X 0;1 As in X 1 , the resolvent of the generator T 0 in X 0;1 is characterized by: Proposition 28 Let (35)(48) be satis…ed. Let T 0 be the generator of (U 0 (t)) t>0 in X 0;1 : Then

( T 0 ) 1 f (y) = 1 r(y) Z y 0 e R y x r(s) ds f (x)dx; Re > s(T 0 )
where s(T 0 ) is the spectral bound of T 0 : Moreover,

D(T 0 ) = f 2 X 0;1 ; @ (rf ) @y 2 X 0;1 ; T 0 = @ (rf ) @y
where @(rf ) @y is the derivative (in the sense of distributions on (0; +1)) of the locally integrable function rf on (0; +1) : By using (49) we get: Proposition 29 Let (48) be satis…ed. The spectral bound of T 0 (or equivalently the type of (U 0 (t)) t>0 ) in X 0;1 is given by b

s(T 0 ) = lim t!+1 1 t ln sup x>0 1 + y(x; t) 1 + x = inf t>0 1 t ln sup x>0 1 + y(x; t) 1 + x > 0
where y(x; t) is de…ned by [START_REF] Weis | A short proof for the stability theorem for positive semigroups on L p[END_REF].

We can recover the previous pointwise estimate but under an assumption stronger than (48). 

Lemma 30 Let (35) be satis…ed. If C := sup z>0 r(z) 1+z < +1 then ( T 0 ) 1 f (y) 1 (1 + y) r(y) kf k X 0;1 ; (f 2 X 0;1 ) ; ( > C): Proof. Since r(z) C(z + 1) (8z > 0) then 1 r(z) C 1 z + 1
It follows that As previously in X 1 we have: Proposition 32 Let (35)(48) be satis…ed. Let X(y; t) be de…ned by [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF]. Then Remark 36 (Open question) We suspect that a similar smoothing e¤ ect should hold under (48).

( T 0 ) 1 f (y) 1 r(y) Z y 0 e R y x 1 r( ) d jf (x)j dx 1 r(y) Z y 0 ( x + 1 y + 1 ) C jf (x)j dx = 1 (1 + y) r(y) Z y 0 ( x + 1 y + 1 ) C 1 jf (x)j (1 + x) dx 1 (1 + y) r(y) Z +1 0 jf (x)j (1 + x) dx
U (t)f : = e
Remark 37 One can deduce from Lemma 35 that

D(T ) = ff 2 D(T 0 ); f 2 X 0;1 g ; T f = T 0 f f: 2.2.5
The full perturbed semigroup in X 0;1

We give now a second perturbation theorem in X 0;1 .

Theorem 38 Let (35)(48) be satis…ed. We assume that n(y) := (iii) a(:) is unbounded at in…nity only and Proposition 41 Let the fragmentation kernel be given by [START_REF] Bertoin | A probabilistic approach to spectral analysis of growth-fragmentation equations[END_REF]. Let a(:) be unbounded at zero and at in…nity only. Then (52) holds if + 1 < 1 and Proof. Let > C and f be in the unit ball of X 0;1 , i.e. Z +1 0 jf (x)j (1 + x) dx 1:

1 + lim sup y!+1 n(y) y (1 (y)) < 1 : Proof. Note that [(y (y)y) + n(y)] (1 + y) 1 + d(y) a(y) = y + n(y) (1 (y)) (y + 1) (1 (y)) 1 + d(y) a(y) so that (51) is satis…ed if lim sup a(y)!+1 y + n(y) (1 (y) 
According to Lemma 35 Z +1 0 ( T ) 1 f (x) (x) (1 + x) dx 1:
Let c > 0 and " > 0 be arbitrary. We have

1 Z +1 " 1 ( T ) 1 f (x) (x) (1 + x) dx = Z +1 " 1 1 f <cg ( T ) 1 f (x) (x) (1 + x) dx + Z +1 " 1 1 f cg ( T ) 1 f (x) (x) (1 + x) dx so sup kf k X 0;1 1 Z +1 " 1 1 f cg ( T ) 1 f (x) (1 + x) dx 1 c :
On the other hand, according to Lemma 30,

( T ) 1 f ( T 0 ) 1 f 1 (1 + x) r(x) kf k X 0;1 so Z +1 " 1 1 f <cg ( T ) 1 f (x) (x) (1 + x) dx c Z +1 " 1 1 f <cg r(x) dx and then sup kf k X 0;1 1 Z +1 " 1 ( T ) 1 f (x) (1 + x) dx 1 c + c Z +1 " 1 1 f <cg r(x) dx
can be made arbitrarily small by choosing …rst c large enough and then " small enough. Similarly, we have

1 Z " 0 ( T ) 1 f (x) (x) (1 + x) dx = Z " 0 1 f <cg ( T ) 1 f (x) (x) (1 + x) dx + Z " 0 1 f cg ( T ) 1 f (x) (x) (1 + x) dx so sup kf k X 0;1 1 Z " 0 1 f cg ( T ) 1 f (x) (1 + x) dx 1 c : As previously Z " 0 1 f <cg ( T ) 1 f (x) (x) (1 + x) dx c Z " 0 1 f <cg r(x) dx so sup kf k X 0;1 1 Z " 0 ( T ) 1 f (x) (1 + x) dx 1 c + c Z " 0 1 f <cg r(x) dx
can be made arbitrarily small by choosing …rst c large enough and then " small enough.

On "; " 1 we have the uniform domination

( T ) 1 f ( T 0 ) 1 f 1 (";" 1 ) (x) (1 + x) r(x) 2 X 0;1 (kf k X 0;1 1)
so the restriction of the set

n ( T ) 1 f ; kf k X 0;1 1 o to the set "; " 1 is is relatively weakly compact on X 0;1 : Finally n ( T ) 1 f ; kf k X 0;1 1
o is as close to a relatively weakly compact set as we want and consequently is weakly compact. This shows that ( T ) 1 is weakly compact operator and consequently (see [START_REF] Mokhtar-Kharroubi | Compactness properties of perturbed substochastic C 0 -semigroups on L 1 ( ) with applications to discreteness and spectral gaps[END_REF] Lemma 14) ( T ) 1 is compact. As in Corollary 21 we have:

Corollary 43 Let (35)(51)(44) be satis…ed. If C := sup z>0 r(z) 1+z < +1 then T + B : D(T ) X 0;1 ! X 0;1 is resolvent compact. 2.2.7 Spectral gap of the full semigroup (V (t)) t>0 in X 0;1
The same arguments as in the proof of Lemma 22 give: Lemma 44 Let (35)(48) be satis…ed. We assume that the support of a(:) is not bounded. Then ( T B) 1 is positivity improving, i.e.

( T B) 1 f > 0 a.e.
for any nontrivial nonnegative f 2 X 0;1 ; or equivalently (V (t)) t>0 is irreducible in X 0;1 .

Arguing as in the proof of Theorem 23 we get the main result of Subsection 2.2.

Theorem 45 Let (35)(51)(44) be satis…ed. If sup z>0 r(z) 1+z < +1 and the support of a(:) is not bounded then (V (t)) t>0 has a spectral gap in X 0;1 , i.e. r ess (V (t)) < r (V (t)); and satis…es the asynchronous exponential growth.

Remark 46 (Open questions) Following Remarks 31 and 36, we suspect that the di¤ erent statements of this subsection 2.2, should hold under Assumption (48) instead of sup z>0 r(z) 1+z < +1:

The second construction

We consider now the case

Z 1 0 1 r( ) d < +1 and Z 1 1 1 r( ) d = +1: (53) 
It turns out that we cannot expect a generation theory in the space X 1 = L 1 (R + ; xdx), see Remark 51 below. So we restrict ourselves to the "…nite mass and number of agregates" space

X 0;1 = L 1 (R + ; (1 + x)dx) :
We start with:

Proposition 47 Let (53) be satis…ed. Then the partial di¤ erential equation @ @t u(x; t) + @ @x [r(x)u(x; t)] = 0; (x; t > 0)

with initial condition u(x; 0) = f (x) and boundary condition lim y!0 r(y)u(y; t) = 0 (t > 0)

for t small enough. We note that X(y; t) ! y as t ! 0 for any y > 0 and uniformly in y 2 c 2 ; 2c Gronwall's lemma gives y(x; t)+1 (x + 1) e Ct : Finally 1+y(x;t) x+1 e Ct (x > 0) and kU 0 (t)k L(X 0;1 ) e Ct : Remark 49 The proof above shows that (U 0 (t)) t>0 is not contractive in X 0;1 .

Remark 50 As in Remark 26 on checks that if lim z!+1 r(z) z = +1 then the generation theory fails. Hence the su¢ cient condition (57) is partly necessary. The necessity of boundedness of the growth rate at the origin is unclear.

Remark 51 Note that kU 0 (t)f k X 1 = R +1 0 y(x;t)

x jf (x)j xdx so that the boundedness of U 0 (t) on X 1 amounts to sup x>0 y(x; t)

x < +1: (60)

But (54) and (59) imply that lim x!0 y(x; t) = y 0 (t) > 0 (t > 0) so that (60) is violated and we cannot expect a generation theory in X 1 under assumption (53).

Lemma 57 Let (53)(57) be satis…ed. Let Let c > 0 and " > 0 be arbitrary. We have

1 Z +1 " 1 ( T ) 1 f (x) (x) (1 + x) dx = Z +1 " 1 1 f <cg ( T ) 1 f (x) (x) (1 + x) dx + Z +1 " 1 1 f cg ( T ) 1 f (x) (x) (1 + x) dx so sup kf k X 0;1 1 Z +1 " 1 1 f cg ( T ) 1 f (x) (1 + x) dx 1 c :
On the other hand, according to Lemma 54,

( T ) 1 f ( T 0 ) 1 f 1 (1 + x) r(x) kf k X 0;1 so Z +1 " 1 1 f <cg ( T ) 1 f (x) (x) (1 + x) dx c Z +1 " 1 1 f <cg r(x) dx
and then Theorem 67 Let (53) be satis…ed. Let the sublevel sets of a be thin at in…nity in the sense that Z +1 1

sup kf k E 1 Z +1 " 1 ( T ) 1 f (x) (1 + x) dx 1 c + c Z +1 " 1
1 fa<cg r(x) dx < +1 (c > 0) (65) 
(e.g. let lim x!+1 a(x) = +1 ). Then T is resolvent compact on X 0 :

We give now the full generation result.

Theorem 68 Let (53) be satis…ed and let As previously, T + B is resolvent compact and, arguing as in the proof of Theorem 23, we obtain the main result of Section 4.

Theorem 71 Let (53)(65)(66)(67) be satis…ed. We assume that the support of a(:) is not bounded. Then (V (t)) t>0 has a spectral gap in X 0 , i.e. r ess (V (t)) < r (V (t)); and satis…es the asynchronous exponential growth in X 0 .

Remark 72 We could build a similar theory in X 0 under [START_REF] Schluchtermann | On weakly compact operators[END_REF]. We leave the details to the interested reader.

  More generally, for any conservative fragmentation kernel b b(x; y) and 0 (x; y) 1; (10) the kernel b(x; y) := (x; y) b b(x; y) y)) b b(x; y)dx: (12) Conversely, any fragmentation kernel b(:; :) satisfying (2) is of the form (11) with (x; y) = 1 y Z y 0 xb(x; y)dx and b b(x; y) = b(x; y) (x; y) :

  be continuous on D(T ) (endowed with the graph norm) and positive (i.e. B :D(T ) \ L 1 + ( ) ! L 1 + ( )). Then T + B : D(T ) L 1 ( ) ! L 1 ( )generates a positive C 0 -semigroup on L 1 ( ) if and only if lim !+1

1 s 2

 12 d = t so the change of variable x = s gives Z y(x;t) then lim z!+1 z r(z) = 0 and consequently, for any sequence (x n ) n such that x n ! +1 there exists a positive constant b C such thatx n s r(x n s)1 s b C s (s 2 (1; C))for n large enough. Since xns r(xns) ! 0 (n ! 1) (s 2 (1; C)) then the dominated convergence theorem implies Z C On the generator of (U 0 (t)) t>0

( T ) 1 f

 1 d f (x)dx and ends the proof.

  y)b(x; y) j'(y)j dy xdx ) j'(y)j ydy so

  y) + d(y)) ( T ) 1 jf j ydy:

Remark 18

 18 and this ends the proof by invoking W. Desch's theorem (i.e. Theorem 1) since T generates a positive semigroup (U (t)) t>0 :Remark 17 The well posedness via W. Desch's theorem depends on the existence of an amount of mass loss or death in the system. For instance (43) is satis…ed if d = 0 and lim inf a(y)!+1 (y) > 0 or = 0 and lim inf For homogeneous kernels[START_REF] Cáceres | Rate of convergence to an asymptotic pro…le for the self-similar fragmentation and growthfragmentation equations[END_REF], lim inf a(y)!+1 (y) > 0 amounts to R 1 0 zh(z)dz < 1: More generally, in the case (11),

  dp dy > 0 8x > 0 so that B( T ) 1 f > 0 a.e. for any nontrivial nonnegative f: It follows that+1 X n=1 B( T ) 1 n f > 0 a.e.

  Proof. Let k(x; y) := 1 fx<yg a(y)b(x; y) be the kernel of B: Let k(x; y) := k(x; y) ^1 and k c (x; y) := k(x; y)p(x)p(y) where p 2 C(0; +1) has a compact support in (0; +1) and 0 p(x) 1: Note that k(x; y) > k c (x; y) and k(x; y) = k(x; y) k c (x; y) + k c (x; y) = b k(x; y) + k c (x; y) where b k(x; y) := k(x; y) k c (x; y): Let B be the integral operator with kernel k c (x; y) and b B be the integral operator with kernel b k(x; y): Since

because x+1 y+1 1

 1 and C 1 > 0: This ends the proof.Remark 31 (Open question) We suspect that a similar statement should hold under the general assumption (48).

2. 2 . 3 A

 23 …rst perturbed semigroup in X 0;1

0 ( T ) 1 f

 01 ) dp r(X(y; t))f (X(y; dp U 0 (t)f de…nes a positive C 0 -semigroup (U (t)) t>0 on X 0;1 . and Proposition 33 Let (35)(48) be satis…ed. Let T be the generator of (U (t)) t>0 in X 0;1 : Then( d f (x)dx:for Re > s(T ), where s(T ) is the spectral bound of T:Arguing as in Proposition 13 we get:Proposition 34 Let (35)(48) be satis…ed. The spectral bound of T in X 0If b := inf (1+p) (p) r(p) > 0 (e.g. if inf > 0) then b s(T ) (1 b ) b s(T 0 ):2.2.4 A smoothing e¤ect of the perturbed resolvent in X 0;1As in X 1 , we show now a smoothing e¤ect in X 0;1 but we have to replace the natural assumption (48) by a stronger one. Lemma 35 Let (35) be satis…ed. If C := sup z>0 r(z) 1+z < +1 then, for > C; Z +1 (y) (y) (1 + y) dy Z +1 0 j(f (y)j (1 + y) dy; (f 2 X 0;1 ) : Proof. By using (50) we have for > C Z +1 0 ( T ) 1 f (y) (y) (1 + y) dy Z r(p) dp jf (x)j dx dy ) dp (y) r(y) dy jf (x)j (1 + x) dx where we have used in the last step that x y 1 and C 1 > 0:

1 :( 1 +: 1 :

 111 Then the fragmentation operator[START_REF] Diekmann | On the stability of the cell size distribution[END_REF] is T -bounded in X 0;1 and lim : D(T ) X 0;1 ! X 0;1 generates a positive semigroup (V (t)) t>0 in X 0;)b(x; y) j'(y)j dy (1 + x) dx = x) b(x; y)dx j'(y)j dy = Z +1 0 a(y) [(y (y)y) + n(y)] j'(y)j dy = ) [(y (y)y) + n(y)] (1 + y) (a(y) + d(y)) (a(y) + d(y)) ( T ) 1 jf j (1 + y) dy sup fa>cg a(y) [(y (y)y) + n(y)] (1 + y) (a(y) + d(y)) Z +1 0 (a(y) + d(y)) ( T ) 1 jf j (1 + y) dy sup fa>cg a(y) [(y (y)y) + n(y)] (1 + y) (a(y) + d(y)) Z +1 0 jf (y)j (1 + y) dy (Lemma 35 is used in the last step) so y) + n(y)](1 + y) 1 + d(y) a(y)which ends the proof by invoking W. Desch's theorem (i.e. Theorem 1).Let us check Assumption (51).Corollary 39 We assume that a(:) 2 L 1 loc (0; +1) and Then Assumption (51) is satis…ed in the following cases: (i) a(:) is unbounded at zero and at in…nity and

) 1 :

 1 Remark 40 As noted in the Introduction, for homogeneous fragmentation kernels[START_REF] Cáceres | Rate of convergence to an asymptotic pro…le for the self-similar fragmentation and growthfragmentation equations[END_REF], the above conditions are satis…ed ifR 1 0 h(z)dz <Let us give more general examples.

  x; y)dx and 1 ; + 1 are given by[START_REF] Mokhtar-Kharroubi | Spectral theory and time asymptotics of size-structured two-phase population models[END_REF].

3 . 1 . 4 1 :

 3141 (y)j (1 + y) dy; (f 2 X 0;1 ) : Remark 58 One can deduce from Lemma 57 thatD(T ) = ff 2 D(T 0 ); f 2 X 0;1 g ; T f = T 0 f f: The second perturbed semigroupThe proof of the following theorem relying on W. Desch's perturbation theorem is identical to that of Theorem 38.Theorem 59 Let (53)(57) be satis…ed. We assume that n(y) :=Z y 0 b(x; y)dx is such that sup y>0 n(y)1+y < +1: Then the fragmentation operator (14) is T -bounded in X 0;1 and lim : D(T ) X 0;1 ! X 0;1 generates a positive semigroup (V (t)) t>0 in X 0;Remark 60 We can state results similar to those given in Proposition 41.

3. 1 . 5 1 1

 151 Compactness results in X 0;1We are ready to show:Theorem 61 Let (53)(57) be satis…ed. Let the sublevel sets of be thin at in…nity in the sense thatZ +1 f <cg r(x) dx < +1 (c > 0)(62)(e.g. let lim x!+1 (x) = +1 ). Then T is resolvent compact on X 0;1 :Proof. Let > C and f be in the unit ball of X 0;1 , i.e. Z +1 0 jf (x)j (1 + x) dx 1:According to Lemma 57 Z +1 0 ( T ) 1 f (x) (x) (1 + x) dx 1:

  )j dx (f 2 X 0 ); ( > 0):Proof. One sees that for > 0 ) dp dy jf (x)j dx Z ) dp dy jf (x)j dx )j dx (f 2 X 0 ); ( > 0):(64)By combining the above smoothing e¤ect and (64) and arguing as in the proof of Theorem 61, we get.

  Then the fragmentation operator[START_REF] Diekmann | On the stability of the cell size distribution[END_REF] is T -bounded in X 0 andlim : D(T ) X 0 ! X 0 generates a positive semigroup (V (t)) t>0 in X 0 : Proof. We note that kB'k X 0 )b(x; y) j'(y)j dy dx )n(y) ( T ) 1 f (y)dy + Z fa>cg a(y)n(y) ( T ) 1 f (y)dy: Since Z fa cg a(y)n(y) ( T ) 1 f (y)dy c knk L 1 ( T ) 1 L(X 0 ) kf k X 0 ) (8c > 0):Finally, W. Desch's theorem ends the proof.Remark 69 Note that n(y) 1 for conservative fragmentation kernels. This shows the key role of the mass loss assumption.Remark 70 For homogeneous kernels (9) with mass loss, (67) amounts to R 1 0 h(z)dz < 1: More generally, for a fragmentation kernel given by (11) the condition (67) holds if + 1 lim sup a(y)!+1 b n(y) < 1 where b n(y) = R y 0 b b(x; y)dx:

  The strong continuity at the origin can be dealt with as in the space X 1 : Remark 26 By arguing as in Proposition 6 one can check that if

	Since y(x; t) > x then (48) gives	
		r(y(x; s))		1 y(x; s) (x 1)
	so		Z t
		y(x; t)	x +		1 y(x; s)ds; (x 1)
				0
	and Gronwall's lemma gives sup x>1	y(x;t) x	e 1 t :
					x	is locally bounded
	or equivalently if		
		sup x>1	y(x; t) x	< +1 (t > 0)
	and	[0; +1) 3 t ! sup x>1	y(x; t) x	is locally bounded.
	It follows from (41) that		
					Z t
		y(x; t) = x +	r(y(x; s))ds:
					0

Proof. Note that has a unique solution given by u(y; t) = ( r(X(y;t))f (X(y;t))

Proof. We solve @ @t u(x; t)

and boundary condition

by the method of characteristics. This amounts to solving 1 r(x) @ @t '(x; t) + @ @x ['(x; t)] = 0; '(x; 0) = r(x)f (x):

We introduce the characteristic equations

with "initial" conditions

and then r(s + x)u(s + x;

For t > 0 and y > 0 given, we set

Hence there exists a unique X(y; t) < y such that Z y X(y;t)

We denote by X(y; :) the continuous function which gives x 2 (0; y) from t (given y > 0). Thus, for y > y 0 (t) r(y)u(y; t) = r(X(y; t))f (X(y; t))

i.e. u(y; t) = r(X(y; t))f (X(y; t)) r(y) (y > y 0 (t)):

On the other hand, for y < y 0 (t)

We introduce the characteristic equations

with "initial" conditions

Note the constancy of r(s)u(s; t +

Thus for any t > 0 and y > 0 such that

3.1 Theory in the space X 0;1

As previously, we develop a general theory on well-posedness and spectral analysis.

The …rst generation result

Theorem 48 Let (53) be satis…ed. Let X(y; t) be de…ned by (55). Then

de…nes a positive C 0 -semigroup on X 0;1 if and only if

is locally bounded where y(x; t) is de…ned by (59). This occurs if

in this case 1 + y(x; t)

x + 1 e Ct (x > 0):

which shows that (for t > 0 …xed) X(y; t) is strictly increasing in y and tends to 0 as y ! y 0 (t). Note that

is continuous. By arguing as previously we show that 1 r(y) = 1 r(X(y; t)) @X(y; t) @y and (U 0 (t)f ) (y) = f (X(y; t)) @X(y; t) @y ; y 2 (y 0 (t); +1):

jf (X(y; t))j @X(y; t) @y (1+y)dy and the change of variable x = X(y; t) gives

where y(x; t) is the unique y > x such that x = X(y; t) i.e. Z y(x;t)

Since

then U 0 (t) is a bounded linear operator in X 0;1 if and only if

In such a case

is locally bounded if and only if

is. It follows (see e.g. [START_REF] Davies | One-parameter Semigroups[END_REF]) that (U 0 (t)) t>0 is exponentially bounded. As previously, to show that (U 0 (t)) t>0 is strongly continuous on X 0;1 it su¢ ces to check that

on a dense subspace of L 1 (R + ; (1 + x) dx), e.g. for f continuous with compact support in (0; +1): Note that for any compact set c; c

for t small enough uniformly in y 2 c; c 1 so We identify now the resolvent of the generator.

Proposition 52 Let (53)(57) be satis…ed. Let T 0 be the generator of (U 0 (t)) t>0 : Then

where s(T 0 ) is the spectral bound of T 0 Proof. We know that

y) dt

Note that for any …xed y > 0 and t < R y 0 1 r( ) d we have R y X(y;t) 1 r( ) d = t and 1 r(X(y; t)) @X(y; t) @t = 1:

One sees that t 2 (0;

is strictly decreasing from y to 0 so the change of variable t ! x = X(y; t)

and this ends the proof.

Remark 53 Note that X 0;1 L 1 (R + ; dx): We can check that

where @(rf ) @y is the derivative (in the sens of distributions on (0; +1)) of the function rf 2 L 1 (R + ; dx). Note that rf 2 W 1;1 (R + ) so that lim y!0 r(y)f (y) exists.

The same proof as in Lemma 30 gives a pointwise estimate in X 0;1 :

Lemma 54 Let (53)(57) be satis…ed. Let > C: Then

kf k X 0;1 (f 2 X 0;1 ):

The …rst perturbed semigroup

We build now a second explicit C 0 -semigroup by the method of characteristics. We solve @ @t u(x; t) + @ @x [r(x)u(x; t)] + (x)u(x; t) = 0 with boundary condition lim x!0 r(x)u(x; t) = 0 and intial data u(x; 0) = f (x): By arguing as in subsection 2.2 we show that the solution is given by

) dp U 0 (t)f (X(y; t) is given by ( 36)) and de…nes a C 0 -semigroup (U (t)) t 0 on X 0;1 while the resolvent of its generator is given by: Proposition 55 Let (53)(57) be satis…ed. The resolvent of the generator T of (U (t)) t 0 in X 0;1 is given by

Remark 56 We can "compute" the spectral bound of T 0 and T in X 0;1 as in Proposition 29 and Proposition 34.

The same proof as in Lemma 35 gives a smoothing e¤ect in X 0;1 : can be made arbitrarily small by choosing …rst c large enough and then " small enough.

On the other hand on 0; " 1 we have the uniform domination

dx < +1:

Finally

o is as close to a relatively weakly compact set as we want and consequently is weakly compact so ( T ) 1 is weakly compact operator and consequently (see [START_REF] Mokhtar-Kharroubi | Compactness properties of perturbed substochastic C 0 -semigroups on L 1 ( ) with applications to discreteness and spectral gaps[END_REF] 

As in Corollary 43, we have:

Corollary 62 Let (53)(57)(61)(62) be satis…ed. Then T +B : D(T ) ! X 0;1 is resolvent compact.

3.1.6 Spectral gap of the full semigroup (V (t)) t>0 in X 0;1

The same arguments as in Lemma 22 give:

Lemma 63 Let (53)(57)(61) be satis…ed. We assume that the support of a(:) is not bounded. Then ( T B) 1 is positivity improving, i.e.

for any nontrivial nonnegative f 2 X 0;1 ; or equivalently (V (t)) t>0 is irreducible in X 0;1 .

The same arguments as in Theorem 23 give the main result of Section 3.

Theorem 64 Let (53)(57)(61)(62) be satis…ed. We assume that the support of a(:) is not bounded. Then (V (t)) t>0 has a spectral gap in X 0;1 , i.e. r ess (V (t)) < r (V (t)); and satis…es the asynchronous exponential growth.

4 Theory in the space X 0 This last section is devoted to growth-fragmentation equations in the "…nite agregates number" space X 0 := L 1 (R + ; dx) under (53). For simplicity, we restrict ourselves to the case d(:) = 0:

By resuming the proof of Theorem 48 (the sublinearity condition (57) is no longer necessary here) one sees that

X(y; t)) @X(y;t) @y ; y 2 (y 0 (t); +1) 0 (y < y 0 (t)) so

jf (X(y; t))j @X(y; t) @y dy and the change of variable x = X(y; t) gives (63)

We have a smoothing e¤ect in X 0 :