Olivier Flauzac

Fabien Mauhourat

Florent Nolot
email: florent.nolot@univ-reims.fr

A review of native container security for running applications

Keywords: Containers, LXC, LXD, Singularity, Docker, Kata-containers, gVisor

Containers offer an efficient solution allowing the application's isolation. Most of the papers dealing with the container's isolation focus on benchmarking container's solutions. However, in this study, we focus on a static comparison of different features proposed by container solutions. First, we will focus on the container's runtimes, then, we present the different solutions used in the study. The most common container solutions are compared, such as LXC, LXD, Singularity, Docker, Kata-containers, and gVisor. We consider container features as isolation, storage, network, and security capabilities. For each container feature, all container solutions will be compared to find the most efficient one. Finally, this paper compares the different default container configurations and attempts to find the most efficient container solution based on all compared features.

Introduction

Virtual machines (VMs) provide efficient security. However, as mentioned in [START_REF] Joy | Performance comparison between Linux containers and virtual machines[END_REF][START_REF] Martin | System Performance Evaluation of Para Virtualization, Container Virtualization, and Full Virtualization Using Xen, OpenVZ, and XenServer[END_REF][START_REF] Zhang | A Comparative Study of Containers and Virtual Machines in Big Data Environment[END_REF] their isolation security creates a bottleneck for the total number of VMs that can run on a server because each VM should have its copy of the operating system (OS), libraries, dedicated resources, and applications. As authors claim in [START_REF] Joy | Performance comparison between Linux containers and virtual machines[END_REF][START_REF] Martin | System Performance Evaluation of Para Virtualization, Container Virtualization, and Full Virtualization Using Xen, OpenVZ, and XenServer[END_REF][START_REF] Watada | Emerging Trends, Techniques and Open Issues of Containerization: A Review[END_REF][START_REF] Kovács | Comparison of different Linux containers[END_REF] containerbased virtualization is an alternative to conventional virtualization because it potentially reduces resource overhead and thus improves the use of data-centers. In containerization, an individual instance runs on top of a shared OS kernel. However, there are plenty of solutions [START_REF] Watada | Emerging Trends, Techniques and Open Issues of Containerization: A Review[END_REF][START_REF] Kovács | Comparison of different Linux containers[END_REF][START_REF] Xavier | Performance Evaluation of Container-Based Virtualization for High Performance Computing Environments[END_REF] that can be used to create containers, and select a solution for an application is not an easy task. This study aims to compare the different characteristics of the main container solutions to find the best solution for executing an application in terms of security, i.e. ensuring perfect isolation of the system resources used such as storage, network, processor, or memory. Although there are different uses of containers and in different application contexts, in this study, we do not distinguish between them. Similarly, we do not focus on container environments. Thus, neither the host security mechanisms nor the security of the applications running within the container are studied. In this paper, we will compare container solutions in their default configuration in terms of process and memory isolation, storage, network, and security features and presented also all mechanisms which can be improved. For each solution, we tested if the feature is present, if it's enabled by default and if it's working by applying some basic configuration. Most of the features are tested individually disabling all the other ones like for the security, storage, and network features to measure the impact of their activation.

State of the art

Many papers focus on benchmarking different container solutions but few of them are focusing only on a particular feature comparison of containers. In [START_REF] Joy | Performance comparison between Linux containers and virtual machines[END_REF][START_REF] Martin | System Performance Evaluation of Para Virtualization, Container Virtualization, and Full Virtualization Using Xen, OpenVZ, and XenServer[END_REF][START_REF] Zhang | A Comparative Study of Containers and Virtual Machines in Big Data Environment[END_REF][START_REF] Watada | Emerging Trends, Techniques and Open Issues of Containerization: A Review[END_REF][START_REF] Kovács | Comparison of different Linux containers[END_REF][START_REF] Xavier | Performance Evaluation of Container-Based Virtualization for High Performance Computing Environments[END_REF][START_REF] Sultan | Container Security: Issues Challenges and the Road Ahead[END_REF][START_REF] Xie | The Performance Comparison of Native and Containers for the Cloud[END_REF], the main container's solutions such as Docker, LXC, OpenVZ, Singularity are compared with hypervisors like KVM and Xen in terms of performance. Those works mainly measure the CPU and memory load, networking bandwidth, and disk I/O. Results point to the overhead of hypervisorbased virtual machines and also the lack of security of the container solutions. The OpenVZ and Linux-Vserver solutions have been gradually dropped [START_REF] Martin | System Performance Evaluation of Para Virtualization, Container Virtualization, and Full Virtualization Using Xen, OpenVZ, and XenServer[END_REF][START_REF] Watada | Emerging Trends, Techniques and Open Issues of Containerization: A Review[END_REF], and replaced by solutions such as Docker and LXC because they do not require a specific kernel to work. In [START_REF] Xavier | Performance Evaluation of Container-Based Virtualization for High Performance Computing Environments[END_REF] the authors focus on an important comparison aspect: the boot-up speed. Booting up a container is much faster than booting up a virtual machine because the system does not have to boot a different kernel to start an instance. In [START_REF] Joy | Performance comparison between Linux containers and virtual machines[END_REF] another axis of comparison is used: the virtual machine environments as well as the performance of application inside the virtual machine. They found that the performance for an application, in this case, the Joomla content management system (https://www.joomla.org/), was around 4 times higher in a docker container than in a virtual machine. This study also exhibits that the container's scaling and processing time for a large number of requests is very much less than the scaling time of a new virtual machine to handle the request. A recent study on container security [START_REF] Martin | System Performance Evaluation of Para Virtualization, Container Virtualization, and Full Virtualization Using Xen, OpenVZ, and XenServer[END_REF] revealed that one of the primary drag to container's widespread deployment is the security issue. They expose four types of threats in container security to show how current solutions can be used to enhance container security: (i) protecting a container from applications inside it, (ii) inter-container protection, (iii) protecting the host from containers, and (iv) protecting containers from a malicious or semi-honest host. All these papers contribute to different aspects of benchmarking and comparing these solutions. However, none of these studies compares as many container solutions as this paper does and they don't allow us to choose a container solution for certain use cases that require features compare to theses solutions. Especially LXD, gVisor [START_REF] Young | The True Cost of Containing: A gVisor Case Study[END_REF], and Kata-containers [START_REF] Randazzo | Kata Containers: An Emerging Architecture for Enabling MEC Services in Fast and Secure Way[END_REF] solutions have been rarely studied. Furthermore, most of them only compare solutions focusing on benchmarking rather than features between solutions. Instead, this study focuses on the static analysis and comparison of the different features.

Container Solutions

We focus on the 6 following main container solutions: LXC, LXD, Singularity, Docker (runc), Kata-containers (kata-runtime), and gVisor (runsc). We first propose an overview of the definition, format of container runtimes, Then we briefly describe each container solution.

LXC and LXD

LXC [START_REF] Ma | The Virtualization and Performance Comparison with LXC-LXD in ARM64bit Server[END_REF] is a userspace interface for the Linux kernel containment features. Through a powerful API and simple tools, it lets Linux users easily create and manage systems or application containers. LXD [START_REF] Ma | The Virtualization and Performance Comparison with LXC-LXD in ARM64bit Server[END_REF] is building on top of LXC to provide an alternative to LXC's tools and distribution template. Its image-based with pre-made images available for a wide number of Linux distributions and is built around a very powerful, yet pretty simple, REST API.

Singularity

Singularity [START_REF] Alles | Assessing the Computation and Communication Overhead of Linux Containers for HPC Applications[END_REF] is a container platform. Singularity was created to run complex applications on HPC clusters in a simple, portable, and reproducible way. This container is a single file, and there is not much worry about how to install all the software you need on each different operating system and system. Moreover, a user, without any administrator rights, can run applications thanks to Singularity.

Container runtimes

OCI is an acronym for the Open Containers Initiative (https://www.opencontainers.org/) which is an independent organization designing standards for containers and containerization. The OCI created two specifications to enhance the interoperability between solutions: image specification and runtime specification. The image specification defines the format of the image considering filesystem layers and metadata. The runtime specification defines the configuration, execution environment and the methods to manage the container lifecycle, for example starting, stoping or killing a container. The configuration and environment format of a container are known as the filesystem bundle. The OCI Compliant Filesystem Bundle contains all the information needed to load and run a container. This includes the following artifacts residing (locally in a single directory): Config.json file, and Container's root filesystem. The config.json file contains the configuration data of the container and must reside in the root of the bundle directory under this name. The container's root filesystem is a referenced directory in the config.json file. The OCI Runtime specification allows a modular architecture of the containers considering two components: the High-level and the Low-level container runtime. The High-level container runtime is used to manage the container images, the network during the container creation process and also create the filesystem bundle from the image and pass it to the Low-level container runtime. Image management includes the possibility to pull or to push an image from a remote to a local repository, just as well as we build an image locally from a definition file. The Low-level container runtime implements the OCI runtime specification and allows to create a container from the "filesystem bundle". This means that a High-level container runtime can use any Low-level container runtime that implements the OCI runtime specification. The list of Low-level containers OCI compliant runtimes is: runc, gVisor, kata-containers. Runc is the default Low-level runtime for Docker. gVisor is a Low-level runtime used to create sandbox and kata-runtime is a Low-level runtime designed to create containers inside virtual machines. Docker can use any of these 3 low levels container runtimes. Docker (runc). Docker [START_REF] Watada | Emerging Trends, Techniques and Open Issues of Containerization: A Review[END_REF][START_REF] Kovács | Comparison of different Linux containers[END_REF] is an open-source containerization technology for building and containerizing applications. The in-host daemon communicates with the Docker client to execute commands to build, ship, and run containers.

Kata-containers (kata-runtime). Kata-containers [START_REF] Randazzo | Kata Containers: An Emerging Architecture for Enabling MEC Services in Fast and Secure Way[END_REF] is an open project supports by the OpenStack Foundation (OSF) working to build a standard implementation of lightweight Virtual Machines (VMs) that feel and perform like containers, but provide the workload isolation and security advantages of VMs. The Kata-containers runtime (kataruntime) is compatible with the OCI runtime specification. In other words, docker can select without changing any configuration between the default Docker container runtime (runc) and kata-runtime.

gVisor (runsc). gVisor [START_REF] Young | The True Cost of Containing: A gVisor Case Study[END_REF] is a user-space kernel, written in Go, that implements a substantial portion of the Linux system call interface. gVisor intercepts the application system calls and acts as the guest kernel. As gVisor has not implemented all the Linux syscalls, applications that use unimplemented syscalls can't run in gVisor. The gVisor runtime (runsc) is compatible with the OCI runtime specification.

Isolation Features

The main isolation feature that forms the basis of a container is the namespace concept. Namespace [START_REF] Sultan | Container Security: Issues Challenges and the Road Ahead[END_REF][START_REF] Hertz | Abusing Privileged and Unprivileged Linux Containers[END_REF][START_REF] Grattafiori | Understanding and Hardening Linux Containers[END_REF][START_REF] Pothula | Run Time Container Security Hardening Using A Proposed Model Of Security Control Map[END_REF] is a security feature of the Linux kernel in version 2.4.19 allowing resource isolation to a group of processes. This allows a group of processes to use their isolated instance of system resources. Theses resources are invisible from another namespace. Each process has a /proc/[pid]/ns/subdirectory containing one entry for each namespace. The kernel provides six namespaces to isolate different resources: Mount, IPC, Network, PID, User, and UTS. The Mount namespace provides isolation of the list of mount points seen by the processes inside the namespace. The IPC namespace provides isolation of IPC resources like System V IPC objects and POSIX message queue. The Network namespace provides isolation of the networking resources like network devices, IP routing tables. The PID namespace provides an isolated tree of process IDs (PIDs). The User namespace provides isolation for the security identifiers (user ids and group ids) and attributes like capabilities. The UTS namespace provides isolation of two system identifiers: the hostname and the NIS domain name. All the container's solutions use namespace features to isolate resources. To create a new namespace, except for the user namespace, it requires the capability(http://man7.org/linux/man-pages/man7/capabilities.7.html) CAP SYS ADMIN. In other words, it requires to be root to create a container. This means that the uid 0 user inside the container is mapped to the root user (uid 0) inside the host. There is a huge security risk because if an attacker escapes from the container, as presented in [START_REF] Hertz | Abusing Privileged and Unprivileged Linux Containers[END_REF][START_REF] Grattafiori | Understanding and Hardening Linux Containers[END_REF], he will be root on the host. To reduce the risk of escaping the container, the user namespace feature of the kernel allows creating unprivileged container which means that the user, inside the container, is mapped to an unprivileged user on the host. The main security issue in a namespace is that all containers use a shared kernel. If there is a vulnerability in the Linux kernel then all containers will be impacted. For each namespace, we tested whether it is used by verifying that the identifier in the /proc/PID/ns directory of the namespace inside the container is different from the host. If this identifier is different, we conclude that the namespace is used by the solution. Two other isolation features increase the isolation of containers and namespaces: Hypervisor and Kernel isolation. Hypervisor isolation [START_REF] Joy | Performance comparison between Linux containers and virtual machines[END_REF][START_REF] Martin | System Performance Evaluation of Para Virtualization, Container Virtualization, and Full Virtualization Using Xen, OpenVZ, and XenServer[END_REF] allows to run containers inside virtual machine. Kernel isolation [START_REF] Watada | Emerging Trends, Techniques and Open Issues of Containerization: A Review[END_REF][START_REF] Young | The True Cost of Containing: A gVisor Case Study[END_REF] allows running containers with their isolated kernel. Table 1 summarizes the isolation features handled by the solutions.

To avoid any misconceptions, the following parameters are defined as to their use in the table for this study:

• Default: The feature is enabled by default,

• Optional: The feature can be optionally configured. This can be considered as a week default configuration, • Optional manual: The feature can be optionally configured but not as part as the solutions, this requires to use external solution to support the feature, • Not Possible: The feature cannot be configured in any way, no documentation exists, the feature is still under development, or the feature is not planned to be implemented. LXC/LXD is the solution that provides the third highest isolation. Those solutions provide a strong default configuration of namespace using the user namespace which allows creating unprivileged containers. However, LXC requires a lightweight configuration to be able to run unprivileged containers. Singularity is the solution that provides the lowest isolation of different resources. This solution only supports the namespace feature and only isolates the mount point of the host. This is not a given weakness because by default Singularity uses an unprivileged user to create unprivileged containers. Since Singularity runtime dynamically writes UID and GID information to the appropriate files within the container at runtime, the user remains the same inside and outside the container. Moreover, by default, the container is mounted in read-only and the only directory that is writable (bind mount) is the home directory of the user that created the container. Docker (runc) in a bit less secure than LCD/LXD because the user namespace is not enabled by default. Accordingly, docker only creates privileged containers by default. Kata-containers is the solution that provides the most isolation with the use of hypervisor isolation. This allows container isolation inside a virtual machine. Based on hypervisor isolation, Kata-containers also isolate the kernel from the host. The container is created inside the virtual machine the same way as on the host with the use of the same namespace as docker and runc. gVisor offers a valuable alternative to kata-containers considering isolation, offering kernel isolation from the host. This allows containers to have their isolated kernel. The gVisor container has to be created as root, such as docker does, but this is not a weakness because the gVisor kernel runs as an unprivileged user on the host. Considering isolation features, Kata-containers may be the most efficient choice.

Network Features

Network management for containers is a key point. There are three main solutions to link a container to the network: System Bridge, Open vSwitch and Physical. A System Bridge behaves like a virtual network switch where real devices (e.g. eth0) and virtual devices (e.g. tap0) can be connected to it. Open vSwitch (https://www.openvswitch.org/) is a software implementation of a virtual multilayer network switch, designed to enable effective network automation through programmatic extensions, while supporting standard management interfaces and protocols. The Physical network feature allows to dedicate a physical interface to the container. Within the context of container security, it is interesting to be able to limit the bandwidth of the containers to avoid a denial of service [START_REF] Sultan | Container Security: Issues Challenges and the Road Ahead[END_REF][START_REF] Hertz | Abusing Privileged and Unprivileged Linux Containers[END_REF][START_REF] Grattafiori | Understanding and Hardening Linux Containers[END_REF] of network of the host and other containers. Table 2 summarizes the network features handled by the solutions.

Optional manual

By default, all solutions allow you to link a container to a Linux bridge but with the exception of the LXC and Docker solutions, connecting a container to an Open vSwitch bridge has to be done manually. Bandwidth limitation is by default only possible on Singularity. For the other solutions the implementation is manual either through the QoS on an Open vSwitch bridge either through traffic control and the use of Cgroups https://www.kernel.org/doc/Documentation/cgroup-v1/ for identify the flow from the containers. Dedicated a physical interface to a container is by default only possible with LXC and LXD. In terms of network features, LXD may be the most efficient choice.

Storage Features

Storage options

Container storage management is an important element that can significantly affect the performances [START_REF] Watada | Emerging Trends, Techniques and Open Issues of Containerization: A Review[END_REF][START_REF] Martin | System Performance Evaluation of Para Virtualization, Container Virtualization, and Full Virtualization Using Xen, OpenVZ, and XenServer[END_REF] depending on the formats used. First of all, it is necessary to dedicate a partition or a disk for the storage of the containers to isolate it from the rest of the system and thus avoid the risk of denial of service. The establishment of quotas for each container is an essential element to isolate the storage and thus avoid the saturation of disk space by a few containers. Many storage backends can be used to store containers data: Directory, SIF, BTRFS, LVM, ZFS, and OverlayFS. The Directory backend used a simple directory to store the root of containers. The Singularity Image Format (SIF) (https://sylabs.io/guides/3.5/user-guide/security.html#singularity-imageformat-sif) allows creating immutable, complete and encapsulated container environments stored in a single file. BTRFS (https://btrfs.wiki.kernel.org/index.php/Main Page) is a copy on write (CoW) filesystem for Linux aimed at implementing advanced features like subvolumes, quotas, compression, deduplication, snapshot. Logical Volume Management (LVM) (https://wiki.gentoo.org/wiki/LVM) utilizes the Linux kernel's device-mapper feature to provide a system of partitions independent of the underlying disk layout. This allows a complete abstraction of the storage with "virtual partitions" that are extending/shrinking easier. ZFS (https://zfsonlinux.org/) is a combined filesystem and logical volume manager that includes extended features like BTRFS. The Overlay filesystem (OverlayFS) (https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt) allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. 3 summarizes the storage features handled by the solutions. LXC, Docker, Kata-containers, and gVisor are compatible with a large number of storage formats compared to singularity. LXC/LXD does not support the overlay storage format with the management of images and containers in layers to optimize storage. This implies an overuse of storage due to duplication of the same data for each container. By default, singularity uses the SIF image format which allows the files in the container to be used in a single read-only file. Write management can be done either by the sandbox mode which implies the creation of a directory for each container or by the tmpfs mode which implies the non-saving of changes when stopping the Container. Docker, Kata-containers, and gVisor propose by default the use of the overlay format which allows for high storage efficiency through the copy on write, which shares unmodified data between all the containers of the same image. A warning concerning kata container, because the use of storage formats other than LVM, implies the use of the 9p (http://9p.cat-v.org/documentation/) protocol by the virtio-9pfs (https://wiki.qemu.org/Documentation/9psetup) filesystem passthrough which allows the sharing of the container directory from the host to the virtual machine. The performance of the 9p protocol is very limited and the use of a block-type storage format such as LVM makes it possible to partly solve this problem. Indeed, the logical volume will be able to be mounted as a classic disk using the virtio-scsi drivers or virtio-blk. The LVM storage format is however deprecated since version 18.09.0 of docker and will have to be removed in future versions. The solution gVisor also uses the 9pfs filesystem regardless of the storage format used. In terms of storage features, LXC, LXD, and docker may be the most efficient choice.

Storage Quotas

The establishment of quotas for each container depends on the storage format used. By default, the quota management is native only on the BTRFS and ZFS filesystems. Indeed, the classic EXT4 (https://www.kernel.org/doc/Documentation/filesystems/ext4/ext4.rst) and XFS (https://www.kernel.org/doc/Documentation/filesystems/xfs.txt) filesystems only allow quotas to be set up on the user level and not per container. For LVM, quotas are made using thin-provisioning type volumes. These volumes do not need to pre-allocate storage for each container, which allows for better storage management during the use of logical volumes. Table 4 summarizes the storage quotas features handled by the solutions. The LXC solution implements the implementation of quotas only with the Lvm format. This feature can only be used by the root user. The setting of BTRFS and ZFS quotas is done manually. The Singularity solution allows the creation of quotas only using fixed size overlay images. The solutions Docker, Kata-containers and gVisor implement quotas with all compatible formats, i.e. OverlayFS, BTRFS, ZFS and LVM. In terms of storage quotas, LXD may be the most efficient choice.

Security Features

As mentioned in [START_REF] Sultan | Container Security: Issues Challenges and the Road Ahead[END_REF][START_REF] Hertz | Abusing Privileged and Unprivileged Linux Containers[END_REF][START_REF] Grattafiori | Understanding and Hardening Linux Containers[END_REF] many other Linux kernel features are involved in the security of a container: Control Groups, Capabilities, Seccomp, and Apparmor. Control Groups (Cgroups) isolate and limit hardware resource to a process or collection of processes. Capabilities is a kernel feature that divides the privileges traditionally associated with superuser into distinct units, known as capabilities, which can be independently enabled and disabled. Seccomp (https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp filter.html) provides a method to reduce the number of system calls available for application to interface with the kernel. Apparmor (https://gitlab.com/apparmor/apparmor/-/wikis/home) provides a way to confine programs to a limited set of resources. This utility is mainly used to restrict access and mount options to filesystems paths. For each solution, we tested if the feature is present and if it's working by applying some CPU/RAM limitation with Cgroups, dropping the CAP SYS ADMIN capability, apply an Apparmor profile that denies the mount syscall and also apply a Seccomp profile that denies the same syscall as Apparmor and then verify the application of the feature by trying to make a mount point inside the container. Each feature is tested individually disabling all the other ones. All these security features are complementary and should be used together if the solution allows it. 5 summarizes the security features handled by the solutions. LXC/LXD and docker are compatibles with the fourth security features. They enable the same features by default that are capabilities dropping, AppArmor and seccomp. The only differences are the way theses solutions use these security features. Docker provides the most secure policy with all these features than LXC/LXD. Singularity also supports all four security features, but does not use any by default. So these solutions provide less restriction than the three solutions studied before. Kata-containers only uses capabilities dropping and supports cgroups but because it uses hypervisor isolation, the uses of additional security features are not necessary. Also, Cgroups are not necessary because we use the limitation of the resources of the virtual machine. gVisor doesn't support Cgroups, so there is no way to limit the usage of gVisor containers resource. gVisor provides strong security policies with capabilities dropping and seccomp. The uses of AppArmor is not necessary because each container uses its own kernel, so restrict /proc or /sys is not a priority. In terms of security features, Kata-containers may be the most efficient choice.

Conclusion

We have studied in this paper the isolation features offered by the 6 following virtualization solutions: LXC, LXD, Singularity, Runc, Kata-container, and gVisor. We show Kata-containers could be the best solution to isolate an application execution. LXD may be a good alternative to Kata-containers for its network and storage features, without losing the advantage of isolation and security offered. In this study, we only focus on a comparison of each feature that can be used by default for each solution. In future work, we have to compare the performances of each solution.

Table 1 .

 1 The use of isolation features by the solutions

	Isolation features / Solutions	LXC/LXD	Singularity	Runc	Kata-containers	gVisor
	IPC Namespace	Default	Optional	Default	Default	Default
	Network Namespace	Default	Optional	Default	Default	Default
	Mount Namespace	Default	Default	Default	Default	Default
	PID Namespace	Default	Optional	Default	Default	Default
	User Namespace	Default (un-privileged)	Optional	Optional	Optional	Optional
	UTS	(hostname)	Default	Optional	Default	Default	Default
	Namespace					
	Hypervisor Isolation	Not possible	Not possible	Not possible	Default	Not possible
	Kernel Isolation	Not possible	Not possible	Not possible	Default	Default

Table 2 .

 2 The use of network features by the solutions

	Network features /	LXC	LXD	Singular-ity	Runc	Kata-containers	gVisor
	Solutions						
	Bridge	Default	Default	Default	Default	Default	Default
	Open vSwitch	Default	Default	Optional manual	Optional manual	Optional manual	Optional manual
	Physical	Default	Default	Not possible	Not possible	Not possible	Not possible
	Bandwidth limit	Optional manual	Default	Default	Optional manual	Optional manual	

Table 3 .

 3 The use of storage backend by the solutions

	Storage backend / So-lutions	LXC	LXD	Singular-ity	Runc	Kata-containers	gVisor
	Directory		Default	Default	Default	Not possible	Not possible	Not possible
	Singularity Format (SIF)	Image	Not possible	Not possible	Default	Not possible	Not possible	Not possible
	BTRFS		Default	Default	Not possible	Default	Default	Default
	LVM		Default	Default	Not possible	Default	Default	Default
	ZFS		Default	Default	Not possible	Default	Default	Default
	OverlayFS		Not possible	Not possible	Default	Default	Default	Default
	Table							

Table 4 .

 4 The use of storage quotas by the solutions

	Storage quotas / Solu-tions	LXC	LXD	Singular-ity	Runc	Kata-containers	gVisor
	Directory		Not possible	Default	Not possible	-	-	-
	Singularity	Image	-	-	Default	-	-	-
	Format (SIF)							
	BTRFS		Optional manual	Default	-	Default	Default	Default
	LVM		Default	Default	-	Default	Default	Default
	ZFS		Optional manual	Default	-	Default	Default	Default
	OverlayFS		-	-	Default	Optional	Optional	Optional

Table 5 .

 5 The use of security features by the solutions

	Security features / Solutions LXC/LXD Singularity	Runc	Kata-containers	gVisor
	Cgroups	Optional	Optional	Optional	Optional	Not possible
	Capabilities Dropping	Default	Optional	Default	Default	Default
	Mac AppArmor	Default	Optional	Default	Not possible	Not possible
	Seccomp Filters	Default	Optional	Default	Not possible	Default
	Table					

Acknowledgements

This work is supported by a public grant overseen by the French National Research Agency (ANR) as part of the "Investissements d'avenir" program (reference: ANR-16-DUNE-0001-EOLE).