
The Zero Resource Speech Challenge 2020:
Discovering discrete subword and word units

Ewan Dunbar1,2∗, Julien Karadayi2, Mathieu Bernard2, Xuan-Nga Cao2, Robin Algayres2, Lucas
Ondel3, Laurent Besacier4, Sakriani Sakti5,6, Emmanuel Dupoux2,7
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Abstract
We present the Zero Resource Speech Challenge 2020, which
aims at learning speech representations from raw audio signals
without any labels. It combines the data sets and metrics from
two previous benchmarks (2017 and 2019) and features two
tasks which tap into two levels of speech representation. The
first task is to discover low bit-rate subword representations that
optimize the quality of speech synthesis; the second one is to
discover word-like units from unsegmented raw speech. We
present the results of the twenty submitted models and discuss
the implications of the main findings for unsupervised speech
learning.
Index Terms: zero resource speech technology, speech syn-
thesis, acoustic unit discovery, spoken term discovery, unsuper-
vised learning

1. Introduction
Current speech technology depends heavily on the availabil-
ity of textual resources. On the other hand, humans learn
the sounds and vocabulary of their first language long before
they learn to read or write, discovering some kind of linguistic
units or representations in their language (typically thought to
be phoneme- or word-like), and the equivalent of an acoustic
model, a language model, and a speech synthesizer. That hu-
mans succeed without textual resources suggests that there may
be another approach. Developing technology to learn useful
speech representations in an unsupervised way would be useful
for the thousands of so-called low-resource languages, which
lack the textual resources and/or expertise required to build tra-
ditional speech processing systems.

The Zero Resource Speech Challenge series1 [1, 2, 3] aims
to push the envelope in unsupervised speech modelling, by tak-
ing the radical stance of trying to learn the full speech process-
ing stack without any textual resources. Here, we reopen two
previous benchmarks with a focus on discovering discrete rep-
resentations from raw audio at two linguistic levels. The first fo-
cuses on the phonological or sub-word level. The goal is to learn
discrete (low bitrate) speech units, which encode meaningful
linguistic invariants, and which are useful for doing speech syn-
thesis. This is a reopening of the 2019 “TTS without T” Ze-

1Detailed results of all metrics, and audio samples for unit dis-
covery/synthesis systems, are provided on the leaderboard at http:
//www.zerospeech.com/.

Figure 1: Schematic diagram of the Zero Resource challenge
series. The long term aim is to learn an entire spoken dialogue
stack without recourse to any textual resources, mimicking the
way human children learn their native languages.

roSpeech benchmark [3] (track 1b in Figure 1). The second
focuses on the word level. The goal is to discover word-like
units for the purpose of segmenting continuous speech. This is
a reopening of the 2017 “spoken term discovery” ZeroSpeech
Benchmark [2] (track 2 in Figure 1). As before, we rely exclu-
sively on freely accessible software and data sets.

Discrete units, such as words and phonemes, form the basis
of every modern speech technology system at some level. One
useful feature of discrete representations is that they remove lin-
guistically irrelevant information from the signal, and represent
continuous speech in a highly compact format. For example, [4]
perform unsupervised representation learning, and show that,
up to a certain point, discrete representations are more useful
than continuous ones as the input for training a phone recog-
nizer. Here, we ask participants to discover their own discrete
units and analyze them in terms of how well they capture rele-
vant linguistic contrasts, as indicated by the gold phoneme- and
word-level transcriptions.



2. Data sets, metrics and baselines
2.1. Unsupervised unit discovery for speech synthesis

Task. The problem of learning speech units useful for doing
speech synthesis can be seen in terms of an encoder–decoder
architecture. The encoder takes as input raw audio and turns
it into a sequence of speaker-invariant discrete units (“pseudo-
text”). The decoder takes these units as input and generates a
waveform corresponding to the same linguistic content uttered
in another voice. Requiring synthesis is in a new voice allows
us to exclude trivial solutions where the audio is returned un-
changed. We measure the synthesis quality of the output, as
well as the unit quality and the bitrate of the pseudo-text.

Data sets. We use the same setting and datasets as in [3],
with two languages, the development language (English) and
the surprise language (Indonesian). Participants are instructed
to treat these languages as low-resource and refrain from using
other labelled data. Metrics are provided only for the develop-
ment language, and results for the surprise language must be
submitted through the challenge website to be evaluated (max-
imum two submissions per research group). Three unlabelled
data sets are provided for each language.The Train Voice data
set contains either one talker (surprise) or two (development),
and is intended for building an acoustic model of the target
voice for speech synthesis (between 1h30 and 2h40 of data per
voice). The Train Unit Discovery data set contains read speech
from multiple speakers, with around ten minutes of speech from
each speaker, for a total of 15h in each language. These are in-
tended for the discovery of speaker-independent acoustic units.
The Test data set contains new utterances from unseen speakers.

Synthesis quality is measured using human evaluation, tak-
ing three measures. To evaluate the comprehensibility of the
synthesis, the evaluators were asked to orthographically tran-
scribe the synthesized sentence. Each transcription was com-
pared with the gold transcription using the Levenshtein dis-
tance, yielding a character error rate (CER). The overall natu-
ralness of the synthesis was assessed on a 1 to 5 scale, yielding
a mean opinion score (MOS), where 5 is the most natural. Fi-
nally, the similarity of the voice to the target voice was assessed
using a 1 to 5 scale, with each synthesized sentence compared to
a reference sentence uttered by the target voice, with 5 being the
most similar to the target. Each evaluator performed the eval-
uation tasks in the same order (comprehensibility, naturalness,
similarity), with the overall evaluation lasting about one hour.
We recruited evaluators for English using the Amazon Mechan-
ical Turk platform and, for Indonesian, through universities and
research institutes in Indonesia. All were paid the equivalent
of 10 USD. Catch trials (novel natural recordings by the target
voice) ensured that participants were on task: only data from
participants with <0.80 CER on catch trials was retained (En-
glish: 35; Indonesian: 68).

Embedding bitrate and quality. Participants submit encod-
ings for each test file. The submitted encodings are sequences
of vectors. These vectors are assumed to be quantized. We cal-
culate the bitrate of the encoding by, first, constructing a dictio-
nary of all distinct vectors over the entire test set. The test set is
seen as a sequence U = [s1, ..., sn] of n symbols. The bitrate
is calculated as n

∑n
i=1

p(si)log2p(si)
D

, where p(si) is the rela-
tive frequency of symbol si in U , and D the total duration of
U in seconds.The unit quality is evaluated with the ABX phone
discriminability score, as in previous Zero Resource challenges
[5, 2]. The ABX discriminability, for example, between [aba]
and [apa], is defined as the probability that the representations

of A and X are more similar than representations of B and
X , over all triplets of tokens such that A and X are tokens
of [aba], and B a token of [apa] (or vice versa), and such that
X is uttered by a different speaker than A and B. The global
ABX phone discriminability score aggregates over the entire
set of minimal triphone pairs such as [aba]–[apa] to be found
in the test set. The choice of the appropriate distance measure
is up to the researcher. As in previous challenges, we provide
a default distance, the average frame-wise angle (arc cosine of
the normalized dot product) between the embeddings of the to-
kens along a DTW-realigned path, and also make available an
equivalent distance making use of frame-wise symmetrised KL-
divergences, rather than angles, as well as a Levenshtein (edit)
distance measure. We cite ABX scores as error rates (0% for
the gold transcription, 50% being chance). Each of the items
compared in the ABX task is a triphone ([izi]-[idi], and so on),
extracted from the test corpus. Each triphone item is a short
chunk of extracted audio, to be decoded by the systems.2

Toplines and baselines. A baseline system is provided, con-
sisting of a pipeline with a nonparametric Bayesian acoustic
unit discovery system [6, 7], and a parametric speech synthe-
sizer based on Merlin [8]. As linguistic features, we use con-
textual information (leading and preceding phones, number of
preceding and following phones in current sentence), but no fea-
tures related to prosody, articulatory features (vowel, nasal, and
so on), or part-of-speech (noun, verb, adjective, and so on). The
baseline system is made available in a container. A supervised
topline system is also provided, consisting of a phone recog-
nizer trained using Kaldi [9] on the original transcriptions. The
acoustic model is a tristate triphone model with 15000 Gaus-
sian mixtures. The language model is a trigram phone-level
language model.3 Output is piped to the TTS system, which is
also trained on the gold labels.

Table 1: Submissions to the unit discovery/synthesis track.

Encoder/Decoder Generation
MC [10]
(Sheffield)

Disentangled dis-
crete AEs

Wavenet

TM [11]
(Kyoto)

ABCD-VAE Neural source-filter

BN [12]
(SU)

VQVAE (1),
VQCPC (2)

WaveRNN

PL [13]
(Nagoya)

CycleVQVAE (1),
Cycle-VAE (2)

Wavenet

BY (Brno) Subspace HMM +
AUD + Baseline

Baseline

MK [14]
(IIT)

CV, VC transients Waveglow

AT [15]
(NAIST)

VQVAE + trans-
former

Griffin-Lim (2)

BG [16]
(Boğaziçi)

Correspondence
rec. sparse AE

Baseline

WH
(Tokyo IT)

Hierarchical VQ-
VAE

MelGAN

2This differs from previous challenges. In previous challenges,
longer audio files were provided for decoding, from which the repre-
sentations of triphones were extracted after the fact using time stamps.
In the 2019/2020 edition, triphones are pre-extracted, to allow for sys-
tems without fixed frame rates.

3A word-level language model gives better performance, but we use
a phone-level language model in the interest of giving a fair comparison
with the subword unit discovery systems asked for in the challenge.



2.2. Spoken term discovery & segmentation

Task. The goal of spoken term discovery is to find words in the
speech stream—just as the infant learns the words of its lan-
guage by listening. The input is a series of speech features.
The output is a set of boundaries delimiting the start and end of
proposed word tokens discovered in the speech, and category la-
bels indicating proposed word types. These boundaries may, but
need not, constitute an exhaustive parse of the speech. The eval-
uation we apply is a set of scores measuring different aspects of
the alignment with the words in the gold-standard transcription.
As is customary in the field of word segmentation, we do not
provide a separate test set for this track; we rely on the surprise
languages to assess possible hyperparameter overfitting. Two
submissions per research group are allowed.

Data sets. The development data and surprise data are the
same as in [2] (see [17, 18]). The development data consists of
corpora from three languages (English, French and Mandarin).
Each corpus comes with software that performs the evaluation.
Challenge participants are encouraged to use these resources to
tune their hyperparameters using a cross-validation approach to
maximize generalizability. The participants then must submit
their systems and their output on all the data sets for indepen-
dent evaluation (run automatically upon submission). The sur-
prise data consists of corpora from two additional languages
(German and Wolof), which are provided with no additional re-
sources.

The amount of data in the training part of the development
data sets varies from 2.5 to 45 hours, to ensure that systems
can work both with limited data and with larger data sets. The
statistics of the two surprise languages fall between these two
extremes. The distribution of speakers in the training sets is
shaped to reflect what is typically found in natural language
acquisition settings: there is a “family”—a small number of
speakers (between four and ten) who make up a large proportion
of the total speech—and a set of “outsiders”—a larger number
of speakers that each appear in smaller proportions (ten minutes
each). The test sets consist of many short files, are organized
into subsets of differing length (1s, 10s and 120s).

The English and French corpora were taken from LibriVox
audio books4 and phone force-aligned using Kaldi [9]. The
Mandarin corpus is described in [19], force-aligned using Kaldi.
The German corpus was taken from LibriVox and force-aligned
using Kaldi as well. The Wolof corpus is described in [20].

Evaluation metrics. “Spoken term discovery” is a complex
task with a number of sub-goals, which can be evaluated sep-
arately. The first sub-goal is to do good matching: deciding
whether any two given speech fragments are instances of the
same sequence of phoneme, and attempting to find as many
matches as possible. The quality of matches is evaluated based
on how similar fragments matched by the system are—we use
the average normalized edit distance (NED) between the gold
phoneme sequences, over all pairs matched by the system—the
quantity of matches can be evaluated by measuring the propor-
tion of the corpus covered by matched pairs (coverage).

The second sub-goal is to construct a lexicon. This amounts
to clustering the discovered matched pairs. The intrinsic qual-
ity of the lexicon is evaluated based on how consistent the items
clustered together are with regard to the sequences of gold
phonemes they correspond to. The Grouping scores (preci-
sion, recall and F-score) evaluate the purity and inverse frag-
mentation of the clusters in a pairwise fashion (see [2] for a

4http://librivox.org/

formal definition). The extrinsic quality can be measured with
respect to how well the clusters match the gold-standard lexicon
of word types. Type scores (precision, recall and F-score) mea-
sure the correspondence between the discovered clusters and the
gold lexicon. Type precision is the probability that discovered
types belong to the gold set of types (real words), type recall is
the probability that gold types are discovered. We restrict both
sets to words between three and twenty phones long.

The third sub-goal is to do accurate word segmentation.
The Token scores (precision, recall and F-scores) evaluate the
quality of the discovered fragment tokens compared to the
gold tokens, and the Boundary scores (precision, recall and F-
scores) the quality of the discovered boundaries.

By setting out three different types of criteria, the intention
is to be open to various types of “spoken term discovery” sys-
tems, all of which in some sense “find words.” The result is
that we do three (non-independent) types of evaluations. All of
these evaluations are done at the level of the phonemes: using
the aligned phoneme transcription, we convert any discovered
fragment of speech into its transcribed string. If the left or right
edge of the fragment contains part of a phoneme, that phoneme
is included in the transcription if it corresponds to more than
30ms or more than 50% of its duration.

Baselines and toplines. The baseline was computed using
[21], which does pair-matching using locally sensitive hashing
applied to PLP features and then groups pairs using graph clus-
tering. The parameters stayed the same across all languages,
except that the dynamic time warping threshhold was increased
for Mandarin (to 0.90, rather than 0.88), in order to obtain a
NED value similar to that of other languages. The topline sys-
tem was an exhaustive-parsing word segmentation model based
on the textual transcriptions (a unigram grammar trained in the
adaptor grammar framework: [22]).

3. Models and selected results
3.1. Unsupervised unit discovery for speech synthesis

Sixteen systems from nine teams were submitted, summarized
in Table 1. Two systems, AT-1 and BG, are excluded from
analysis of the synthesis evaluation due to declared issues with
the submissions. Relatively few systems were submitted in the
“low bitrate” range (near the bitrate of the annotation). Nev-
ertheless, the systems submitted this year, which have shifted
towards higher bitrates and end-to-end systems mostly based
on discrete autoencoders, have all done more with less. Fig-
ure 2a shows (for the surprise language) the improvements in
embeddings with respect to the previous year: the edge of the
grey zone shows the empirical tradeoff previously observed be-
tween unit quality and bitrate. Many of this year’s systems
improve reach lower ABX error rates at a given bitrate. Fig-
ure 2b shows that improvements have also been made in de-
coding, with overall more comprehensible synthesis, regardless
of unit quality (the 2019 systems are represented by the dot-
ted line of best fit, while the solid line is fit through the cur-
rent submissions). And, while the comprehensibility measure is
largely correlated with the overall synthesis naturalness evalua-
tions (MOS), Figure 2c shows that certain systems are reported
to sound particularly natural, beyond just their comprehensibil-
ity (notably the two MK systems). This is presumably due to
a improvement in waveform generation. Figure 2d shows the
combined effect of these improvements in unit quality, decod-
ing, and waveform generation, showing major improvements
on the tradeoff between synthesis quality and bitrate.



(a) (b) (e)

(c) (d) (f)

Figure 2: (a) ABX error (lower better) as function of bitrate for unit discovery/synthesis. (b) Character error rate (CER: lower
is better) as a function of ABX error. Vertical dashed line: ABX error for MFCCs. Sloped lines are linear regressions for 2019
submissions (dotted) and for 2020 submissions (solid), showing global increase in decoding quality. (c) Mean opinion score (MOS:
higher is better) as a function of CER. Line is linear regression. (d) MOS as function of bitrate. Vertical dashed line is MFCC bitrate.
Unit discovery/synthesis results presented on surprise language only. Reference scores plotted as G for gold transcriptions; M for
MFCC features; B for baseline system; T (Post) for posteriorgrams from the topline system; and T (ASR) for discrete decoding from
the topline. Edge of grey regions in (a) and (d) represents 2019 state of the art on the tradeoff. Labels are 2020 submissions. (e).
Coverage (higher is better) as a function of normalized edit distance (NED: lower is better) for spoken term discovery/segmentation
submissions. (f) Boundary F-score (higher is better) as a function of NED for submissions. Edge of grey regions in (e) and (f)
represents 2017 state of the art on the tradeoff, labels are 2020 submissions, and multiple points per system are different languages.
Clustering-oriented algorithms have low NED, while segmentation-oriented algorithms have high coverage and boundary F-scores.

3.2. Spoken term discovery & segmentation

Two teams, indicated in Figure 2 as B [23] (JHU) and R [24]
(Tampere), submitted two systems each. The edge of the grey
region in Figure 2e shows the empirical tradeoff previously ob-
served between having high quality matching (low NED) and
exhaustively analysing the corpus (high coverage). Systems
R1 and R2, which employ probabilistic dynamic time warping,
both clearly improve on the tradeoff, with R1 privileging ex-
haustiveness and R2 match quality. Figure 2f shows the empiri-
cal tradeoff between high quality matching and accurate word
segmentation. Systems R1 and R2 again show improvement.
Systems B1 and B2, which use self-expressing autoencoders to
improve frame representations before segmenting and cluster-
ing, show higher boundary F-scores, comparable to the previous
state of the art for systems privileging segmentation.

4. Conclusion
Major advances have been made towards unsupervised unit dis-
covery for speech synthesis, at all levels—better units, better
decoding architectures, and better waveform generation. The

best discrete codes, however, are still an order of magnitude
more detailed than the phonemic representation. The supervised
topline system demonstrates the possibility of a low bitrate code
which is also of high quality. The challenge is to find such a
high-quality low-bitrate phoneme-like representation in an un-
supervised fashion. Nevertheless, some higher-bitrate codes
may yet be useful, and good enough, to be used in language
modelling. We will explore this in upcoming challenges. Re-
garding spoken term discovery and segmentation, progress was
made in this challenging dual task, with improved clusters and
improved coverage. Clustering-oriented algorithms represent
the best current tradeoff, but another potential path forward is
to bring segmentation-oriented systems towards better clusters.
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