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Efficient Wait-k Models for Simultaneous Machine Translation

Simultaneous machine translation consists in starting output generation before the entire input sequence is available. Wait-k decoders offer a simple but efficient approach for this problem. They first read k source tokens, after which they alternate between producing a target token and reading another source token. We investigate the behavior of wait-k decoding in low resource settings for spoken corpora using IWSLT datasets. We improve training of these models using unidirectional encoders, and training across multiple values of k. Experiments with Transformer and 2D-convolutional architectures show that our wait-k models generalize well across a wide range of latency levels. We also show that the 2D-convolution architecture is competitive with Transformers for simultaneous translation of spoken language.

Introduction

Neural Sequence-to-Sequence (S2S) models are state-of-the-art for sequential prediction tasks including machine translation, speech recognition, speech translation, text-to-speech synthesis, etc. The most widespread models are composed of an encoder that reads the entire input sequence, while a decoder (often equipped with an attention mechanism) iteratively produces the next output token given the input and the partial output decoded so far. While these models perform very well in the typical offline decoding use case, recent works studied how S2S models are affected by online (or simultaneous) constraints, and which architectures and strategies are the most efficient. Online decoding is desirable for applications such as real-time speech-to-speech interpretation. In such scenarios, the decoding process starts before the entire input sequence is available, and online prediction generally comes at the cost of reduced translation quality. In this paper we improve training and decoding of deterministic wait-k models that are simple and efficient for online decoding [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF]. These decoders first read k tokens from the source, after which they alternate between producing a target token and reading another source token, see Figure 1.

In summary our contributions are: [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF] we propose improved training techniques for wait-k by first using unidirectional encoders and training across multiple values of k. [START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF] we show that 2D convolutional architectures are competitive with transformers for simultaneous (online) translation, especially in lower resource settings such as encountered for spoken corpora (IWSLT datasets), [START_REF] Fügen | Simultaneous translation of lectures and speeches[END_REF] we show that training along multiple wait-k paths achieves good online performance without the need to set a suitable k a priori for training. Moreover, models trained in this manner generalize well across a wide range of latency levels.

Related work

After pioneering works on online statistical MT [START_REF] Fügen | Simultaneous translation of lectures and speeches[END_REF][START_REF] Yarmohammadi | Incremental segmentation and decoding strategies for simultaneous translation[END_REF][START_REF] He | Syntax-based rewriting for simultaneous machine translation[END_REF][START_REF] Grissom | Don't until the final verb wait: Reinforcement learning for simultaneous machine translation[END_REF][START_REF] Oda | Syntax-based simultaneous translation through prediction of unseen syntactic constituents[END_REF], one of the first works on online translation to use attentionbased sequence-to-sequence models is that of [START_REF] Cho | Can neural machine translation do simultaneous translation?[END_REF], which uses and writes (vertical) over a source-target grid. After first reading k tokens, the decoder alternates between reads and writes. In Wait-∞, or Wait-until-End (WUE), the entire source is read first. manually designed criteria that dictate whether the model should make a read/write operation. [START_REF] Jaitly | An online sequence-to-sequence model using partial conditioning[END_REF] reads equally-sized chunks of the source sequence and generates output sub-sequences of variable lengths, each ending with a special end-of-segment token. [START_REF] Dalvi | Incremental decoding and training methods for simultaneous translation in neural machine translation[END_REF] proposed a deterministic decoding algorithm that starts with k read operations then alternates between blocks of l write/read operations. This simple approach outperforms the information based criteria of [START_REF] Cho | Can neural machine translation do simultaneous translation?[END_REF], and allows complete control of the translation delay. [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF] trained Transformer models [START_REF] Vaswani | Attention is all you need[END_REF] with a wait-k decoding policy that first reads k source tokens then alternate single read-writes. Wait-k approaches were found most effective by [START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF] when trained for the specific k that is used to generate translations. This, however, requires training separate models for each potential value of k used for translation.

For dynamic online decoding, [START_REF] Luo | Learning online alignments with continuous rewards policy gradient[END_REF][START_REF] Gu | Learning to translate in real-time with neural machine translation[END_REF] rely on reinforcement learning (RL) to optimize a read/write policy. [START_REF] Luo | Learning online alignments with continuous rewards policy gradient[END_REF] learns an LSTM model that emits read/write decisions based on the input and output prefixes processed so far. [START_REF] Gu | Learning to translate in real-time with neural machine translation[END_REF] trains an RNN fed with the encoder and decoder current hidden states to generate read/write decisions. RL based models are first pre-trained offline, and then fine-tuned with policy gradient to optimize a reward balancing translation quality and latency.

To combine the end-to-end training of wait-k models with the flexibility of dynamic online decoding, [START_REF] Press | You may not need attention[END_REF][START_REF] Zheng | Simultaneous translation with flexible policy via restricted imitation learning[END_REF][START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF] use imitation learning (IL). [START_REF] Press | You may not need attention[END_REF] estimates a decoding path from the source-target alignments obtained with an off-the-shelf alignment model then trains a recurrent network to jointly encode the two sequences following the alignment path. [START_REF] Zheng | Simultaneous translation with flexible policy via restricted imitation learning[END_REF] adds endof-segment tokens to the target w.r.t. two wait-k paths during training. At test time, decoding is controlled with the end-ofsegment token and constrained to lie in between the two training paths. [START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF] supervises the training of a decoder that controls the read/write decision using an oracle derived from an offline translation model.

Recent work on dynamic online translation use monotonic alignments [START_REF] Raffel | Online and linear-time attention by enforcing monotonic alignments[END_REF]. They were first introduced as a substitute for attention that enables progressive reading of the source context and where only a single (last read) encoder state is fed to the decoder. MoChA [START_REF] Chiu | Monotonic chunkwise attention[END_REF] adds chunkwise attention on top of mono- tonic alignments to attend to a window of the last encoder states and MILk [START_REF] Arivazhagan | Monotonic infinite lookback attention for simultaneous machine translation[END_REF] broadens this window with an infinite lookback to boost the translation quality. [START_REF] Ma | Monotonic multihead attention[END_REF] adapted MILk's monotonic attention for multi-headed Transformer decoders. Simultaneous translation models usually operate under a streaming constraint where an emitted output cannot be altered, alternatively, [START_REF] Niehues | Dynamic transcription for low-latency speech translation[END_REF][START_REF] Arivazhagan | Retranslation versus streaming for simultaneous translation[END_REF][START_REF] Zheng | Opportunistic decoding with timely correction for simultaneous translation[END_REF] propose decoding strategies that allow for revision to correct past outputs.

In our work, we focus on wait-k decoding, but unlike [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF] we opt for unidirectional encoders, and show that they are more effective and efficient for online translation. We also show that it is possible to train a single model that is effective across a large range of latency levels.

Online translation models

In the following we describe how we adapt the transformer [START_REF] Vaswani | Attention is all you need[END_REF] and pervasive attention [START_REF] Elbayad | Pervasive attention: 2D convolutional neural networks for sequence-to-sequence prediction[END_REF] architectures to the online translation setting, and how we train them for wait-k decoding.

Online Transformer (TF)

The key component of the transformer model [START_REF] Vaswani | Attention is all you need[END_REF] is multiheaded attention, which concatenates the outputs of multiple attention heads. Attention aggregates encoder/decoder states from other positions in the form of a weighted sum, where the weights depend on the current state.

Wait-k online decoding [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Dalvi | Incremental decoding and training methods for simultaneous translation in neural machine translation[END_REF] starts by reading k source tokens, and then alternates between reading and writing a single token at a time, until the full source has been read, or the target generation has been terminated. Formally, we denote with zt the number of source tokens read when decoding yt. For a wait-k decoding path we have zt = min(k + t -1, |x|).

In the encoder-decoder attention, the decoder state ht, used to predict yt+1, attends to the first zt+1 source states, and each source state should only encode signal from the zt source tokens read so far. Self-attention makes the source encoder bidirectional, i.e. the encoder state at a given position includes signals from past as well as future time-steps. This means that, as in [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF], the bidirectional source encoding has to be recomputed each time a source token is read, so that past source tokens can attend to the newly available source tokens, see Figure 2a.

To alleviate the cost of re-encoding the input sequence after each read operation, we propose unidirectional encoders for online translation, by masking the self-attention to only consider previous time-steps, as in Figure 2b. In this manner, unlike [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF], both during training and deployment, source sequences are encoded once, without having to update the encoder states as new source tokens become available.

Online Pervasive Attention (PA)

In Pervasive Attention [START_REF] Elbayad | Pervasive attention: 2D convolutional neural networks for sequence-to-sequence prediction[END_REF], the source and target sequences are jointly encoded with a two-dimensional convolutional neural network (CNN). For decoding, [START_REF] Elbayad | Pervasive attention: 2D convolutional neural networks for sequence-to-sequence prediction[END_REF] uses causal convolutions where the filters mask future target positions, see Figure 2c. In a similar way, to adapt to the online translation task, we mask the filters in the source direction in order to encode the source unidirectionally, see Figure 2e. In our online version of Pervasive Attention, the CNN's ultimate features H conv at a given position (t, j) of the source-target grid encode source context up to xj and target context up to yt. In the offline Pervasive Attention, a single representation per target position is needed to predict the next output token, which is obtained using max-pooling across the source positions, see Figure 2d. In the online task, we would like to make a prediction at every position where the model could be asked to write. When predicting yt at position (t -1, zt) of the grid we max-pool the activations in H conv t-1,≤z t , see Figure 2f. One major difference between Pervasive Attention (PA) and Transformer is that in PA, the source-target representation at any given position (t, zt) is independent from the decoding path z taken to get to that point. In a transformer model, however, the representation at (t, zt) depends on the order in which tokens were read and written up to that point.

Training wait-k models

In [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Dalvi | Incremental decoding and training methods for simultaneous translation in neural machine translation[END_REF] the model is optimized by maximum likelihood estimation w.r.t. a single wait-k decoding path z k :

log p(y | x, z k ) = |y| t=1 log p θ (yt|y<t, x ≤z k t , z k <t ). (1) 
Note that the dependency on z k <t is only relevant for the Transformer model where the path history matters.

Instead of optimizing a single decoding path, we propose to jointly optimize across multiple wait-k paths. The additional loss terms provide a richer training signal, and potentially yield models that could perform well in different latency regimes. Due to the dependence of the decoder hidden states on the full decoding path z<t in the transformer-based model, we can only train in parallel across a limited set of paths. We consider wait-k paths {z k , ∀k ∈ K}. During training, we encode the source sequence once, and uniformly sample k ∈ K to decode:

EK log p(y | x, z k ) ≈ k∼U (K) log p θ (y|x, z k ). (2) 
To cover all possible wait-k paths for an input (x, y), we set K = [1, . . . , |x|]. We will refer to this training with multi-path.

With Pervasive Attention, we can leverage more training signals. In fact, the grid nature of the model allows us to efficiently compute the output distributions p(yt|y<t, x ≤j ) all over the grid in a single forward pass. Consequently, we optimize the writing log-likelihoods in the area above the diagonal with:

|y| t=1 |x| j=1 log p θ (yt|y<t, x ≤j )[[j ≥ t]]. (3) 
We will refer to this training with multi-path as well. We evaluate our approach on IWSLT14 En↔De [START_REF] Cettolo | Report on the 11th IWSLT evaluation campaign[END_REF], IWSLT'15 En↔Vi [START_REF] Luong | Stanford neural machine translation systems for spoken language domains[END_REF], and WMT15 De )En datasets. 1 We train offline unidirectional and bidirectional Transformer (TF) and Pervasive Attention (PA) models on all tasks. On IWSLT'14 De↔En, similar to [START_REF] Elbayad | Pervasive attention: 2D convolutional neural networks for sequence-to-sequence prediction[END_REF][START_REF] Edunov | Classical structured prediction losses for sequence to sequence learning[END_REF], we train on 160K pairs, develop on 7K held out pairs and test on TED dev2010+tst2010-2013 (6,750 pairs). All data is tokenized and lower-cased and we segment sequences using byte pair encoding [START_REF] Sennrich | Neural machine translation of rare words with subword units[END_REF] We evaluate all models with greedy decoding, and measure translation quality measured with tokenized word-level BLEU [START_REF] Papineni | BLEU: a method for automatic evaluation of machine translation[END_REF] with multi-bleu.pl. We measure decoding latency with Average Lagging (AL) [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF], which is designed to indicate the source steps by which we lag behind an ideal translator (wait-0), it can however be negative if the system finishes decoding prematurely before the full source is read. Other measures of lagging include Average proportion (AP) [START_REF] Cho | Can neural machine translation do simultaneous translation?[END_REF] and Differentiable Average Lagging (DAL) [START_REF] Arivazhagan | Monotonic infinite lookback attention for simultaneous machine translation[END_REF]. AP is unfavorable to short sequences and is incapable of highlighting improvement as it occupies a narrow range [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Arivazhagan | Monotonic infinite lookback attention for simultaneous machine translation[END_REF][START_REF] Alinejad | Prediction improves simultaneous neural machine translation[END_REF]. DAL is a differentiable version of AL used to regularize trainable decoders, and behaves similarly to AL.

Offline comparison

Table 1 reports offline performance of Pervasive Attention (PA) and Transformer (TF) models with both a unidirectional encoder and a bidirectional encoder. Overall, and as expected, bidirectional encoders in the offline setup are better than their unidirectional counterparts. The gain for PA is of 0.65 on average while for TF the addition of bidirectionality improves BLEU by 1.1 on average. The first two columns of Table 1 show that pervasive attention (PA) is competitive with TF on these datasets when using unidirectional encoders: PA improves upon TF on 1 http://www.statmt.org/wmt15/ 

Online comparison

For the Transformer model, we initially consider a bidirectional encoder similar to [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF], in which case the encoder states have to be updated after each read. The timing results in Table 2 show that using a bidirectional encoder rather than a unidirectional one slows decoding down by a factor two to three. Second, in Figure 3 we assess the impact of the uni/bidirectional encoder on online decoding quality. We look at models trained using either of two wait-k paths: ktrain=1 and ktrain=7. We observe that in the case of online decoding unidirectional encoding performs best, in contrast to the case for offline decoding. For both ktrain=1 and ktrain=7, the unidirectional encoder is consistently providing better performance. For the experiments below we therefore use unidirectional encoders.

Pervasive Attention and Transformer for online translation. We evaluate models trained for different wait-k decoding paths. We denote with ktrain=∞ the wait-until-end training where the full source is read before decoding. We report offline results for reference, the offline model has a latency of AL = |x|.

Figure 4 presents the performance of models trained for a single wait-k decoding path, with ktrain ∈ {1, 7, ∞}. Each trained model is represented by a curve, by evaluating it across different wait-k decoding paths keval ∈ {1, 3, 5, 7, 9}.

Initial experiments with both architectures across the four IWSLT tasks showed that models trained on wait-7 generalize well on other evaluation paths. Thus, unlike [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF], we note that we can train a single model to use in different latency regimes, i.e. we do not achieve better BLEU scores when training with keval = ktrain. This generalization to other wait-k paths is notably stronger with pervasive attention (PA) models. Where TF models drop in performance far from the training path (e.g. ktrain = 1 and keval = 9), the PA models continue to improve for larger keval. Overall, for tasks where PA performs better offline the model consistently outperforms TF online and vice-versa. It is worth noting that for some translation directions, we can outperform the offline model's performance at a considerably lower latency. MILk [START_REF] Arivazhagan | Monotonic infinite lookback attention for simultaneous machine translation[END_REF] MMA-H [START_REF] Ma | Monotonic multihead attention[END_REF] MMA-IL [START_REF] Ma | Monotonic multihead attention[END_REF] (c) SoTA comparison, TF big [START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF] where an end-of-sequence marker was added to the source to improve over [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF]. This is in particular the case for En )Vi where the online PA with an AL of 4.65 matches the performance of the offline model with an AL of 21.08, see Figure 4c.

Joint training on multiple paths. We found that training on a particular wait-k path can generalize well to other paths. To avoid tuning ktrain to find the optimal path for each specific task, we consider jointly optimizing on multiple paths. Results in Figure 4 show that this joint optimization, for both architectures and on two datasets, manages to achieve comparable or better results than training on a single manually selected path.

Experiments on the WMT15 De )En. On WMT15 De )En we experiment with transformer base (comparable to [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF] and big (comparable to [START_REF] Arivazhagan | Monotonic infinite lookback attention for simultaneous machine translation[END_REF][START_REF] Ma | Monotonic multihead attention[END_REF]). 2 In Figure 5a we observe, as for IWSLT, that jointly training on multiple wait-k paths outperforms training on a single path where the performance drops as we move away from ktrain. The advantage of joint training with unidirectional encoders is confirmed in Figure 5b when comparing our results to STACL which trains separate bidirectional models for each decoding path with ktrain = keval. Our models also outperform SL [START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF] that optimize dynamic agents with imitation learning (IL).

Both our base and big multi-path models match or improve 2 MILk is based on RNMT+ which outperforms TF big offline [START_REF] Chen | The best of both worlds: Combining recent advances in neural machine translation[END_REF].

the performance of the dynamic MILk [START_REF] Arivazhagan | Monotonic infinite lookback attention for simultaneous machine translation[END_REF] that requires training for each latency regime (each mark in the dotted curves is a different model) whereas our wait-k model is simply evaluated with different values of keval. The more recent MMA-H and MMA-IL [START_REF] Ma | Monotonic multihead attention[END_REF] adapting MoChA and MILk for Transformer models outperform wait-k models for AL < 6, but fail to optimize a medium lagging model.

Conclusion

In this paper, we demonstrated that unidirectional encoders for online MT achieve better translation qualities than bidirectional ones, with faster training and decoding. Moreover, we introduced joint training for wait-k decoders addressing the need to train a different model for each lagging value. Our models are trained end-to-end and, unlike conventional wait-k, can operate across the full spectrum of lagging with the quality increasing with the value of k. In low-resource settings, we found Pervasive Attention models to be competitive with Transformers for online translation. Our wait-k models are state-of-the-art among deterministic online translation strategies, and provide a strong baseline for simultaneous translation with dynamic decoding.
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 1 Figure1: Wait-k decoding as a sequence of reads (horizontal) and writes (vertical) over a source-target grid. After first reading k tokens, the decoder alternates between reads and writes. In Wait-∞, or Wait-until-End (WUE), the entire source is read first.

Figure 2 :

 2 Figure 2: Illustration of bi/uni-directional attention, and causal two-dimensional convolutions. At the position marked with •, the convolution only includes signals from the highlighted blue area, the other weights are zeroed out.
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 3 Figure 3: Transformer models with bi/uni-directional encoders trained on wait-1 and wait-7 decoding paths.
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 4 Figure 4: IWSLT'14 De↔En and IWSLT'15 En↔Vi: wait-k online decoding with Pervasive Attention (top) and Transformer (bottom), both with unidirectional encoder. Each curve represents a model trained on a single decoding path, evaluated with keval ∈ {1, 3, 5, 7, 9}. Offline models have an average lagging of 22.97, 22.21, 21.08 and 26.56 on De )En, En )De, En )Vi and Vi )En, respectively.

Figure 5 :

 5 Figure 5: Evaluation of our models on WMT'15 De )En, and comparison to the state of the art (SoTA). Offline models have an average lagging of 26.96. Note that in panel (b) STACL ktrain = keval shows the results of[START_REF] Zheng | Simpler and faster learning of adaptive policies for simultaneous translation[END_REF] where an end-of-sequence marker was added to the source to improve over[START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF].

Table 1 :

 1 Evaluation of Pervasive Attention (PA) and Transformer (TF) for offline translation with greedy decoding.

	Encoder	Unidirectional	Bidirectional
	Architecture	PA	TF	PA	TF
	IWSLT'14 En )De 26.81 26.58	27.23 27.46
	IWSLT'14 De )En 32.40 32.81	33.43 33.64
	IWSLT'15 En )Vi 29.22 28.90	29.81 29.33
	IWSLT'15 Vi )En 26.81 25.73	27.43 28.09
	WMT'15 De )En	28.08 31.14	28.78 31.96
	4. Experimental evaluation	
	4.1. Datasets and experimental setup		

  Our Pervasive Attention models use residual-cumulative skip connections and stack N = 14 layers with 11 × 11 convolutions. We train Transformer small on IWSLT'14 De↔En, a modified base [19] on IWSLT'15 En↔Vi and Transformers base and big on WMT'15 De )En.

with 10K merge operations. The resulting vocabularies are of 8.8K and 6.6K types in German and English respectively. On IWSLT'15 En↔Vi, similar to

[START_REF] Ma | Monotonic multihead attention[END_REF][START_REF] Luong | Stanford neural machine translation systems for spoken language domains[END_REF]

, we train on 133K pairs, develop on TED tst2012 (1,553 pairs) and test on TED tst2013 (1,268 pairs). The corpus was simply tokenized resulting in 17K and 7.7K word vocabularies in English and Vietnamese respectively. On WMT'15 De )En, we reproduce the setup of

[START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Arivazhagan | Monotonic infinite lookback attention for simultaneous machine translation[END_REF] 

with a joint vocabulary of 32K BPE types. We train on 4.5M pairs, develop on newstest2013 (3,000 pairs) and test on newstest15 (2,169 pairs).

Table 2 :

 2 Decoding speed of Transformers with uni/bi-directional encoders for De )En on IWSLT'14 and WMT'15. 

								Decoding (tok/s)
					Encoder		GPU CPU
			IWSLT	Unidirectional 21.7k	130
			De )En	Bidirectional	7.3k	54
			WMT	Unidirectional	6.3k	77
			De )En	Bidirectional	2.9k	32
			Bidirectional		Unidirectional	ktrain = 1	ktrain = 7
	15	-1	1	3	5	7	9