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Abstract

Spoken dialogue systems typically use one or several (top-N)
ASR sequence(s) for inferring the semantic meaning and track-
ing the state of the dialogue. However, ASR graphs, such as
confusion networks (confnets), provide a compact representa-
tion of a richer hypothesis space than a top-N ASR list. In
this paper, we study the benefits of using confusion networks
with a neural dialogue state tracker (DST). We encode the 2-
dimensional confnet into a 1-dimensional sequence of embed-
dings using a confusion network encoder which can be used
with any DST system. Our confnet encoder is plugged into the
‘Global-locally Self-Attentive Dialogue State Tacker’ (GLAD)
model for DST and obtains significant improvements in both
accuracy and inference time compared to using top-N ASR hy-
potheses.

Index Terms: speech recognition, dialog state tracking, confu-
sion network, attention model

1. Introduction

Spoken task-oriented dialogue systems guide the user to com-
plete a certain task through speech interaction. While such
speech systems generally include an explicit automatic speech
recognition (ASR) module (cascade approach), they now tend
to be replaced by end-to-end approaches where the systems take
speech as input and directly produce a decision from it. Ex-
amples include end-to-end architectures for spoken language
understanding (SLU) proposed recently [1, 2, 3, 4]. However,
those end-to-end models currently lead to equivalent but no bet-
ter performance compared to cascade approaches based on ASR
(see for instance [1, 2]). Besides, in some specific use cases,
it may be preferable to deploy modular systems (instead of a
monolithic one) for which only one component (ASR, SLU, di-
alog state tracker) can be modified at a time.

This article is positioned in this latter context and studies
how to take better account of ASR ambiguity in voice-based
dialog state tracking systems. Most recent work on spoken di-
alogue systems uses one or several (top-N) ASR sequence(s) to
track the dialogue state and infer user needs. However, ASR lat-
tices provide a richer hypothesis space than the top-N hypothe-
ses. More precisely, we revisit the use of word confusion net-
works (simply denoted as confnets) [5], derived from ASR Ilat-
tices, as a compact and efficient representation of ASR output.
To encode such graphical representations with existing state-
of-the-art dialogue state trackers (DST), we introduce a generic
neural confusion network encoder (see Figure 1) which can be
used as a plug-in to any dialogue state tracker and achieves bet-
ter results than using a list of top-N ASR hypotheses.

Our research contributions are the following:
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¢ we introduce a system which encodes the confusion net-
work into a representation that can be used as a plug-in
to any state-of-the-art dialogue state tracker,

* we propose and experiment several variants to encode
ASR confnets,

* we introduce mechanisms to leverage both ASR confu-
sion network and true transcripts while training the DST
system,

* we explore DST using a richer hypothesis space in the
form of a confusion network and study whether it leads
to better performance / computation trade-off compared
to using a list of top-N ASR hypotheses.

2. Related Work

Dialog state tracking. Recent pieces of work on dialogue state
trackers [6, 7, 8] infer the state of the dialogue from conversa-
tional history and current user utterance. These systems assume
a text-based user utterance and accumulate the user goal across
multiple user turns in the dialogue. [6] generalizes on rare slot-
value pairs by using global modules which share parameters
and local modules to learn slot specific feature representations.
[7] achieves state-of-the-art performance on DSTC-2 dataset [9]
with a universal state tracker which generates fixed-length rep-
resentation for each slot and compares the distance between the
representation and value vectors to make predictions. [10] pre-
dicts dialogue states from utterances and schema graphs con-
taining slot relations in edges to achieve state-of-the-art result
of MultiWoz 2.0 [11] and MultiWoz 2.1 datasets [12].

Using ASR graphs with neural models. Word lattices
from ASR were used by [13] for intent classification in SLU
with RNNs. Inspired from [13], [14] proposed to use word con-
fusion networks for DST. However, there are several differences
with what we propose in our paper: (1) they only use average
pooling to aggregate the hidden GRU states corresponding to
the alternative word hypotheses whereas we introduce several
variants to pool alternative words (see section 3), (2) our word
confusion network encoder can be plugged into any neural ar-
chitecture for dialogue state tracking, as it basically amounts to
have a first layer that transforms a 2D-data structure (confnets)
into a 1D-sequence of embeddings, while [14] keeps the 2D-
data structure in the hidden layers and, consequently, is limited
to simple RNNs such as GRU and (bi-)LSTM, and (3) they ex-
periment with a simpler RNN-based dialog state tracker while
we plug our confnet encoder into the more efficient *Global-
locally Self-Attentive Dialogue State Tacker’ (GLAD) model of
[6]. Finally, our confnet encoder is most similar to [15] but they
used ASR confnets for classification of user intent, question-
type and named-entities while we apply our encoder to a DST
task (we also propose several variants over [15]).
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3. Word Confusion Network for DST
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Figure 1: Word Confusion Network Encoder Variations

3.1. Confusion Network Encoder

Inspired from [15], we use a word confusion network encoder
to transform the graph to a representation space which can be
used with any dialogue state tracker. The multiple aligned ASR
hypotheses, represented as parallel arcs at each position of the
confusion network, are treated as a set of weighted arcs. More
formally, a confnet C' is a sequence of parallel weighted arcs,
noted as C' = [(< wi, 7} >, < wi, 7} >,..,.< w7 >
Yooy (K Wiy Ty >, < WE, T2, >,y < Wi wm >,
where w? is the j* arc (token) at time/position ¢, and 77 its
associated confidence weight. We propose several variants to
formulate the embedding representation for a set C; of parallel
arcs at position ¢ in the confnet C'.

The simplest method to encode the confusion network is as
a sequence of weighted-sums of the word embeddings weighed
with the ASR confidence scores:

pi = W,?Embedding(wf) €))
enr(Cr) = Y pi @)

In increasing complexity, the second variant to encode the paral-
lel arcs is to apply a weighted sum of non-linear transformations
over word embeddings:

ri = i tanh(W; Embedding(w;)) 3)
e(Ce) = Y i “

The third variation is to formulate the encoding with a self-
attention mechanism similar to that described in [15]. In this
case, m; (ASR) weights can be ignored as the model will use
self-attention to weight the parallel arcs. The self-attention
weights a! are learnt during training:

¢i = tanh(W)Embedding(w;)) Q)
T i
i exp(w
of = P2 (©)
Zj exp(w3 q7)
ews(Cr) = ) oigi 7

Embedding(w;) is the embedding representation of word w;.
The final variation is to use the self-attention mechanism ex-
actly as described in [15]. The ASR weights 772 are used as an
additional feature to weigh the word embeddings of each paral-
lel arc:

¢¢ = tanh(Wip}) ®)
- T i
Z]‘ exp(w; q;)
cws(Cr) = Y alg (10)

ey denotes the 4 variations of the standard trainable embedding
layer for word/token wf; the matrix W, and the vector ws are
trainable parameters of our model. Note that the training of
these parameters is done jointly with the main task (see next
subsection).

3.2. Dialogue State Tracking with Confnet

The dialogue state is a representation of the user goal at any
time in the dialogue. A dialogue state tracker (DST) accumu-
lates evidence as the dialogue progresses at each user turn and
updates the state to reflect the changing user goals. The user-
goal is captured by the tracker as a distribution of slot-value
pairs. Each user utterance can be either in textual or spoken
form. Conventionally, DST uses top-N list of ASR hypotheses
of the spoken user utterances to track the user needs. However,
graph based representation such as ASR lattices and confusion
network provides a richer hypothesis space in compact form.

Our confusion network encoder can be used as a plug-in
to any state-of-the-art DST system. We have used the *Global-
locally Self-Attentive Dialogue State Tacker’ (GLAD) model
[6] with our confusion network encoder. GLAD addresses the
issue of rare slot-value pairs which were not explicitly han-
dled by previous DST models. The GLAD encoder module is
a global-local self-attentive encoder which separately encodes
the transcript/ASR hypothesis, system actions from previous
turns and slot-value under consideration. We extend GLAD
by replacing the user utterance representation, namely a se-
quence of trainable token embeddings, by the confnet embed-
ding sequence. Remind that a confnet is also encoded as a 1
dimensional sequence of embeddings that corresponds to each
time/position in the confnet. This enables GLAD architecture to
use graph-based inputs instead of (or even in addition to) token
sequence inputs.

4. Model Training Strategies

At training time, both clean transcript and ASR graph are avail-
able. It is therefore tempting to use these two pieces of informa-
tion to facilitate model training while trying to make it robust to
ASR errors in the meantime. We propose two radically different
strategies to take into account clean transcript and ASR graph
at training time.

4.1. Data Augmentation

The confusion network contains noisy hypotheses with lower
ASR confidence scores which makes training hard. Augment-
ing the confnet dataset with the clean transcript should help the
system to converge faster and better. We encode transcript in the
form of a confnet with a single arc between nodes. At training
time we merge both noisy ASR and clean (single arc) confnet
datasets. Consequently, we use each dialog twice at training.
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Figure 2: Confusion Network Encoder used with DST system
(GLAD,). Similarity-loss module can be used for augmenting the
transcript data to jointly-train the system.

4.2. Adding a Similarity Loss to Train Confnet Embed-
dings: Jointly-Trained Model

We want the confnet representation to be very close to the one of
the clean transcript in the embedding space. To enforce this, we
add a similarity loss to the loss corresponding to our main task
(binary classification for each <slot,value> pair) - see figure 2.
Binary-cross-entropy is used as classification loss, denoted
as L1, and squared euclidean distance between clean and noisy
transcripts is used as similarity loss (L2). The binary cross-
entropy loss can be modeled as shown in equation 11 where
p(sloty,valy,) represents the prediction for the slot m and
value n and y is the binary ground-truth. Let Embeddingcn
be the transformation realised by the confnet encoder and
Embeddingr be the standard embedding layer on word to-
kens; f be the transformation function of the GLAD encoder
that takes as input the sequence of one dimensional embed-
dings (either standard word token embeddings or confnet em-
beddings) and outputs a global-local context vector. The final
loss, L, of the model is defined as a linear combination of the
cross-entropy loss, L1, and the similarity loss, Lo as shown in
equation 11. We choose a A value of 0.5 for our experiments.

L =L+ M\Lo (11)
Li = —(ylog(P)+(1—y)log(l—P)) (12)
P = p(slotm,valy) (13)

Ly = || f(Embeddingr (transcript))
— f(Embeddingcn (confnet))||3

Note that, while Lo alone has a trivial solution (namely, pro-
jecting everything to a null vector), the combination with the
loss associated to the primary task renders this trivial solution
non-optimal. The model trained jointly using the similarity loss
L5 is called JCnet.

(14)

5. DSTC-2 Dataset

‘We evaluate our system on the standard Dialogue State Tracking
Challenge 2 (DSTC-2) dataset [9]." DSTC is a research chal-
lenge focused on improving the state-of-the art in tracking the
state of spoken dialog systems. DSTC 2 contains dialogue in
the restaurant information domain where the states may change
through the dialogue. There are 1612, 506 and 1117 dialogues
in the training, development and test sets respectively. The di-
alog state is captured by informable slots (slots which the user
can provide a value for, to use as a constraint on their search)

Uhttp://camdial.org/ mh521/dstc/

and non informable (unconstrained) slots. All the slots in the
dataset are requestable as the user can request the value of any
slot. For example, for a given restaurant, the user can request
the value of the phone number or price-range slot. At each turn
of the dialogue, the user’s goal may change, new information
maybe requested or provided to the system by the user. Thus, a
turn is represented as a dialogue state comprising of the triplet
(user-goal, turn-request, turn-inform). DSTC-2 provides repre-
sentation of the user speech utterance in the form of top-10 ASR
hypotheses and word confusion networks.

We followed a similar pre-processing pipeline of the con-
fusion networks as mentioned in [14], i.e, we removed the in-
terjections (um, ah, etc) and pruned arcs with an ASR confi-
dence score less than 0.001 to reduce the size of the network,
thus increasing efficiency without compromising the accuracy
of models. To obtain a fair and consistent performance compar-
ison between models based on ASR-top-N hypotheses and on
confusion network, the top-N list of ASR hypotheses was cho-
sen as the N best paths extracted from the confusion network.

6. Experiments and Results

Our baseline is the model trained on augmented dataset com-
posed of ASR-N hypotheses and transcripts, where the final
prediction is the weighted sum of prediction probabilities from
each ASR hypothesis (Augmented ASR-N, see table 1). To
demonstrate that a richer hypothesis space (confusion network)
helps in improving accuracy, we trained 3 separate models
on confusion networks with non-augmented (Non-augmented
Cnet-N), augmented (Augmented Cnet-N) dataset and jointly-
trained model (JCnet-N). In these models, we restricted the
number of arcs per token by keeping only the ones with the
top-N weights (N € [5,9]). The augmented dataset is com-
posed of transcripts modeled as a graph with one arc between
nodes, and ASR confusion networks. In addition to the above
data augmentation techniques, we also evaluate the impact of
using a similarity loss to train the confnet embeddings as intro-
duced in section 4.2 (JCnet-N). We use a learning rate of 0.01, a
batch size of 50, a dropout of 0.2 and a A value of 0.5 to train our
models. We concatenate pre-trained word embeddings (GloVe)
[16] and Kazuma character embeddings [17] to encode words.
The embedding layer is frozen and not updated during training.

Table 1: Scores for baseline model trained on augmented ASR-
N list of hypothesis. Each cell contains the mean accuracy pi(0-
1) and standard error o(0-1) in the format p(o) for 4 runs of
each setting

List-Size Joint-Goal Turn-Inform Turn-Request
ASR-1 0.6846(.0017) | 0.8326(.0012) | 0.9668(.0003)
ASR-5 | 0.6980(.0075) | 0.8375(.0050) | 0.9680(.0010)
ASR-9 | 0.6942(.0077) | 0.8395(.0055) | 0.9680(.0073)

Table 2: Scores for Jointly-trained (Similarity Loss) model on
augmented confnet dataset. Each cell contains the mean accu-
racy p (0-1) and standard error o (0-1) in the format p(o) for
4 runs of each setting

Arc-Size Joint-Goal Turn-Inform Turn-Request
JCnet-1 | 0.6883(.0027) | 0.8361(.0021) | 0.9672(.0001)
JCnet-5 | 0.7088(.0021) | 0.8403(.0015) | 0.9773(.0003)
JCnet-9 | 0.7063(.0049) | 0.8461(.0048) | 0.9700(.0005)
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Figure 3: Attention Weights of the confusion network encoder (variant e, ) for the confnet with transcript ‘i don’t care about the price
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Table 3: Results on confusion network model encoding variants with different numbers of parallel arcs (5 or 9). With or w/o confnet
augmentation. Each cell contains the mean accuracy p(0-1) and standard error o(0-1) of the 3 metrics on 10 runs of each setting in

the format p(o)
Accuracy [u (0)] Joint-Goal [ Turn-Inform [ Turn-Request Joint-Goal [ Turn-Inform [ Turn-Request
Parallel Arcs: 5 Confnet Encoding Variation 1: e,1 = ), pt Confnet Encoding Variation 2: e,2 = ), r;
Non-aug CNET-N | 0.7019(0.0026) | 0.8350(0.003) | 0.9690(0.0004) || 0.7008(0.0027) | 0.8389(0.002) | 0.9677(0.0003)

Aug CNET-N

0.7121(0.0019) | 0.8470(0.0011) | 0.9688 (0.0004)

0.7115(0.0019) | 0.8465(0.0011) | 0.9686(0.0005)

Confnet Encoding Variation 3: e.3 = 3, aig}

Confnet Encoding Variation 4: e,4 ¥, aigi

Non-aug CNET-N | 0.6912(0.0057) | 0.8302(0.0037) | 0.9645(0.0005)

0.6975(0.0016) | 0.8361(0.0013) | 0.9686(0.0004)

Aug CNET-N

0.6925(0.0032) | 0.8372(0.0008) | 0.9650 (0.0006)

0.7056(0.0023) | 0.8413(0.0015) | 0.9689(0.0007)

Parallel Arcs: 9

Confnet Encoding Variation 1: e,,; = 21 Pi

Confnet Encoding Variation 2: e,2 = ), r;

Non-aug CNET-N | 0.7044(0.0020) | 0.8395(0.0009) | 0.9693(0.0003)

0.6997(0.0043) | 0.8349(0.0038) | 0.9684(0.0003)

Aug CNET-N

0.7094(0.0017) | 0.8446(0.0012) | 0.9694 (0.0004)

0.7071(0.0095) | 0.8413(0.0057) | 0.9680(0.0004)

Confnet Encoding Variation 3: e,3 = ), atql

Confnet Encoding Variation 4: e,q = 3, aig}

Non-aug CNET-N | 0.6938(0.0033) | 0.8325(0.0022) | 0.9650(0.0003)

0.6969(0.0023) | 0.8382(0.0011) | 0.9680(0.0006)

Aug CNET-N

0.6930(0.0021) | 0.8367(0.0007) | 0.9648(0.0006)

0.7045(0.0023) | 0.8416(0.0011) | 0.9681(0.0008)

‘We train each experimental setting multiple times with dif-
ferent seeds and report the mean accuracy () and standard error
(o) of the joint-goal, turn-inform and turn-request for the ASR-
N models in table 1, JCnet-N models in table 2 and the variants
of confusion network encoder models in table 3. Our comments
will mostly focus on the joint-goal accuracy metric which is
the most important. We use 10 runs to calculate ;1 and o for
Non-augmented Cnet-N and Augmented Cnet-N models and 4
runs to calculate pv and o for Augmented ASR-N and JCnet-N
models. As illustrated in table 3, the joint-goal accuracy of the
models trained on augmented dataset (leveraging clean tran-
scripts at training time) performs better than those trained on
non-augmented one. These models also outperform the ASR-
N baseline. The best variants seem to be e,, and e,, which
do not use attention, both outperforming e, [15]. However,
attention models like e,, interestingly learn to assign higher
weights to relevant words with lower ASR score over the top-
1 hypothesis as shown in the figure 3. Content words, such as
‘basque’ which aids in classifier discriminability, is chosen by
the attention-weights over function words such as ‘that’s’ in-
spite of the later being the top hypothesis. Furthermore, the
performance of jointly-trained (similarity loss) confnet models
in table 2 perform similar to the data augmented confnet models
in table 3. Augmented confusion network with parallel arc size
5 (variant e,,,) outperforms jointly-trained model by a margin
of 1% in joint-goal accuracy whereas both models have similar
performance with parallel arc size 9.

The confusion network models lead to significant inference

time gains over those trained on the list of ASR hypothesis.
ASR-N models aggregate the predictions over each hypothe-
sis to formulate the final prediction, resulting in a time com-
plexity of O(NM) where N is the number of ASR hypoth-
esis and M is the size of the neural network. The confusion
network models eliminate the additional time complexity intro-
duced by the ASR hypothesis size without compromising on
the rich hypothesis space. Thus, all variations of the confusion
network models have an inference time complexity of O(M).
Inference time for all the varying confnet models (augmented,
non-augmented, and joint goal) is on an average 0.82sec per
batch over a batch-size of 50. The average inference per batch
for the ASR-N models progressively increases from 0.57sec for
ASR-1 to a maximum of 7sec for ASR-10.

7. Conclusion

In this paper, we have demonstrated that exploiting the rich hy-
pothesis space of a confusion network instead of being limited
to the top-N ASR hypotheses for DST leads to performance gain
in time and accuracy. The time gain is significant if we want to
incorporate a larger set of alternative ASR hypotheses. More-
over, we explore variations of designing the initial embedding
layer transforming the confnet as a one-dimensional sequence
of position-wise embeddings which can be plugged into numer-
ous state-of-the-art text-based DST systems.
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