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During about 30 years, a lot of research teams have worked on the big challenge of detection of moving objects in various challenging environments. First applications concern static cameras but with the rise of the mobile sensors studies on moving cameras have emerged over time. In this survey, we propose to identify and categorize the different existing methods found in the literature. For this purpose, we propose to classify these methods according to the choose of the scene representation: one plane or several parts. Inside these two categories, the methods are grouped according to eight different approaches: panoramic background subtraction, dual cameras, motion compensation, subspace segmentation, motion segmentation, plane+parallax, multi planes and split image in blocks. A reminder of methods for static cameras is provided as well as the challenges with both static and moving cameras. Publicly available datasets and evaluation metrics are also surveyed in this paper.

Introduction

Cameras are more and more present in our daily lives whether it is in the streets, in our homes and even in our pockets with smart-phones. Many real applications [1] are based on videos taken either by static or moving cameras such as in video surveillance of human activities [START_REF] Zheng | Extracting roadway background image: A mode based approach[END_REF], visual observation of animals [START_REF] Weinstein | Motionmeerkat: integrating motion video detection and ecological monitoring[END_REF][START_REF] Weinstein | A computer vision for animal ecology[END_REF][START_REF] Sheehan | PelagiCam: a novel underwater imaging system with computer vision for semi-automated monitoring of mobile marine fauna at offshore structures[END_REF], home care [START_REF] Zheng | Extracting roadway background image: A mode based approach[END_REF], optical motion capture [START_REF] Carranza | Free-viewpoint video of human actors[END_REF] and multimedia applications [START_REF] Baf | Comparison of background subtraction methods for a multimedia learning space[END_REF]. In their process, these applications often require a moving objects detection step followed by tracking and recognition steps. Since 30 years, moving objects detection is thus surely among the most investigated field in computer vision providing a big amount of publications. First, methods were developed for static cameras but, in the last two decades with the expansion of sensors, approaches with moving cameras have been of many interests giving more challenging situations to handle. However, many challenges have been identified in the literature and are related either to the cameras, to the background or to the moving objects of the filmed scenes.

A lot of surveys in the literature are about moving objects detection in the case of static cameras. In 2000, Mc Ivor [START_REF] Ivor | Background subtraction techniques[END_REF] surveyed nine algorithms allowing a first comparison of the models. However, this survey is mainly limited on a description of the algorithms. In 2004, Piccardi [START_REF] Piccardi | Background subtraction techniques: a review[END_REF] provided a review on seven methods and an original categorization based on speed, memory requirements and accuracy. This review allows the readers to compare the complexity of the different methods and effectively helps them to select the most adapted method for their specific application. In 2005, Cheung and Kamath [START_REF] Cheung | Robust background subtraction with foreground validation for urban traffic video[END_REF] classified several methods into non-recursive and recursive techniques. Following this classification, Elhabian et al. [START_REF] Elhabian | Moving object detection in spatial domain using background removal techniques -state-of-art[END_REF] provided a large survey in background modeling.

However, this classification in terms of non-recursive and recursive techniques is more suitable for the background maintenance scheme than for the background modeling one. In their review in 2010, Cristiani et al. [START_REF] Cristani | Background subtraction for automated multisensor surveillance: A comprehensive review[END_REF] distinguished the most popular background subtraction algorithms by means of their sensor utilization: single monocular sensor or multiple sensors. In 2014, Elgammal [START_REF] Cristani | Background subtraction for automated multisensor surveillance: A comprehensive review[END_REF] provided a chapter on background subtraction for static and moving cameras over 120 papers. Since 2008, Bouwmans et al. [START_REF] Bouwmans | Statistical Background Modeling for Foreground Detection: A Survey, Part 2, Chapter 3, Handbook of Pattern Recognition and Computer Vision[END_REF] initiated several comprehensive surveys classifying each approaches following the employed models that can be classified into the following main chronological categories: traditional models, recent models and prospective models that employed both mathematical, machine learning and signal processing models. These different surveys concern either all the categories [START_REF] Bouwmans | Traditional Approaches in Background Modeling for Video Surveillance, Handbook Background Modeling and Foreground Detection for Video Surveillance, Taylor and Francis Group[END_REF][START_REF] Bouwmans | Recent Approaches in Background Modeling for Video Surveillance, Handbook Background Modeling and Foreground Detection for Video Surveillance, Taylor and Francis Group[END_REF][START_REF] Bouwmans | Traditional and recent approaches in background modeling for foreground detection: An overview[END_REF], sub-categories (i.e. statistical models [START_REF] Bouwmans | Statistical Background Modeling for Foreground Detection: A Survey, Part 2, Chapter 3, Handbook of Pattern Recognition and Computer Vision[END_REF],

fuzzy models [START_REF] Bouwmans | Background Subtraction For Visual Surveillance: A Fuzzy Approach, Chapter 5, Handbook on Soft Computing for Video Surveillance, Taylor and Francis Group[END_REF], decomposition into low-rank plus additive matrices [START_REF] Bouwmans | Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset[END_REF] or part of sub-categories (i.e. Mixture of Gaussian models (GMM) [START_REF] Bouwmans | Background Modeling using Mixture 73 of Gaussians for Foreground Detection -A Survey[END_REF], subspace learning models [START_REF] Bouwmans | Subspace Learning for Background Modeling: A Survey[END_REF], Robust Principal Component Analysis (RPCA) models [START_REF] Bouwmans | Robust PCA via principal component pursuit: A review for a comparative evaluation in video surveillance, Special Isssue on Background Models Challenge, Computer Vision and Image Understanding[END_REF], dynamic RCPA models [START_REF] Vaswani | Robust Subspace Learning: Robust PCA, Robust Subspace Tracking and Robust Subspace Recovery[END_REF], and deep learning models [START_REF] Bouwmans | Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[END_REF]).

Sometimes, these previous surveys presented in a sub-part extensions of background subtraction methods to static cameras for moving cameras. One can also find sub-parts that concern moving cameras in object tracking and surveillance surveys [START_REF] Moeslund | A survey of computer vision-based human motion capture[END_REF][START_REF] Yilmaz | Object tracking[END_REF][START_REF] Cristani | Background subtraction for automated multisensor surveillance: A comprehensive review[END_REF][START_REF] Joshi | A survey on moving object detection and tracking in video surveillance system[END_REF]. However, the techniques addressing the case of moving cameras are more and more numerous and can be the target of whole study as proven by recent reviews [START_REF] Cristani | Background subtraction for automated multisensor surveillance: A comprehensive review[END_REF][START_REF] Komagal | Foreground segmentation with PTZ camera: a survey[END_REF][START_REF] Yazdi | New trends on moving object detection in video images captured by a moving camera : A survey[END_REF]. In 2014, Elgammal [START_REF] Cristani | Background subtraction for automated multisensor surveillance: A comprehensive review[END_REF] give an entire chapter on background subtraction techniques for moving camera classifying them into traditional and recent methods. In 2018, Komagal and Yogameena [START_REF] Komagal | Foreground segmentation with PTZ camera: a survey[END_REF] chose to review foreground segmentation approaches with a Pan Tilt Zoom (PTZ) camera but those techniques cannot usually be employed with freely moving cameras. In 2018, Yazdi and Bouwmans [START_REF] Yazdi | New trends on moving object detection in video images captured by a moving camera : A survey[END_REF] presented the most complete survey on the subject, to the best of our knowledge. The methods are presented according to challenges and a classification into four broad categories are employed but the review suffers from a lack of completeness. Thus, there is a need of a full comprehensive survey for moving objects detection with moving cameras.

In this context, we propose to fully review methods about moving objects detection with a moving camera. The aim is thus to present a review of the traditional and recent techniques used by categorizing them and making the assessment of the methods regarding the challenges. It is dedicated for students, engineers, young researchers and confirmed researchers in the field. It could serve as basis for courses too and considered as the reference in the field. The paper is organized as follows. First, we define notions of moving objects and moving cameras in Section 2 in order to delimit the scope of this survey. Second, we investigate the different challenges met in videos taken by static and moving cameras in Section 3. In Section 4, we carefully present the general process of background subtraction method with a static camera by providing a background knowledge to well understand extensions of background subtraction methods in the case of moving cameras. In Section 5, we provide an original classification of the methods about moving objects detection with a moving camera. Then, publicly available datasets, evaluation metrics and f-score results on the most used sequences are presented in Section 6. Finally, we conclude the paper by a discussion and perspectives for future work.

Preliminaries

In this section, we clearly state notions of moving objects and moving cameras that defined the kind of methods that are reviewed in this paper.

Moving objects

In physics, a motion is described by a change in position of an object over time according to a frame of reference attached to an observer. In our case, the observer is the camera and we will describe the observations for two kind of cameras: stationary and moving. For a stationary camera, the background appears static in the video stream of the camera and a moving object appears moving. Displacements of an object in the scene is called the local motion. In the case of a moving camera, both of them appear moving. The background appears moving because of the global motion and the distinction between a moving object and the static scene is complicated.

The range of moving objects is large, ranging from pedestrians to waving trees. But among of these objects, only a subpart has to be labeled as moving.

The objects like waving trees, ocean waves or escalators are part of so-called dynamic background and have to be labeled as background. Conversely, pedestrians, cars or animals are objects with "significantly" motions and the subjects of applications about which we interest in this paper.

An object can be represented in many different ways [START_REF] Yilmaz | Object tracking[END_REF]. In this survey, we are going to see that two kinds of representation are generally used for the moving object detection: a bounding box or a silhouette. The bounding box is usually used in tracking methods where only a rough region of the moving object is needed. The bounding box contains pixels from the background and from the moving object. Conversely, a silhouette provides accuracy information on the moving object position since every pixel in the silhouette has to belong to the object. Silhouette results are needed for some applications like motion capture.

Moving cameras

The specificity of a moving camera compared to a static one, is that a static object appears moving in the video stream. This motion is caused by the motion of the camera also called the ego motion. As well as a moving object, the physics definition of motion can be applied to a camera. In addition to displacements in the 3D space, the camera can also perform rotations, named pan, tilt and roll.

Among moving cameras, there are two types of cameras: freely moving camera and constrained moving camera. As its name suggest, freely moving camera performs any kind of motion without any constraint. This camera is hand-held camera, smartphone or drone. In the category of constrained cameras, the most famous example is the PTZ camera. This camera can only perform rotations since its optical center is fixed. Even if this camera doesn't change in position, rotations are enough to defined it as a moving camera.

Challenges

Background subtraction is still an open issue with several scientific obstacles to overcome. In 1999, Toyama et al. [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF] propose a list of 10 challenges about background maintenance for video surveillance systems. In this section we provide an extended list about the background subtraction challenges. Each challenge is illustrated by the figures 1, 2 and 3.

• Bootstrapping The construction of the background model is based on several frames of a video sequence but it is possible that each frame contains moving objects. It is necessary to take into account this case to not contaminate the background model and create false detections.

• Camouflage Foreground objects can have the same color than the background. Since the detectors are generally based on appearance, it is complicated to differentiate foreground from background.

• Dynamic background The background can contain some elements that are not completely static as water surface or waving trees. Even if they are not static, these elements are part of the background. The background model requires to represent these appearance variations in order to limit false alarms.

• Foreground aperture Changes inside a uniform colored region of a moving object cannot be detected and the corresponding pixels are classified as background rather than foreground.

• Illumination changes Illumination changes can be gradual (a cloud in front of the sun) or abrupt (light switch). The difference of illumination between the current frame and the background model causes false detections.

• Low frame rate According to the application, a low frame rate camera can be used. In this case, background changes appear more abrupt and it is more difficult to distinguish background and foreground changes.

• Motion blur Images taken by the camera can be blurred by an abrupt camera motion or by camera jittering. The boundaries of objects are fuzzy and create imprecision in the detection.

• Motion parallax The creation or the update of a background model and foreground detection for sequences taken by a moving camera required frame alignment. 3D scenes with large depth variations present parallax in images. This parallax can cause image registration errors and create non uniform background optical flow and thus affect the detection on several steps.

• Moving background In a stationary camera, static objects appear static and moving objects appear moving. In the case of a moving camera, everything appears moving because of the camera displacement, also called the ego-motion. In these conditions it is more complicated to separate moving objects from the static ones. Moreover, with a moving camera some parts of the scene appear and disappear over time. The background construction and its maintenance have to deal with this aspect.

• Moved background object Static objects can be moved and they should not be considered as foreground. When the object is moved, a new portion of the scene is revealed and when the object is static again an other part of the scene is occluded. The background model should be updated according to these changes to avoid misclassification.

• Night video Images taken at night time present low brightness, low contrast and few color information which reduce appearance changing when an object is moving.

• Noisy images Noise in image depends on the quality of the camera components like sensors, lenses, resolutions. The noise affects the appearance and consequently the background model.

• Shadows Every objects create shadows by the interception of light rays.

For a moving object, its shadow is moving and it modifies the background appearance. Those shadows should not be integrated into the background model but it must not be detected as foreground and it must not be integrated into the background model.

• Sleeping foreground object It is possible that a moving object stop for a while and this object becomes a static object. Depending on the application, it is necessary to continue to label this object as moving or on the contrary incorporate it into the background.

• Waking foreground object A static object can starts to move a long time after the beginning of the video. A new part of the scene that never appears in frames before is revealed. This portion of the scene may creates an erroneous detection, called a ghost, since it is not part of the background.

Following these remarks, we can categorize the challenges by level of difficulties [START_REF] Sanches | Challenging situations for background subtraction algorithms[END_REF]. In addition, these challenges are less or more predominant depending on the real-applications [1]. For example in surveillance in natural environments like in maritime and aquatic environments, illumination changes and dynamic changes in the background are very challenging requiring more robust background methods than the top methods of CDnet 2014 as developed by Prasad et al. [START_REF] Prasad | Challenges in video based object detection in maritime scenario using computer vision[END_REF][START_REF] Prasad | Video processing from electro-optical sensors for object detection and tracking in maritime environment: A survey[END_REF][START_REF] Prasad | Are object detection assessment criteria ready for maritime computer vision?[END_REF]. However, several authors provided tools to visualize and analyze the variations causes by theses challenges in the temporal history of the pixel [START_REF] Ramadan | Using time series analysis to visualize and evaluate background subtraction results in computer vision applications[END_REF][START_REF] Sanchez-Rodrguez | TimeViewer: a Tool for Visualizing the Problems of the Background Subtraction[END_REF]. 

Static Cameras

There are three main categories of approaches to detect moving objects: consecutive frame difference, background subtraction, and optical flow. Consecutive frame difference methods [START_REF] Collins | A system for video surveillance and monitoring[END_REF][START_REF] Haritaoglu | W4:Real time surveillance of people and their activities[END_REF][START_REF] Zhao | Study on moving-object-detection arithmetic based on W4 theory[END_REF] are very simple to implement but they are too sensitive to the challenges. Optical flow methods are more robust but are still too time consuming to reach real-time requirements. Background subtraction which is the most popular method to detect moving objects offers the best compromise between robustness and real-time requirements. In the literature, there exist a plenty of methods to detect moving objects by background subtraction and we let readers refer to books [START_REF] Bouwmans | Handbook on Background Modeling and Foreground Detection for Video Surveillance[END_REF][START_REF] Bouwmans | Handbook on Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing[END_REF] and surveys that cover this problematic for more details [START_REF] Bouwmans | Traditional Approaches in Background Modeling for Video Surveillance, Handbook Background Modeling and Foreground Detection for Video Surveillance, Taylor and Francis Group[END_REF][START_REF] Bouwmans | Recent Approaches in Background Modeling for Video Surveillance, Handbook Background Modeling and Foreground Detection for Video Surveillance, Taylor and Francis Group[END_REF][START_REF] Bouwmans | Traditional and recent approaches in background modeling for foreground detection: An overview[END_REF][START_REF] Bouwmans | On the role and the importance of features for background modeling and foreground detection[END_REF][START_REF] Maddalena | Background Subtraction for Moving Object Detection in RGB-D Data: A Survey[END_REF]. In this section, we describe the general process of background subtraction, survey the corresponding methods, and also investigate the current and unsolved challenges. This part is crucial to well understand extensions of background subtraction methods in the case of moving cameras. As defined in Section 2, from a static point of view only moving objects are moving. From this statement, background subtraction methods follow the general process (See Figure 4). Here, we describe the main process of each step.

Background Modeling

The background model describes the model use to represent the background.

A big variety of models coming from mathematical theories, machine learning and signal processing have been used for background modeling, including crisp models [START_REF] Lee | Background estimation for video surveillance, Image and Vision Computing New Zealand[END_REF][START_REF] Graszka | Median mixture model for background-foreground segmentation in video sequences[END_REF][START_REF] Roy | Real-time Adaptive Histogram Min-Max Bucket (HMMB) Model for Background Subtraction[END_REF], statistical models [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF][START_REF] Caseiro | Background Modelling on Tensor Field for Foreground Segmentation[END_REF][START_REF] Stauffer | Adaptive background mixture models for realtime tracking[END_REF][START_REF] Varadarajan | Spatial mixture of Gaussians for dynamic background modelling[END_REF], fuzzy models [START_REF] Baf | Fuzzy integral for moving object detection[END_REF][START_REF] Baf | Type-2 fuzzy mixture of Gaussians model: Application to background modeling[END_REF][START_REF] Baf | Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos[END_REF],

Dempster-Schafer models [START_REF] Munteanu | The detection of moving objects in video by background subtraction using Dempster-Shafer theory[END_REF], subspace learning models [START_REF] Oliver | A Bayesian computer vision system for modeling human interactions[END_REF][START_REF] Farcas | Background modeling via a supervised subspace learning[END_REF][START_REF] Farcas | Background subtraction via incremental maximum margin criterion: A discriminative approach[END_REF][START_REF] Marghes | Background modeling via incremental maximum margin criterion[END_REF][START_REF] Marghes | Background modeling and foreground detection via a reconstructive and discriminative subspace learning approach[END_REF], robust learning models [START_REF] Candes | Robust principal component analysis?[END_REF][START_REF] Sobral | Double-constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance[END_REF][START_REF] Javed | Motion-Aware Graph Regularized RPCA for Background Modeling of Complex Scenes, Scene Background Modeling Contest[END_REF][START_REF] Javed | Spatiotemporal Low-rank Modeling for Complex Scene Background Initialization[END_REF], neural networks models [START_REF] Ramirez-Alonso | Self-adaptive SOM-CNN neural system for dynamic object detection in normal and complex scenarios[END_REF][START_REF] Ramirez-Quintana | Self-organizing retinotopic maps applied to background modeling for dynamic object segmentation in video sequences[END_REF][START_REF] Schofield | A system for counting people in video images using neural networks to identify the background scene[END_REF] and filter based models [START_REF] Chang | Vision modules for a multi sensory bridge monitoring approach[END_REF][START_REF] Cinar | Adaptive background estimation using an information theoretic cost for hidden state estimation[END_REF][START_REF] Messelodi | A Kalman filter based background updating algorithm robust to sharp illumination changes[END_REF][START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF].

Mathematical models

Based from mathematical theories, the simplest way to model a background is to compute the temporal average [START_REF] Lee | Background estimation for video surveillance, Image and Vision Computing New Zealand[END_REF], the temporal median [START_REF] Graszka | Median mixture model for background-foreground segmentation in video sequences[END_REF] or the histogram over time [START_REF] Roy | Real-time Adaptive Histogram Min-Max Bucket (HMMB) Model for Background Subtraction[END_REF]. These methods were widely used in traffic surveillance in 1990s owing to their simplicity but are not robust to the challenges faced in video surveillance such as camera jitter, changes in illumination, and dynamic backgrounds. To consider the imprecision, uncertainty and incompleteness in the observed data (i.e. video), statistical models began being introduced in 1999 such as single Gaussian [START_REF] Wren | Pfinder: Real-time tracking of the human body[END_REF], Mixture of Gaussians (MOG) [START_REF] Caseiro | Background Modelling on Tensor Field for Foreground Segmentation[END_REF][START_REF] Stauffer | Adaptive background mixture models for realtime tracking[END_REF] and Kernel Density Estimation [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF][START_REF] Zivkovic | Efficient adaptive density estimation per image pixel for the task of background subtraction[END_REF]. These methods based on a Gaussian distribution model proved to be more robust to dynamic backgrounds [START_REF] Pulgarin-Giraldo | GMM background modeling using divergence-based weight updating[END_REF][START_REF] Garcia-Garcia | A Gaussian-Median Filter for Moving Objects Segmentation Applied for Static Scenarios[END_REF]. More advanced statistical models were after developed in the literature and can be classified into those based on another distribution that alleviate the strict Gaussian constraint (i.e. general Gaussian distribution [START_REF] Elguebaly | Finite asymmetric generalized Gaussian mixture models learning for infrared object detection[END_REF], Student's t-distribution [START_REF] Mukherjee | Real-time video segmentation using Student's t mixture model[END_REF][START_REF] Guo | Student's t-distribution mixture background model for efficient object detection[END_REF], Dirichlet distribution [START_REF] Haines | Background subtraction with Dirichlet processes[END_REF][START_REF] Fan | Online variational learning of finite Dirichlet mixture models[END_REF], Poisson distribution [START_REF] Faro | Adaptive background modeling integrated with luminosity sensors and occlusion processing for reliable vehicle detection[END_REF][START_REF] Zin | A new background subtraction method using bivariate Poisson process[END_REF]), those based on co-occurrence [START_REF] Liang | Co-occurrence Probability based Pixel Pairs Background Model for Robust Object Detection in Dynamic Scenes[END_REF][START_REF] Liang | Cooccurrence-based adaptive background model for robust object detection[END_REF][START_REF] Liang | Robust object detection in severe imaging conditions using co-occurrence background model[END_REF] and confidence [START_REF] Rosell-Ortega | Background Modelling in Demanding Situations with Confidence Measure[END_REF][START_REF] Rosell-Ortega | Background modeling with motion criterion and multi-modal support[END_REF], free-distribution models [START_REF] Barnich | ViBe: a powerful random technique to estimate the background in video sequences[END_REF][START_REF] St-Charles | Flexible background subtraction with self-balanced local sensitivity[END_REF][START_REF] St-Charles | A self-adjusting approach to change detection based on background word consensus[END_REF], and regression models [START_REF] Tombari | Non-linear Parametric Bayesian Regression for Robust Background Subtraction[END_REF][START_REF] Lanza | Accurate and efficient background subtraction by monotonic second-degree polynomial fitting[END_REF]. These approaches have improved the robustness to various challenges over time. The most accomplished methods in this statistical category are ViBe [START_REF] Barnich | ViBe: a powerful random technique to estimate the background in video sequences[END_REF], PAWCS [START_REF] St-Charles | A self-adjusting approach to change detection based on background word consensus[END_REF] and SubSENSE [START_REF] St-Charles | Flexible background subtraction with self-balanced local sensitivity[END_REF].

Another theory that allows the handling of imprecision, uncertainty, and incompleteness is based on the fuzzy concept. In 2006-2008, several authors employed concepts like Type-2 fuzzy sets [START_REF] Baf | Type-2 fuzzy mixture of Gaussians model: Application to background modeling[END_REF][START_REF] Bouwmans | Modeling of Dynamic Backgrounds by Type-2 Fuzzy Gaussians Mixture Models[END_REF][START_REF] Zhao | A Fuzzy Background Modeling Approach for Motion Detection in Dynamic Backgrounds[END_REF], Sugeno integral [START_REF] Zhang | Fusing color and gradient features for background model[END_REF][START_REF] Zhang | Fusing color and texture features for background model[END_REF] and Cho-quet integral [START_REF] Baf | Foreground detection using the Choquet integral[END_REF][START_REF] Baf | Fuzzy integral for moving object detection[END_REF][START_REF] Chiranjeevi | Interval-valued model level fuzzy aggregationbased background subtraction[END_REF]. These fuzzy models show robustness in the presence of dynamic backgrounds [START_REF] Bouwmans | Modeling of Dynamic Backgrounds by Type-2 Fuzzy Gaussians Mixture Models[END_REF]. Dempster-Schafer concepts were also be employed in foreground detection [START_REF] Munteanu | The detection of moving objects in video by background subtraction using Dempster-Shafer theory[END_REF].

Machine learning models

Based on machine learning, background modeling has been investigated by representation learning (also called subspace learning), support vector machines, and neural networks modeling (conventional and deep neural networks).

• Representation learning: In 1999, reconstructive subspace learning models like Principal Component Analysis (PCA) [START_REF] Oliver | A Bayesian computer vision system for modeling human interactions[END_REF] has been introduced to learn the background in an unsupervised manner. Subspace learning models handle illumination changes more robustly than statistical models [START_REF] Bouwmans | Robust PCA via principal component pursuit: A review for a comparative evaluation in video surveillance, Special Isssue on Background Models Challenge, Computer Vision and Image Understanding[END_REF]. In further approaches, discriminative [START_REF] Farcas | Background modeling via a supervised subspace learning[END_REF][START_REF] Farcas | Background subtraction via incremental maximum margin criterion: A discriminative approach[END_REF][START_REF] Marghes | Background modeling via incremental maximum margin criterion[END_REF] and mixed [START_REF] Marghes | Background modeling and foreground detection via a reconstructive and discriminative subspace learning approach[END_REF] subspace learning models have been used to increase the performance for foreground detection. However, each of these regular subspace methods presents a high sensitivity to noise, outliers, and missing data. To address these limitations, since 2009, a robust PCA through decomposition into low-rank plus sparse matrices [START_REF] Candes | Robust principal component analysis?[END_REF][START_REF] Sobral | Double-constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance[END_REF][START_REF] Javed | Motion-Aware Graph Regularized RPCA for Background Modeling of Complex Scenes, Scene Background Modeling Contest[END_REF][START_REF] Javed | Spatiotemporal Low-rank Modeling for Complex Scene Background Initialization[END_REF] has been widely used in the field. These methods are not only robust to changes in illumination but also to dynamic backgrounds [START_REF] Javed | Background subtraction via superpixel-based online matrix decomposition with structured foreground constraints[END_REF][START_REF] Javed | Background-foreground modeling based on spatiotemporal sparse subspace clustering[END_REF][START_REF] Rezaei | Background Subtraction via Fast Robust Matrix Completion[END_REF][START_REF] Rezaei | Moving Object Detection through Robust Matrix Completion Augmented with Objectness[END_REF]. However, they require batch algorithms, making them impractical for real-time applications. To address this limitation, dynamic robust PCA as well as robust subspace tracking [START_REF] Vaswani | Robust PCA and Robust Subspace Tracking: A Comparative Evaluation[END_REF][START_REF] Vaswani | Robust Subspace Learning: Robust PCA, Robust Subspace Tracking and Robust Subspace Recovery[END_REF][START_REF] Prativadibhayankaram | Compressive online video backgroundforeground separation using multiple prior information and optical flow[END_REF] have been designed to achieve a real-time performance of RPCA-based methods. The most accomplished methods in this subspace learning category are GRASTA [104], incPCP [START_REF] Rodriguez | Incremental principal component pursuit for video background modeling[END_REF], Re-ProCS [START_REF] Guo | Practical ReProCS for separating sparse and low-dimensional signal sequences from their sum[END_REF] and MEROP [107]. However, tensor RPCA based methods [108,[START_REF] Sobral | Online stochastic tensor decomposition for background subtraction in multispectral video sequences[END_REF][START_REF] Lu | Tensor robust principal component analysis with a new tensor nuclear norm[END_REF][START_REF] Driggs | Tensor robust principal component analysis: Better recovery with atomic norm regularization[END_REF] allow to take into account spatial and temporal constraints making them more robust against noise.

• Neural networks modeling: In 1996, Schofield et al. [START_REF] Schofield | A system for counting people in video images using neural networks to identify the background scene[END_REF] were the first to use neural networks for background modeling and foreground detec-tion through the application of a Random Access Memory (RAM) neural network. However, a RAM-NN requires the images to represent the background of the scene correctly, and there is no background maintenance stage because once a RAM-NN is trained with a single pass of background images, it is impossible to modify this information. In 2005, Tavakkoli [START_REF] Tavakkoli | Foreground-background segmentation in video sequences using neural networks[END_REF] proposed a neural network approach under the concept of novelty detector. During the training step, the background is divided in blocks. Each block is associated to a Radial Basis Function Neural Network (RBF-NN). Thus, each RBF-NN is trained with samples of the background corresponding to its associated block. The decision of using RBF-NN is because it works like a detector and not a discriminant, generating a close boundary for the known class. RBF-NN methods is able to address dynamic object detection as a single class problem, and to learn the dynamic background. However, it requires a huge amount of samples to represent general background scenarios. In 2008, Maddalena and Petrosino [113,[START_REF] Maddalena | A self-organizing neural system for background and foreground modeling[END_REF][START_REF] Maddalena | Neural model-based segmentation of image motion[END_REF][START_REF] Maddalena | A self organizing approach to background subtraction for visual surveillance applications[END_REF] proposed a method called Self Organizing Background Subtraction (SOBS) based on a 2D self-organizing neural network architecture preserving pixel spatial relations. The method is considered as nonparametric, multi-modal, recursive and pixel-based.

The background is automatically modeled through the neurons weights of the network. Each pixel is represented by a neural map with n × n weight vectors. The weights vectors of the neurons are initialized with the corresponding color pixel values using the HSV color space. Once the model is initialized, each new pixel information from a new video frame is compared to its current model to determine if the pixel corresponds to the background or to the foreground. In further works, SOBS was improved in several variants such as Multivalued SOBS [START_REF] Maddalena | Multivalued background/foreground separation for moving object detection[END_REF], SOBS-CF [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF], SC-SOBS [START_REF] Maddalena | The SOBS algorithm: What are the limits?[END_REF], 3dSOBS+ [START_REF] Maddalena | The 3dSOBS+ algorithm for moving object detection, Computer Vision and Image Understanding[END_REF], Simplified SOM [START_REF] Chacon-Muguia | Simplified SOM-neural model for video segmentation of moving objects[END_REF], Neural-Fuzzy SOM [START_REF] Chacon-Murguia | Improvement of a neural-fuzzy motion detection vision model for complex scenario conditions[END_REF] and MILSOBS [START_REF] Gemignani | A novel background subtraction approach based on multi-layered self organizing maps[END_REF]) which allow this method to be in the leading methods on the CDnet 2012 dataset [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF] during a long time. SOBS show also interesting performance for stopped object detection [START_REF] Maddalena | 3D neural model-based stopped object detection[END_REF][START_REF] Maddalena | Self organizing and fuzzy modelling for parked vehicles detection, Advanced Concepts for Intelligent Vision Systems[END_REF][START_REF] Maddalena | Stopped object detection by learning foreground model in videos[END_REF].

But, one of the main disadvantages of SOBS based methods is the need to manual adjust at least four parameters.

• Deep Neural networks modeling: Since 2016, DNNs have also been successfully applied to background generation [START_REF] Guo | Partially-sparse restricted Boltzmann machine for background modeling and subtraction[END_REF][START_REF] Qu | Motion background modeling based on contextencoder[END_REF][START_REF] Xu | Temporally Adaptive Restricted Boltzmann Machine for Background Modeling[END_REF][START_REF] Xu | Motion detection via a couple of auto-encoder networks[END_REF][START_REF] Xu | Dynamic background learning through deep auto-encoder networks[END_REF],

background subtraction [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF][START_REF] Bautista | Convolutional neural network for vehicle detection in low resolution traffic videos[END_REF][START_REF] Braham | Deep background subtraction with scene-specific convolutional neural networks[END_REF][START_REF] Cinelli | Anomaly detection in surveillance videos using deep residual networks[END_REF][START_REF] Lim | Background subtraction using encoder-decoder structured convolutional neural network[END_REF][START_REF] Choo | Multi-scale recurrent encoder-decoder network for dense temporal classification[END_REF][START_REF] Choo | Learning background subtraction by video synthesis and multi-scale recurrent networks[END_REF][START_REF] Farnoosh | DeepPBM: deep probabilistic background model estimation from video sequences[END_REF][START_REF] Ammar | Moving Objects Segmentation based on DeepSphere in Video Surveillance[END_REF][START_REF] Ammar | A Deep Detector Classifier (DeepDC) for moving objects segmentation and classification in video surveillance[END_REF], foreground detection enhancement [START_REF] Zeng | Combining background subtraction algorithms with convolutional neural network[END_REF], ground-truth generation [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF],

and the learning of deep spatial features [START_REF] Lee | Background subtraction using the factored 3-way restricted boltzmann machines[END_REF][START_REF] Nguyen | Change detection by training a triplet network for motion feature extraction[END_REF][START_REF] Shafiee | Embedded motion detection via neural response mixture background modeling[END_REF][START_REF] Shafiee | Real-time embedded motion detection via neural response mixture modeling[END_REF]149]. More practically, Restricted Boltzman Machines (RBMs) were first employed by Guo and Qi [START_REF] Guo | Partially-sparse restricted Boltzmann machine for background modeling and subtraction[END_REF] and Xu et al. [START_REF] Xu | Temporally Adaptive Restricted Boltzmann Machine for Background Modeling[END_REF] for background generation to further achieve moving object detection through background subtraction.

In a similar manner, Xu et al. [START_REF] Xu | Motion detection via a couple of auto-encoder networks[END_REF][START_REF] Xu | Dynamic background learning through deep auto-encoder networks[END_REF] used deep auto-encoder networks to achieve the same task whereas Qu et al. [START_REF] Qu | Motion background modeling based on contextencoder[END_REF] used context-encoder for background initialization. As another approach, Convolutional Neural Networks (CNNs) has also been employed to background subtraction by Braham and Droogenbroeck [START_REF] Braham | Deep background subtraction with scene-specific convolutional neural networks[END_REF], Bautista et al. [START_REF] Bautista | Convolutional neural network for vehicle detection in low resolution traffic videos[END_REF] and Cinelli [START_REF] Cinelli | Anomaly detection in surveillance videos using deep residual networks[END_REF]. Other authors have employed improved CNNs such as cascaded CNNs [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF], deep CNNs [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF], structured CNNs [START_REF] Lim | Background subtraction using encoder-decoder structured convolutional neural network[END_REF] and two stage CNNs [150].Since 2018, Sultana et al. [START_REF] Sultana | Unsupervised deep context prediction for background estimation and foreground segmentation[END_REF][START_REF] Sultana | Illumination Invariant Foreground Object Segmentation using ForeGANs[END_REF][START_REF] Sultana | Unsupervised Adversarial Learning for Dynamic Background Modeling, International Workshop on Frontiers of Computer Vision[END_REF][START_REF] Sultana | Dynamic Background Subtraction Using Least Square Adversarial Learning[END_REF] investigated the application of Generative Adversarial Networks (GANs) to deal with dynamic backgrounds. Through another approach, Zhang et al.

[149] used a Stacked Denoising Auto-Encoder (SDAE) to learn robust spatial features and modeled the background with density analysis, whereas Shafiee et al. [START_REF] Shafiee | Embedded motion detection via neural response mixture background modeling[END_REF] employed Neural Reponse Mixture (NeREM) to learn deep features used in the Mixture of Gaussians (MOG) model [START_REF] Stauffer | Adaptive background mixture models for realtime tracking[END_REF]. In 2019, Chan [START_REF] Chan | Deep learning-based scene-awareness approach for intelligent change detection in videos[END_REF] proposed a deep learning-based scene-awareness approach for change detection in video sequences thus applying the suitable background subtraction algorithm for the corresponding type of challenges. Valuable analysis of DNNs applied to background subtraction are available in the studies of Minematsu et al. [START_REF] Minematsu | Analytics of deep neural network in change detection[END_REF][START_REF] Minematsu | Analytics of deep neural network-based background subtraction[END_REF]158,[START_REF] Minematsu | Rethinking background and foreground in deep neural network-based background subtractionk[END_REF].

Signal processing models

Based on signal processing, these models considered temporal history of a pixel as 1-D dimensional signal. Thus, several signal processing methods can be used: 1) signal estimation models (i.e. filters), 2) transform domain functions, and 3) sparse signal recovery models (i.e. compressive sensing).

• Estimation filter: In 1990, Karmann et al. [START_REF] Karmann | Moving object recognition using an adaptive background memory, Time-Varying Image Processing and Moving Object Recognition[END_REF] proposed a background estimation algorithm based on the Kalman filter. Any pixel that deviates significantly from its predicted value is declared foreground. Numerous variants were proposed to improve this approach in the presence of illumination changes and dynamic backgrounds [START_REF] Boninsegna | A tunable algorithm to update a reference image[END_REF][START_REF] Messelodi | A Kalman filter based background updating algorithm robust to sharp illumination changes[END_REF][START_REF] Fan | An updating method of self-adaptive background for moving objects detection in video[END_REF]. In 1999, Toyama et al. [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF] proposed in their algorithm called Wallflower a pixel-level algorithm which makes probabilistic predictions about what background pixel values are, expected in the next live image using a one-step Wiener prediction filter. Chang et al. [START_REF] Chang | Vision modules for a multi sensory bridge monitoring approach[END_REF][START_REF] Chang | Computer vision for multi-sensory structural health monitoring system[END_REF] used a Chebychev filter to model the background. All these filters approaches reveal good performance in the presence of slow illumination change but less when the scenes present complex dynamic backgrounds.

• Transform domain models: In 2005, Wren and Porikli [START_REF] Wren | Waviz: Spectral similarity for object detection[END_REF] estimated the background model that captures spectral signatures of multimodal backgrounds using Fast Fourier Transform (FFT) features through a method called Waviz. Here, FFT features are then used to detect changes in the scene that are inconsistent over time. In 2005, Porikli and Wren [START_REF] Porikli | Change detection by frequency decomposition: Waveback[END_REF] developed an algorithm called Wave-Back that generated a representation of the background using the frequency decompositions of pixel history. The Discrete Cosine Transform (DCT) coefficients are used as features are computed for the background and the current images. Then, the coefficients of the current image are compared to the background coefficients to obtain a distance map for the image. Then, the distance maps are fused in the same temporal window of the DCT to improve the robustness against noise. Finally, the distance maps are thresholded to achieve foreground detection. This algorithm is efficient in the presence of waving trees.

• Sparse signal recovery models: In 2008, Cevher et al. [START_REF] Cevher | Compressive sensing for background subtraction[END_REF] were the first authors who employed a compressive sensing approach for background subtraction. Instead of learning the full background, Cevher et al. [START_REF] Cevher | Compressive sensing for background subtraction[END_REF] learned and adapted a low dimensional compressed representation of it which is sufficient to capture changes. Then, moving objects are estimated directly using the compressive samples without any auxiliary image reconstruction. But, to obtain simultaneously appearance recovery of the objects using compressive measurements, it needs to reconstruct one auxiliary image. To alleviate this constraint, numerous improvements were proposed in the literature [START_REF] Mota | Referencebased compressed sensing: A sample complexity approach[END_REF][START_REF] Warnell | Adaptive rate compressive sensing for background subtraction[END_REF][START_REF] Warnell | Adaptive-rate compressive sensing via side information[END_REF][START_REF] Davies | The effect of recovery algorithms on compressive sensing background subtraction[END_REF][START_REF] Xiao | Fast l 1 -minimization algorithm for robust background subtraction[END_REF] and particular good performance is obtained by Bayesian compressive sensing approaches [START_REF] Kuzin | Compressive sensing approaches for autonomous object detection in video sequences[END_REF][START_REF] Kuzin | Compressive sensing approaches for autonomous object detection in video sequences[END_REF][START_REF] Kuzin | Spatio-Temporal Structured Sparse Regression with Hierarchical Gaussian Process Priors[END_REF][START_REF] Kuzin | Sparse machine learning methods for autonomous decision making[END_REF].

• Graph Signal Processing: In 2020, Giraldo et al. [START_REF] Giraldo | Semi-supervised background subtraction of unseen videos: Minimization of the total variation of graph signals[END_REF] proposed an algorithm of background subtraction based on GSP, this method was called GraphBGS. The algorithm models the instances on videos as nodes embedded in a high dimensional space. Afterwards, a recovery algorithm of graph signals is applied to classify if certain instance is a static or moving object. GraphBGS shows robust performance in the case of unseen videos.

Background initialization

This step consists in computing the first background image and it is also called background generation, background extraction and background reconstruction. The background model is initialized with a set of images taken before the moving objects detection process. Several kind of models could be used to initialize the background and they are classified as methods based on temporal statistics [START_REF] Molinier | Connected components analysis for traffic monitoring in image sequences acquired from a helicopter[END_REF][START_REF] Chung | Progressive background image generation[END_REF][START_REF] Colque | Progressive background image generation of surveillance traffic videos based on a temporal histogram ruled by a reward/penalty function[END_REF], methods based on sub-sequences of stable intensity [START_REF] Long | Stationary background generation: An alternative to the difference of two images[END_REF][START_REF] Wang | A novel robust statistical method for background initialization and visual surveillance[END_REF][START_REF] Gutchess | A background model initialization for video surveillance[END_REF][START_REF] Chen | An adaptive background model initialization algorithm with objects moving at different depths[END_REF][START_REF] Laugraud | LaBGen-P: Apixel-level stationary background generation method based on LaBGen, Scene Background Modeling Contest in conjunction with ICPR[END_REF][START_REF] Laugraud | A method based on motion detection for generating the background of a scene[END_REF]186], methods based on missing data reconstruction problem [START_REF] Sobral | Comparison of matrix completion algorithms for background initialization in videos[END_REF][START_REF] Sobral | Matrix and tensor completion algorithms for background model initialization: A comparative evaluation, Special Issue on Scene Background Modeling and Initialization[END_REF], methods based on iterative model completion [START_REF] Lin | A probabilistic SVM approach for background scene initialization[END_REF], methods based on conventional neural networks [START_REF] Maddalena | The SOBS algorithm: What are the limits?[END_REF][START_REF] Gregorio | Background estimation by weightless neural networks[END_REF], and methods based on optimal labeling [START_REF] Agarwala | Interactive digital photomontage[END_REF]. The most accomplished methods applied to the SBMnet dataset [START_REF] Jodoin | Extensive benchmark and survey of modeling methods for scene background initialization[END_REF] are Motion-assisted Spatio-temporal Clustering of Low-rank (MSCL) designed by Javed et al. [START_REF] Javed | Background-foreground modeling based on spatiotemporal sparse subspace clustering[END_REF], and LaBGen and its variants developed by Laugraud et al. [START_REF] Laugraud | LaBGen-P: Apixel-level stationary background generation method based on LaBGen, Scene Background Modeling Contest in conjunction with ICPR[END_REF][START_REF] Laugraud | A method based on motion detection for generating the background of a scene[END_REF]186]. For more details, the reader can refer to comprehensive surveys of Maddelena and Petrosino [START_REF] Maddalena | Background model initialization for static cameras, Handbook on Background Modeling and Foreground Detection for Video Surveillance[END_REF][START_REF] Maddalena | Towards benchmarking scene background initialization[END_REF][START_REF] Bouwmans | Scene background initialization: a taxonomy[END_REF][START_REF] Jodoin | Extensive benchmark and survey of modeling methods for scene background initialization[END_REF].

Updating background model

In order to overcome background changes (illumination changes, dynamic background, and so on), the background model is updated with information provided by the current frame taken by the camera. The update rules depend on the model chosen but they generally try to employ old data with the new one according to a learning rate. The choose of the learning rate allow to integrate more or less rapidly the changes to the background. The maintenance of the background model is a critical step since some parts of the foreground could be integrated in the background and create false-alarms. However, the background maintenance process requires an incremental on-line algorithm, since new data is streamed and so dynamically provided. The key issues of this step are the following ones:

• Maintenance schemes: In the literature, three maintenance schemes are present: the blind, the selective, and the fuzzy adaptive schemes [START_REF] Baf | A Fuzzy Approach for Background Subtraction[END_REF].

The blind background maintenance updates all the pixels with the same rules which is usually an IIR filter. The main disadvantage of this scheme is that the value of pixels classified as foreground are used in the computation of the new background and so polluted the background image.

To solve this problem, some authors used a selective maintenance scheme that consists of updating the new background image with different learning rate depending on the previous classification of a pixel into foreground or background. Here, the idea is to adapt very quickly a pixel classified as background and very slowly a pixel classified as foreground. But the problem is that erroneous classification may result in a permanent incorrect background model. This problem can be addressed by a fuzzy adaptive scheme which takes into account the uncertainty of the classification. This can be achieved by graduating the update rule using the result of the foreground detection such as in El Baf et al. [START_REF] Baf | A Fuzzy Approach for Background Subtraction[END_REF].

• Learning rate: The learning rate determines the speed of the adaptation to the scene changes. It can be fixed, or dynamically adjusted by a statistical, or a fuzzy method. In the first case, the learning rate is fixed as the same value for all the sequence. Then, it is determined carefully such as in [START_REF] Zang | Evaluation of an adaptive composite Gaussian model in video surveillance[END_REF] or can be automatically selected by an optimization algorithm [START_REF] White | Automatically tuning background subtraction parameters using particle swarm optimization[END_REF]. However, it can take one value for the learning step and one for the maintenance step [START_REF] Kaewtrakulpong | An improved adaptive background mixture model for real-time tracking with shadow detection[END_REF]. Additionally, the rate may change over time following a tracking feedback strategy [START_REF] Pnevmatikakis | 2D person tracking using Kalman filtering and adaptive background learning in a feedback loop[END_REF]. For the statistical case, Lee [START_REF] Lee | Improved adaptive mixture learning for robust video background modeling[END_REF] used different learning rates for each Gaussian in the MOG model. The convergence speed and approximation results are significantly improved. For the fuzzy case (3), Sigari et al. [START_REF] Sigari | Fuzzy Running Average and Fuzzy Background Subtraction: Concepts and Application[END_REF][START_REF] Sigari | Fuzzy Background Modeling/Subtraction and its Application in Vehicle Detection[END_REF] computed an adaptive learning rate at each pixel with respect to the fuzzy membership value obtained for each pixel during the fuzzy foreground detection. In another way, Maddalena and Petrosino [START_REF] Maddalena | Multivalued background/foreground separation for moving object detection[END_REF][START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] improved the adaptivity by introducing spatial coherence information.

• Maintenance mechanisms: The learning rate determines the speed of adaptation to illumination changes but also the time a background change requires until it is incorporated into the model as well as the time a static foreground object can survive before being included in the model. So, the learning rate deals with different challenges which have different temporal characteristics. To decouple the adaptation mechanism and the incorporation mechanism, some authors [START_REF] Zhang | An adaptive mixture Gaussian background model with online background reconstruction and adjustable foreground mergence time for motion segmentation[END_REF][205] used a set of counters which represents the number of times a pixel is classified as a foreground pixel.

When this number is larger than a threshold, the pixel is considered as background. This gives a time limit on how long a pixel can be considered as a static foreground pixel.

• Frequency of the update: The aim is to update only when it is needed.

The maintenance may be done every frame but in absence of any significant changes, pixels are not required to be updated at every frame. For example, Porikli [START_REF] Porikli | Human body tracking by adaptive background models and mean-shift analysis[END_REF] proposed adapting the time period of the maintenance mechanism with respect to an illumination score change. The idea is that no maintenance is needed if no illumination change is detected and a quick maintenance is necessary otherwise. In the same idea, Magee [START_REF] Magee | Tracking multiple vehicles using foreground, background and motion models[END_REF] used a variable adaptation frame rate following the activity of the pixel, which improves temporal history storage for slow changing pixels while running at high adaption rates for less stable pixels.

Foreground detection

As the name of the technique suggests it, the foreground is detected by subtracting the background to the current frame. A too high difference, determined by a threshold, points the foreground out. The output is a binary image socalled a mask for which each pixel is classified as background or foreground.

Thus, this task is a classification one, that can be achieved by crisp, statistical or fuzzy classification tools. For this, the different steps have to be achieved:

• Pre-processing: The pre-processing step avoids the detection of unimportant changes due to the motion of the camera or the illumination changes. This step may involve geometric and intensity adjustments [START_REF] Radke | Image Change Detection Algorithms: A Systematic Survey[END_REF].

As the scenes are usually rigid in nature and the camera jitter is small, geometric adjustments can often be performed using low-dimensional spatial transformations such as similarity, affine, or projective transformations [START_REF] Radke | Image Change Detection Algorithms: A Systematic Survey[END_REF]. On the other hand, there are several ways to achieve intensity adjustments. This can be done with intensity normalization [START_REF] Radke | Image Change Detection Algorithms: A Systematic Survey[END_REF]. The pixel intensity values in the current image are then normalized to have the same mean and variance as those in the background image. Another way consists in using a homomorphic filter based which is based on the shading model. This approach permits to separate the illumination and the reflectance. As only the reflectance component contains information about the objects in the scene, illumination-invariant foreground detection [START_REF] Toth | Illumination-invariant change detection[END_REF][START_REF] Toth | Bayesian spatio-temporal motion detection under varying illumination[END_REF][START_REF] Pajares | Performance analysis of homomorphic systems for image change detection[END_REF] can hence be performed by first filtering out the illumination component from the image.

• Test: The test which allows to classify pixels of the current image as background or foreground is usually the difference between the background image and the current image. This difference is then thresholded. Another way to compare two images are the significance and hypothesis tests. The decision rule is then cast as a statistical hypothesis test. The decision as to whether or not a change has occurred at a given pixel corresponds to choosing one of two competing hypotheses: the null hypothesis H 0 or the alternative hypothesis H 1 , corresponding to no-change and change decisions, respectively. Several significance tests can be found in the literature [START_REF] Xie | Sudden illumination change detection using order consistency[END_REF][START_REF] Singh | Order consistent change detection via fast statistical significance testing[END_REF][START_REF] Aach | Statistical model-based change detection in moving video[END_REF][START_REF] Aach | Change detection in image sequences using Gibbs random fields: a Bayesian approach[END_REF][START_REF] Aach | Bayesian algorithms for adaptive change detection in image sequences using Markov random fields[END_REF][START_REF] Mester | Illumination-invariant change detection using a statistical colinearity criterion[END_REF][START_REF] Aach | Bayesian illuminationinvariant motion detection[END_REF][START_REF] Aach | Motion estimation in varying illumination using a total least squares distance measure[END_REF].

• Threshold: In literature, there are several types of threshold schemes.

First, the threshold can be fixed and the same for all the pixels and the sequence. This scheme is simple but not optimal. Indeed, pixels present different activities and it needs an adaptive threshold. This can be done by computing the threshold via the local temporal standard deviation of intensity between the background and the current images, and by updating it using an infinite impulse response (IIR) filter such as in Collins et al. [START_REF] Collins | A system for video surveillance and monitoring[END_REF]. An adaptive threshold can be statistically obtained also from the variance of the pixel such as in Wren et al. [START_REF] Wren | Pfinder: Real-time tracking of the human body[END_REF]. Another way to adaptively threshold is to use fuzzy thresholds such as in the studies of Chacon-Muguia and Gonzalez-Duarte [START_REF] Chacon-Muguia | An adaptive neural-fuzzy approach for object detection in dynamic backgrounds for surveillance systems[END_REF].

• Post-processing: The idea here is to enhance the consistency of the foreground mask. This can be done firstly by deleting isolated pixels with classical or statistical morphological operators [START_REF] Stringa | Morphological change detection algorithms for surveillance applications[END_REF]. Another way is to use fuzzy concepts such as fuzzy inference between the previous and the current foreground masks [START_REF] Rahman | Enhancement of background subtraction techniques using a second derivative in gradient direction filter[END_REF].

Moreover, foreground detection is a particular case of change detection when (1) one image is the background and the other one is the current image, and

(2) the changes concern moving objects. So, all the techniques developed for change detection can be used in foreground detection. A survey concerning change detection can be found in [START_REF] Radke | Image Change Detection Algorithms: A Systematic Survey[END_REF][START_REF] Rosin | Evaluation of global image thresholding for change detection[END_REF].

Solved and Unsolved Challenges

For fair evaluation and comparison on videos presenting challenges described in CDnet 2014 dataset [START_REF] Wang | CDnet 2014: an expanded change detection benchmark dataset[END_REF] which was developed as part of Change Detection Workshop challenge (CDW 2014). This dataset includes all the videos from the CDnet 2012 dataset [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF] plus 22 additional camera-captured videos providing 5 different categories that incorporate challenges that were not addressed in the 2012 dataset. The categories are as follows: baseline, dynamic backgrounds, camera jitter, shadows, intermittent object motion, thermal, challenging Weather, low frame-rate, night videos, PTZ and turbulence. In 2015, Jodoin [START_REF] Jodoin | Motion detection: Unsolved issues and [potential] solutions[END_REF] did the following remarks regarding the solved and unsolved challenges by using the experimental results available at CDnet 2014:

• Conventional background subtraction methods can efficiently deal with challenges met in "baseline" and "bad weather" sequences.

• The "Dynamic backgrounds", "thermal video" and "camera jitter" categories are a reachable challenge for top-performing background subtraction.

• The "Night videos", "low frame-rate", and "PTZ" video sequences represent significant challenges. However, Bouwmans et al. [START_REF] Bouwmans | Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[END_REF] analyzed the progression made over 20 years from the MOG model [START_REF] Stauffer | Adaptive background mixture models for realtime tracking[END_REF] designed in 1999 up to the recent deep neural networks models developed in 2019. To do so, Bouwmans et al. [START_REF] Bouwmans | Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[END_REF] computed different key increases in the F-measure score in terms of percentage by considering the gap between MOG [START_REF] Stauffer | Adaptive background mixture models for realtime tracking[END_REF] and the best conventional neural network (SC-SOBS [START_REF] Maddalena | The SOBS algorithm: What are the limits?[END_REF]), the gap between SC-SOBS [START_REF] Maddalena | The SOBS algorithm: What are the limits?[END_REF] and the best non-parametric multi-cues methods (SubSENSE [START_REF] St-Charles | Flexible background subtraction with self-balanced local sensitivity[END_REF]), the gap between SuBSENSE [START_REF] St-Charles | Flexible background subtraction with self-balanced local sensitivity[END_REF] and Cascaded CNNs [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF], the gap between SuBSENSE [START_REF] St-Charles | Flexible background subtraction with self-balanced local sensitivity[END_REF] and the best DNNs based method (FgSegNet-V2 [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF]), and the gap between FgSegNet-V2 [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] and the ideal method (F-Measure= 1 in each category). The big gap has been obtained by DNNs methods against SuBSENSE with 24.31% and 32.92% using Cascaded CNN and FgSegNet-V2, respectively. The gap of 1.55% that remains between FgSegNet-V2 and the ideal method is less than the gap of 6.93% between Cascaded CNN and FgSegNet-V2. Nevertheless, it is important to note that the large gap provided by cascaded CNN and FgSegNet-V2 is mainly due to their supervised aspect, and a required drawback of training using labeling data. However, when labeling data are unavailable, efforts should be concentrated on unsupervised GANs as well as unsupervised methods based on semantic background subtraction [START_REF] Braham | Semantic Background Subtraction[END_REF][START_REF] Zeng | Background Subtraction with Real-time Semantic Segmentation[END_REF], and robust subspace tracking [107, [START_REF] Prativadibhayankaram | Compressive online video backgroundforeground separation using multiple prior information and optical flow[END_REF][START_REF] Rodriguez | Translational and rotational jitter invariant incremental principalcomponent pursuit for video background modeling[END_REF][START_REF] Rodriguez | Incremental principal component pursuit for video background modeling[END_REF][START_REF] Vaswani | Robust PCA and Robust Subspace Tracking: A Comparative Evaluation[END_REF][START_REF] Vaswani | Robust Subspace Learning: Robust PCA, Robust Subspace Tracking and Robust Subspace Recovery[END_REF] that are still of interest in the field of background subtraction. Furthermore, deep learning approaches detect the changes in images with static backgrounds successfully but are more sensitive in the case of dynamic backgrounds and camera jitter, although they do provide a better performance than conventional approaches [START_REF] Karadag | Evaluation of the robustness of deep features on the change detection problem[END_REF]. In addition, several authors avoid experiments on the "IOM" and the "PTZ" categories. In addition, when the F-Measure score is provided for these categories, the score is not very high. Thus, it seems that the current deep neural networks tested face problems in theses cases perhaps because they have difficulties in how to learn the duration of sleeping moving objects and how to handle changes from moving cameras. However, even if background subtraction models designed for static cameras progress for camera jitter and PTZ cameras as with several RPCA models [START_REF] Rodriguez | Translational and rotational jitter invariant incremental principalcomponent pursuit for video background modeling[END_REF][START_REF] Silva | Jitter invariant incremental principal component pursuit for video background modeling on the TK1[END_REF][START_REF] Chau | Panning and jitter invariant incremental principal component pursuit for video background modeling[END_REF][START_REF] He | Iterative grassmannian optimization for robust image alignment[END_REF]235,[START_REF] Wohlberg | Endogenous convolutional sparse representations for translation invariant image subspace models[END_REF] and deep learning models [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF][START_REF] Lim | Foreground segmentation using convolutional neural networks for multiscale feature encoding[END_REF][START_REF] Lim | Learning multi-scale features for foreground segmentation[END_REF], they can only handle small jitter movements or translation and rotation movements. Thus, detection of moving objects with moving cameras required more dedicated strategies and models that we reviewed in this survey.

Moving Cameras

The background subtraction that we have just presented here is designed for static camera cannot be applied directly to moving camera since the background 570 is no longer static in the images. Most of the methods that we present in this paper are adaptions or inspirations of the idea of background subtraction to a moving camera.

In the case of a moving camera, the result of foreground detection depends on the background representation. We choose to categorize the methods of 

Panoramic background subtraction

The images captured by a moving camera can be stitch together to form a bigger image so-called a panorama or a mosaic as shown in the figure 6 . This panorama can be used to model the background and detect moving objects as for a static camera. The construction of a panoramic view is a key step that needs high accuracy [START_REF] Irani | Efficient representations of video sequences and their application[END_REF][START_REF] Faugeras | Panoramic vision: Sensors, theory[END_REF][START_REF] Brown | Recognising panoramas[END_REF][START_REF] Brown | Automatic panoramic stitching using invariant features[END_REF]. There are three techniques to align the images to construct the mosaic:

• Frame to frame: alignment parameters are computed for each pair of successive frames for the entire sequence. All the frames are then aligned to a fixed coordinate system, given by the reference frame or a virtual coordinate system. The problem with this mosaic construction is that errors may accumulate during the alignment to the fixed coordinate system.

• Frame to mosaic: since the mosaic is larger than a frame, large displacement has to be handle to align a frame to the mosaic. To manage it, the parameters between the previous frame and the mosaic are used as an initial estimation since they are closed to those between the new frame and the mosaic.

• Mosaic to frame: contrary to the two previous alignment techniques, the mosaic is aligned to the new frame. There is no static coordinate system and the current image is maintained in its input coordinate systems.

The two first techniques, frame-to-frame and frame-to-mosaic are widely used in the construction of a mosaic for the moving object detection problem.

In order to warp images to form a mosaic, two motions are generally used:

the affine or the perspective motion model [START_REF] Brown | A survey of image registration techniques[END_REF][START_REF] Zitova | Image registration methods: A survey[END_REF]. The perspective transformations better fit the camera transformation but in some cases the affine motion model can be sufficient and it is also faster since there are only six parameters to estimate against eight for the perspective one. In both cases, a refinement step is generally performed to correct misalignment errors.

In 2000, Mittal et al. [START_REF] Mittal | Scene modeling for wide area surveillance and image synthesis[END_REF] construct the panorama by registering an image to the entire mosaic in order to limit cascading of registration errors with the frame to frame technique. The registration is performed by an affine transformation based on the Kanade-Lucas-Tomasi (KLT) feature tracker [START_REF] Shi | Good features to track[END_REF] which is refined by using the Levenberg-Marquardt method. In an other work, Bartoli et al.

[248] combine the direct method and the feature based method to construct a panorama. The feature based method is used to obtain a first estimation of the panorama. Then a direct method refines each frame registration. To deal with real-time and accuracy, Azzari et al. Zhang et al. [START_REF] Zhang | A framework of surveillance system using a PTZ camera[END_REF] and more recently by Avola et al. [START_REF] Avola | A keypointbased method for background modeling and foreground detection using a PTZ camera[END_REF]. This method performs a mosaic with unordered images by using a Frame-to-Mosaic approach. In the work of Sugaya and Kanatani [START_REF] Sugaya | Extracting moving objects from a moving camera video sequence[END_REF] feature points that belong to the background are selected by fitting a 2D affine space to the feature point trajectories. These features points are then used to estimate homographies by the re-normalization method [START_REF] Kanatani | Optimal homography computation with a reliability measure[END_REF]. While most approaches used feature points to estimate their transformation, the method of Amri et al. [START_REF] Amri | A robust framework for joint background/foreground segmentation of complex video scenes filmed with freely moving camera[END_REF] operates on both regions and points of interest. In an other approach, Vivet et al. [START_REF] Vivet | Real-time motion detection for a mobile observer using multiple kernel tracking and belief propagation[END_REF] compute the global motion with the Multiple Kernel Tracking [START_REF] Hager | Multiple kernel tracking with SSD[END_REF] method on small uniformly selected regions. This approach is computationally light and doesn't need a lot of memory. Some authors use a priori knowledge or measured data to register a pair of image as in the work of Kang et al. [START_REF] Kang | Real-time video tracking using PTZ cameras[END_REF] where the focal length and the size of the CCD sensor are known. When the telemetry information is available from their airborne sensor, Ali and Shah [START_REF] Ali | Cocoa: tracking in aerial imagery[END_REF] combined the angles with a feature based approach and a direct method. Rather than improve the image alignment, Hayman et al. [START_REF] Hayman | Statistical background subtraction for a mobile observer[END_REF] choose to improve the GMM proposed by Stauffer and Grimson [START_REF] Stauffer | Adaptive background mixture models for realtime tracking[END_REF] to handle image noise and calibration errors.

In 2019, Moore et al. [START_REF] Moore | Panoramic robust pca for foregroundbackground separation on noisy, free-motion camera video[END_REF] construct a panorama by computing homography between consecutive frames. To separate the background and the foreground, a low-rank representation is used based on the robust PCA method. In order to obtain better decomposition, the authors use the OptShrink, rather than the singular value thresholding, and a weighted total variation regularization.

In In a further work, Bevilacqua and Azzari [START_REF] Bevilacqua | High-quality real time motion detection using PTZ cameras[END_REF] reduce the seam effects on the panorama by performing a tonal alignment on gray scale images. To do that, the authors use an intensity mapping function on histograms.

To compute the foreground detection on the current frame, it is necessary to register the image to the background.

In 2000, Bhat et al. [START_REF] Bhat | Motion detection and segmentation using image mosaics[END_REF] make use of the panorama building step to store information that are then used to register a new frame to the mosaic. For each frame that constitute the panorama, the pan and the tilt angles and the affine 

Dual cameras

Instead of construct a panorama, some methods use a dual-camera system where one of the two cameras has a wide focal of view to observe the whole scene.

The camera calibration is an important step to make use of information provided by several cameras. Autocalibration is generally used contrary to calibration which necessitate some device whose the best-known example is the chessboard.

In [START_REF] Krahnstoever | Collaborative real-time control of active cameras in large scale surveillance systems[END_REF]. To calibrate their cameras in the same coordinate system, the authors use the foot-to-head homology combined with a Bayesian formulation to handle measurement uncertainties [START_REF] Krahnstoever | Bayesian autocalibration for surveillance[END_REF][START_REF] Krahnstoever | Autocalibration from tracks of walking people[END_REF].

Motion detection is usually performed in two step, firstly in the static camera to indicate where the moving camera has to look before it performs moving objects detection too.

In 2003, Lim et al. [START_REF] Lim | Image-based pan-tilt camera control in a multi-camera surveillance environment[END_REF] use the method proposed by Elgammal et al. [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF] designed for stationary cameras. This method is based on non-parametric background representation which handle dynamic background and shadows. In 2014, the transformation is refined with the Sum Squared Difference (SSD) method.

To refine the foreground area, Horaud et al. [START_REF] Horaud | Camera cooperation for achieving visual attention[END_REF] compare three aligned images. Contrary to previous methods presented in section 5.0.1, the background model is not an extended image as a panorama but an image with the same resolution as a frame taken by the moving camera. From one frame to another the visible part of the background changes over time since the camera is moving.

The background image at a time t is composed of previous scene parts still visible in the camera field of view and new scene parts that appear in the current image.

The background subtraction with motion compensation can also be used with a PTZ camera [START_REF] Murray | Motion tracking with an active camera[END_REF][START_REF] Robinault | Real time foreground object detection using PTZ camera[END_REF][START_REF] Kadim | Method to detect and track moving object in non-static PTZ camera[END_REF]. In that case, instead of creating a panorama with several images, the background model has the size of a frame. This reduces the computation time and the memory allocation needed for the whole subtraction process.

To reduce errors in the final mask, some authors choose to use two models Those information are completed by a global registration computed with a Discrete Fourier Transform (DFT) in order to improve the translational accuracy.

Rather than using a priori knowledge, the computation of alignment parameters can be performed with feature-based [START_REF] Torr | Feature based methods for structure and motion estimation[END_REF] or direct [START_REF] Irani | About direct methods[END_REF] methods. Generally the feature based method is preferred (see 3) because it is fast to compute and the features usually used are the well-known feature points [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF][START_REF] Shi | Good features to track[END_REF]. To save computation time and reach real-time performance, Micheloni and Foresti [START_REF] Micheloni | Real-time image processing for active monitoring of wide areas[END_REF] use a Fast Feature Selection (FFS) which select good feature points based on the quality criterion of Tomasi and a map of good feature points is maintained rather than extract features from scratch. In 2014, Kryjak et al. [START_REF] Kryjak | Real-time implementation of foreground object detection from a moving camera using the vibe algorithm[END_REF] esti-mate the global displacement by matching feature points according to a grid of regular blocks. The motion model between two consecutive images is the median of the flow vectors. In an other approach, Robinault et al. [START_REF] Robinault | Real time foreground object detection using PTZ camera[END_REF] estimate a homography with a minimization algorithm and accelerate the computation time by using a cost function based on the location of feature points. To reject bad homography estimation, Lopez-Rubio et al. [START_REF] López-Rubio | Foreground detection for moving cameras with stochastic approximation[END_REF] propose to find "minor errors" which occur when the model is too large or to small. A new homography is then computed based on new features points. If 10 consecutive minor errors occur then it is a severe error and the current frame is skipped. With three consecutive severe errors, both models are reset with the current frame. Since the camera is moving, some images can be blurred by the motion and this affects the accuracy of feature points detection and matching. To prevent that, Kadim et al. [START_REF] Kadim | Method to detect and track moving object in non-static PTZ camera[END_REF] find vertical edges compute the average absolute edge magnitude to evaluate the blurriness level of the current image and only keep images taken when the camera is in a stable position. Recently, Allebosch et al. [START_REF] Allebosch | Robust pan/tilt compensation for foreground-background segmentation[END_REF] propose a robust method to compensate the motion of a PTZ camera by estimating the camera parameters. First the focal and the tilt angle are estimated by tracking feature points and using a non-linear estimation. Two motion models are then used, fixed tilt angle and simultaneous pan/tilt, to estimate and compensate the camera motion. The authors show by experimentation that their method is robust when few feature are matches. In order to save more computational time, some authors choose to select points on a grid and track them with optical flow or with well-known track methods as the KLT [START_REF] Kurnianggoro | Dense optical flow in stabilized scenes for moving object detection from a moving camera[END_REF][START_REF] Kurnianggoro | Online backgroundsubtraction with motion compensation for freely moving camera[END_REF][START_REF] Minematsu | Adaptive search of background models for object detection in images[END_REF][START_REF] Minematsu | Adaptive background model registration for moving cameras[END_REF][START_REF] Yu | Moving object detection for a moving camera based on global motion compensation and adaptive background model[END_REF]. background with a two-step method. First, the pixels of the current warped image are compared to the background based on their color intensity and a threshold is used to label pixels. Then, foreground pixels are tested by comparing them to their neighborhood in the background model to be sure that they belong to moving objects.. In an other work, Minematsu et al. [START_REF] Minematsu | Adaptive search of background models for object detection in images[END_REF] proposed to find an intensity match between a pixel and another one in a search region.

This region represents the neighborhood of a pixel where the size of the region depends on re-projection errors. Later, the authors proposed to update the background model by selecting background pixels based on a similarity measure and the re-projection error. Instead of building and maintaining a background model, Kadim et al. [START_REF] Kadim | Method to detect and track moving object in non-static PTZ camera[END_REF] choose to detect moving objects by using successive frames. The Wronskian detector [START_REF] Durucan | Change detection and background extraction by linear algebra[END_REF] is used to detect moving objects between the current and the previous frame. The authors also use the neighborhood to refine their motion map and they remove false moving blobs by validating only those that are detected for at least two successive frames. More recently, Zhao et al. [START_REF] Zhao | Background subtraction based on integration of alternative cues in freely moving camera[END_REF] work with superpixel at different level. A competition between background and foreground cues is organized. The result gives the classification of the corresponding superpixel. To counteract error alignment accumulations, a strong updating strategy is applied on background pixels. In 2019, Yu et al.

[290] align the two previous frames to the current one and to save computation time they compute the frame difference on the average on the pixel and its 8neighborhood. To remove shadows from the foreground, the consistency of local changes is checked. A consistency points out a shadow area while there is no consistency for a moving object. In addition, a lighting influence threshold is used to managed illumination changes in the entire frame.

Rather than statistical models, Gong el. [START_REF] Gong | Online codebook modeling based background subtraction with a moving camera[END_REF] and more recently Andreev et al. [START_REF] Andreev | Moving objects segmentation method for flight vision systems[END_REF] have chosen a codebook model. After the motion compensation with a homography, Gong et al. [START_REF] Gong | Online codebook modeling based background subtraction with a moving camera[END_REF] propose compare pixels to codewords on the color distorsion and the brightness. The comparison is performed on a small region centered on the pixel position in the previous frame to handle warping errors.

In a recent work, Andreev [START_REF] Andreev | Moving objects segmentation method for flight vision systems[END_REF] chooses the codebook method to represent the background with a dictionary of codewords containing pixel intensity information over time. This representation is more robust to background short term variations and produces less false detections compare to K-nearest and mixture of Gaussians methods. In 2014, Kryjak et al. [START_REF] Kryjak | Real-time implementation of foreground object detection from a moving camera using the vibe algorithm[END_REF] use the Visual Background Extractor (ViBE) algorithm [START_REF] Barnich | ViBE: A powerful random technique to estimate the background in video sequences[END_REF][START_REF] Barnich | ViBe: A universal background subtraction algorithm for video sequences[END_REF] to model the background with a modified update rule to reduce errors in the classification due to the camera movement.

In the case where the application domain is constrained, the segmentation of the scene can be an additional information to moving object detection. Perera et al. [START_REF] Perera | Moving object segmentation using scene understanding[END_REF] and Huang et al. [START_REF] Huang | A hybrid moving object detection method for aerial images[END_REF] both work on aerial images and try to segment vehicles on roads. Perera et al. Since the camera is moving, some parts of the scene disappear while others appear. Parts that disappear do not need special treatment and they are just remove when the background is updated. However, new parts have to be integrated in the classification and in some methods, they are initialized as background [START_REF] Kim | Detection of moving objects with a moving camera using non-panoramic background model[END_REF]. In their method, Lopez-Rubio et al. [START_REF] López-Rubio | Foreground detection for moving cameras with stochastic approximation[END_REF], find the closest labeled pixel of a new one. If the new pixel belongs to the background model of its closest neighbor, then this background model is used as initialization, otherwise with a neutral state.

A traditional approach to reduce noise in the binary mask is morphological operation (see 3). This technique can remove small groups of pixels falsely labeled as foreground and fill small holes in the foreground segmentation. To remove noise pixels connected to foreground, Solehah et al. [START_REF] Solehah | Moving object extraction in PTZ camera using the integration of background subtraction and local histogram processing[END_REF] propose to compare the histogram of the current image with the one of the warped background and threshold it to re-classify the pixels.

Gong et al. [START_REF] Gong | Online codebook modeling based background subtraction with a moving camera[END_REF] use a codebook to model the background. After the motion compensation with a homography, pixels are compared to codewords on the color distorsion and the brightness. The comparison is performed on a small region centered on the pixel position in the previous frame to handle warping errors.

Subspace segmentation

In this section, moving objects detection methods use the trajectories of feature points to separate the background and the foreground. Contrary to the previous approaches, there is no registration between images to apply a background subtraction technique. The features points are labeled according to the analysis of their trajectories and the label information is propagated to the whole image to obtain a pixel-wise segmentation. Source: Images from Elqursh and Elgammal et al. [START_REF] Elqursh | Online moving camera background subtraction[END_REF].

In 2009, Sheikh et al. [START_REF] Sheikh | Background subtraction for freely moving cameras[END_REF] use three long term trajectories to construct a 3D subspace. Feature points whose trajectories belong to this subspace are considered as part of the background while the others are foreground. In the proposed method of Elqursh and Elgammal [START_REF] Elqursh | Online moving camera background subtraction[END_REF] a subspace is constructed with trajec- tory affinities computed on motion and spatial location. The trajectories in the embedded subspace are then clustered and labeled foreground or background by minimizing an energy function which combine multiple cues. The result of this segmentation is presented in the figure 9. In an other work, Nonaka et al. [START_REF] Nonaka | Real-time foreground segmentation from moving camera based on case-based trajectory classifi-cation[END_REF] cluster the trajectories by using three different distances and label the cluster based on the shape and the size. To reduce the computation time and the memory resource, the trajectories from two consecutive frames are used rather than long term trajectories. In 2014, Berger and Seversky [START_REF] Berger | Subspace tracking under dynamic dimensionality for online background subtraction[END_REF] managed the changing number of trajectories over time by a dynamic subspace tracking. At each frame, the camera parameters are updated and used to update the shape of the trajectories. More recently, Sajid et al. [START_REF] Sajid | Motion and appearance based background subtraction for freely moving cameras[END_REF] propose to combine motion and appearance. The motion module performs a low-rank approximation of the background dense motion with an iterative method. The probability of each pixel belongs to the foreground is estimated from the pixel-wise motion error between the background motion approximation and the one observed. The appearance module models background and foreground with GMM.

In order to obtain a binary mask, the sparse label information is propagated to the whole image. The common method to propagate the information is to segment the image by constructing a pairwise MRF and minimizing the energy generally with the graph-cut algorithm. A pairwise MRF is a graph where vertices represent the pixels and the edges connect the vertices with their neighborhood as a grid structure over the image. The energy of a MRF is composed of two terms: the unary term and the binary term. The unary term is used to assign a label to a vertex while the binary term encourages to assign the same label to vertices connected by an edge in order to smooth the segmentation.

A cut is then found in the graph by minimizing the energy to obtain an image segmentation.

In 2009, Sheikh et al. [START_REF] Sheikh | Background subtraction for freely moving cameras[END_REF] use the kernel density estimation method to obtain two models, one for the background and one for the foreground. The graphcut algorithm is then used to minimize an energy function on a MRF. In the method of Elqursh and Elgammal [START_REF] Elqursh | Online moving camera background subtraction[END_REF] the motion model is propagated to each pixel with a pairwise MRF and estimate the labels with a Bayesian filtering. In an other approach, Nonaka et al. [START_REF] Nonaka | Real-time foreground segmentation from moving camera based on case-based trajectory classifi-cation[END_REF] propose to use a case database, which described the foreground with the color and the location, in the segmentation step for the next frame. 

Motion segmentation

The same way as the previous section, the methods presented here uses the trajectories of the feature points to segment each frame of the video as static or moving but without using a subspace (see figure 10). Those methods are inspired by the methods called Motion Segmentation in the literature which segment the image according to the apparent motions. Here the methods presented go further than just segment each frame of the video by the 2D motions by proposing a background/foreground labeling.

In 2013, Narayana et al. [START_REF] Narayana | Coherent motion segmentation in moving camera videos using optical flow orientations[END_REF] segment images based on optical flow orientations. In the case where the camera performs only translation, the depth variations do not take part in the optical flow orientations. In an other approach, Yin et al. [START_REF] Yin | Background subtraction for moving cameras based on trajectory-controlled segmentation and label inference[END_REF] cluster feature points according to their trajectory similarity and reject false trajectories by using the PCA algorithm. In an other work, Bideau et al. [START_REF] Bideau | It's moving! a probabilistic model for causal motion segmentation in moving camera videos[END_REF] use the translational flow obtained by the subtraction of the dense optical flow and the rotational flow. The angle field is then estimated Source: Images from Zhu and Elgammal [START_REF] Zhu | A multilayer-based framework for online background subtraction with freely moving cameras[END_REF].

from the translational flow according to the magnitude which indicates the reliability of the flow angle. Then the conditional flow angle likelihood estimate the probability that the flow direction of a pixel corresponds to the one estimated. Finally, the Bayes' rule is used to obtain the posterior probability for each pixel which is used for the final segmentation. The authors also proposed to segment the first frame of the video by choosing three superpixels with a modified RANSAC algorithm in order to estimate the motion of the background.

In an other approach, Kao et al. [START_REF] Kao | Moving object segmentation using depth and optical flow in car driving sequences[END_REF] recover the 3D motions from the 2D motions observed by using motion vanishing point and the estimated depth of the scene. The final segmentation is applied on the 3D motions. The method proposed by Zhu and Elgammal [START_REF] Zhu | A multilayer-based framework for online background subtraction with freely moving cameras[END_REF] first clusters trajectories based on their affinities and propagate the label of trajectories dynamically. The clusters automatically adapt to the number of foreground object in the frames by computing intra-cluster variation. In a recent work, Sugimura et al. [START_REF] Sugimura | Online background subtraction with freely moving cameras using different motion boundaries[END_REF] As in the previous section 5.0.4, sparse labeling information is propagated to the whole image to obtain a dense labeling.

In 2013, Narayana et al. [START_REF] Narayana | Coherent motion segmentation in moving camera videos using optical flow orientations[END_REF] compute color likelihoods with KDE by supposing that the region, resulting from a dense segmentation, with the largest number of pixels belongs to background. The authors proposed to combined the color likelihoods to the previous labeling, compensated according to the optical flow, to reduce errors in the segmentation based on optical flow orientations. In order to propagate the label information, Yin et al. [START_REF] Yin | Background subtraction for moving cameras based on trajectory-controlled segmentation and label inference[END_REF] propose a trajectory-controlled watershed segmentation algorithm. After applying a bilateral filtering to smooth the image and enhance the edges, gradient minima and the trajectory points are selected as markers. Those markers are used by the watershed algorithm as seeds to obtain a segmentation for which the regions are labeled background or foreground according to the labels of the trajectories.

Finally, the background/foreground information is propagated to the unlabeled regions by minimizing an energy function on a MFR with the graph-cut algorithm. The Multi-Layer Background Subtraction (MLBS) proposed by Zhu et al. [START_REF] Zhu | A multilayer-based framework for online background subtraction with freely moving cameras[END_REF] propose a multi-label segmentation rather than a binary segmentation.

Each motion cluster is associated to a layer. For each layer, a pixel-wise motion estimation is performed by a Gaussian Belief Propagation (GaBP). Then the appearance model and the prior probability map are updated with the motion estimation and they are used to compute the posterior probability map. The multi-label segmentation is performed on the posterior probability map by the minimization of the energy of a pairwise MRF. In an recent work, Sugimura et al. [START_REF] Sugimura | Online background subtraction with freely moving cameras using different motion boundaries[END_REF] prevent unreliable magnitude and direction foreground flow field by introducing a prediction based on the lasts foreground estimated regions. In the case where the magnitude and direction foreground are unreliable, the prediction is used rather than the two flow fields as the segmentation result otherwise the prediction is jointly used with the two others flow fields. The OneCut is applied a second time with the appearance information in order to improve the final segmentation. In an other work, Kao et al. [START_REF] Kao | Moving object segmentation using depth and optical flow in car driving sequences[END_REF] obtain a binary mask by segmenting the 3D motions with three different clustering methods: simple k-means clustering, spectral clustering with a 4-connected graph and with a fully connected graph. In 2019, Huang et al. [START_REF] Huang | An efficient optical flow based motion detection method for non-stationary scenes[END_REF] propose a dual judgment mechanism to separate the foreground from the background. The foreground is estimated by thresholding the difference of the estimated background optical flow and the one estimated by FlowNet2.0. In order to take into account the case where the camera is zooming, a second judge mechanism is based on thresholding the difference of cosine angles. Recently, Zhang et al. [START_REF] Zhang | Moving object detection under a moving camera via background orientation reconstruction[END_REF] propose to enhance a motion saliency map in order to segment moving objects that are indistinguishable in the dense optical flow. The saliency map accumulate a weighted similarity on the motion and the appearance. The temporality is used to remove false positive alarms.

In 2017, Tokmakov et al. [START_REF] Tokmakov | Learning video object segmentation with visual memory[END_REF] propose to combine results from appearance and motion network into a memory module. This combination prevents the classification of a temporary stopped moving object as background since it cannot be detected as moving with the motion information unlike the appearance one.

Moreover, the authors propose a bidirectional processing in order to overcome the Waking foreground object challenge by using to parallel process, one in the forward direction and one in the backward direction. The same year, Jain et al. [START_REF] Jain | Fusionseg: Learning to combine motion and appearance for fully automatic segmentation of generic objects in videos[END_REF] also propose a combination of appearance and motion network. The authors suggest to train the appearance network in order to learn a generic foreground appearance. According to the authors, the network is able to identify foreground regions from more than 3,000 object categories. 

Plane+Parallax

The Plane+Parallax decomposition is a scene-centered representation [START_REF] Irani | Direct recovery of planar-parallax from multiple frames[END_REF].

As in the previous section, this technique firstly compensates the camera motion with a 2D parametric transformation that describes the dominant plane in the scene. After the registration process, camera rotation and zoom are eliminated and misaligned pixels correspond either to the parallax caused by the camera translation or to a moving object. Then, residual displacements belong to the scene form a radial field centered at the epipole [START_REF] Irani | Recovery of ego-motion using region alignment[END_REF].

In 1998, Irani and Anandan [START_REF] Irani | A unified approach to moving object detection in 2D and 3D scenes[END_REF] stratify the moving object detection problem and propose a method that handles from 2D scenes up to 3D complex scenes. The first level of the stratification is the approximation of the scene by a 2D plane. A single 2D parametric transformation is estimated between two images and used to warp them. Misalignments correspond to moving objects. The second level handle misalignments due to the parallax. Several 2D planes are estimated successively with the same method in the previous level and regions which are inconsistent with the motion of any 2D planes are moving objects. When the scene is complex, with many small moving objects are different depths, the two previous methods cannot correctly make the detection.

In this case, the third level with a Plane+Parallax scene representation is used.

The authors noticed that the residual movements after the registration are due to the translation motion of the camera and they form a radial field centered at the Field Of Expansion (FOE). The estimation of the FOE can be used to apply the Epipolar Constraint but the estimation can be biased by moving objects as shown in the figure 11. To avoid this, the authors proposed a Parallax-Based Rigidity Constraint which is a consistency measure between two points over three consecutive frames. One of the two point is known static in order to evaluate the label of the second point. In an other work, Sawhney et al. [START_REF] Sawhney | Independent motion detection in 3D scenes[END_REF] impose the Shape Constancy and the epipolar constraint over several frames to estimate a robust image alignment. The authors used the Plane+Parallax decomposition to enforce the two constraints.

In 2005, Kang et al. [START_REF] Kang | Detection and tracking of moving objects from a moving platform in presence[END_REF] use the consistency constraint. The advantages of this constraint are: the reference plane does not need to be the same. It could be the floor and then a wall for example. Static points are not necessary and the assumption of small camera displacement between two consecutive frames are not required. The authors combined the epipolar constraint and a structure consistency constraint to eliminate false detections due to the parallax. From the epipolar constraint an angular difference map is created and from the structure consistency constraint a depth variation map is created for each residual pixel.

Rather than propose a binary mask, a likelihood map is computed on a sliding window and used directly by a tracking algorithm.

There exist one particular case where the Plane+Parallax methods do not proaches. Cascade of RANSAC is a very used technique to estimate several real planes in a scene [START_REF] Jin | Background modeling from a freemoving camera by multi-layer homography algorithm[END_REF][START_REF] Patwardhan | Robust foreground detection in video using pixel layers[END_REF][START_REF] Zhang | Beyond dominant plane assumption: Moving objects detection in severe dynamic scenes with multi-classes RANSAC[END_REF][START_REF] Zamalieva | Exploiting temporal geometry for moving camera background subtraction[END_REF][START_REF] Zamalieva | A multi-transformational model for background subtraction with moving cameras[END_REF][START_REF] Hu | Moving object detection and tracking from video captured by moving camera[END_REF][START_REF] Zhou | Moving object detection using background subtraction for a moving camera with pronounced parallax[END_REF]. Here is the general principle: RANSAC is used on feature points to estimate one 2D transformation between two images in the video sequence. Feature points that fit the homography are removed from the process and a new transformation is estimated with the residual feature points. This process is repeated until a condition is reached. Source: Images from Jin et al. [START_REF] Jin | Background modeling from a freemoving camera by multi-layer homography algorithm[END_REF].

In 2008, Patwardhan et al. [START_REF] Patwardhan | Robust foreground detection in video using pixel layers[END_REF] use a training step to automatically initialize the number of layers. Layers are estimated iteratively on color of pixels by Sampling-Expectation refining process. The method of Zhang et al. [START_REF] Zhang | Beyond dominant plane assumption: Moving objects detection in severe dynamic scenes with multi-classes RANSAC[END_REF] propose to adaptively adjust the parameters of RANSAC to handle simple and complex classes of scenes. Feature points are hierarchically clustered based on Euclidean distance criterion on optical flow data. A cluster is labeled as background if it has a widespread spatial distribution. Then, the number of layers is estimated iteratively by increasing the number layers until a consensus is reached. In an other work, Zamalieva et al. [START_REF] Zamalieva | A multi-transformational model for background subtraction with moving cameras[END_REF] modify the GRIC score to find out if the scene can be approximated by one plane or by several planes. The modified GRIC score is computed on one homography or on the fundamental matrix. If the homography wins, it is chosen to compensate the camera motion.

On the other case, a cascade of RANSAC is used to compute several homographies. In the approach of Hu et al. [START_REF] Hu | Moving object detection and tracking from video captured by moving camera[END_REF] feature points are first classified as background or foreground and use them to compensate the camera motion by a homography. The authors use one plane for the frame compensation but they approximate the scene by several planes during the feature points classification by computing the fundamental matrix and using the epipolar constraint. In a similar manner, Zamalieva et al. [START_REF] Zamalieva | Exploiting temporal geometry for moving camera background subtraction[END_REF] propose to approximate the scene with the epipolar geometry to avoid alignment error due to the parallax. The authors propose a modified Temporal Fundamental Matrix (TFM) which can be used with a single camera to represent the epipolar geometry. In an other approach, Kim et al. [START_REF] Kim | A disparity-based adaptive multihomography method for moving target detection based on global motion compensation[END_REF] estimate several homographies by clustering trajectories into the Distance and Motion Coordinate (DMC) system. From the biggest clusters, two regression lines are derived and used to find the preliminary background clusters. Homographies are estimated with the RANSAC algorithm from those background trajectories after another clustering step. Rather than find real planes in the scene, Zamalieva et al. [START_REF] Zamalieva | Background subtraction for the moving camera: A geometric approach[END_REF] propose to create parallel hypothetical planes based on the dominant plane in the scene. These planes are estimated with the vanishing line and the vertical vanishing point. The image registration is computed by homographies estimated for each hypothetical plane.

When several homographies are used to register the background, it is necessary to find which homography have to be applied for each pixel. In both work of Jin et al. [START_REF] Jin | Background modeling from a freemoving camera by multi-layer homography algorithm[END_REF] and Zamalieva et al. [START_REF] Zamalieva | A multi-transformational model for background subtraction with moving cameras[END_REF] pixel intensity similarity is computed for each homography to select a plane for the candidate pixel. In 2008, Jin et al.

[345] assign non-overlap pixels to layers with Minimal Span Tree to represent scene smoothness. In 2014, Zamalieva et al. [START_REF] Zamalieva | A multi-transformational model for background subtraction with moving cameras[END_REF] handle occluded background pixels by performing a majority voting on neighbor pixels associated to a plane.

Foreground detection step is very close to those used for static camera thanks to the image registration step [START_REF] Jin | Background modeling from a freemoving camera by multi-layer homography algorithm[END_REF][START_REF] Zhang | Beyond dominant plane assumption: Moving objects detection in severe dynamic scenes with multi-classes RANSAC[END_REF]. Jin et al. [START_REF] Jin | Background modeling from a freemoving camera by multi-layer homography algorithm[END_REF] use mixture of Gaussians and a background panorama to detect moving objects while Zhang et al. [START_REF] Zhang | Beyond dominant plane assumption: Moving objects detection in severe dynamic scenes with multi-classes RANSAC[END_REF] simply assign a pixel to background based on intensity difference thresholding. In an other work, Patwardhan et al. [START_REF] Patwardhan | Robust foreground detection in video using pixel layers[END_REF] Cascade of RANSAC, EG: Epipolar Geometry.

Split image in blocks

In the literature, one identifies two ways to divide an image into blocks.

The first one simply divides the image into a regular grid where each block has a predefined size. The second technique uses superpixel segmentation methods. Each block represents a region in the image whose features depend on the estimate background and foreground motion, Lim et al. [START_REF] Lim | Modeling and segmentation of floating foreground and background in videos[END_REF] simply use sparse optical flow. In an other method, Kim et al. [START_REF] Kim | Fast moving object detection with non-stationary background[END_REF] propose a multi-resolution motion propagation to compensate the camera motion on blocks. If a block does not have background feature points to estimate its transformation, the parameters are propagated from the blocks at a higher level. In the method of Lim and Han [START_REF] Lim | Generalized background subtraction using superpixels with label integrated motion estimation[END_REF], the previous segmentation mask is warped with dense optical flow and use the warped mask to compute dense motion for background and foreground independently. In 2016, Sun et al. [START_REF] Sun | Fast background subtraction for moving cameras based on nonparametric models[END_REF] In 2013, Yi et al. [START_REF] Yi | Detection of moving objects with non-stationary cameras in 5.8ms: Bringing motion detection to your mobile device[END_REF] choose to model each block with a Single Gaussian Model (SGM). After motion compensation, one block generally overlap several blocks in the previous frame. In order to update block models in the current frame, the overlap block models are mixed together where each block is weighted proportionally to the overlapping area. The same mixing blocks is used by Lim et al. [START_REF] Lim | Modeling and segmentation of floating foreground and background in videos[END_REF] for their temporal model propagation step and they additionally use a spatial step to enforce the spatial coherence. The methods of Kwak et al. [START_REF] Kwak | Generalized background subtraction based on hybrid inference by belief propagation and Bayesian filtering[END_REF] and Lim and Han [START_REF] Lim | Generalized background subtraction using superpixels with label integrated motion estimation[END_REF] also combine motion and appearance models.

In 2015, Yun and Choi [START_REF] Yun | Robust and fast moving object detection in a nonstationary camera via foreground probability based sampling[END_REF] propose to improve the method of Yi et al. [START_REF] Yi | Detection of moving objects with non-stationary cameras in 5.8ms: Bringing motion detection to your mobile device[END_REF] with a selectively update step based on a sampling map. Only some pixels are chosen according to temporal and spatial properties to update the model. Once the models are updated, the data are combined together to create the final segmentation mask for the current frame.

In 2011, Kwak et al. [START_REF] Kwak | Generalized background subtraction based on hybrid inference by belief propagation and Bayesian filtering[END_REF] predict the appearance model of each block by a weighted sum of Gaussian-blurred blocks of the previous frame. In order to reduce segmentation errors, some methods [START_REF] Kwak | Generalized background subtraction based on hybrid inference by belief propagation and Bayesian filtering[END_REF][START_REF] Lim | Modeling and segmentation of floating foreground and background in videos[END_REF][START_REF] Lim | Generalized background subtraction using superpixels with label integrated motion estimation[END_REF][START_REF] Chung | A two-stage foreground propagation for moving object detection in a non-stationary[END_REF] propose to iterate the process on motion and appearance models until the models converge.

The method of Lim et al. [START_REF] Lim | Modeling and segmentation of floating foreground and background in videos[END_REF] and the one of Lim and Han [START_REF] Lim | Generalized background subtraction using superpixels with label integrated motion estimation[END_REF] both iterate on motion and appearance estimations to obtain a segmentation mask at each frame. In their approach, Lim and Han [START_REF] Lim | Generalized background subtraction using superpixels with label integrated motion estimation[END_REF] choose to use superpixel rather than a grid because this kind of pixel groups has color and motion consistency.

In an other work, Yi et al. [START_REF] Yi | Detection of moving objects with non-stationary cameras in 5.8ms: Bringing motion detection to your mobile device[END_REF] [361] use a coarse-to-fine method to detect foreground objects. Each block of the regular grid is warped according to its dominant motion over a sliding window.

The Mean Squared Error (MSE) is then used as a threshold to obtain a coarse or non-overlapping areas. To obtain a robust classification, unmatched region a foreground likelihood computed as the mean of scanline comparisons over several frames. Thus, region with few matches are foreground candidates. A final classification refinement is applied with morphological operators and the GrowCut [START_REF] Vezhnevets | Growcut: Interactive multi-label nd image segmentation by cellular automata[END_REF] algorithm.

Datasets and evaluation

This section introduces the publicly available datasets and the quantitative evaluation metrics that be used on these datasets to measure the performance of a method and compare them. An overview of f-score results is also provided.

Existing datasets

In order to test the performance of a moving object detection method with a moving camera, it is necessary to have video sequences whose each pixel of each frame are annotated. This section presents the datasets that can be used to evaluate and compare methods. In the same way one writes this paper, only datasets that contain videos taken by a moving camera are presented.

• The Hopkins 155+161 dataset was firstly introduced by Tron and Vidal [START_REF] Tron | A Benchmark for the comparison of 3D motion segmentation algorithms[END_REF] and known as the Hopkins 155 dataset. This dataset was originally created to evaluate motion segmentation algorithms but the data can also be used for moving objects detection algorithms. There are 57 different The mask contains five labels: static, hard shadow, outside region of interest, unknown motion (usually around moving objects, due to semitransparency and motion blur) and motion. Each label is associated to a gray color and a simple filter can be used on this mask to obtain a binary mask which can be used to evaluate a method.

• The Densely Annotated VIdeo Segmentation DAVIS4 was proposed by Perazzi et al. [START_REF] Perazzi | A benchmark dataset and evaluation methodology for video object segmentation[END_REF]. Three versions of the dataset were proposed: [START_REF] Perazzi | A benchmark dataset and evaluation methodology for video object segmentation[END_REF], [START_REF] Pont-Tuset | The 2017 davis challenge on video object segmentation[END_REF], [START_REF] Caelles | The 2019 davis challenge on vos: Unsupervised multi-object segmentation[END_REF]. The first version [START_REF] Perazzi | A benchmark dataset and evaluation methodology for video object segmentation[END_REF] contains 50 different videos where only 5 videos were taking by a static or a shaking camera. For each video, a binary ground truth mask is given for each frame. In the two other versions of the dataset [START_REF] Pont-Tuset | The 2017 davis challenge on video object segmentation[END_REF] and [START_REF] Caelles | The 2019 davis challenge on vos: Unsupervised multi-object segmentation[END_REF], 40 videos were added. Among those 90 video sequences, only 10 were taking by a static or a shaking camera. In the same manner than for the first dataset version, for each frame of a video, a mask is given. The mask is not a binary mask but moving objects are classified into categories like human or bike according to colors. The background is still identified by the black color and it can be used to differentiate background from foreground.

• The SegTrack v25 dataset [START_REF] Li | Video segmentation by tracking many figure-ground segments[END_REF] is an updated version of the SegTrack dataset [START_REF] Tsai | Motion coherent tracking using multi-label MRF optimization[END_REF]. This second version propose 14 sequences where 10 sequences are taken by a moving camera. A binary ground truth mask is provided for each frame of each sequence and the ground truth of each moving object is provided separately.

• The ComplexBackground6 is a dataset proposed by Narayana et al.

[327] and contains five video sequences taken by a hand-held camera. Each video contains 30 frames and 7 frames are used for the ground truth as a binary mask. These videos contain one or several moving objects and the static scene presents significant depth variations.

Evaluation metrics

Thanks to the publicly available datasets and their associated ground truth, quantitative metrics are used to evaluate the performance of background/foreground segmentation approaches and compare them together.

According to the ground truth, the pixel are categorized into one of these four categories:

• True Positive (TP): the number of pixel correctly labeled as foreground.

Also known as hit. • True Negative (TN): the number of pixel correctly labeled as background.

Also known as correct rejection.

• False Positive (FP): the number of pixel incorrectly labeled as foreground.

Also known as false alarm or Type I error.

• False Negative (FN): the number of pixel incorrectly labeled as background. Also known as miss or Type II error. Three measures are commonly used to evaluate background subtraction algorithms: the precision, the recall and the F-score.

• The precision (also known as positive predictive value) is the proportion of pixels that are correctly detected as moving among all pixels detected as moving by the algorithm.

P recision = T P T P + F P

(1)

• The recall (also known as sensitivity, hit rate or true positive rate) is the proportion of pixels that are correctly detected as moving among all pixels that belong to moving objects in the ground truth.

Recall = T P T P + F N

(2)

• The F-score (also known as F1 score or F-measure) is the combination of precision and recall. It is the harmonic mean of precision and recall on the same data for each method. For example, Minematsu et al. [START_REF] Minematsu | Adaptive search of background models for object detection in images[END_REF] have manually constructed the ground truth for all frames while others as Elqursh and Elgammal have chosen to use the ground truth provided in the FBMS-59 dataset by Ochs et al. [START_REF] Ochs | Segmentation of moving objects by long term video analysis[END_REF] on a set of frames.

The five sequences from the Hopkins 155 dataset are short sequences (between 19 and 54 frames), with one or two moving objects progressing in a simple scene and with a smooth camera movement. Those sequences are part of simple cases where three challenges are present: moving background, small motion parallax (quite small for these sequences) and the shadows.

Among all methods reported in the tables 9 and 10, only two methods have a f-score exceeded 0.9 for the five sequences, Berger and Seversky [START_REF] Berger | Subspace tracking under dynamic dimensionality for online background subtraction[END_REF] and Sajid et al. [START_REF] Sajid | Motion and appearance based background subtraction for freely moving cameras[END_REF], both in the subspace segmentation category. Most f-score are between 0.7 and 0.9 and no category really stands out from the others. Those results show that the moving objects detection with a moving camera is still a challenging problem even for simple sequences. is limited by the camera motion. Construct and maintain a panorama with a freely moving camera could suffer from an accumulation of errors during the frame registration process.

Single plane approaches limit the scope of applications while the Multi planes and Split image in blocks approaches appear to be the more appropriate to 

Conclusion

We have proposed in this paper a review of methods for moving objects detection with a moving camera categorized into eight different approach groups divided into two big categories. We have chosen to separate the methods into these two categories, one plane and several planes, since the approach to use depends on the scene configuration. For each group, the following conclusions can be made:

• For the approaches based panoramic background subtraction, a panorama of the observed scene is first constructed. Then, the current image is reg-istered to the background model in order to do the subtraction and obtain the moving objects. These approaches are often used in the context of video surveillance with a PTZ camera. The panoramic background subtraction approach is well suited for this kind of camera since the part of the scene that the camera can observed is limited because it cannot perform a translation. A special attention must be paid on the construction of the panorama because errors can be accumulated and caused errors in the background subtraction step.

• When several cameras are used, static and moving, it could be interesting to couple the information to detect moving objects. In the dual cameras approaches, when a moving object is detected in the static camera, generally with a large-view, the moving camera, generally a PTZ camera, will move to detect the moving object. The advantage of using the large-view image, compared to the panoramic background subtraction, is that the whole background model is updated with the new frames.

• The background subtraction with a motion compensation approach is the most popular in the literature, as shown by the table 3. The two advantages of this method are the ease of implementation and its low time computation. The compensation is a 2D transformation which approximates the scene by a plane. When the parallax is small, it can be handle after the compensation but when the parallax is too large, this approach cannot be used.

• Contrary to the three previous approaches, the motion of the camera is not compensated to compute the background subtraction. The subspace segmentation approach is based on the apparent motion, computed by optical flow algorithms on feature points or on the entire image. These trajectories are then clustered or segmented into a subspace representation. The clusters segmented as background generally reflect a plane in the scene.

• The motion segmentation approach is also based on trajectories. The motions are analyzed and segmented according to their similarities. The methods presented in this survey go further than just segmented the motions, a background or foreground label is associated to the sets of motions. In the same manner as the subspace representation approach, the background motions generally reflect a plane in the scene.

• The Plane+Parallax approach was not much studied in the context of detecting moving objects. To the best of our knowledge, only three different methods relate about the Plane+Parallax decomposition. This scene representation performs well when the scene contains few parallax and difficulties arise when the scene is composed of several planes.

• In the multi planes approaches, the scene is approximated by several planes, reals or not. With such a scene representation, most of the parallax effect is directly handled. Nevertheless, if a moving object is big enough in the images, it can be approximated by a plane and considered as a part of the background.

• Rather than representing the scene by several planes, the split image in blocks approaches divided the image into several blocks. Each block is processed individually in order to find the foreground objects. As in the multi planes approaches, a moving object as to be small in a block in order to approximate the block as a plane.
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 1 Figure 1: Illustrations of background subtraction challenges. Images come from the Wallflower (Bootstrap, Camouflage, ForegroundAperture, WavingTrees, LightSwitch sequences) dataset and the ChangeDetection.net (port 0 17fps sequence) dataset. The last column is the result of Gaussian mixture-based background/foreground segmentation in the OpenCV library.

Figure 2 :

 2 Figure 2: Illustations of background subtraction challenges. Images come from the Wallflower (MovedObject sequence), the ChangeDetection.net (badminton, continuousPan, busyBoulvard sequences) and the ComplexBackground (Forest) dataset and the Fish4Knowledge (site NPP-3, camera 3, 10/02/2010 sequence) dataset. The last column is the result of Gaussian mixture-based background/foreground segmentation in the OpenCV library. (* To illustrate the Motion Parallax challenge, frames are register to the first one with a homography estimated by RANSAC on feature points.)
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 3 Figure 3: Illustations of background subtraction challenges. Images come from the ChangeDetection.net (PeopleInShade, parking, winterDriveway sequences) dataset. The last column is the result of Gaussian mixture-based background/foreground segmentation in the OpenCV library.
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 4 Figure 4: Background subtraction with a static camera, general scheme.

  575moving objects detection with a moving camera by the type of background representation chosen to solve the problem. The figure5presents the taxonomy adopted in this survey.

Figure 5 :

 5 Figure 5: The taxonomy adopted in this survey.

Figure 6 :

 6 Figure 6: An example of a technique to construct a panoramic background model. Source: Images from Xue et al. [239].

  [START_REF] Azzari | An effective real-time mosaicing algorithm apt to detect motion through background subtraction using a 98 PTZ camera[END_REF] use a feature-based method to construct a panorama where the outlier features are filtered by a simple but efficient clustering method in order to estimate a projective transformation with only features that result to the camera ego-motion. The frame-to-frame alignment errors are fixed by a two-stage registration based on the frame-tomosaic technique. In an other work, Xue et al. [239] choose a feature based method to construct a mosaic with key frames of which positions are manually chosen. The background model is a Panoramic GMM (PGMM), extended from the model proposed by Friedman and Russell [250]. The method proposed in 2007 by Brown and Lowe[START_REF] Brown | Automatic panoramic stitching using invariant features[END_REF] to build a panorama is used by Xue et al.[START_REF] Xue | Panoramic background model for PTZ camera[END_REF],

  2014, Hamid et al.[START_REF] Hamid | Fast approximate matching of cell-phone videos for robust background subtraction[END_REF] use two videos: one with foreground objects and one with only the background. Each video is recorded with a handheld camera and both camera paths are closed each other. The use of the background video is similar to a panorama: foreground frame are matched to background frames in order to perform a background subtraction. The authors propose a spatiotemporal matching with a significant computational speed-up. Rather than construct a panorama,Chelly et al. [265] prefer to represent the background by several subspaces. Each portion of the scene is learned individually based on frames registered to a global coordinate system and each portion partially overlap each other. Thanks to this representation large scene can be handle.After image registration, the last step to construct a mosaic is the blending step. It consists of mixing pixels that belong to the overlap region of images when they are warped together.Several approaches exist, from simple ones like the triangular weighting function used by Bhat et al.[START_REF] Bhat | Motion detection and segmentation using image mosaics[END_REF] to more complex ones as the multi-band blending used byXue et al. [239]. In an other work, Amri et al.[START_REF] Amri | A robust framework for joint background/foreground segmentation of complex video scenes filmed with freely moving camera[END_REF] choose to use the temporal median operator. The advantage of the temporal median scheme is that it can remove foreground from the mosaic since it supposes that moving objects doesn't stay at the same location more than half time during the initialization step. In 2005, Azzari et al.[START_REF] Azzari | An effective real-time mosaicing algorithm apt to detect motion through background subtraction using a 98 PTZ camera[END_REF] use the alpha-update rule also known as the Infinite Impulse Response (IIR) filter used for background maintenance.

  parameters are stored. The rotation angles of the new frames are used with the stored information to obtain a first coarse registration which is refined by the estimation of transformation parameters between the new frame and the rough mosaic region. In an other work, Xue et al.[START_REF] Xue | Panoramic background model for PTZ camera[END_REF] use feature points and camera parameters saved during the panoramic building step to register the current image to the panorama. A gray-level histogram is computed for the background and the current image where the pixel value distributions are previously normalized to prevent lighting changes. The Kullback-Leiber Divergence is then used to obtain the foreground probabilities of each pixel and finally thresholded to compute the foreground mask.The image registration with a PTZ camera is a complex task because the image can be taken at the different scale from the background. To overcome this problem, Zhang et al.[START_REF] Zhang | A framework of surveillance system using a PTZ camera[END_REF] capture images at different focal length and these images are group according to the focal length. When the current image is register to the mosaic with the feature points, the sets of feature points attached to each group of mosaic images are enlarged with the new matched feature points. In an other approach,Xue et al. [239] propose a new multilayered propagation method that cope with the number of matching features points between the current frame and the panorama that decreases when the scale of the current frame increases. A hierarchy of image at different scales is constructed where a layer groups frames taken at the same scale and layers are linked together by matching feature points. The hierarchy of layers is then used to register the current frame to the panorama by propagating correspondences through the layers. The foreground detection is computed by thresholding the minimum Mahalanobis distance between a pixel and a block centered on the corresponding background pixel. The multi-layered system is also used by Liu et al.[START_REF] Liu | Hierarchical ensemble of background models for PTZ-based video surveillance[END_REF] but to represent the background and not to register the current frame to a panorama. Each layer is composed of a set of key frames where key frames are encoded with a spatio-temporal model. The current frame is registered with the pan, the tilt angle and the focal to find the nearest key frames and a homography is computed for the registration. Recently, Chelly et al.[265] train a regression net to learn 2D transformation of each frame to a global coordinate system. The transformation is refined by using local subspaces that overlap the frame.In 2008, Asif et al.[START_REF] Asif | Video analytics for panning camera in dynamic surveillance environment[END_REF] choose to analyze the global motion by block in the image. The phase correlation is used to determinate the motion of each block which permit to obtain a first foreground estimation. Foreground blocks are divided into smaller blocks to refine the label by analyzing the sum of absolute difference for each block and their neighbors. In an other work, Ali and Shah[START_REF] Ali | Cocoa: tracking in aerial imagery[END_REF] suggest to use two methods to obtain foreground objects: accumulative frame differencing and background subtraction. A histogram of log-evidence is combined with the result of a hierarchical background subtraction to detect moving objects. In an recent work, Avola et al.[START_REF] Avola | A keypointbased method for background modeling and foreground detection using a PTZ camera[END_REF] propose to attach a spatiotemporal structure to each keypoints. The spatio-temporal information is used to track background feature points and label them as background or foreground.A clustering stage is also applied on keypoints to validate the foreground labeling. When two objects are represented by only one blob, because of noise or shadows, Kang et al.[START_REF] Kang | Real-time video tracking using PTZ cameras[END_REF] analyze the vertical projection histogram and use it to correct the segmentation. Bevilacqua et al. (2006) [267] Tonal alignments × × × Asif et al. (2008) [269] Moving objects detection × × × × Vivet et al. (2009) [257] Mosaic building × × × × × Amri et al. (2010) [256] Temporal median operator × × × × Xue et al. (2010) [251] Mosaic building × × × × Zhang et al. (2010) [252] Large zoom × × × × Xue et al. (2013) [239] Large zoom × × × × × Hamid et al. (2014) [264] Speed-up frame matching × × × × × Liu et al. (2015) [268] Hierarchical background model × × × × Avola et al. (2017) [253] Spatio-temporal keypoints tracking × × × × Moore et al. (2019) [263] Panoramic low-rank background × × × × Chelly et al. (2020) [265] Partially-overlapping local subspaces × × × ×Table 1: Panoramic methods summary. FF: Frame-to-Frame, FM: Frame-to-Mosaic, AB: Angle Based, FB: Feature Based, DM: Direct Method, AM: Affine Model, PM: Projective Model.
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 7 Figure 7: An example of image registration between a large-view static camera and local-view PTZ camera. Source: Images from Cui et al. [277].

Table 2 :

 2 Dual camera methods summary. APK: A Priori Knowledge, A: Autocalibration, FB: Feature Based, DM: Direct Method, AM: Affine Model, PM: Projective Model.5.0.3. Motion compensationOne simplest technique to adapt the background subtraction method to a moving camera is to compensate the motion of the camera in order to realize the subtraction as in a stationary camera case. Those methods used Motion Compensation techniques to register the current image with the background model with a 2D parametric transformation[START_REF] Odobez | Separation of moving regions from background in an image sequence acquired with a mobil camera[END_REF][START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. After the registration step, images are configured as with a static camera and background subtraction techniques can be applied on the registered frame. Nevertheless the global estimation of the 2D transformation of the current frame with a previous one or a background model lead to foreground false alarms due to the registration errors as shown by the figure8and generally a refinement step is necessary.

Figure 8 :

 8 Figure 8: An example after image registration with a homography. The 2D transformation is based on the floor and we observe that the closet is misaligned. The second picture clearly shows this misalignment on the sheet paper. Source: Images from Romanoni et al. [282].
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 286 [START_REF] Wan | Automatic moving object segmentation for freely moving cameras[END_REF][START_REF] López-Rubio | Foreground detection for moving cameras with stochastic approximation[END_REF][START_REF] Kurnianggoro | Online backgroundsubtraction with motion compensation for freely moving camera[END_REF][START_REF] Yu | Moving object detection for a moving camera based on global motion compensation and adaptive background model[END_REF][START_REF] Zhao | Background subtraction based on integration of alternative cues in freely moving camera[END_REF]. In 2011, Wu et al.[START_REF] Wu | Segmenting moving objects from a freely moving camera with an effective segmentation cue[END_REF] compute background and foreground maps in a joint spatial-color domain with the Kernel Density Estimation (KDE) method applies on the previous pixel classification. The spatial-color cue is used with contrast and motion cues to obtain a segmentation by a Conditional Random Field (CRF) energy minimization. In an other work, Wan et al.[START_REF] Wan | Automatic moving object segmentation for freely moving cameras[END_REF] construct two GMM for each feature points, based on the mean and the variance of background and foreground clusters. A foreground feature point is removed from the foreground set if its probability to belong to the foreground model is less than belong to the background model. In a recent work, Zhao et al.[START_REF] Zhao | Background subtraction based on integration of alternative cues in freely moving camera[END_REF] use two confidence images: the foreground confidence image preserved the proximity captured by a GMM while the background confidence image preserves set of background spatio-temporal features. Two models are used in the work of Lopez-Rubio et al.[START_REF] López-Rubio | Foreground detection for moving cameras with stochastic approximation[END_REF] for two different tasks: one to estimate the motion of the camera and the other one to compute the foreground.For both models, one Gaussian component represents the background and one uniform component represents the foreground. The first model is in the RGB space while the second one uses 24 features. In 2016, Kurnianggoro et al.[START_REF] Kurnianggoro | Online backgroundsubtraction with motion compensation for freely moving camera[END_REF] and, in a recent work by the same authors, Yu et al.[START_REF] Yu | Moving object detection for a moving camera based on global motion compensation and adaptive background model[END_REF] use a background model and a candidate background model. The candidate background guarantees that a pixel is stable on a given period before add it in the background model. In 2014, Ivanov[START_REF] Ivanov | Adaptation of known background subtraction methods in the case of a moving ptz camera mounted on a mobile platform[END_REF] uses two background models. The first model is used for the pixel classification of the current frame while the second one is used to reduce error in the classification. The second model is used to transform the first model into a coordinate system closer to the current frame in order to overlap a larger region.In 2014, Ferone and Maddalena[START_REF] Ferone | Neural background subtraction for pan-tiltzoom cameras[END_REF] propose to use a neural map as background model. This map is an enlarged version of a frame where each pixel is represented by n × n weight vectors. When a pixel find a match with the background model, the corresponding neuron in the map is updated and also its neighborhood in order to take into account spatial relationship. More recently, Avola et al.[START_REF] Avola | Combining keypoint clustering and neural background subtraction for realtime moving object detection by PTZ cameras[END_REF] perform the background subtraction on a modified version of the neural background subtraction proposed by Maddalena and Petrosino[START_REF] Maddalena | The 3dsobs+ algorithm for moving object detection[END_REF]. To save computation time and reduce the noise, only areas of foreground clusters, computed with foreground feature points, are used in the background subtraction process.Image registration is done by estimating a 2D transformation between the current image and a previous one or the background model. In 1994, Murray and Basu[START_REF] Murray | Motion tracking with an active camera[END_REF] use the focal length and the pan and tilt rotations given by potentiometers to estimate the position of a pixel in the previous frame. In an other work, Tzanidou et al.[START_REF] Tzanidou | Telemetry assisted frame registration and background subtraction in low-altitude UAV videos[END_REF] use the telemetry information provided by GPS and the intrinsic parameters of an Unmanned Aerial Vehicles (UAV).

Feature points that belong

  to foreground should not be used to compute the 2D transformation and Wan et al.[START_REF] Wan | Automatic moving object segmentation for freely moving cameras[END_REF] propose a two-layer iteration to estimate the transformation parameters. In the inner layer, the RANSAC algorithm is used to obtain a transformation model while in the outer layer the transformation parameters are used to classify feature points as background or foreground. The new background feature points are used to estimate a new transformation model until the classification converge. In 2010, Guillot et al.[START_REF] Guillot | Background subtraction adapted to PTZ cameras by keypoint density estimation[END_REF] reduce matching candidates for a feature point by using a small search window to match more points. In a further work, Guillot et al.[START_REF] Guillot | Background subtraction for PTZ cameras performing a guard tour and ap-plication to cameras with very low frame rate[END_REF] propose a modified version of the SURF descriptor for low textured areas. In 2018, Avola et al.[START_REF] Avola | Combining keypoint clustering and neural background subtraction for realtime moving object detection by PTZ cameras[END_REF] compute a first background/foreground classification on feature points according to a homography estimated on matches. Points that belong to the background are then used to estimate an affine transformation used for the camera motion compensation.In theory, after the registration step, the background model and the current frame are aligned and a foreground detection used with static camera can be applied. In practice the current frame is not perfectly aligned because of parallax generated by 3D objects that do not belong to the 2D plane described by the 2D transformation.A common way to handle the parallax is to use the neighborhood of a pixel to classify. In 1997, Odobez and Boutemy[START_REF] Odobez | Separation of moving regions from background in an image sequence acquired with a mobil camera[END_REF] use only motion measurements rather than intensity change measurements. These measurements are embedded in a multiscale Markov Random Field (MRF) framework to encourage neighboring pixels to have the same label. A voting technique is proposed by Paragios and Tziritas [308] to choose the regularization parameter of the cost function to minimize to obtain a binary mask. In an other work, Ren et al. [309] propose a Spatial Distribution of Gaussians (SDG) model to provide a temporal and spatial distribution of the background where the authors assume that the intensity distribution of each pixel can be modeled by a two-component MOG. The methods proposed by Kim et al. [310] and Viswanath et al. [311] compared the intensity of a pixel labeled as foreground and the intensities of its neighborhood in the background model. A low difference between intensities means a false alarm but the silhouette of a moving object can be affected by this refinement. Kim et al. used PID control-based tracking and probabilistic morphology refinement step to recover the silhouette. In the approach proposed by Romanoni et al. [282], two histograms are computed: one on the neighborhood of a pixel and another one based on the neighborhood and the intensities history of the same pixel. The Bhattacharyya distance is used with a threshold to detect mov-ing objects. In 2014, Setyawan et al. [312] classify the pixel as foreground or

  [START_REF] Perera | Moving object segmentation using scene understanding[END_REF] choose to use scene understanding to segment the image into region and attribute a predefined class, as road or tree, to each region. Huang et al.[START_REF] Huang | A hybrid moving object detection method for aerial images[END_REF] segment images into regions and road regions are identified by the size and the straight line property of the region contour. In both methods, a region is a moving object according to its position relative to a road region. Perera et al. also use the scene understanding to remove feature points on trees to obtain a better estimation of the homography. As for Huang et al. combine the result of image segmentation with the one of frame difference to obtain a better foreground segmentation.

Figure 9 :

 9 Figure 9: An example of clustering trajectories into a subspace (right) and the result on the image (left).

Figure 10 :

 10 Figure 10: An example motion segmentation on the top left image. The three other images represent the optical flow of the three motions observed in the image.

  use the OneCut algorithm to segment frames. Rather than manually select seeds by hand for the OneCut segmentation, the authors propose to find automatically the seeds by using motion boundaries computed by the Canny detector on the magnitude and direction flow fields. Foreground seeds are selected inside enclosed motion boundaries while background seeds are selected on rectangles that enclose motions boundaries. Recently, Huang et al. [332] estimate a dense optical flow by using FlowNet2.0 [333] an optical flow estimation algorithm with deep networks. The background optical flow is estimated by a quadratic transformation function with the Constrained RANSAC Algorithm (CRA). The CRA is a modified version of the RANSAC algorithm to avoid overfitting and improving the searching efficiency. In 2020, Zhang et al. [334] reconstruct the background orientation by solving the Poisson equation with the five-point interpolation method. The reconstruction is then compared to the original orientation field to obtain moving objects.

Figure 12 :

 12 Figure 12: An example of image registration with several planes (top line) compared with image registration with one plane (bottom line). The left column represents the rectified frame after the compensation and the right column represents the disparity.

  compute two kinds of motion. The first one is computed over a regular grid with the As Similar As Possible method. The motion of the whole image is a set of homography. The second motion is computed over superpixels with the KLT technique. These two motions are then used to obtain a background/foreground segmentation from motions. Recently, Ben Khalifa et al.[START_REF] Khalifa | Pedestrian detection using a moving camera: A novel framework for foreground detection[END_REF] propose a pedestrian detection with a camera located on top of a vehicle's windshield based on moving objects detection. The camera motion is estimated by matching blocks between two consecutive frame located in a ROI. This ROI is extracted on the top of the images because this portion should not contain foreground object according to the camera location.In 2008 Unger et al.[START_REF] Unger | Enhanced background subtraction using global motion compensation and mosaicing[END_REF] propose to use motion models to generate an artificial background image for each frame of the video and use it into a background subtraction process. The artificial background is constructed by a weighted accumulation of pixels of the neighboring frames. The weights are computed according a block-wise motion deviation and its the Rayleigh distribution modeling in order to accumulate background pixels only.In 2018, Kazantzidis et al.[START_REF] Kazantzidis | Videomics: A genomics-inspired paradigm for video analysis[END_REF] propose a method based on vide-omics, a genomics inspired paradigm. The frame is not divided into square blocks but by line. The scanline alignment is based on the analogy between protein sequence alignment and image pair correspondence. Pixels are matched according to a scoring function and gap are inserted to model mutations corresponding to pixel insertions, substitutions and deletions.The blocks are also used to model the scene. Rather than model each pixel in the image, each block is represented by one model which reduce computation time.

  In a further work, Chung et al.[START_REF] Chung | A two-stage foreground propagation for moving object detection in a non-stationary[END_REF] regulate the background model of Yi et al.[START_REF] Yi | Detection of moving objects with non-stationary cameras in 5.8ms: Bringing motion detection to your mobile device[END_REF] by including foreground cues coming from frame differencing. In an other work, Zheng et al.[START_REF] Zheng | Local-toglobal background modeling for moving object detection from non-static cameras[END_REF] propose to use two background models: local and global. The first one is used to obtain a first pixel classification after a motion compensation based on optical flow. This rough detection is used to construct a superpixel-level background regions which are used to estimate the GMM background appearance. This second background modeling, called the global background, is used to reduce noise and false detection by using the GMM background on pixels classified as foreground with the local background.

  use two background models with ages to reduce foreground and noise contamination. Models are swapped when the candidate model is older than the current model and the new candidate model is initialized to remove contaminations. In 2017, Makino et al.[START_REF] Makino | Movingobject detection method for moving cameras by merging background subtraction and optical flow methods[END_REF] use the method of Yi et al.[START_REF] Yi | Detection of moving objects with non-stationary cameras in 5.8ms: Bringing motion detection to your mobile device[END_REF] as a baseline to compute an anomaly score map. The authors also compute a motion score map based on optical flow angles after motion compensation. The two score maps are merged in the moving object detection step. In order to manage slow moving objects, Yun et al.[START_REF] Yun | Scene conditional background update for moving object detection in a moving camera[END_REF] update the SGM blockbased model of Yi et al.[START_REF] Yi | Detection of moving objects with non-stationary cameras in 5.8ms: Bringing motion detection to your mobile device[END_REF] according to the foreground velocity. In the case where the foreground moves less than a block size during several frames, the SGM mean is updated with the illumination change and the average intensity of the block. The SGM variance is increased according to the current block intensity and the mean the previous and current time. The authors also reduce false positives by combining threshold labeling and watershed segmentation. In an other work, Kim et al.[START_REF] Kim | Fast moving object detection with non-stationary background[END_REF] combine sparse optical flow clustering with the Delaunay triangulation method in order to complete the missing detection information of the Frame Differencing method. The optical flow clustering is computed on blocks with the K-means method. In an other approach, Sun et al.[START_REF] Sun | Fast background subtraction for moving cameras based on nonparametric models[END_REF] create two segmentations, one from motion and one from appearance. The motion one is created from the difference between the camera motion estimation and the superpixels motion estimation. Identical motions on superpixels come from the background and they are used as seeds for a region growing propagation. The appearance segmentation is based on color and Local Binary Similarity Patterns (LBSP). The two segmentations are then combined with MRF and the final segmentation is obtained by graph-cut. In 2017, Wu et al.

  videos, mostly taken by a moving camera and 114 sequences derived from these videos. The derived sequences differ from the original ones by their ground truth which represent a subset of motions in the video. For each sequence, complete trajectories of feature points and ground truth on the points are provided. For the 16 additional sequences, the trajectories contain missing data and outliers. Moving objects are chessboards in twothirds of sequences and the last third contains cars and people.

  (a) Hopkins 155+16 dataset, sequence people2 (b) FBMS-59, sequence giraffes01 (c) ChangeDetection.net, sequence continuousPan (d) DAVIS, sequence bmx-trees (e) ComplexBackground, sequence forest

Figure 14 :

 14 Figure 14: Illustrations of datasets with input images and their ground truth. The two first columns are images taken by a moving camera and the third column is the ground truth of images from the second column.

Figure 15 :

 15 Figure 15: An example of background/foreground segmentation on the people01 sequence the from the Hopkins dataset. Left: the original image. Center: the ground truth. Right: an example of background/foreground segmentation where green pixels are labeled as background and red pixels are labeled as foreground.

  Solved and unsolved challengesAmong all challenges presented in the section 3, two concerns more specifically this survey: Motion parallax and Moving background. The other challenges are generally overcome by using or adapting solutions which come from methods with a static camera. More information about those challenges are provided byGarcia-Garcia et al. [1].The moving objects detection methods presented in this survey are divided into two big categories: one plane and several planes. This categorization reflects the level of motion parallax that the methods can handle. The approaches that approximate the scene by one plane suppose a zero or a near-zero parallax while the parallax is present in those that use several planes for the scene approximation. The distribution of the methods between the two categories is Panoramic background subtraction

  handle a larger variety of scene configuration. Those approaches should be tested on more complex environment and more investigated to reach real-time performances for practical applications. The Motion segmentation and Subspace segmentation are interesting approaches since some of them are based on dense optical flow and represent an accurate scene representation but they suffer from a quite general assumption that the dominant motion or subspace belongs to background and thus reduce the scene approximation to one place.The comparison of the methods is quite difficult because there is no benchmark designed for background subtraction with a moving camera. The method evaluations provided in the papers are not always computed on the same baseline: different number of frame are used, sometimes a modified version of the methods are used and some video sequences are not publicly available. With this in mind, it could be interesting to create a complete dataset where the proposed sequences have different level of scene complexity, different type of camera motions and different duration.

  

Table 3 :

 3 Motion compensation methods summary. FB: Feature Based, DM: Direct Method,

AM: Affine Model, PM: Projective Model, MF: Morphological Filtering.

Table 4 :

 4 Subspace segmentation methods summary.

	References		Main contribution	T T L F B	D O P M R F G C A
	Sheikh et al.	(2009) [322]	Three dimensional subspace		×
	Elqursh and Elgammal (2012) [321] Appearance and motion models	× ×
	Nonaka et al.	(2013) [323]	Reduce time computation	× ×
	Berger and Seversky	(2014) [324]	Dynamic subspace tracking		×
	Sajid et al.	(2019) [325] Combine motion and appearance × ×

LTT: Long Term Trajectory, FB: Feature Based, DOP: Dense Optical Flow, MRF : Markov Random Field, GCA: Graph Cut Algorithm

Table 5 :

 5 The training of the appearance network requires a lot of annotated frames but those data does not exist currently. To overcome the problem, the authors propose a training based on weakly annotated video, i.e. video annotated with bounding boxes. Motion segmentation methods summary.

	References		Main contribution	T T L F B	D O P
	Narayana et al.	(2013) [327] Segmentation based on optical flow orientation × ×
	Yin et al.	(2015) [328]	Trajectoy-controlled watershed segmentation		×
	Bideau et al.	(2016) [329]	Combine angle and magnitude	× ×
	Kao et al.	(2016) [330]	3D motions segmentation	× ×
	Jain et al.	(2017) [336]	Appearance and motion network	× ×
	Tokmakov et al.	(2017) [335]	Appearance and motion network	× ×
	Zhu and Elgammal (2017) [326]	Multi-label background subtraction	× ×
	Sugimura et al.	(2018) [331]	Automatic OneCut method	×
	Huang et al.	(2019) [332]	Dual judgment mechanism	× ×
	Zhang et al.	(2020) [334]	Background orientation reconstruction	× ×

LTT: Long Term Trajectory, FB: Feature Based, DOP: Dense Optical Flow

Table 7 :

 7 assign pixels to one layer in the training stack or identifies them as foreground. Spatio-temporal subvolume identify candidate layers and non-parametric KDE is used to estimate the probability that the current pixel belongs to each candidate layers. Zamalieva et al.[START_REF] Zamalieva | Exploiting temporal geometry for moving camera background subtraction[END_REF] use the estimated epipolar geometry in a MAP-MRF framework for the background/foreground labeling step. Pixels are grouped by color coherency to reduce the size of the graph in the graph-cut algorithm for the energy minimization. In a recent work, Zhou et al.[START_REF] Zhou | Moving object detection using background subtraction for a moving camera with pronounced parallax[END_REF] detect regions that became visible by motion parallax and produce false alarms. The authors combine these regions information with a codebook-based background segmentation. Multi layers methods summary. RP: Real Planes, IP: Imaginary Planes, CR:

	References	Main contribution	R P	I P	C R	E G
	Jin et al.	(2008) [345] Cascade of RANSAC		× ×
	Patwardhan et al. (2008) [346] Training stack of layers		× × ×
	Zhang et al.	(2012) [347] Multi-classes RANSAC		× ×
	Zamalieva et al.	(2014) [348] Temporal fundamental matrix		× ×	
	Zamalieva et al.	(2014) [349] Adaptive motion compensation		×		
	Zamalieva et al.	(2014) [353] Stack of hypothetical 3D planes	× ×	
	Hu et al.	(2015) [350] Epipolar geometry		× ×	
	Kim et al.	(2016) [352] Distance and Motion Coordinate system × × ×
	Zhou et al.	(2017) [351] Regions revealed by motion parallax		× ×

Table 8 :

 8 Split image in blocks methods summary. RG: Regular Grid, S: Superpixels, MCI: Motion Compensation on Image, MCB: Motion Compensation on Blocks, BFM: Background and Foreground Models, MAM: Motion and Appearance Models, IM: Iterative Method.

•

  FBMS-59 2 dataset proposed by Ochs et al.[START_REF] Ochs | Segmentation of moving objects by long term video analysis[END_REF] (Freiburg-Berkeley

	Motion Segmentation dataset) is an extension of the BMS-26 dataset of
	Brox and Malik [375] (Berkeley Motion Segmentation dataset). The BMS-
	26 consists of 26 sequences, where 12 sequences come from the Hopkins 155
	dataset, taken by a moving camera where most video sequences present
	high camera movements. Brox and Malik provided ground truth masks on
	some frames of the BMS-26 dataset, accumulating a total of 189 frames
	annotated. Annotations are masks where each moving object is pixel-
	accurate identified by a grayscale value. The FBMS-59 dataset extended
	the BMS-26 dataset with 33 additional video sequences with a total of
	720 frames annotated. This dataset is decomposed into training and test
	sets. The masks provided can be easily used to evaluate moving objects
	detection algorithms.

• ChangeDetection.net 3 called CDnet. There exist two versions of this dataset: CDnet 2012

[START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF] 

and CDnet 2014

[START_REF] Wang | An expanded change detection benchmark dataset[END_REF]

. Almost all sequences are taken by a static camera but in CDnet 2014, four sequences are taken by a PTZ camera. For each sequence, a ground truth mask is provided.

Table 9 :

 9 F-score comparison on the Hopkins 155 dataset for the Panoramic background subtraction, the Motion compensation and the Subspace segmentation approaches. Values are reported from the original papers.

	Avola et al.	(2017) [253] 0.840	-	-	-	0.840
	Motion compensation					
	Ferone and Maddalena	(2014) [293] 0.940	0.950	0.862 -	0.913
	Minematsu et al.	(2015) [304] 0.875	0.896	-	0.822 0.802
	Minematsu et al. (1)	(2017) [305] 0.873	0.890	0.833 0.789 0.819
	Minematsu et al. (1)	(2017) [305] 0.864	0.897	0.824 0.748 0.667
	Avola et al.	(2018) [294] 0.876	0.903	-	-	0.871
	Zhao et al. (IFB SU)	(2018) [291] 0.53	0.68	0.65	0.81	0.64
	Zhao et al. (IFB KA)	(2018) [291] 0.63	0.72	0.66	0.79	0.61
	Zhao et al. (IFB SI)	(2018) [291] 0.53	0.80	0.70	0.88	0.63
	Subspace segmentation					
	Elqursh and Elgammal (1)	(2012) [321] 0.890	0.770	0.910 -	-
	Elqursh and Elgammal (2)	(2012) [321] 0.920	0.880	0.900 -	-
	Nonaka et al.	(2013) [323] 0.570	0.780	0.850 -	-
	Berger and Seversky	(2014) [324] 0.999	0.999	0.944 0.992 0.998
	Sajid et al. -SVM	(2019) [325] 0.95	0.92	0.94	0.87	0.90
	Sajid et al. -GMM	(2019) [325] 0.93	0.93	0.92	0.85	0.91

http://www.vision.jhu.edu/data/hopkins155

https://lmb.informatik.uni-freiburg.de/resources/datasets/moseg.en.html

http://changedetection.net

https://davischallenge.org

https://web.engr.oregonstate.edu/ ~lif/SegTrack2/dataset.html

http://vis-www.cs.umass.edu/motionSegmentation/complexBgVideos.html
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Source: Images from Irani and Anandan [START_REF] Irani | A unified approach to moving object detection in 2D and 3D scenes[END_REF].

work: when the camera and an object both move in the same direction with constant velocities. The constraints defined to distinguish the parallax and a 1155 moving object are verified and the object is labeled static. 

Multi planes

Multi planes scene representation was firstly used in motion segmentation [START_REF] Darrell | Robust estimation of a multi-layered motion representation[END_REF][START_REF] Wang | Representing moving images with layers[END_REF][START_REF] Ayer | Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding[END_REF]. Source: Images from Lim et al. [START_REF] Lim | Modeling and segmentation of floating foreground and background in videos[END_REF].

Contrary to Motion

In some methods [START_REF] Yi | Detection of moving objects with non-stationary cameras in 5.8ms: Bringing motion detection to your mobile device[END_REF][START_REF] Yun | Robust and fast moving object detection in a nonstationary camera via foreground probability based sampling[END_REF][START_REF] Chung | A two-stage foreground propagation for moving object detection in a non-stationary[END_REF][START_REF] Zheng | Local-toglobal background modeling for moving object detection from non-static cameras[END_REF][START_REF] Yun | Scene conditional background update for moving object detection in a moving camera[END_REF] the motion compensation is estimated on the whole image as in the section 5.0.3 but others compensate the camera motion by blocks. Rather than compute one homography for the whole image, one homography for each grid cell could be computed to register images [START_REF] Sun | Fast background subtraction for moving cameras based on nonparametric models[END_REF]361]. Some authors propose to estimate two types of motion for each 1230 block: one for the background and one for the foreground [START_REF] Kwak | Generalized background subtraction based on hybrid inference by belief propagation and Bayesian filtering[END_REF][START_REF] Lim | Modeling and segmentation of floating foreground and background in videos[END_REF][START_REF] Lim | Generalized background subtraction using superpixels with label integrated motion estimation[END_REF]. In In 2018, Minematsu et al. [START_REF] Minematsu | Reconstruction-based change detection with image completion for a freemoving camera[END_REF] propose a method based on patch reconstruction which does not require motion compensation. A first network is trained to reconstruct the masked center part of a patch by using the surrounding region.

The moving objects detection is realized by a second network trained to compare the reconstructed patch to the current one. This network is also able to classify shadows as background thanks to the supervised learning.

The proposed method based on genomics paradigm by Kazantzidis et al.

[367] differentiate unmatched pixels regions on scalines into foreground and background. These unmatched regions come from moving objects, occluded measures:

Several other measure metrics are also used:

• The Accuracy is the proportion of pixels detected as moving among all the labeled pixels.

• The Specificity (also known as selectively or true negative rate) is the proportion of pixels that are correctly detected as static among all pixels that belong to static objects in the ground truth.

Specif icity = T N/(T N + F P )

• The false positive rate (also known as fall-out) is the proportion of pixels that are incorrectly detected as moving among all pixels that belong to static objects in the ground truth.

F alseP ositiveRate : F P/(F P + T N )

• The false negative rate (also known as miss rate) is the proportion of pixels that are incorrectly static as moving among all pixels that belong to moving objects in the ground truth.

F alseN egativeRate : F N/(T P + F N ) (7)

Quantitative results

The tables 9 and 10 present F-score obtained on five sequences from the Hopkins 155 dataset for different methods presented in this survey. Those sequences are among the most used for evaluation and the values are reported from the original papers. Here we have chosen to present the F-score, since its a popular metric, but it worth to note that the evaluations are not computed unequal: there are more methods in the first category. There are two popular approaches: panoramic background subtraction and motion compensation.

The first has the advantage to construct an exhaustive background model while the second is simple and fast. In the same manner, the video sequences used in general for experimentation are mostly videos where the scene is quite flat, with low depth variations and thus low motion parallax, or far enough from the camera.

According to the f-score results presented in the section 6.3 on simple sequences, the moving background appears to be still challenging. The motion parallax challenge necessitate a comparison of several methods on the same sequences to evaluate its level of completion.

Future directions

Panoramic background subtraction and Dual cameras approaches are more dedicated to surveillance system with PTZ cameras since the observable scene