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Abstract  19 

During highly automated driving, drivers no longer physically control the vehicle but they might need 20 

to monitor the driving scene. This is true for SAE level 2, where monitoring the external environment 21 

is required; it is also true for level 3, where drivers must react quickly and safely to a take-over request. 22 

Without such monitoring, even if only partial, drivers are considered out-of-the-loop (OOTL) and safety 23 

may be compromised. The OOTL phenomenon may be particularly important for long automated 24 

driving periods during which mind wandering can occur. This study scrutinized drivers’ visual 25 

behaviour for 18 min of highly automated driving. Intersections between gaze and 13 areas of interest 26 

(AOIs) were analysed, considering both static and dynamic indicators. An estimation of self-reported 27 

mind wandering based on gaze behaviour was performed using partial least squares (PLS) regression 28 

models. The outputs of the PLS regressions allowed defining visual strategies associated with good 29 

monitoring of the driving scene. This information may enable online estimation of the OOTL 30 

phenomenon based on a driver’s spontaneous visual behaviour. 31 

 32 

Keywords: mind wandering; gaze behaviour; autonomous vehicles; PLS regression; driver monitoring 33 

1. Introduction 34 

 35 

The deployment of highly automated vehicles on the roads is imminent; it could occur anywhere 36 

between 2020 and 2030 (Chan, 2017). Among the expected benefits of autonomous vehicles 37 

(environmental, societal, etc), road safety is expected to improve (Fitch et al., 2014). The number of 38 

crashes caused by human error could be reduced by 90%, according to Stanton and Salmon (2009). 39 

However, to meet that target, drivers must be clearly aware of their role in the vehicle. That role partly 40 

depends on the level of automation.  41 

 42 

There are five levels of automation (SAE International, 2016), corresponding to a different balance of 43 

tasks between the automation and the driver. At levels 0 and 1, the driver is in full or partial control of 44 

the vehicle commands. Automated driving starts at level 2, when longitudinal and lateral control of the 45 

vehicle is performed by the automation, but the driver must continuously monitor the driving scene and 46 

intervene when needed, even without a request from the system. At level 3 (conditional automation), the 47 

driver may engage in secondary tasks, but must be able to regain vehicle control when required by the 48 

system. This implies that monitoring the driving scene is only required starting with the take-over 49 

request. At level 4 (high automation), under certain conditions, the automation is able to perform all 50 

driving functions and can handle critical situations without requesting a take-over, although driver 51 
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override may be possible. In level 5 (full automation), the vehicle is autonomous in all conditions and 52 

the driver’s action is no longer required. 53 

 54 

In all cases, as soon as the operational part of the driving task is automated, drivers become supervisors 55 

of the automation system and of the driving scene. The level of expected supervision decreases as the 56 

level of automation increases. In manual driving, drivers must gather information from the driving scene 57 

and the vehicle (perceptual process), and must interpret that information (cognitive process) and act 58 

appropriately (motor process). Their actions in turn generate information. By contrast, starting with level 59 

2 automation, the perceptual-motor loop is neutralized, which has consequences for perception and 60 

cognition (Mole et al., 2019). At level 3, driver engagement in secondary tasks may intensify those 61 

consequences, with long periods of distraction from the driving scene. These consequences are referred 62 

to in the literature as the out-of-the-loop (OOTL) phenomenon.  63 

 64 

The OOTL phenomenon was first observed in the aviation field (Endsley and Kiris, 1995), where 65 

automated piloting has long existed. Parasuraman and Riley (1997) showed that human pilots may be 66 

poor supervisors of the system. They may enter into a passive state when interacting with highly 67 

automated systems, causing a lack of situation awareness (Endsley, 1995). Recently, Merat et al. (2019) 68 

proposed an operational definition of OOTL in the context of automated driving. To be OOTL, drivers 69 

must lack physical control of the vehicle (motor process) and must not be monitoring the driving scene 70 

(perceptual or cognitive process). By contrast, when the driver is in manual control, they are considered 71 

to be in-the-loop. An intermediate state, namely on-the-loop (OTL), was introduced to designate cases 72 

where the driver correctly monitors the situation during autonomous driving.  73 

 74 

In cars, the OOTL phenomenon has mainly been investigated through comparisons of driver behaviour 75 

between automated and manual driving. As most of the information processed during driving is visual 76 

(Sivak, 1996), the analysis of gaze behaviour has received much interest. Compared to manual driving, 77 

simulated automated driving involves more horizontal dispersion of gaze (Mackenzie and Harris, 2015; 78 

Louw and Merat, 2017) and a lower percentage of glances towards the road centre (Louw et al., 2015a; 79 

Mackenzie and Harris, 2015). Similarly, in curve driving, automated driving was shown to enhance 80 

long-term anticipation through look-ahead fixations, to the detriment of short-term anticipation used to 81 

guide the vehicle (Mars and Navarro, 2012; Schnebelen et al., 2019). When a secondary task was 82 

performed by drivers, automated driving was associated with relatively frequent fixations on those tasks 83 

(Merat et al., 2012). 84 

 85 

When drivers are required to regain control of the vehicle, their behaviour after the take-over request is 86 

also considered to be an indicator of the OOTL phenomenon. Differences between automated and 87 

manual driving, as observed in critical scenarios, indicate that automated driving leads to impaired 88 
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visuomotor coordination during take-over (Mole et al., 2019). Navarro et al. (2016) showed that gaze 89 

distribution was widely dispersed, resulting in difficulties in steering around unexpected obstacles. 90 

Furthermore, drivers had longer reaction times to critical events, and vehicular control was impaired 91 

(Neubauer et al., 2012; Gold et al., 2013; Saxby et al., 2013; Louw et al., 2015b; Zeeb et al., 2015, 2017; 92 

Eriksson and Stanton, 2017). Such changes in driver behaviour during take-over were attributed to 93 

drivers being OOTL during automated driving. 94 

 95 

In addition, the OOTL phenomenon seems to increase with a prolonged period of automation. In the 96 

aviation field, Molloy and Parasuraman (1996) showed that monitoring performance decreased with 97 

time. In the automated driving context, some studies have indicated that prolonged periods of automated 98 

driving rendered drivers further OOTL (Körber et al., 2015; Feldhütter et al., 2017; Bourrelly et al., 99 

2019). For example, Bourelly et al. (2019) observed longer reaction times (+0.5 s) to a critical event 100 

after 1 h of automated driving, compared to reactions to the same event after 10 min.  101 

 102 

According to the definition of OOTL in automated driving (Merat et al. 2019), OOTL drivers do not 103 

correctly monitor the driving situation. The OOTL state may be experimentally induced by modifying 104 

perceptions of the driving environment or through instructions given to the drivers (i.e. using a secondary 105 

task). Louw et al. (2015b, 2016, 2017) reduced the visual information available for drivers using 106 

simulated fog to examine whether the driver was further OOTL when the fog was dense. In that sense, 107 

the OOTL state mostly occurred through impairment of perception. In other studies (Carsten et al., 2012; 108 

Merat et al., 2012), monitoring of the driving environment was altered by a secondary task. In these 109 

cases, the degradation of both perceptual (eyes off-road) and cognitive processes (mind off-road) yielded 110 

the OOTL phenomenon. 111 

 112 

However, OOTL may also spontaneously and progressively occur without any modification of the 113 

driving environment or the presence of a secondary task. Due to lack of activity, drivers can experience 114 

mind wandering (MW), progressively disengaging from the supervision task even in the absence of an 115 

external source of distraction (Körber et al., 2015; Feldhütter et al., 2017; Burdett et al., 2019). Gouraud 116 

et al. (2017) proposed a detailed review of the links between the OOTL phenomenon and MW. Both 117 

phenomena are characterized by a decoupling of the immediate task and leads to similar safety issues. 118 

The decoupling can be the result of a reduction in the perception of the environment relevant to the task 119 

(sensory attenuation), which can have a negative impact on the construction of an accurate situation 120 

model. Both MW and the OOTL phenomenon have been associated with a slower response or detection 121 

failure when a critical event occurs. Gouraud et al. (2017) conclude that MW markers could help study 122 

OOTL situations. MW can be assessed by various means, including physiological and behavioural 123 

indicators, although self-report measures remain widely used because of their robustness. Specific to the 124 

case of autonomous driving, MW may occur at level 2, when the driver is supposed to monitor the 125 
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driving scene. It may also happen at level 3 if the driver chooses not to engage in secondary tasks. In 126 

both cases, MW can be more difficult to assess than visual distraction, since gaze is not diverted from 127 

the driving scene. 128 

 129 

The OOTL state was defined in previous studies in a relative way: either drivers are more OOTL when 130 

automation is on, compared to manual driving; or they are more OOTL during prolonged automation, 131 

compared to a shorter duration. In all cases, the OOTL phenomenon impacts driver safety during take-132 

over, especially during long automated drives. Hence, determining whether a driver is OOTL or OTL 133 

must be performed before any situation requiring a take-over. 134 

 135 

This study estimated the driver’s state based on the observation of spontaneous gaze behaviour. The 136 

participants experienced an 18-min drive of automated driving (similar to Feldhuetter et al. 2017), with 137 

the OOTL phenomenon occurring spontaneously. Quantitative assessment of the OOTL state was based 138 

on the self-reported time of MW. The drivers’ gaze behaviour was analysed by considering 13 areas of 139 

interest, using static and dynamic indicators. Static indicators refer to the percentage of time the gaze is 140 

directed to one AOI and dynamic indicators refer to transitions from one AOI to another. An original 141 

method was used that involved multiple partial least squares (PLS) regression analyses. The goals were 142 

1) to identify and select the most important gaze indicators, and 2) to generate models for the relationship 143 

between gaze behaviour and MW score. The principle of this methodological choice was to identify the 144 

essential indicators from the overall spontaneous gaze behaviour, without relying on theoretical 145 

preconceptions. 146 

 147 

The research was guided by two research questions:  148 

 149 

1. Is it possible to identify gaze behaviour that is characteristic of OOTL drivers? (i.e. what 150 

constitutes inadequate monitoring of a driving situation?)  151 

2. Is it possible to estimate the driver’s OOTL state from the observation of spontaneous gaze 152 

strategies?  153 

2. Materials and Methods  154 

2.1. Participants 155 

The study involved 12 participants (N = 12; 3 female, 9 male), with a mean age of 21.4 years (SD = 5.34 156 

y). To facilitate the recording of accurate gaze data, volunteers were required to have either normal 157 
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vision or vision corrected with contact lenses. They all held a valid driver’s license, with average driving 158 

experience of 9950 km/year (SD = 5500). They signed written informed consent to participate. 159 

2.2. Experimental setup 160 

Figure 1 presents the driving simulator setup. This fixed-base simulator consisted of an adjustable seat, 161 

a steering wheel with force feedback, a gear lever, clutch, accelerator and brake pedals. The driving 162 

scene was generated with SCANeR Studio (v1.6) and displayed on three large screens in front of the 163 

driver (field of view ~= 120°). A dashboard screen indicated the speed of the vehicle. An HMI screen 164 

was added to the right-hand side of the driver, approximately where a vehicle's centre console is located. 165 

The description of the HMI can be found in the Procedure section. 166 

 167 

 168 

 169 

Figure 1: Driving simulator setup 170 

 171 

Gaze data were recorded using a Smart Eye Pro (V5.9) eye-tracker with four cameras; two were below 172 

the central screen and one below each peripheral screen. The calibration was performed in two steps. 173 

First, a 3D model of the driver’s head was computed using an 11-point head calibration procedure with 174 

the head and gaze oriented toward the points. Then, the gaze was calibrated using 15 points: nine on the 175 

central screen, two on each peripheral screen, one on the dashboard and one on the HMI screen; with 176 

the head oriented to the central screen and gaze directed to the points. Gaze data were synchronized and 177 

recorded with vehicle data at 20Hz by the driving simulator software.  178 

 179 

Most of the road was a 40-km two-lane dual carriageway, with a speed limit of 130 km/h in accordance 180 

with French regulations. Occasional changes in road geometry and speed limits were included to make 181 

the driving less monotonous.  This included temporary 3-lane traffic flow, highway exits, slope variation 182 
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and variation of the speed limit (130 km/h to 110 km/h). In both directions on the highway, traffic was 183 

fluid, with eight overtaking situations. 184 

2.3. Procedure 185 

The participants first adjusted the seat position, and the gaze calibration procedure was performed. Then, 186 

they drove manually along a training track to become accustomed to the driving environment and the 187 

vehicle’s reactions. Once this training session was completed, instructions for automated driving were 188 

given orally.  189 

 190 

Drivers were told that the automated function would only be available for a portion of the road. The 191 

distance and time remaining in the autonomous mode were displayed on the left of the HMI. When 192 

activated by pressing a button, the automation controlled the lateral position and speed of the vehicle 193 

appropriately, accounting for traffic, speed limits and other conditions, and overtaking other cars if 194 

necessary. Participants were instructed to take control of the vehicle when requested by the system.  195 

 196 

Two possible use cases were presented to the participants. In the first case, the vehicle was approaching 197 

the end of the automated road section. The drivers would receive mild auditory and visual warning 198 

signals and would have 45 s to regain control. The second use case was an unexpected event, such as 199 

the loss of sensors. In this case, an intense auditory alarm would sound and a new pictogram would be 200 

displayed, and drivers would have only 8 s to resume control. All the pictograms and sounds used by 201 

the HMI were presented to participants before they began a second training session. The pictograms are 202 

shown in Figure 2.  203 

 204 

 205 

 206 

Figure 2: Pictograms displayed on the HMI. A, autonomous driving available; 207 

B, autonomous driving activated; C, critical take-over request (8 s); D, planned take-over request (45 s). 208 

 209 

The second training session allowed participants to experience semi-automated driving (SAE level 1): 210 

cruise control with the driver in charge of the steering wheel; and level 3: conditional automation. At 211 

level 3, there were four transitions to manual control, two in each use case presented in the instructions. 212 

All take-overs were properly performed during the training session. 213 
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 214 

The experiment itself then commenced. The study followed a within-participant design, with all 215 

participants driving under both automated and semi-automated conditions. These conditions were 216 

similar, but no critical case happened in the semi-automated condition. However, because this paper 217 

concerns the analysis and modelling of gaze behaviour during automated driving, only the results 218 

obtained during the automated condition are presented here. 219 

 220 

In the automated driving condition, participants activated the automated driving mode just before 221 

entering a highway. Gaze data were recorded as soon as the vehicle was correctly inserted in the lane 222 

and had reached 130 km/h. No major driving events or take-over request occurred in the first 15 min on 223 

the road, to allow enough time for the driver to become OOTL. The driver did not perform any secondary 224 

task during that time.  225 

 226 

Between minutes 16 and 17, the two vehicles that would be involved in the critical case appeared in the 227 

driving scene. One overtook the participant’s vehicle on the left and positioned itself in the right lane, 228 

300 m ahead. The other vehicle remained in the left lane, slowly approaching the participant’s vehicle. 229 

During minute 18 of automated driving, participants experienced a critical take-over request occurring 230 

in response to unexpected braking from the lead vehicle. The warning signals were delivered as soon as 231 

the lead vehicle started to brake, with a time-to-collision of 8 s. At that moment, the lead vehicle was in 232 

the adjacent lane, in the blind spot of the participant. Changing lane would lead to a collision. To 233 

successfully handle the critical situation, drivers had to brake, remain in the right lane until the 234 

overtaking vehicle had passed, and then change lanes to avoid the lead vehicle. The scenario ended 30 235 

s after the critical case.  236 

 237 

Participants were then asked to report on a continuous Likert scale the proportion of time they had spent 238 

thinking about something other than the driving task, throughout the trial. This simple method of MW 239 

self-assessment has been shown to be sensitive to driver disengagement during prolonged driving 240 

sessions (Mars et al., 2014).  241 

2.4. Data structure and annotations  242 

2.4.1 Definition of the MW score Y  243 

 244 

In the absence of a secondary task, the evaluation of the percentage of time spent thinking about 245 

something other than the driving task was regarded as a self-assessment of the MW. The higher the 246 

percentage, the more the driver had estimated being OOTL. Percentages for all participants were stored 247 
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in a vector with 12 elements. After standardization of the data (conversion to a z score), the vector was 248 

denoted as Y and named MW score.  249 

2.4.2 Definition of the matrix of gaze behaviour X  250 

 251 

The driving scene was divided into 13 areas of interest (AOI), as shown in Figure 3. These are described 252 

below. 253 

a) The central screen contained six AOIs: 254 

 central mirror (CM) 255 

 road centre (RC), defined as a circular area of 8° radius in front of the driver 256 

 four additional areas, defined relative to the road centre (Up, Left, Down, Right).  257 

 258 

The percentage road centre (PRC) is defined as the proportion of time spent in RC, as introduced by 259 

Victor (2005). A decrease in PRC was found to be a reliable indicator of distraction during driving; 260 

drivers reduced their PRC when visually or auditorily distracted (Victor et al., 2005).  261 

 262 

b) Each peripheral screen contained two areas, with two items in each: 263 

 lateral mirror (LM, RM) 264 

 the remaining peripheral scene (LS, RS) 265 

 266 

c) The dashboard (D) 267 

 268 

d) The HMI (HMI) 269 

 270 

e) All data for gazes directed outside all the above areas were grouped as “other areas” (Others). 271 

 272 

 273 

 274 
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Figure 3: Division of the driving environment into 13 areas of interest 275 

 276 

The percentage of time spent gazing at each AOI was computed, as was a matrix of transitions between 277 

AOIs. Using Markov logic, the matrix of transitions between AOIs corresponded to the probability of 278 

shifting from one AOI to another. The probability that gaze remained in the same AOI was also 279 

computed. This constituted the diagonal of the transition matrix. Probabilities were estimated by the 280 

observations of the participants (see Gonçalves et al., 2019, for an application of Markov chains in case 281 

of a lane change manoeuvre). Before a given AOI was intersected for the first time, a prior probability 282 

was associated with it. A uniform law was used for prior probabilities. 283 

 284 

The 13 AOIs defined the entire world. Thus, the transition matrix was a 13*13 matrix. If rows contained 285 

the current AOI and columns the probabilities, the sum of each row was equal to 1. In all cases, next 286 

gaze intersection appears in one of the 13 areas of interest.  287 

 288 

In this study, the driver’s gaze behaviour for each participant was considered to be the combination of 289 

static and dynamic indicators of gaze behaviour. Static refers to percentage of time in one AOI; dynamic 290 

refers to the transition matrix. Thus, the gaze strategy of a participant was represented by a vector of 291 

182 numerical indicators (= 13*13 transitions + 13 percentage of time on each AOI). When considering 292 

all participants, the matrix of gaze strategies was named X, and its size was 12 (participants) * 182 293 

(visual indicators).  294 

 295 

Supplementary indicators that were sensitive to drivers’ drowsiness were also computed. These included 296 

percentage of eye closure (PERCLOS;  see Wierwille et al., 1994) and the blink-rate (Stern et al., 1994). 297 

2.4.3 Computation of training and validation datasets 298 

The objective was to predict the MW score as a function of gaze behaviour. Therefore, a training dataset 299 

(i.e., a gaze-behaviour matrix to create the model) and a validation dataset (a gaze-behaviour matrix to 300 

evaluate the model) were required.  301 

 302 

The gaze-behaviour matrix obtained during the last two minutes (16 and 17) of automated driving was 303 

chosen as the validation dataset. The rationale was that because OOTL increases with automation 304 

duration, the final two minutes might reflect the visual consequences of the OOTL phenomenon most 305 

accurately. The validation dataset did not include the gaze data recorded once the take-over request was 306 

initiated. 307 

 308 
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Nevertheless, the question of the speed of appearance of OOTL and the observation time required to 309 

model it was of interest. To answer this question, 15 training datasets (i.e. 15 gaze-behaviour matrixes), 310 

labelled Xt, were calculated. The difference between the sets was the integration time – that is, the 311 

duration of automated driving while the matrix of gaze behaviour was computed. The integration time 312 

varied from 1 min to 15 min. The reference for the time window was the 15th minute of simulation (i.e. 313 

immediately before the validation dataset). Thus, X1 considered gaze behaviour during one minute (the 314 

15th minute), whereas X7 was computed from seven minutes of automated driving (between the 9th and 315 

15th minutes). The rationale was to evaluate whether using a short time window was enough to capture 316 

the consequences of OOTL to create a satisfactory model, or whether aggregating more data by 317 

enlarging the time window would make the model more robust.  318 

 319 

In summary, 15 matrixes of gaze behaviours (labelled Xt for t between 1 and 15 min) were calculated, 320 

and these constituted the training datasets for the model. Once the best model had been selected, we 321 

validated it by comparing the MW score to the model’s prediction based on the two final minutes of 322 

driving (16th and 17th minutes).  323 

2.4.4 Choice of model for prediction: PLS regression  324 

Regarding the data structuring described above, the aim was to predict Y (MW score) from Xt (gaze-325 

behaviour matrix), given the following conditions: 326 

 327 

- Visual indicators (Xt) are correlated. The driving environment was divided into 13 AOIs, hence, 328 

the percentage of time spent on 12 AOIs enabled calculating the percentage of time spent on the 329 

13th AOI. In mathematical terms, Xt might not be full rank.  330 

- The number of visual indicators (182) that could explain Y is higher than the number of 331 

observations made on the participants (12). 332 

 333 

Considering these constraints, the PLS regression model was selected. PLS regression yields the best 334 

estimation of Y available with a linear model given the matrix Xt (Abdi, 2010). All PLS regressions 335 

performed in this study used the PLS regression package (Wehrens and Mevik, 2007) from R (Core 336 

Team et al., 2013). 337 

2.5. Data analysis 338 

Four sequential stages composed the analysis of the training datasets (Xt) (see Figure 4):  339 

1. Step A entailed finding the optimal structure (i.e. the optimal number of components) of the 340 

PLS regression model for predicting the MW score.  341 
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2. Step B entailed selecting the visual indicators that significantly contributed to MW score 342 

prediction.  343 

3. In Step C, we considered the optimal parameters (components and visual indicators) of the 344 

prediction model, and evaluated the model’s accuracy using the mean square error of prediction 345 

(MSEP) for both the training and validation datasets. 346 

4. In Step D, we selected the model with the least validation error.  347 

 348 

The step-by-step procedure of the data analysis is presented in the appendix. Only the final results, which 349 

lead to model selection, are presented in the next section (Results).  350 

 351 

 352 

Figure 4: Data analysis was performed in four sequential steps. First, the best parameters of the PLS regression 353 

models were identified. This entailed finding the optimal number of components and reducing the number of 354 

visual indicators (Steps A and B). Then, in this optimal configuration, the accuracy of the models was considered 355 

by computing the mean square error of prediction, for both training and validation datasets (Step C). In the last 356 

step (Step D), the model with the lowest validation error was selected and interpreted. 357 
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3. Results 358 

3.1. MW scores and drowsiness indicators 359 

Figure 5 shows that the self-reported MW scores varied widely among participants. The median score 360 

was 43%, but four participants (participants 9 to 12) estimated that they had spent more than 70% of the 361 

time thinking about something other than the driving task. Those four participants failed in the critical 362 

case. Two other participants (3 and 4) also failed, with moderate MW scores of around 30%. All other 363 

participants managed to avoid a collision. 364 

 365 

 366 

 367 

 368 

Figure 5: MW scores reported by the participants according to the outcome in the critical case. The colour of the 369 

marker indicates whether participants passed (green) or failed (red) the critical case. The dashed lines represent 370 

the average of the successful or failed groups.  Participants are sorted according to their MW score, not their 371 

order of passing the experiment. 372 

 373 

Mean PERCLOS and blink-rate per participant showed no significant correlation with MW score (r = 374 

0.25 and r = -0.49 respectively). The highest PERCLOS score was 4.73%, obtained by participant 2. 375 

Furthermore, a paired t-test revealed no significant differences for either PERCLOS or blink-rate 376 

between the first and last five minutes of automated driving (p = 0.28 and p = 0.11 respectively).  377 
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3.2. Selection of best model for MW score prediction 378 

Results obtained for all different training datasets at the end of the PLS regression procedure (see 379 

appendixes for details) are presented in Table 1.  380 

 381 

 382 

 383 

 384 

 385 

 386 

Table 1: Optimal number of components, number of selected visual indicators and mean square error of 387 

prediction (for both training and validation datasets) as a function of the time window. A minimum of validation 388 

error was found for gaze data computed over 10 minutes of automated driving (0.419).  389 

Time 

Window 

(min) 

Optimal number 

of components 

(step A) 

Number of 

selected 

visual indicators 

(step B) 

Mean square error of 

prediction with 

training dataset 

(step C) 

Mean square error of 

prediction with 

validation dataset 

(step C) 

1 3 56 <0.001 0.478 

2 1 26 0.200 0.625 

3 1 26 0.122 0.697 

4 1 16 0.054 0.915 

5 3 52 0.002 0.721 

6 1 19 0.233 0.542 

7 4 88 <0.001 0.563 

8 5 80 < 0.001 0.522 

9 1 11 0.224 0.443 

10 1 12 0.211 0.419 

11 1 8 0.130 0.446 

12 1 7 0.131 0.496 

13 1 57 0.248 0.533 

14 1 3 0.141 0.598 

15 1 3 0.147 0.595 

 390 

Table 1 shows that the training error was small (<0.25) in all cases and it depended on the structure of 391 

the model (i.e. number of components). The models having the most components (time windows of 1, 392 
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5, 7 and 8 minutes) predicted the learning dataset almost perfectly (MSEP <0.001). However, MSEP for 393 

the validation dataset was comparatively high. As the time window increased, the validation error 394 

decreased, attaining the minimal value (0.419) for 10 min of data. Thereafter, adding more data by 395 

expanding the time window increased the MSEP. Thus, ultimately the best model for predicting MW 396 

score from the last two minutes of driving was obtained by aggregating the gaze data for the 10 min  397 

that preceded those final minutes. 398 

3.3. Final prediction of MW score 399 

After identifying the best model, it remains to be determined what visual indicators were most 400 

important for predicting the MW score and how well the predicted scores were correlated to the actual 401 

scores. 402 

3.3.1 Visual indicators 403 

The best PLS model retained only 12 visual indicators to predict the MW score. The PLS regression 404 

coefficients and the correlation coefficients between MW score and the 12 selected visual indicators 405 

are presented in Table 2. Figure 6 illustrates the visual indicators retained by the model. 406 

 407 

Table 2: Coefficients of the PLS regression and correlation coefficients between the MW score and the visual 408 

indicators (* p<0.05; ** p< 0.01). The 12 first indicators correspond to those shown in Figure 6, which were 409 

used for the final prediction of MW score. The last four static indicators were not selected by the PLS regression, 410 

but are reported for discussion.  411 

Impact on 

the 

prediction 

Visual indicators 

PLS 

regression 

coefficients 

Correlation 

coefficients 

Decreases 

 the MW 

score 

Transition from the Central Mirror to the Left Screen -0.098 -0.65* 

Transition from Others to the Left Screen -0.096 -0.63* 

Transition from the Others to the Road Centre -0.093 -0.61* 

Transition from the Road Centre to the Left Mirror -0.091 -0.63* 

Percentage of time spent in the Left Mirror -0.089 -0.58* 

Increases  

the MW 

score 

Percentage of time spent in the Others Area 0.087 0.58* 

Percentage of time spent in the Dashboard 0.094 0.62* 

Transition from the Central Mirror to the Others Area 0.099 0.66* 

Transition from the Road Centre to the Others Area 0.101 0.67* 

Transition from the Road Centre to the Down area 0.102 0.66* 

Multiple gazes in the Down area 0.108 0.71** 
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Percentage of time spent in the Down area                    0.115 0.76** 

Non-

selected  

static 

indicators 

Percentage of time spent in the Road Centre (PRC)    -0.16 

Percentage of time spent in the Central Mirror   -0.14 

Percentage of time spent in the Right Mirror   -0.09 

Percentage of time spent in the HMI   0.47 

 412 

 413 

Figure 6: Visual indicators relevant for MW score prediction. 414 

The influence of a visual indicator on MW score is displayed in colour: red shows an increase in MW score, and 415 

green shows reduced MW score. Arrows represent transitions between AOIs. Filled areas, or name written in red 416 

(in the case of Others) means that percentage of time spent gazing in the AOI was selected by PLS regression.  417 

 418 

Of the 12 indicators, eight were dynamic (transitions between AOI) and four were static (percentage of 419 

time spent in the area). The signs of the coefficients (see Table 2) indicate that seven of them contributed 420 

to an increase of the MW score estimation. These are shown in red in Figure 6, and can be summarized 421 

as follows: 1) taking the gaze off the central mirror to look away from the driving scene, 2) taking the 422 

gaze off the road centre area, to look down or away from the driving scene, and 3) spending too much 423 

time in the down area or on the dashboard.  424 

 425 

By contrast, five indicators contributed to a reduction in MW score estimation, shown in green in 426 

Figure 6. These consisted of 1) redirecting the gaze to the road from any area outside the driving scene 427 

(Others), 2) regularly checking the surroundings by looking at the left view mirror or the left side screen. 428 

3.3.2 Prediction of MW score 429 

Figure 7 presents the results of estimating the MW scores using the best model (time window = 10 min; 430 

12 visual indicators; 1 component) for the training dataset (A) and the validation dataset (B).  431 

 432 

 433 
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 434 

 435 

Figure 7: Correlation plots between the (real) MW score and the predictions of the MW score by PLS 436 

regressions on the training dataset (A) and the validation dataset (B). All the values presented here are 437 

standardized. 438 

 439 

As discussed in the previous section, the PLS model with the training data provided an accurate 440 

estimation of the MW score. The mean square error of prediction was low (MSEP=0.21) and a 441 

significant positive correlation was noted between the predicted and real values (r=0.88, p<0.01). The 442 

prediction was not as accurate with the validation dataset (MSEP=0.42), but a significant positive 443 

correlation was still obtained (r=0.82, p<0.05). The goodness-of-fit of this model was computed using 444 

R-squared values for training and validation, which were 0.76 and 0.67, respectively. The assessment of 445 

goodness-of-fit can also be performed using the model residuals. These results are provided in the 446 

Appendix.  447 

4. Discussion 448 

 449 

The OOTL phenomenon results from the combination of a driver not having physical control of their 450 

vehicle and incorrectly monitoring the driving situation (Merat et al, 2019). The alternative state, OTL, 451 

indicates a driver who satisfactorily monitors the driving environment during automated driving. 452 

Monitoring of the driving situation may be impaired when actively engaged in a secondary task. It can 453 

also take the form of MW, i.e cognitive disengagement from the driving task due to lack of activity. 454 

This study specifically investigated the second form of the OOTL phenomenon. Whatever the condition 455 

under which the OOTL phenomenon occurs, the question of how to model and quantify what constitutes 456 

proper monitoring of the driving scene remains debatable. The study addressed this question by 457 

distinguishing OTL and OOTL drivers in a highway driving context.  458 

 459 
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The method consisted of using multiple PLS regressions to identify characteristic elements of the gaze 460 

behaviour of OTL and OOTL drivers. The multi-step approach began with 182 indicators as an input 461 

matrix, accounting for both static elements (cumulative time spent in 13 AOIs) and dynamic elements 462 

(transitions between AOIs). These visual indicators were computed for different time windows to assess 463 

the evolution of the OOTL phenomenon over time. Once the optimal parameters of each model were 464 

calculated, the MW scores were predicted. Finally, a linear combination of the most important indicators 465 

enabled estimating the driver’s MW score accurately. 466 

4.1. What constitutes good monitoring of a driving situation? 467 

 468 

The results revealed that drivers with relatively low MW scores made many transitions from the road 469 

centre to the left rearview mirror. In total, they spent more time looking at the mirror. They also looked 470 

at the left screen, where they could monitor traffic, immediately after gathering information from the 471 

central mirror. After spending time looking at areas unrelated to driving (“Others”), they frequently 472 

returned their gaze to the road (road centre area) or to the left screen. By contrast, drivers with relatively 473 

high MW scores made many transitions from the road centre to areas irrelevant to driving, where they 474 

gazed for a considerable time. They also gazed often at the lower part of the front screen and the 475 

dashboard. 476 

 477 

These findings can be interpreted in terms of the adequacy of the driver’s gaze strategy to maintain 478 

sufficient situation awareness (Endsley, 1995) in autonomous mode. According to Merat (2019), 479 

situation awareness during automated driving involves three dimensions: perception, comprehension 480 

and projection. In the current study, OTL drivers remained dynamically aware of their surroundings by 481 

regularly checking the road ahead, the left lane and the left rearview mirror. Doing so helped them to 482 

anticipate future hazards and avoid difficulties when reacting in the final critical case. These gaze 483 

strategies allowed them to perceive, comprehend and project the future state of the driving situation 484 

appropriately. In other words, they had adequate situation awareness.  485 

 486 

By contrast, the OOTL drivers’ gaze was more strongly attracted by irrelevant information outside the 487 

simulator. Even when looking at the driving environment, the driver favoured gazing at the road 488 

immediately in front (Down Area) and monitored their vehicle speed on the dashboard. Although OOTL 489 

drivers continued to correctly perceive the state of their vehicle and its position in the lane, they showed 490 

relatively few signs of visual anticipation by looking far ahead and they paid relatively little attention to 491 

other vehicles on the road. 492 

 493 
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Previous studies (Carsten et al., 2012; Louw et al., 2016) showed that manual drivers displayed 494 

a higher percentage of looking at the road centre (PRC) than drivers with automation. In these studies, 495 

secondary tasks were allowed or required by the experimental procedure. By contrast, in the current 496 

study, PRC did not emerge as a critical indicator (see Table 2). This was the case for most static 497 

indicators. This finding indicates that that a good monitoring of the situation is not so much a matter of 498 

spending considerable time looking at the road. It looks more important to regularly check relevant 499 

objects in the scene. Thus, considering the transitions between areas is more important than the amount 500 

of time spent on a particular area. For instance, moving the gaze away from the road centre might 501 

indicate a relatively high level of disengagement if the driver repeatedly looks at irrelevant areas. 502 

However, it could also contribute to situation awareness if the gaze moves to the left rearview mirror. 503 

 504 

The multiple PLS regression method allowed us to identify markers of the OOTL phenomenon 505 

from a rich set of data on drivers’ gazes. This identification might have been achieved with simpler 506 

approaches, for example by examining the mean difference in visual indicators between two groups of 507 

participants, namely those having high or low MW scores. It might also have been possible to examine 508 

only the correlations between MW score and individual indicators. In this case, however, an a-priori 509 

selection should have been made, given the number of possibilities (182 indicators, with 13 AOI). 510 

Furthermore, individual correlations would not account for relationships between indicators. The 511 

advantage of PLS regression analysis is that all visual indicators are considered together to optimize the 512 

prediction of MW scores. 513 

4.2. Is it possible to estimate drivers’ OOTL state from the 514 

observation of spontaneous gaze strategies?  515 

 516 

The results of the modelling work show that the best estimation of the MW score was obtained by 517 

considering 10 minutes of gaze data. The least prediction error occurred when the training dataset was 518 

used; however, performance was also good for the validation dataset (i.e. only two minutes of driving 519 

data, which were not used for the model determination).  520 

 521 

It can be concluded that the influence of the driver’s state on their gaze strategy was qualitatively similar 522 

during the last two minutes of automated driving as it had been during the previous 10 minutes. This 523 

point suggests that detecting the OOTL state could perhaps be performed using a shorter time window 524 

than 10 minutes. This is interesting from the perspective of defining an algorithm for real automated 525 

vehicles to monitor the driver’s state. However, further tests are necessary, notably with other 526 

participants and in other driving contexts.  527 

 528 
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The results also suggest that the OOTL phenomenon took some time to appear and that it increased with 529 

the duration of automated driving (Körber et al., 2015; Feldhütter et al., 2017; Bourrelly et al., 2019). 530 

The prediction error decreased when more gaze data were considered, but the minimal value occurred 531 

for 10 minutes. Beyond this point, the error gradually increased. This finding can probably be explained 532 

by the fact that considering more than 10 minutes of gaze data meant aggregating data from the 533 

beginning of the scenario. During the initial minutes, drivers had not had enough time to become OOTL. 534 

In order to evaluate the actual evolution of MW over time, an online measurement would have been 535 

preferable. Probe techniques that interrupt the participant could hardly have been considered under our 536 

driving conditions, as they could have prevented the OOTL phenomenon from developing. 537 

Physiological indicators such as pupil diameter, skin conductance or cardiac measurements could be 538 

considered in the future, although their robustness remains to be demonstrated. 539 

 540 

The influence of the OOTL phenomenon has often been assessed in terms of its consequences in a take-541 

over situation. Drivers who are OOTL usually react relatively late and inefficiently when a critical event 542 

occurs, especially after a long time spent in automation (Neubauer et al., 2012; Gold et al., 2013; Saxby 543 

et al., 2013; Louw et al., 2015b; Zeeb et al., 2015, 2017; Eriksson and Stanton, 2017, Bourrelly et al., 544 

2019). More direct assessment of the OOTL phenomenon may also be performed using post-trial 545 

questionnaires (see for instance Lu et al., 2017, for an interesting approach in evaluating situation 546 

awareness). In the present study, the drivers’ state was assessed by asking the participants to report their 547 

level of MW. The results showed that drivers with the highest level of MW all failed to take over 548 

adequately, which implies that they were indeed OOTL. Nevertheless, failure to correctly manage the 549 

critical situation also occurred for two participants, who reported only a moderate level of MW. This 550 

finding suggests that the quality of a take-over is not entirely determined by the degree of OOTL before 551 

the take-over request. The skills of the driver to quickly recover situation awareness and to handle the 552 

vehicle in the time allocated may also be essential aspects.  553 

 554 

A last point worth mentioning is that the MW scores were not correlated to PERCLOS and blink-rate 555 

indicators, which have been shown to be highly predictive of drowsiness (Jacobé de Naurois et al., 2019) 556 

. The two indicators remained lower than values typically associated with drowsy states during driving. 557 

(PERCLOS of >12.5% was used to categorize drowsy drivers in Hanowski et al. 2008). Thus, we 558 

concluded that the MW score did not reflect driver fatigue in our experiments. This result might be 559 

different for an extended period of automated driving, during which participants might fall asleep 560 

(Vogelpohl et al., 2019). This was observed by Bourrelly et al. (2018) in a 1-h test run of automated 561 

driving. It remains to be determined whether the multiple PLS approach we propose can discriminate 562 

between the two phenomena. The value of the PLS approach to realize an integrated diagnostic must 563 

also be determined.  564 
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5. Conclusion 565 

 566 

We investigated whether drivers’ gaze behaviour could be used to detect the OOTL phenomenon during 567 

automated driving. The results indicate that the gaze dynamics appear to be a crucial point: being OTL 568 

required frequent gaze shifts to the road while also obtaining tactical information about the oncoming 569 

situation.  570 

 571 

It remains to be determined whether this conclusion can be generalized to other conditions under which 572 

the OOTL phenomenon may occur. It was induced in this study by a relatively monotonous driving task 573 

in the absence of external distraction. However, being out of the loop may also be due to the engagement 574 

of attention in a secondary task, an expected consequence of Level 3 automation. In this case, changes 575 

in driver behaviour will most likely be characterised by a massive redirection of attention to external 576 

displays. It would be interesting to assess whether dynamic indicators will be essential to improve the 577 

estimation of the driver's state or whether static indicators, such as the time spent without looking at the 578 

road, are sufficient. The method used in this study could help to answer this question. 579 

 580 

To more accurately detect the OOTL phenomenon during automated driving, the analysis of gaze 581 

behaviour could perhaps be coupled with other approaches. For example, physiological measurements 582 

or the analysis of the driver’s posture could be incorporated in the diagnosis. 583 
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 728 

9. Appendix 1: Step-by-step procedure of PLS 729 

regression 730 

This appendix develops step-by-step the procedure to predict the MW score (Y) using PLS regressions. 731 

We used a training dataset (matrix of gaze behaviour computed over a given time window t, Xt) and a 732 

validation dataset (matrix of gaze behaviour computed over the two final minutes of automated driving, 733 

Xval). 734 

Steps A and B were performed with the training datasets and enabled computing the optimal parameters 735 

(number of components and relevant visual indicators) of the prediction models. With that configuration, 736 

the accuracy of the model was tested for both the training and validation datasets (Step C).  737 

Step A: Calculating the optimal number of components 738 

 739 

Principle 740 

 741 

PLS models are based on several orthogonal components, which constitute the underlying structure of 742 

the prediction model. With many components, the model will be complex and highly accurate but also 743 

very specific of the data. By contrast, few components will mean a simpler model structure. The model 744 

may lose accuracy but may be more generalizable to other datasets. Thus, an optimal compromise in the 745 

number of components can prevent data overfitting while maintaining high accuracy.  746 

 747 

 748 

Application 749 

 750 

This compromise was sought by testing several numbers of components (from one to 10 components). 751 

The optimal number of components would minimize the mean square error of prediction (MSEP), with 752 

a leave-one-out procedure.  753 
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Step B: Reducing the number of visual indicators 754 

In the previous step, an optimal structure of the prediction model was found, considering all possible 755 

visual indicators (182) to predict the MW score. The aim of this next step was to increase the predictive 756 

power (i.e. the percentage of variance in Y that was explained) by selecting fewer indicators. 757 

 758 

Principle 759 

 760 

Because PLS regression is a linear statistical model, the relationship between the training dataset (Xt) 761 

and the dependent variable to estimate Ŷt,   train was linear: 762 

Yt,   train
̂ =  Xt ∗ Ct 763 

 where Ct is the matrix of the regression coefficients. 764 

 765 

Coefficients can be interpreted as follows:  766 

- Coefficient signs indicate the direction in which a visual indicator (from Xt) influenced the 767 

estimation of the MW score (Ŷt,   train). If positive, the MW score increased. By contrast, a 768 

negative coefficient meant that the MW score decreased. 769 

- A coefficient’s magnitude (absolute value) indicates the importance of each indicator relative. 770 

If the magnitude of a coefficient was close to zero, the contribution of this visual indicator to 771 

the prediction would be negligible. By contrast, a large magnitude indicated a crucial indicator 772 

in the prediction.  773 

 774 

Application 775 

 776 

To reduce the number of visual indicators of Xt, coefficient magnitudes were compared with an 777 

increasing threshold value, which ranged from 0.01 to 0.2. A new PLS regression was computed for 778 

each partial matrix (i.e. a matrix comprising only the indicators whose coefficient magnitude exceeded 779 

the threshold value). The threshold was increased by steps of 0.005 until the percentage of variance in 780 

Y that was explained by the partial model no longer increased. 781 

 782 

At the end of this step, a partial matrix of gaze behaviour, which included only the selected visual 783 

indicators, was computed for the training and validation datasets. These partial matrixes are denoted Xt
p
 784 

and Xval
p

 for the training and validation datasets, respectively. 785 
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Step C: Computing the mean square error of prediction 786 

The previous steps found the most appropriate parameters for PLS regression models (number of 787 

components in Step A and relevant visual indicators in Step B) for predicting the MW score. A new 788 

model that considered those parameters was set up, with its coefficients denoted Ct
p
. Then, the 789 

estimations from the training and validation datasets for a given time window t were calculated as 790 

follows:  791 

 792 

{
Yt,   train

p̂
= Xt

p
∗  Ct

p

 Yt,   val
p̂

= Xval
p

∗  Ct
p
 793 

 794 

From those estimations, the mean square error of prediction was: 795 

  796 

{      
MSEPt

train = (Y −  Yt,   train
p̂

)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

   

MSEPt
val = (Y −  Yt,   val

p̂
)

2
 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

        797 

 798 

where Ct
p
 are the coefficients of the PLS regression, computed from the partial matrixes with the optimal 799 

number of components for time window t; and the terms Xt
p
 and Xval

p
 refer to the partial matrixes of gaze 800 

behaviour for the training and validation datasets, respectively. 801 

 802 

10.  Appendix 2: goodness-of-fit based on the model 803 

residuals  804 

 805 

Due to the standardization of the data, MW score may be interpreted as Z-scores. Consequently, the 806 

residuals are significantly different from 0 with a 95% confidence level if their value is outside the 807 

range [-1.96, 1.96]. Figure 8 shows that residuals for each different participant are within this range for 808 

both the validation and training datasets. This demonstrates that the model is well-fitted for all 809 

participants in all cases. 810 



 28 

 811 
Figure 8: Residuals from the PLS regression models for the training (left) or validation (right) datasets. 812 

All residuals are within the confidence interval [-1.96, 1.96] (red dotted lines). 813 

 814 
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