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Abstract. In this paper, we focus on the modelling of the wake of a solid body moving
through a body of water. To this end, the flow of an inviscid, barotropic and compressible
fluid around the solid body regarded as motionless is examined. The dynamic behaviour of the
fluid is analysed by means of a two-dimensional Neumann-Kelvin’s coupled model enhanced with
capillarity and inertia terms. For computational purposes, the unbounded spatial domain has
to be truncated by artificial boundaries. Difficulties arise when it comes to setting appropriate
absorbing boundary conditions for a waves propagation problem in a stratified convective fluid
media with significant differences between layer properties. Numerical illustrations of the results
are given and commented.
Keywords. Absorbing boundary conditions, fluid-structure interaction, water waves propagation,
numerical simulations.
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Version française abrégée

Afin de déterminer le sillage d’un corps en mouvement dans une étendue d’eau, on considère
l’écoulement d’un fluide non visqueux, barotrope et compressible autour de celui-ci. On
étudie la propagation d’une petite perturbation dans ce milieu considéré comme une fluide
stratifié en mouvement quasi uniforme à l’aide d’un modèle couplé de type Neumann-Kelvin
tenant compte de la viscosité et de l’inertie du fluide. Pour réaliser la simulation numérique,
il est nécessaire de délimiter artificiellement le domaine et d’introduire des conditions aux
limites absorbantes adaptées. Les résultats obtenus sont analysés et commentés.

1. Introduction

Understanding wave propagation mechanisms on a body of water has long been a subject of
interest for many researchers [1–7]. Surface water wave phenomenon is due to the balance
between the gravity forces that keep horizontal free surface of the water, the surface tension
that keeps the consistency of the air-water interface, the water inertia and the difference
between air and water pressure. According to the relevant effect that forces the motion,
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the waves are usually divided in gravity waves, capillary waves or pressure waves. Unlike
coventional approaches, in our case the waves are regarded as interfacial gravity-capillary
waves propagating between two liquid layers with very different properties [1]. The upper
layer is the free surface water with an infinitesimal thickness and small characteristic velocity
of wave propagation namely, riddle velocity. The lower layer is the inner water with a finite
or semi infinite thickness and with a high characteristic velocity of wave propagation namely
the speed of sound in water. The waves are usually generated by the movement of the solid
body, interacting with its rigid surface and propagating all around it, leading to a wake in
its vicinity.

After stating the problem and specifying underlying assumptions, a two dimensional
Neumann-Kelvin’s coupled modelization enhanced with capillarity and inertia terms is
proposed [8]. A linearization around a steady state is performed and different accurate
boundary conditions are introduced to carry out the study in an open domain artificially
bounded for computational limitation reasons. The variational formulation of the problem is
deduced and a finite element approximation in space with a centered finite difference scheme
in time are used to approach the solution. Results obtained are illustrated and discussed.

2. Problem statement

Our purpose is to determine the dynamical behaviour of the water surface in the vicinity
of a solid body that moves with an horizontal velocity U and with a possible oscillatory
displacement. To this end, we examine the flow irrotationnal and unviscid of a compressible
and barotropic fluid around the structure seen as fixed. Due to the existence of singularities
at contact points between surface solid body and surface of water, and also at underwater
angular points [9], the structure is immersed and its shape is simplified to a cylinder. We
consider as computational domain a rectangular open domain Ω with a hole of radius R in
its center. Its boundary ∂Ω = Γ0 ∪ Γ1 ∪ Γs ∪ Γ2 ∪ Γb has unit outward normal vector ν. Γ0
correponds to the bottom of the system, Γs, to the free surface of the water, Γ1 and Γ2, to
the sides through which the water flow enters and leaves Ω and Γb , to the rigid body surface
(see figure 1). ∂Γs denotes the edges of Γs. A steady flow passes through Ω with horizontal
velocity U and a small disturbance is introduced in the fluid as an initial condition.

3. Theoretical modelling

In most cases, to attempt to address wave propagating over a body of water issue, a common
formulation of the problem is to find the velocity potential Φ satisfying the Laplace’s equation
and the vertical displacement of the surface η verifying [1, 2] :

• The kinematic boundary conditions
∂Φ
∂ν

= U.ν on Γ0 ∪ Γb×]0, T [, (1)

∂Φ
∂ν

= ∂η

∂t
+∇sΦ · ∇sη on Γs ×]0, T [. (2)

• The dynamic boundary conditions

∂Φ
∂t
− 1

2 ||∇sΦ||
2 − gη = 0 on Γs×]0, T [. (3)

• The radiation boundary conditions based on the behavior of the solution in the
neighborhood of infinity

∇Φ→ 0 as |x| → ∞, t ∈]0, T [. (4)
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Figure 1. Geometry and notations of the problem.

Incompressibility of the flow is assumed since the water for flow speeds much smaller than
the sound speeds in the water and capillarity of the surface is also neglected. In the following,
the chosen approach is that of a wave propagation problem with an uniform mean flow in an
unbounded stratified fluid waveguide.The propagating medium considered consists of two
liquid layers with very different properties and then two models have to be introduced to
take these features into account : an inner fluid model and a surface model. The global
nonlinear dynamical model obtained is linearized around a main steady state. Therefore
the global solution is split into the steady state obtained and a transient one. The lateral
boundary conditions are defined separately according to the nature of the state. For the
steady flow, the most realistic condition is to fix the normal velocity. For transient flow,
non-reflecting boundary conditions have to be prescribed for the inlet and the outlet of Ω in
order to avoid any spurious rebounds of the waves reaching the boundaries of the domain.

3.1. Hypotheses and formulation of the global model

3.1.1. Formulation of the inner fluid model

We assume that the flow is characterized by two variables modelling the mass density
ρtot and the velocity potential Φ that satisfy :

• The conservation of mass equation
∂ρtot
∂t

+ div(ρtot∇Φ) = 0 in Ω×]0, T [. (5)

• The Bernoulli equation for unsteady compressible potential flow (neglecting gravity
effect)

∂Φ
∂t

+ 1
2 ||∇Φ||2 + F (ρtot) = 0 in Ω×]0, T [ (6)

where F (ρtot) =
ρtot∫
ρ0

1
ρ
.
∂p

∂ρ
dρ+F (ρ0) is the barotropic potential, p, the fluid pressure

and T, the simulation time.
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3.1.2. Formulation of the surface model

Applying Newton’s second law of motion to a infinitesimal small surface element of
thickness 2ε that vertically moves ηtot, leads to the free surface equilibrium equation :

2ερtot
D2ηtot
Dt2

= −ρtot
∂Φ
∂t
− ρtot

2 ||∇sΦ||
2 + σ∆sηtot − ρtotgηtot in Γs×]0, T [ (7)

where the forces involved consist in the capillary action σ∆sηtot with σ the surface
tension, the gravity force −ρtotgηtot and the pressure −ρtot∂Φ/∂t − ρtot||∇sΦ||2/2. From
a mathematical point of view, capillary term stabilizes the partial differential equation [8].
The subscript s indicates that the differential operator is considered locally along a surface
namely here Γs.

3.1.3. On the interface

The continuity of normal velocity at the interface leads to the relation :

∂ηtot
∂t

+∇sΦ · ∇sηtot = ∂Φ
∂ν

in Γs×]0, T [ (8)
taking account of the rotation of the normal to the surface.

3.2. Linearization of the governing equations

3.2.1. Main background steady state flow

We introduce ϕ0, the velocity potential correponding to a steady quasi uniform horizontal
flow of an incompressible fluid which enters and leaves Ω at constant unit horizontal
velocity with normal surface displacement variation along Γs regarded as negligible and
non penetrability condition on Γ0 ∪ Γb satisfied. This background flow is stationary with
respect to the boat which is chosen as frame of reference. ϕ0 is the solution to the following
problem : 

−∆ϕ0 = 0, in Ω and
∫

Γs

ϕ0 = 0,
∂ϕ0

∂ν
= 0, on Γ0 ∪ Γb ∪ Γs,

∂ϕ0

∂ν
= (e1 · ν) in Γ1 ∪ Γ2.

(9)

To obtain the related displacement on the surface η0 of this flow for our model, stationary
balance of forces on free surface Eq.(7) along with homogenous Neumann boundary
conditions are applied. According to the frame of reference, it leads in stationary case
to :

2ερ0U
2∇sϕ0 · ∇s (∇sϕ0 · ∇sη0) + σ∆sη0 − ρ0gη0 = −ρ0

2 U
2||∇sϕ0||2 in Γs,

∂η0

∂νs
= 0 on ∂Γs

(10)

with ρ0, the fluid density and g, the gravity acceleration. The solution of Eq.(9) corre-
sponds to a steady quasi uniform horizontal flow with a digging effect due to the term
−ρ0U

2||∇sϕ0||2/2 as shown in figure 2. The order of magnitude of free surface strain is
about 10−3m and therefore negligible in comparison with initial computational domain Ω
dimensions.
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Figure 2. Free surface vertical displacement η0 (m) solution of Eq.(10) versus x1 (m)
with the ‘digging’ effect.

Figure 3. Calculated geometry of the new computational domain in the case of a
solid body size large compared to initial computational domain. The digging effect on
Γs and the inwards bowing of Γ1equi and Γ2equi are more pronounced than in our case.

3.2.2. Transient state

We study the evolution of a small disturbance around the steady state (ρ0, ϕ0, η0). The
unsteady waves in the fluid are represented by the perturbation functions ρ, ϕ, η of variables
x(x1, x2) and t. The problem is formulated with them wherein ρtot(x, t) = ρ0(x) + ρ(x, t),
Φ(x, t) = Uϕ0(x) + ϕ(x, t), ηtot(x, t) = η0(x) + η(x, t). The solution is split into main
background steady state component and a transient one. The domain Ω is then cropped by
Γ0, Γb, Γs = η0, Γ1equi and Γ2equi as shown in figure 3 [10]. The new lateral boundaries
Γ1equi and Γ2equi correspond to equipotential lines of ϕ0 passing respectively through left
upper domain corner and right upper corner of Ω. The artificial boundaries are chosen
far enough from rigid body to consider that steady state flow is uniform in this area and
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so the corners of the new domain are right-angled. The disturbance is so small that it is
then reasonable to neglect the non-linear terms in the governing equations Eq.(5)-Eq.(8) to
obtain Eq.(11)-Eq.(14). Convective derivatives with flow velocity U∇ϕ0 are used to derive
linearized equations Eq.(12) and Eq.(13). Hence (ρ, ϕ, η) are assured to satisfy the linearized
enhanced Neumann-Kelvin’s model with capillarity :

• The linearized continuity equation

∂ρ

∂t
+ U∇ρ · ∇ϕ0 + ρ0∆ϕ = 0 in Ω×]0, T [ . (11)

• The linearized momentum equation for the inner fluid
∂2ϕ

∂t2
+ 2U∇ϕ0 · ∇

(
∂ϕ

∂t

)
+ U2∇ϕ0 · ∇(∇ϕ0.∇ϕ)− c2f∆ϕ = 0 in Ω×]0, T [ (12)

given that 1
2 |∇ϕ0|

2 +∇F (ρ0) = 0 and ∂F (ρ0)
∂ρtot

=
c2f
ρ0

.

• The linearized momentum equation for the surface fluid

2ερ0

(
∂2η

∂t2
+ 2U∇sϕ0 · ∇s

(
∂η

∂t

)
+ U2∇sϕ0 · ∇s (∇sϕ0 · ∇sη)

)
= σ∆sη − ρ0gη − ρ0

∂ϕ

∂t
− ρ0U∇sϕ0 · ∇sϕ in Γs×]0, T [ (13)

where · denotes the scalar product. Since the domain of study was reshaped,
∇sη0 and ∆sη0 are set to zero on Γs.

• The continuity of normal velocity at the interface
∂ϕ

∂ν
= ∂η

∂t
+ U∇sϕ0 · ∇sη in Γs×]0, T [. (14)

• The non-penetrability condition leads to homogeneous Neumann boundary condition
for ϕ

∂ϕ

∂ν
= 0 in Γ0 ∪ Γb×]0, T [. (15)

• The initial condition corresponding to a disturbance taking place in the fluid: the
functions ϕ(x, 0) and ∂ϕ/∂t(x, 0) are set as Gaussian pulse functions in Ω and the
functions η(x, 0) and ∂η/∂t(x, 0) are fixed to zero on Γs.

3.2.3. Lateral artificial boundary conditions

Finding appropriate artificial boundary conditions able to handle unbounded problems
has been an important subject of ongoing research. The main concern is that non-reflecting
boundary condition should accuratly represents the solution in the infinite domain outside
for the arbitraly bounded domain of study [11]. Absorbing Boundary Conditions [12–14]
or Perfectly Match Layer techniques [15–17] result in our case in multiplying the number
of equations to solve, not to mention the existence of a background flow that increase the
difficulty of the problem. Non-reflecting boundary condition imposed in the following on
inner fluid lateral edges is :

∂ϕ

∂t
+
(
U
∂ϕ0

∂ν
+ cf

)
∂ϕ

∂ν
= 0 in Γ1equi ∪ Γ2equi×]0, T [ (16)

where cf denotes the speed of sound in the fluid. This relation is consistent with Sommerfeld-
like non reflecting boundary condition for a single wave which propagates at the phase
velocity cf corrected by taking account the normal to the boundary velocity component of the
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main background steady flow U∂ϕ0/∂ν. As lateral boundaries correspond to equipotential
lines of ϕ0, the tangential to the boundary entry velocity of the main steady flow, ∇sϕ0, is
equal to zero and then it is assumed that main propagating phenomenon takes place along
the normal to the boundary. On the surface bounds ∂Γs non-reflecting conditions imposed
is the natural Sommerfeld-like non reflecting boundary condition,

∂η

∂t
+
(
U
∂ϕ0

∂νs
+ cr

)
∂η

∂νs
= 0 in ∂Γs ∀t ∈]0, T [ (17)

where cr denotes the riddle velocity with c2r = σ/2ρ0ε. It is consistent with the one
dimensional non-reflecting boundary condition for a propagating wave at velocity cr in an
uniform background steady flow of velocity U∂ϕ0/∂νs. This boundary condition introduces
a mathematical specific damping on each boundary nodes of the surface Γs in order to
attenuate spurious reflecting modes.

4. Solution method

The classical approach for adressing waves propagation in layered media with a wave source
close to interfaces by looking for a solution as a superposition of plane waves is not considered
in the following [1]. Instead, a weak form of the problem and a finite element formulation
are employed.

4.1. Variational formulation and numerical approach

Multiplying Eq.(12) by ψ ∈ H1(Ω) and Eq.(13) by v ∈ H1(Γs) respectively together with
Green’s formula application lead to the following coupled variational formulation :

Find functions (ϕ, η) ∈ H1(Ω)×H1(Γs)×L2(]0, T [) such that ∀(ψ, v) ∈ H1(Ω)×H1(Γs)∫
Ω
ϕ̈ψdτ + U

∫
Ω
∇ϕ0 · (∇ϕ̇ψ − ϕ̇∇ψ) dτ + cf

∫
Γ
ϕ̇ψdτ + c2f

∫
Ω
∇ϕ · ∇ψdτ

−U2c2f

∫
Ω

(∇ϕ0 · ∇ϕ) (∇ϕ0.∇ψ)dτ−c2f
∫

Γs

η̇ψdτ − Uc2f
∫

Γs

∇sϕ0 · ∇sη ψdτ = 0
(18)

and

2εcf 2
∫

Γs

(
η̈v + U∇sϕ0 (∇sη̇v − η̇∇sv)− U2(∇sϕ0 · ∇sη)(∇sϕ0 · ∇sv)

)
dσ

−2εcf 2U

∫
Γs

(Uv∆sϕ0 (∇sϕ0 · ∇sη) + v∆sϕ0η̇) dσ +
c2f
ρ0

∫
Γs

σ∇sη.∇sv dσ

+
c2f
ρ0

∫
Γs

ρ0ηgv dσ + c2f

∫
Γs

ϕ̇vdσ − c2fU
∫

Γs

∇sϕ0 · ∇sv ϕ+ v∆sϕ0ϕdσ

+
[
c2fU

∂ϕ0

∂νs
ϕv + 2εc2fcrη̇v

]
∂Γs

= 0.

(19)
Physical field approximation is performed by classical finite element method. A finite di-

mension subspace Vh ⊂ H1(Ω) made of piecewice linear functions on a fixed mesh, character-
ized by element length h, is considered. Letting Vh = span(ϕ1, ϕ2, . . . , ϕN1, η1, η2, . . . , ηN2)
with ϕi 1≤i≤N1 and ηi 1≤i≤N2 finite element shape functions on Ω and on Γs respectively.
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Calling X the coordinate vector of X (ϕ, η) relative to this basis leads to the recasted
algebraic differential linear problem :

Find X(t) ∈ RN , N = N1 +N2, t ∈]0, T [ such that
MẌ + CẊ +KX = 0 (20)

with X(0), Ẋ(0) prescribed. M, C, K are sparces matrices. Centered finite difference
schemes are applied for the time domain approximation in order to avoid numerical insta-
bilities. Finally the problem becomes :

Find X(n) ∈ RN , n > 1, such that

A1X
(n+1) = A2X

(n) +A3X
(n−1) (21)

where A1, A2 et A3 are sparse matrices depending on M , C, K and ∆t with ∆t the time
step chosen.

The computing process is fully automated. All the geometry operations and meshes are
generated and updated automatically according intermediate results by a batch program
using Numpy and Scipy Python routines and GMSH [18]. Due to the complexity of weak
formulation terms, low-level generic assembly procedures of GETFEM++ is employed to
make the assembly of the involved sparces matrices in Eq.(20) [19]. To compute the solution
of the large sparse system Eq.(21) a MUMPS solver is used. For the post processing
handling, Matplotlib python librairies, PARAVIEW and GMSH are utilized [20]. Mesh
convergence study is performed by reducing characteristic size of elements, h, from h = 10−3

to h = 6.25 × 10−5. As shown in figures 4 and 5, results converge upon a solution as the
mesh density increase. A satisfactory balance between accuracy of results and computing
time consuming can be achieved by choosing the value of h = 1.25 × 10−4. For numerical
computations, values of parameters of table 4.1 are used.

Parameters L(m) H(m) R(m) U(m.s−1) ε(m) σ(N.m−1)
Values 1 1 5.10−2 0.15 10−3 0.075

Table 1. Numerical computational values of parameters of the problem

5. Results and comments

Wave propagation phenomenon is monitored by the variation of ϕ in the inner fluid and the
variation of η on the surface respectively. The value of time step chosen is ∆tv = 10−5s
in order to see properly wave propagation with a velocity of cf accross the extend of the
computational domain Ω. As it can be seen on figure 6, reflecting waves appear on the
bottom of the domain as on the surface of the immerged solid body where homogeneous
Neumann conditions are imposed to modelize non penetrability of the fluid through them.
In addition, on both lateral sides of the computational domain no spurious reflecting wave
appears to be present. Thanks to hyperbolicity of the problem, in order to verifiy whether
non-reflecting boundary conditions are satisfactory on inner fluid lateral edges Eq.(16), a
similar study is carried out according to the same previous calculation criteria on a more
expanded computational domain in x1 direction, sized so as to avoid lateral side spurious
reflecting waves on the time range analysed [14]. The new solution obtained is regarded as
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Figure 4. Inner fluid velocity potential ϕ (m2s−1) at point of coordinates (0.5, 0.5)
versus time (10−5s) for different elements sizes of the mesh.
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Figure 5. Inner fluid velocity potential ϕ (m2s−1) for different mesh densities along
a part of the middle line of computational domain (m) at t = 100∆tv.
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Figure 6. Propagation of velocity potential disturbance ϕ at times: t = 80∆tv,
t = 100∆tv, t = 120∆tv, t = 140∆tv. The order of magnitude of initial perturbation
is 10−2m2s−1.

a reference solution. Both resulting waves are in phase but a variable amplitude difference
can be noticed. The wave is sligtly reflected especially on its peak of amplitude for times
when there are not many interferences. Indeed absorbing boundary conditions chosen are
not intended to handle such a situation (see figure 7).

Waves propagation in inner fluid results in deformation of the surface as shown in figures
8 and 9. The corresponding normal displacement η propagates along the surface Γs. On
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Figure 7. Comparison of inner fluid velocity potentials ϕ (10−3m2s−1) versus time
(10−5s) between extended and main computational domain on the middle of right
artificial lateral edge.

each side of the surface, ∂Γs, no spurious reflective wave is noticed. In inner fluid layer no
wave related with any reflective surface on surface is neither observed (see figure 9). Then
lateral boundary conditions introduced Eq.(17) seem to be also adequate to successfully
modelize the propagating phenomenon on the surface [10]. Nevertheless the velocity of the
phenomenon is the same as in inner fluid layer which is not in complete agreement with
surface layer material properties and wave propagation in stratified media theories [1, 6].
The expected value shoud be closed to the riddle velocity cr. Normally therefore no surface
propagation phenomenon should be observed with time step ∆tv. That’s actually what
happens when initial disturbance is located just below or on the surface as shown in figure
10. The observed normal displacements η in figures 8 and 9 are not related directly to
surface wave propagation, but rather primarly to the potential volume wave propagation
in inner fluid layer and to the interface coupling between the potential ϕ and the normal
displacement η on Γs given by Eq.(14). The energy transmitted to the surface layer by the
inner layer remains stationary over the time range considered. Therefore application of lat-
eral boundary conditions Eq.(17) does not measurably affect the propagation phenomenon
and its accuracy can not be estimated with an initial perturbation in inner fluid layer.

Numerical simulations are then carried out in the case of an initial disturbance of the
surface with a time step ∆ts = 10−2s. The functions ϕ(x, 0) and ∂ϕ/∂t(x, 0) are set to zero
in Ω and η(x, 0) and ∂η/∂t(x, 0) are introduced as Gaussian pulse functions on Γs. Surface
waves propagate along Γs (see figures 10 and 11) but singularities appear on each side of
the surface ∂Γs as shown on figure 12. In fact due to the significant difference between
the wave propagation characteristic velocity values of the surface and inner fluid layers,
singularities come out on the intersection between the artificially chosen boundaries of the
domain and the two layers’ interface when Sommerfeld non reflecting boundary conditions
are applied [21]. The non reflecting boundary condition on the lateral edges Eq.(13) has to
be changed to handle these difficulties [22]. To this end, as the conditions are to be set for
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Figure 8. Propagation of disturbance ϕ in Ω and related normal surface displacement
η (10−5m) on Γs versus x1 coordinate (m) at times: t = ∆tv, t = 20∆tv . The
initial order of magnitude of ϕ is 10−2m2s−1. Its propagating order of magnitude is
10−3m2s−1 and the order of magnitude of the normal displacement is 10−6m.

the points ∂Γs that belong to the surface Γs and to the lateral boundaries Γ1equi or Γ2equi,
the equations Eq.(13), Eq.(14) and Eq.(16) are considered to devise the new boundary
conditions. The guiding idea is to extend the non reflective boundary condition applied
on the lateral boundaries Γ1equi or Γ2equi Eq.(16) to the surface Γs intersecting points ∂Γs
Eq.(13) by means of the normal velocity continuity condition Eq.(14). Using the simplifying
assumptions ϕ0 = x1, s = x1 and (νs.e1) = ±1 led by choosing Γ1equi and Γ2equi away from
rigid body, the following simplified equations must be satisfied on ∂Γs :

∂2η

∂t2
+ 2U ∂2η

∂x1∂t
+
(
U2 − c2r

) ∂2η

∂x2
1

+ 1
2ε

(
∂ϕ

∂t
+ U ∂ϕ

∂x1

)
+ g

2εη = 0, (22)

∂ϕ

∂x2
= ∂η

∂t
+ U

∂η

∂x1
, (23)

∂ϕ

∂t
+ (U + cf ) ∂ϕ

∂x1
= 0 on Γs ∩ Γ2equi, (24)
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Figure 9. Propagation of disturbance ϕ in Ω and related normal surface displacement
η (10−5m) on Γs versus x1(m) coordinate at times: t = 50∆tv, t = 100∆tv. Its order of
magnitude is 10−3m2s−1 and corresponding normal displacement η order of magnitude
is 10−6m.

∂ϕ

∂t
+ (U − cf ) ∂ϕ

∂x1
= 0 on Γs ∩ Γ1equi. (25)

For the right side (resp. the left side), the solution method consists in derivating first
Eq.(24) (resp. Eq.(25)) with respect to x2 and Eq.(23) with respect to x1 and t, in order to
eliminate partial derivatives of ϕ. Introducing the resulting expression into Eq.(22) leads,
after integrating with respect to time, to the following new boundary condition in cartesian
coordinates for each edge,

Z± ∂η

∂t
+A± ∂η

∂x1
+B±

∫ t

0
η ds+ C±ϕ = 0 on ∂Γ±

s (26)

with A±, B±, C±, Z± depending on U, cf , cr, ε, g. The symbol − denotes that condition
is on the left boundary of Γs and + on the right one. The boundary conditions obtained are
said non local in time as they depend not only on the time t but also on entire history of
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η on ∂Γs. The second part of variational formulation Eq.(19) becomes within the new non
reflective boundary conditions Eq.(26):

2εcf 2
∫

Γs

(
η̈v + U∇sϕ0 (∇sη̇v − η̇∇sv)− U2(∇sϕ0 · ∇sη)(∇sϕ0 · ∇sv)

)
dσ

−2εcf 2U

∫
Γs

(Uv∆sϕ0 (∇sϕ0 · ∇sη) + v∆sϕ0η̇) dσ +
c2f
ρ0

∫
Γs

σ∇sη.∇sv dσ

+
c2f
ρ0

∫
Γs

ρ0ηgv dσ + c2f

∫
Γs

ϕ̇vdσ − c2fU
∫

Γs

∇sϕ0 · ∇sv ϕ+ v∆sϕ0ϕdσ

+
[(
E±η̇ + F±

∫ t

0
η ds+G±ϕ

)
v

]
∂Γs

= 0.

(27)

with E±, F±, G± depending on U, cf , cr, ε, g. The previous solution method is used to
solve the new variationnal problem Eq.(18) and Eq.(27). For the time domain approxima-
tion, centered finite difference scheme is applied for derivatives and trapezoidal rule is used
for the integral over time term. The problem becomes finding X(n) ∈ RN , n > 1, such that

A1X
(n+1) = A2X

(n) +A3X
(n−1) + F (28)

where A1, A2 et A3 are sparse matrices depending on M , C, K and ∆t ; F a vector
depending on F± and ∆t accounting for non local condition term in time Eq.(26) with non
zero component corresponding to the surface edges ∂Γs.

A numerical simulation is carried out with an initial surface excitation and a time
step ∆ts. Singularities seem to be no longer present on ∂Γs and waves can get out of
computational domain without generating significant spurious reflections (see figure 13).
Comparison between the old and the new non reflective boundary condition results is done
over two thousand time steps ∆ts to check any singularities (see figure 15). In the same
way as the previous case to verifiy non-reflecting boundary conditions on surface edges
Eq.(26), a more expanded computational domain in x1 direction is chosen to compute a
reference solution. Both resulting waves are in phase but a varying amplitude difference
can be noticed due to existing spurious reflections (see figure 14) which fade away over time
(see figure 13). According to the ratio between the orders of magnitude of the inner fluid
potential and the surface displacement noticed in each calculated cases, it comes out that
the inner fluid wave propagation effect is not significant in the case of initial disturbance
nearby the surface or on the surface itself. Indeed, a velocity potential of order of magnitude
of 10−3m2s−1 on the surface leads to a normal displacement response of order of magnitude
of 10−6m in inner fluid initial perturbation case. But in surface initial disturbance case
where the order of magnitude of normal displacement is 10−6m, the velocity potential barely
reaches 10−6m2s−1 on the surface, the linearity of the model leads to a normal displacement
response of 10−9m, therefore negligible compared to 10−6m (see figures 8, 9, 10 and 11).
Thus the waves propagate mainly in the surface layer guided in the medium of smaller
velocity in totally agreement with wave propagation theories in stratified media. Actually,
during surface wave propagation, a small amount of energy is steadily transferred from the
surface to inner fluid which is immediately removed from the computational domain as in
an incompressibile fluid. The velocity potential ϕ rendering (see figure 11) comes from the
supeposition of all velocity potential waves generated by the propagating surface wave at all
times. Therefore these results can hardly be analysed and used to clearly draw any possible
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Figure 10. Propagation of normal surface displacement η on Γs versus x1 coordinate
and related disturbance ϕ in Ω at time t = 1000∆tv = ∆ts. Initial perturbation is
located on the surface of the fluid. The order of magnitude of η is 10−6m. The order
of magnitude of the potential ϕ transmitted to the surface of inner fluid is 10−6m2s−1.

Figure 11. Propagation of normal surface displacement η on Γs versus x1 coordinate
and related disturbance ϕ in Ω at time t = 30∆ts. Initial disturbance is located on
the surface of the fluid. Order of magnitude of propagating η is 10−6m. The order of
magnitude of the potential ϕ transmitted to the surface of inner fluid is 10−6m2s−1.

conclusions on the compliance of the non reflecting boundary condition chosen Eq.(16) in
inner fluid layer.

6. Conclusion

For the modelling of the wake of a solid body moving through a body of water, a wave
propagation problem in a convective stratified media is considered. In order to apply
standard methods of resolution intended for bounded domains, artificial boundaries are
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Figure 12. Displacement η (10−5m) of the surface Γs at time t = 100∆ts versus
x1 coordinate (m). Initial disturbance is located on the surface Γs in dash point.
Sigularities appear on the edges of the surface ∂Γs.

Figure 13. Displacement η (10−5m) of the surface Γs versus x1 coordinate (m) at:
t = 100∆ts, t = 250∆ts, t = 500∆ts and t = 2000∆ts . Initial disturbance is located
on the surface Γs. The waves propagate without any singularity on surface edges but
spurious reflexions on surface are still present

C. R. Mécanique—Draft, 4th March 2021



José Marie Orellana 17

Figure 14. Comparison between normal displacements η (10−6m) of surface Γs in
initial and extended domain cases versus x1(m) at t = 100∆ts.

Figure 15. Comparison of the results for displacement η (10−5m) at ∂Γ−
s and at ∂Γ+

obtained by the two non reflective boundary conditions (NRBC) and over simulation
time 2000∆ts.

introduced and appropriate non-reflecting boundary conditions are devised. The significant
differences between layer properties make difficult to address the entire problem and a
non local in time boundary condition has to be constructed at the interface edges. This
work highlighted a complexe phenomenon which involves coupled surface and bulk waves
propagations at different time scales and with very different orders of magnitude. These
features cannot be observed in the assumption of incompressibility of the fluid made
in common studies. Further works have to be carried out on non reflecting boundary
condition to fully eliminate the reflections of the wave in line with reference results without
complicating the formulation of the problem.
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