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RÉSUMÉ. On considère un modèle de compétition de Lotka-Volterra de deux espèces dans un en-
vironnement variable. On utilise la théorie de la moyennisation, ainsi que la théorie de Floquet pour
montrer que des fluctuations périodiques entre deux environnements qui sont tous les deux favor-
ables pour l’une des espèces peuvent conduire à l’extinction de cette espèce ou bien à la coexistence
des deux espèces.

ABSTRACT. We consider two dimensional Lotka-Volterra systems in fluctuating environment. Us-
ing averaging and Floquet theory, we show that periodic switching between two environments both
favorable to the same species can lead to the extinction of this species or coexistence of the species.

MOTS-CLÉS : Dynamique des populations, coexistence, moyennisation, exclusion compétitive, théorie
de Floquet
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1. Introduction
In ecology, the principle of competitive exclusion formulated by Gause [7] and Hardin

[8], asserts that when two species compete with each other for the same resource, the
“better” competitor will eventually exclude the other. However the observed diversity
of certain communities is in apparent contradiction with this principle. As a solution
to this paradox, Hutchinson [9] suggested that sufficiently frequent variations of the en-
vironment can keep species abundances away from the equilibrium points predicted by
competitive exclusion. The idea that temporal fluctuations of the environment can reverse
the trend of competitive exclusion has been widely explored in the ecology literature.
See [2, 3] for an overview and further references. Our goal here is to investigate rig-
orously this phenomenon for a two-species Lotka-Volterra model of competition under
the assumption that the environment (defined by the parameters of the model) fluctuates
periodically between two environments that are both favorable to the same species. We
will precisely describe the range of possible behaviors and explain why counter-intuitive
behaviors, including coexistence of the two species, or extinction of the species favored
by the environments, can occur.

2. Lotka-Volterra model of competition
The Lotka-Volterra model of competition of two species of abundances x and y is

ẋ = rx (1− ax− by)

ẏ = sy (1− cx− dy)
(1)

where r and s are the intrinsic growth rates of species x and y and a and d are the intra
specific competition coefficients and b and c are the inter specific competition coefficients.
The environment is characterized by the growth rates r and s and the matrix of competi-
tion coefficients

A =

(
a b
c d

)
.

Beside the boundary equilibria E0 = (0, 0), E1 = (1/a, 0), and E2 = (0, 1/d), the
system can have a non trivial equilibrium

E3 =

(
d− b
ad− bc

,
a− c
ad− bc

)
Only nonnegative equilibria are of interest.

It is well known (see, e.g. [12]) that 4 cases can be obtained, see Figure 1 :
– Case (i) : if a > c and b < d then there is coexistence, that is all solutions converge

toward the positive equilibrium E3, see Figure 1(i).
– Case (ii) : if a < c and b < d then species 1 wins the competition, that is all solutions

converge toward the equilibrium E1, see Figure 1(ii). We say that the environment is bad
for species 2 (or good for species 1).

– Case (iii) : if a > c and b > d then species 2 wins the competition, that is all solu-
tions converge toward the equilibrium E2, see Figure 1(iii). We say that the environment
is bad for species 1 (or good for species 2).
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Figure 1. The isoclines ẋ = 0 and ẏ = 0: (i) coexistence, (ii) species 1 wins, (iii) species 2
wins , (iv) bistability.

– Case (iv) : if a < c and b > d then there is bistability, that is equilibria E1 and E2

are both stable, and their basin of attraction are separated by the stables manifolds of the
positive equilibrium E3 which is a saddle point, see Figure 1(iv).
We assume now that the environment has two alternating seasons with period T , a first
season corresponding to proportion α1 of the time, α1 ∈ [0, 1], characterized by environ-
ment

r1, s1, A1 =

(
a1 b1
c1 d1

)
(2)

and a second season corresponding to proportion α2 of the time, (α2 = 1 − α1) charac-
terized by environment

r2, s2, A2 =

(
a2 b2
c2 d2

)
. (3)

We assume that both environments are bad for species 1, that is

a1 > c1, b1 > d1, a2 > c2, b2 > d2 (4)

Let N0 = {0, 1, . . .}. For n ∈ N0, the growth of the species is given by the following
periodic system :{

ẋ = r1x(1− a1x− b1y)
ẏ = s1y(1− c1x− d1y)

if t ∈ [nT, nT + α1T ){
ẋ = r2x(1− a2x− b2y)
ẏ = s2y(1− c2x− d2y)

if t ∈ [nT + α1T, (n+ 1)T )

(5)

For the general theory of periodic Lotka-Volterra systems, the reader is referred to [4,
5, 6]. Our purpose is to describe the behaviour of the periodic system (5) and to give
the conditions on the parameters such that the species 1 is persistent, that is to say, the
fluctuations between the two bad environments for species 1 is good for that species.

2.1. T very small : averaging
When T is very small, local stability of the origin of (5) can be characterized using

averaging theory. In this case the solutions of (5) are approximated by the solutions of the
averaged system, see Appendix B.1:(

ẋ
ẏ

)
= α1

(
r1x(1− a1x− b1y)
s1y(1− c1x− d1y)

)
+ α2

(
r2x(1− a2x− b2y)
s2y(1− c2x− d2y)

)
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that is to say
ẋ = rx

(
1− ax− by

)
ẏ = sy

(
1− cx− dy

) (6)

where

r = α1r1 + α2r2, a =
α1r1a1 + α2r2a2
α1r1 + α2r2

, b =
α1r1b1 + α2r2b2
α1r1 + α2r2

s = α1s1 + α2s2, c =
α1s1c1 + α2s2c2
α1s1 + α2s2

, d =
α1s1d1 + α2s2d2
α1s1 + α2s2

The fluctuating environment is good for specie 1 if and only if :

a < c, b < d (7)

The condition a < c is equivalent to

I1α
2
1 + I2α

2
2 − Jα1α2 < 0 (8)

where

I1 = r1s1(a1 − c1), I2 = r2s2(a2 − c2), J = r1s2(c2 − a1) + r2s1(c1 − a2)

The inequality b < d is equivalent to the following

K1α
2
1 +K2α

2
2 − Lα1α2 < 0 (9)

where

K1 = r1s1(b1 − d1), K2 = r2s2(b2 − d2), L = r1s2(b1 − d2) + r2s1(b2 − d1)

Therefore, using the condition (4), we see that for α1 close to 0 (that is α2 close to 1) or
α1 close to 1 (that is α2 close to 0), (8) and (9) are not satisfied, and hence the averaged
environment (6) is bad for species 1. But what happens when α is not close to 0 or 1 ?
For instance, for the following bad for species 1 environments

r1 = 5, s1 = 1, A1 =

(
1/2 1/2
1/3 1/3

)
(10)

r2 = 1, s2 = 5, A2 =

(
2 2
1 1

)
(11)

it was noticed [10] that for α1 = 0.5, the fluctuating environment is good for species 1.
Indeed, in this case we have

r = s = 3, A =

(
3/4 3/4
8/9 8/9

)
Hence a < c, b < d, so that the fluctuating environment is good for species 1. This
phenomenon corresponds to the paradoxical situation where species 1 disappears in two
distinct environments, but wins the competition in a periodical fluctuation of these two
bad environments, see Figure 2.

Let us determine more precisely the range of α1 for which the fluctuating environment
is good for species 1. We have the following result.
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bad for species 1 bad for species 1 good for species 1

Figure 2. The fluctuation of the two bad for species 1 environments corresponding to (10-
11) is a good environment for species 1. The solution of the fluctuating environment of
initial condition (4, 4) (in black) is approximated by a solution of the averaged environment
(in green).

Proposition 2.1 Assume that the environments (2) and (3) are bad for species 1, that is
to say (4) holds. Assume that J > 2

√
I1I2 and L > 2

√
K1K2. For T sufficiently small,

the fluctuation environment (5) is good for species 1 when max(α−, α
−) + ε < α1 <

min(α+, α
+)− ε with ε small enough, where α−, α+ α− and α+ are given by:

α− =
2I2 + J −

√
J2 − 4I1I2

2(I1 + I2 + J)
, α+ =

2I2 + J +
√
J2 − 4I1I2

2(I1 + I2 − J)
,

α− =
2K2 + L−

√
L2 − 4K1K2

2(K1 +K2 + L)
, α+ =

2K2 − L+
√
L2 − 4K1K2

2(K1 +K2 + L)
.

Proof. The proof is given in Appendix A.1

For the parameter values (10-11) we have

α− = α− =
5

8
− 1

40

√
145 ≈ 0.32, , α+ = α+ =

5

8
+

1

40

√
145 ≈ 0.92

Therefore, for T small enough, the fluctuating environment is good for species 1 for
0.32 < α1 < 0.92.

2.2. T not very small : Floquet theory
What happens if T is not very small ? We performed numerical simulations with the

parameter values (10-11), α1 = 0.5 and T = 1, T = 2 and T = 4 respectively, see
Figure 3. We see on the numerical simulation that the fluctuating environment is good for
species 1 for T = 1 and bad for T = 4, and both species coexist if T = 2.

The study of the system for values of T that are not very small is obtained by the
Floquet theory. Indeed the local stability of the origin of the switching system (5) can be
characterized using the Floquet monodromy matrix, see Appendix B.2.

The periodic system (5) has two periodic solutions lying on the invariant sets x =
0 and y = 0. These periodic solutions can be computed explicitly and their stability
properties are determined using the Floquet theory.

On y = 0, (5) reduces to the scalar periodic system{
ẋ = r1x(1− a1x) if t ∈ [nT, nT + α1T )
ẋ = r2x(1− a2x) if t ∈ [nT + α1T, (n+ 1)T )

(12)
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Figure 3. On the left, a solution with initial condition (4, 4) and T = 1: the fluctuating
environment is good for species 1. On the center, a solution with initial condition (4, 4) and
T = 2: the fluctuating environment is good for both species. On the right, a solution with
initial condition (4, 0.1) and T = 4: the fluctuating environment is bad for species 1.

The solution of this system, with initial condition x(0) = x0 is given by

x(t) =


x0e

r1t

1+a1x0[er1t−1] if t ∈ [0, α1T )

x1e
r2(t−α1T )

1+a2x1[er2(t−α1T )−1]
if t ∈ [α1T, T )

(13)

where

x1 = x(α1T ) =
x0e

r1α1T

1 + a1x0 [er1α1T − 1]
(14)

This solution is periodic if and only if x(T ) = x0, which is an algebraic equation in x0
admitting the solution x0 = 0 corresponding to the trivial periodic solution x(t) = 0 and
the positive solution

x0 =
e[r1α1+r2α2]T − 1

a1 (er1α1T − 1) + a2er1α1T (er2α2T − 1)
(15)

corresponding to a non trivial positive solution x = p(t). Let (p(t), 0) be the correspond-
ing periodic solution of (5).

Proposition 2.2 The necessary and sufficient condition on α1 and T such that (p(t), 0)
is stable is λ < 0, where λ is given explicitly by

λ = L1(x1)− L1(x0) + L2(x0)− L2(x1),

where

Li(x) =
si
ri

(
ln(x) +

ci − ai
ai

ln(1− aix)

)
.

Proof. The proof is given in Appendix A.2

Similarly, on x = 0, (5) reduces to the scalar periodic system{
ẏ = s1y(1− d1y) if t ∈ [nT, nT + α1T )
ẏ = s2y(1− d2y) if t ∈ [nT + α1T, (n+ 1)T )

(16)
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T = 1/10 T = 1

T = 2 T = 4

T = 1/10

T = 1

T = 2

T = 4

Figure 4. The set of points where λ = 0 (in red) and µ = 0 (in green) with respect of T
and α1 = α. If α = 0.5, then for T = 0.1 or T = 1, the fluctuating environment is good for
species 1, and bad for species 2; For T = 2, the fluctuating environment is good for both
species; For T = 4, the fluctuating environment is good for species 2, and bad for species
1.

This system has a a non trivial positive solution y = q(t) of initial condition

y0 =
e[s1α1+s2α2]T − 1

d1 (es1α1T − 1) + d2es1α1T (es2α2T − 1)
(17)

Proposition 2.3 The necessary and sufficient condition on α1 and T such that (0, q(t))
is stable is µ < 0, where µ is given by

µ = M1(y1)−M1(y0) +M2(y0)−M2(y1)

where

Mi(y) =
ri
si

(
ln(y) +

bi − di
di

ln(1− diy)

)
.

Proof. The proof is given in Appendix A.3

Using Maple we can plot the curves in the plane (α1, T ) defined by λ = 0 and µ = 0.
for the parameters values (10-11), see Figure 4. Recall that both environments given by
(10-11) are bad for species 1. The picture shows that:

– If (α1, T ) is below the red curve, for instance for (α1 = 0.5, T = 1/10) or (α1 =
0.5, T = 1), then we have λ < 0 and µ > 0, and hence the fluctuating environment is
good for species 1, and bad for species 2.

– If (α1, T ) is above the red curve and below the green curve, for instance for (α1 =
0.5, T = 2), then we have λ > 0 and µ > 0, and hence the fluctuating environment is
good for both species, that is to say the system exhibits coexistence.

– If (α1, T ) is above the green curve, for instance for (α1 = 0.5, T = 4), then we
have λ > 0 and µ < 0, hence the fluctuating environment is good for species 2 and bad
for species 1.
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3. Conclusion
Our study has shown that the fluctuations between two environments that are both bad

for one species (the population goes to extinction for this environment) can lead to the
growth of this species. Similarly, the fluctuations between two environments that are both
good for one species (the population is persistent for this environment) can lead to the
extinction of this species. These behaviours are not exceptional and can hold for a large
set of values of parameters. Averaging theory and Floquet theory are useful tools for these
studies. The results of this paper extend to the stochastic case of random switching [1]:
relying on results on stochastic persistence and piecewise deterministic Markov processes,
it was shown that random switching between two environments that are both favorable
to the same species can lead to the extinction of this species or coexistence of the two
competing species.

A. Proofs

A.1. Proof of Proposition 2.1
The condition a < c is equivalent to the condition (8). Using that α2 = 1 − α1

this condition is a second order inequality in α1. By straightforward calculations we see
that there exists α1 ∈ (0, 1) such that (8) holds, if and only if the following condition is
satisfied

J > 2
√
I1I2

In this case the condition a < c is satisfied if and only if α− < α1 < α+, where α− and
α+ are defined as in the proposition.

Similarly by straightforward calculations we see that there exists α1 ∈ (0, 1) such that
(9) holds, if and only if the following condition is satisfied

L > 2
√
K1K2

In this case, the condition b < d is satisfied if and only if α− < α1 < α+, where α− and
α+ are defined as in the proposition.

A.2. Proof of Proposition 2.2
The variational equation of (5) around the periodic solution (p(t), 0) takes the form{

ẋ = r1(1− 2a1p(t))x− r1b1p(t)y
ẏ = s1(1− c1p(t))y

if t ∈ [nT, nT + α1T ){
ẋ = r2(1− 2a2p(t))x− r2b2p(t)y
ẏ = s2(1− c2p(t))y

if t ∈ [nT + α1T, (n+ 1)T )

This triangular system can be solved explicitly. The computations are straightforward
and show that the characteristic multiplier corresponding to x is always less than 1. The
y component of the solution is given by

y(t) =


y(0)e

∫ t
0
s1(1−c1p(τ))dτ if t ∈ [0, α1T )

y(α1T )e
∫ t
α1T

s2(1−c2p(τ))dτ if t ∈ [α1T, T )

Proceedings of CARI 2020



Therefore the characteristic exponent λ, defined by y(T ) = y(0)eλ is given by

λ =

∫ α1T

0

s1(1− c1p(τ))dτ +

∫ T

α1T

s2(1− c2p(τ))dτ

Using the fact that p(t) is the solution of (12), the change of variable x = p(τ) is these
integrals gives

λ =

∫ x1

x0

s1(1− c1x)

r1x(1− a1x)
dx+

∫ x0

x1

s2(1− c2x)

r2x(1− a2x)
dx

where x0 and x1 are given by (15) and (14) respectively. Hence λ is given explicitly by

λ = L1(x1)− L1(x0) + L2(x0)− L2(x1)

where

Li(x) =
si
ri

(
ln(x) +

ci − ai
ai

ln(1− aix)

)
is a primitive of si(1−cix)

rix(1−aix) .

A.3. Proof of Proposition 2.3
The variational equation of (5) around the periodic solution (0, q(t)) takes the form{

ẋ = r1(1− b1q(t))x
ẏ = −s1c1q(t)x+ s1(1− 2d1q(t))y

if t ∈ [nT, nT + α1T ){
ẋ = r2(1− b2q(t))x
ẏ = −s2c2q(t)x+ s2(1− 2d2q(t))y

if t ∈ [nT + α1T, (n+ 1)T )

The characteristic multiplier corresponding to y is always less than 1 and the characteristic
exponent µ, defined by x(T ) = x(0)eµ is given by

µ =

∫ y1

y0

r1(1− b1y)

s1y(1− d1y)
dy +

∫ y0

y1

r2(1− b2y)

s2y(1− d2y)
dy

where y0 is given by (17) and

y1 = q(α1T ) =
y0e

s1α1T

1 + d1y0 [es1α1T − 1]

Hence µ is given explicitly by

µ = M1(y1)−M1(y0) +M2(y0)−M2(y1)

where

Mi(x) =
ri
si

(
ln(y) +

bi − di
di

ln(1− diy)

)
is a primitive of ri(1−biy)

siy(1−diy) .
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B. Tools

B.1. Averaging
Let f(t, x) be a periodic function in t. We assume that the period is 1. Let T > 0,

small enough. The purpose of averaging theory is to describe the solutions of the T -
periodic differential equation

ẋ = f

(
t

T
, x

)
More precisely, the solutions are approximated by the solutions of the averaged equation

ẋ = f(x)

where f(x) =
∫ 1

0
f(t, x)dt is the mean value of f [11].

B.2. Floquet theory
Consider the linear time varying system

{
ẋ(t) = A(t)x(t)
x(0) = x0

(18)

where x(t) ∈ Rn the function t 7→ A(t) ∈ Rn×n is piecewise continuous, bounded,
and periodic with period T . Although its parameters A(t) vary periodically, the solutions
of (18) are typically not periodic, and despite its linearity, closed form solutions of (18)
typically cannot be found. We denote by Φ(t) the fundamental matrix solution

{
Φ̇(t) = A(t)Φ(t)
Φ(0) = I

.

The matrix M = Φ(T ) is called monodromy matrix and the ρi eigenvalues of M are
called characteristic or Floquet exponents. The zero equilibrium is stable if all Floquet
exponents have module less than 1 or, the spectral radius of M being less than 1. If there
is a Floquet exponent with a module greater than 1 (equivalent to the spectral radius ofM
is greater than one), then the zero equilibrium is unstable.
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