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The aim of this work is to present a non-trivial confirmation of the powerful Coulomb gastechniques for Boundary Conformal Field Theory (BCFT). We show that we can re-derive the known Cardy's result of percolation problem via the techniques developed by S. Kawai in the Coulomb gas formalism.

Critical percolation and conformal invariance

In BCFTs, Coulomb gas formalism presents a strong tool to obtain correlation functions without having to solve differential equations not only in the case of conformal minimal models but also in different models such as percolation model. In his papers [1,2], Kawai presents a general formalism to compute correlation functions in the half plane using the free-fi construction of boundary states and applying the Coulomb gas formalism. This formalism was applied for the critical Ising model with free and fi boundary conditions obtained from Cardy's boundary states. In this work, we will use Kawai's techniques to provide the percolation crossing probability which is a two-point correlation function on the upper half plane.

In the thermodynamic limit and, of course, at the critical point, percolation is believed to be described by a conformal fi theory M (p ′ = 2, p = 3) with vanishing central charge [3]. Crossing probability is of great interest in studies of percolation. In two dimensions and in geometries with edges (a rectangle for example), a crossing event is a configuration of bonds or sites on the lattice covering this geometry such that there exists at least one cluster connecting two disjoint segments of the boundary. See fig. 1 for the case of the rectangle.

Let π be the crossing probability associated with this event, and p be the probability for each bond to be open (and 1p to be closed). Then, there is a critical value of p called the percolation threshold such as 

𝜋 = { 0 if 𝑝 < 𝑝 𝑐 𝜋(𝑝, 𝑟) if 𝑝 = 𝑝 𝑐 1 if 𝑝 > 𝑝 𝑐 (1) 
where the partition functions we need are given in terms of correlators by

𝑍 𝛼𝛼 = 𝑍 𝑓 〈𝜑 (𝑓𝛼) (𝑧 1 )𝜑 (𝛼𝑓) (𝑧 2 )𝜑 (𝑓𝛼) (𝑧 3 )𝜑 (𝛼𝑓) (𝑧 4 )〉,
𝑍 𝛼𝛽 = 𝑍 𝑓 〈𝜑 (𝑓𝛼) (𝑧 1 )𝜑 (𝛼𝑓) (𝑧 2 )𝜑 (𝑓𝛽) (𝑧 3 )𝜑 (𝛽𝑓) (𝑧 4 )〉

where Z f is the partition function with free boundary conditions and 𝜑 (𝑖𝑗) denote the boundary operator corresponding to a switch from boundary condition (i) to (j) at the point x. In our case, the relevant boundary changing operator is identified as being the φ (12) boundary primary field in the M (2, 3) theory (Q → 1 limit) [6,7]. For this particular minimal model, we see, from the Kac table formula

ℎ 𝑟,𝑠 = (𝑟(𝑚+1)-𝑠𝑚) 2 -1 4𝑚(𝑚+1) , 𝑟, 𝑠 > 0, 𝑚 = 2 (4)
that h 1,2 = 0 and we have, in addition, lim 𝑄→1 𝑍 𝑓 = 1. Then, to obtain the crossing probability formula one has to fi the form of the four-point correlation functions [8] 𝐺(𝜂) = 〈𝜑 (12) (𝑧 1 )𝜑 (12) (𝑧 2 )𝜑 (12) (𝑧 3 )𝜑 (12) (𝑧 4 )〉

which will depend only on the cross ratio

𝜂 = (𝑧1 -𝑧2)(𝑧3 -𝑧4) (𝑧1 -𝑧3)(𝑧2 -𝑧4)

Correlation functions from the Coulomb-gas approach

The correlator (5) can be written in the upper half planeby application of the method of images -(see [START_REF] Di Francesco | Conformal Field Theory[END_REF]) as

𝐺(𝜂) = 〈𝜑 (12) (𝑧 1 , 𝑧̅ 1 )𝜑 (12) (𝑧 2 , 𝑧̅ 2 )〉 𝑈𝐻𝑃 (6) 
where 𝑧 3 = 𝑧̅ 1 and 𝑧 4 = 𝑧̅ 2 .

In the Coulomb gas approach, the boundary 2-point correlation function for physical boundary conditions can be obtained by introducing the screened vertex operators [1,2]. In this case, the correlator (6) In order that the correlator be non-vanishing, we must satisfy the charge neutrality conditions The first condition (7) corresponds to the conformal block 

𝑚 + 𝑚 ̅ = 0, 𝑛 + 𝑛 ̅ = 1 (7) 
) 𝐹(0, 1

, 𝜂)

Fig. 1 .

 1 Fig. 1. Crossing cluster between the two segments of the rectangle.

  then we have the boundary charge 𝛼 = 𝛼 1,1 = 0 for the first condition and 𝛼 = 𝛼 1,3 = -𝛼 -for the second one, where 𝛼 𝑟

  where |𝐵(𝛼)⟩ is called the boundary coherent state, |0,0; 𝛼 0 ⟩ represents the vacuum state, 𝑉 and 𝑉 ̅ are the screened Vertex operators.

	becomes
	𝐺(𝜂) = ⟨𝐵(𝛼)|𝑉 (12) 𝑚 1 𝑛 1 (𝑧 1 )𝑉 (12) 𝑚 ̅ 1 𝑛 ̅ 1 (𝑧̅ 1 )𝑉 (12) 𝑚 2 𝑛 2 (𝑧 2 )𝑉 (12) 𝑚 ̅ 2 𝑛 ̅ 2 (𝑧̅ 2 )|0,0; 𝛼 0 ⟩
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where N 1 is a constant, 𝑏 = 2𝛼 12 (2𝛼 0 -𝛼 0 ) with 𝛼 0 = 1 2√6 , and F is the hypergeometric function of the Gaussian type. Whereas the second condition corresponds to the conformal block

)Γ( 1)

) (-𝜂)

, 𝜂)

where N 2 is a constant. Using the properties of the Γ and the hypergeometric functions [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] we can write the conformal blocks of equations ( 8) and ( 9) as

) (10)

, 𝜂)

To find the appropriate combination (i.e. the values of N 1 and N 2 ) describing π(p, r), we give the precise correspondence between the aspect ratio r of the rectangle and the cross ratio η by the two expressions

For infinitely wide lattice (𝑟 → 0 and 𝜂 → ∞), the vertical crossing probability 𝜋 𝑣 (𝑝, 𝑟) should be 1. But for infinitely narrow lattice (𝑟 → 1 and 𝜂 → ∞) it should be zero. Thus, we find 𝑁 1 = 0 and 𝑁 2 = -Γ ( 

The horizontal crossing probability 𝜋 ℎ (𝑝, 𝑟) should be 1 for infinitely narrow lattice and zero for infinitely wide lattice. Then, in this case we have

)

) 2 and we can write

, 𝜂)

Of course, 𝜋 𝑣 + 𝜋 ℎ = 1 which means that whenever there is a horizontal cluster, it cannot exist a vertical one. The two events are incompatible. If we change the labelling of the rectangle corner's from (𝑧 1 , 𝑧 2 , 𝑧 3 , 𝑧 4 ) to (𝑧 2 , 𝑧 3 , 𝑧 4 , 𝑧 1 ), we retrieve Cardy's results [3] 𝜋 𝑣 (𝑝, 𝑟) = 𝜋((𝑧 1 , 𝑧 4 ); (𝑧 2 , 𝑧 3 )) = 1 -3 Γ ( and from equations ( 13), ( 14), ( 15) and ( 16) we retrieve also that 𝜋(𝜂) = 1 -𝜋(1 -𝜂)