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Abstract—Current avionics architecture are based on an
avionics full duplex switched Ethernet network (AFDX) that
interconnects end systems. Avionics functions exchange data
through Virtual Links (VLs), which are static flows with bounded
bandwidth. The jitter for each VL at AFDX entrance has
to be less than 500µs. This constraint is met, thanks to end
system scheduling. The interconnection of many-cores by an
AFDX backbone is envisioned for future avionics architecture.
The principle is to distribute avionics functions on these many-
cores. Many-cores are based on simple cores interconnected
by a Network-on-Chip (NoC). The allocation of functions on
the available cores as well as the transmission of flows on the
NoC has to be performed in such a way that the jitter for
each VL at AFDX entrance is still less than 500µs. A first
solution has been proposed, where a single task in each many-
core manages the transmission of the VLs. This task executes
a scheduling table. The access to the Ethernet interface is then
only allowed to one VL leading to a significant reduction of
the jitter. By oversampling the VL transmissions in a minimum
period, the waiting delays are also reduced. But this solution
limits the number of VLs. In this paper, we propose to improve
the transmission scheduling by relaxing constraint on the over
sampling. A new scheduling table is constructed using an Integer
Linear Program. This solution increases the number of VLs
transmitted by the many-core and still reduces the waiting delays
for the transmission of the VLs.

I. INTRODUCTION

Aircrafts are equipped with numerous electronic equip-
ments. Some of them, like flight control and guidance systems,
provide flight critical functions, while others may provide
assistance services that are not critical to maintain airworthi-
ness. Current avionics architecture is based on the integration
of numerous functions with different criticality levels into
single computing systems (mono-core processors) [1]. Such
an architecture is depicted in Figure 1. Computing systems are
interconnected by an AFDX (Avionics Full Duplex Switched
Ethernet) [2]. The End System (ES) provides an interface
between a processing unit and the network.

The continuous need for increased computational power
has fueled the on-going move to multi-core architectures in
hard real-time systems. However, multi-core architectures are
based on complex hardware mechanisms, such as advanced
branch predictors whose temporal behavior is difficult to
master. Many-core architectures are based on simpler cores
interconnected by a Network-on-Chip (NoC). These cores
are more predictable [3]. Thus, many-cores are promising
candidates for avionics architecture.

A typical many-cores architecture provides Ethernet inter-
faces and memory controllers. For instance, Tilera Tile64 has 3

Fig. 1: An AFDX network.

Ethernet interfaces and 4 memory controllers [4], while Kalray
MPPA has 8 Ethernet interfaces and 2 memory controllers [5].

An envisioned avionics architecture is depicted in Figure 2.
A set of many-cores are interconnected by an AFDX back-
bone, leading to a mixed NoC/AFDX architecture. Avionics
functions are distributed on these many-cores. Communica-
tions between two functions allocated on the same many-
cores use the NoC, while the communications between two
functions allocated on different many-cores use both the NoC
and the AFDX. Main constraints on this communication are
the following:

1) end-to-end transmission delay has to be upper-bounded
by an application defined value,

2) frame jitter at the ingress of the AFDX network has to
be smaller than a given value (typically 500 µs).

In single core architectures the latter constraint is enforced
by the scheduling implemented in the End System. In many-
cores architectures, frame jitter mainly depends on the delay
variation between the source core and the source Ethernet
interface. This variation is due to two factors. First, the frame
can be delayed on the NoC by other frames transmitted
between avionic functions. Second, the Ethernet controller can
be busy, transmitting another frame. [6] proposes a mapping
strategy which minimizes the first factor, i.e. the variation of
this NoC delay. Each core is allocated at most one function.
Each VL is managed by its source function.

In [7], the second factor is addressed. The authors propose
a static scheduling of Ethernet transmissions, based on a
table. Each transmission is allocated in a periodic slot. The
scheduling is managed by a dedicated core. The periodic slots
are allocated to the applications in order to guarantee that the
access to the Ethernet interface is allowed to one application.
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Fig. 2: A mixed NoC/AFDX architecture

The two objectives of the allocation strategy is to guarantee
the BAG regulation and to over sample the slots to applications
with a BAG greater than 2ms. The jitter is significantly reduced
and only depends on the interferences that can occur on the
transmission path between the DDR and the I/O interface.

In this paper, we propose to extend the approach of [7]. The
goal is to relax the strong constraint of the method: all the
applications should be stored in a minimum period (different
to 1ms). But applications that send VLs with longer BAG can
be allocated after this minimum period. So, we propose a new
allocation of the slots to the applications formulated as an
Integer Linear Program (ILP). The objectives of the approach
are:

1) to allocate the slots for the transmission of the outgoing
flows within the respect of their periodic constraint ;

2) to over sample the slots for outgoing flows in order to
reduce the waiting delays before the transmission slots.

The remainder of the paper is as follows. Section II intro-
duces current AFDX and NoC architectures. Section III pro-
poses an illustrative avionics case study. Section IV explains
how a VL can be transmitted using a dedicated node which
executes a scheduling table, as it has been defined in [7]. The
new approach is described in Section V. Section VI shows
the proposed scheduling solution on the case study and give
some results. Finally, Section VII concludes with some future
works.

II. SYSTEM MODEL

We summarize the main features of both a AFDX flows and
many-cores considered in this paper.

A. AFDX flows
A VL defines a unidirectional connection between one

source function and one or more destination functions. Each
VL is characterized by two parameters:
• Bandwidth Allocation Gap (BAG). Minimal time in-

terval separating two successive frames of the same VL.
The value of the BAG is ranging from 1 to 128 ms.

• Lmin and Lmax. Smallest and largest Ethernet frame, in
bytes, transmitted on the VL.

In current architectures, each ES performs a traffic shap-
ing for each VL to control that frames are transmitted in
accordance with BAG and authorized frame size. The queued
frames, which are ready to be transmitted, are then selected
depending on a strategy configured in the VL scheduler. There-
fore, it is possible that more than one VL has a packet ready
and eligible for transmission. In this case, a queuing delay
(jitter) is introduced. This jitter, computed at the transmitting
ES, is the time between the beginning of BAG interval and
the first bit of the frame to be transmitted in that BAG. This
jitter must not be greater than 500µs.

B. NoC Architecture and Assumptions

In this paper, we consider a Tilera-like NoC architecture,
i.e. a 2D-Mesh NoC with bidirectional links interconnecting a
number of routers. Each router has five input and output ports.
Each input port consists of a single queuing buffer. The routers
at the edge of the NoC are interconnected to the DDR memory
located north and south of the NoC via dedicated ports. The
first and last columns of the NoC are not connected directly
to the DDR. Besides, the routers at the east side connects
the cores to the Ethernet interfaces via specific ports. Many
applications can be allocated on a NoC. Each application is
composed of a number of tasks, where one core executes only
one task. These tasks do not only communicate with each
other (core-to-core flows), but also with the I/O interfaces,
i.e. the DDR memory and Ethernet interfaces (core-to-I/O
flows). These flows are transmitted through the NoC following
wormhole routing [8], an XY policy and a Round-Robin
arbitration. Besides, a credit-based mechanism is applied to
control the flows. A flow consists of a number of packets,
corresponding to the maximal authorized flow size on the NoC.
Indeed, a packet is divided into a set of flits (flow control
digits) of fixed size (typically 32-bits). The maximal size of
a NoC packet is of 19 flits as in Tilera NoC. The wormhole
routing makes the flits follow the first flit of the packet in
a pipeline way creating a worm where flits are distributed
on many routers. The credit-based mechanism blocks the flits
before a buffer overflow occurs. The consequence of such a
transmission model is that when two flows share the same path,
if one of them is blocked, the other one can also be blocked.
Thus, the delay of a flow can increase due to contentions on the
NoC. The Worst-case Traversal Time (WCTT) of a flow can
be computed using different methods proposed in the literature
[9], [10]. In this paper, we choose RCNoC [11] to compute
the WCTT as it leads to tightest bounds of delays compared
to the existing methods on a Tilera-like NoC. This method
considers the pipeline transmission, and thus computes the
maximal blocking delay a flow can suffer due the contentions
with blocking flows.

III. ILLUSTRATIVE CASE STUDY

An avionics case study is proposed in order to illustrate
the problem and our solution. It is composed of critical and
non-critical applications that are mapped into the manycore.



Fig. 3: Task graph of core-to-core and core-to-I/O communi-
cations of the: (a) FADEC application, (b) HM application.

A. Considered applications

The considered case study is composed of 2 types of
applications:
• Full Authority Digital Engine (FADEC) application:

It controls the performance of the aircraft engine. It
receives 30 KBytes of data from the engine sensors via
an Ethernet interface and sends back 2×1500 Bytes of
data to the engine actuators. The application FADECn

is composed of n tasks denoted tf0 to tfn−1. tfn−1 is
dedicated to send the commands to the engine actuators
via the Ethernet interface. Except tfn−1, all other tasks
exchange 5 KBytes of data through the NoC. They also
send 5 KBytes of data to tfn−1. Figure 3a shows the tasks
graph of FADEC7. This graph illustrates the core-to-core
and core-to-I/O communications between the tasks of the
FADEC application.

• Health Monitoring (HM) application: It is used to
recognize incipient failure conditions of engines. It re-
ceives through an Ethernet interface, a set of frames of
size 130 KBytes and sends back 2×1500 bytes of data
actuators. The application HMn is composed of n tasks,
denoted th0 to thn−1. The last task thn−1 is dedicated to
send the data actuators to the Ethernet interface. The task
thi sends 2240 bytes of data to thi+1 through the NoC,
with i ∈ [0, n− 2]. All these tasks finish their processing
by storing their frames into the memory. Figure 3b shows
the tasks graph of HM6.

FADEC applications are critical, while HM applications are
non-critical. These applications will send 2 Vls each through
the Ethernet interface. The case study is composed of 3
FADEC applications and 6 HM applications. The configuration
of the VL sent by these applications is given in Table I. These
applications are mapped into the manycore.

B. Mapping the applications into the manycore

The described applications are then mapped into the many-
core. Different strategies can be used such as:
• Smart Hill Climbing (SHiC) [12]: this approach maps

the applications without fragmented regions, generated by

Applications VL BAG Applications VL BAG

FADEC7
VL1 4 HM10

VL11 16
VL2 32 VL12 64

FADEC11
VL3 8 HM11

VL13 32
VL4 16 VL14 4

FADEC13
VL5 16 HM12

VL15 16
VL6 32 VL16 64

HM7
VL7 4 HM16

VL17 4
VL8 16 VL18 32

HM9
VL9 2

VL10 2

TABLE I: VL configurations per application
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Fig. 4: Mapping 9 applications on a 10x10 many-core using
ex MapIO.

the methods in the literature (as in [13], [14],[15]). This
method searches a region of size equal to the size of the
application to be allocated. The tasks of this application
are allocated in the selected region in such a way to
reduce the distance between the communicated tasks.

• MapIO [16]: this approach performs the mapping into
two steps. The first step splits the NoC into regions and
then allocates primarily critical applications in a dedi-
cated region close to memory and Ethernet controllers
by following a circular direction and using rectangular
shapes. The second step consists to allocate the tasks
within each application where some rules are used to
minimize the contentions on the path of the core-to-I/O
flows.

• ex MapIO [6]: this approach extends MapIO in order to
minimize the delay of outgoing I/O flows on the NoC.

Figure 4 shows an example of mapping for configurations of
9 applications on a 10x10 NoC using ex MapIO. The number
of occupied cores is 96 for this configuration. This means
that there are 4 free cores as we can see in Figure 4. These
free cores can be dedicated to schedule the transmission of
outgoing I/O flows.

IV. OUTGOING FLOWS TRANSMISSION

To avoid that the Ethernet interface is busy when it receives
a DMA command (like for VL1 second period in Figure 5),
a dedicated core is used to transmit the outgoing I/O flows.
These flows are scheduled by the execution of a table.
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Fig. 5: A possible transmission on a given VL.

A. A dedicated core for outgoing I/O flows

On many-core architecture, an outgoing I/O flow is trans-
mitted following three steps:

1) A core sends data to the nearest port of DDR memory,
2) then it sends a DMA command to the Ethernet interface

on a separate network. This DMA command indicates
that all the data are in the DDR memory. This command
is stored into a DMA command FIFO queue.

3) When the Ethernet interface executes the DMA com-
mand, data packets are sent from the same port of DDR
memory to the same Ethernet interface. The packets
of an outgoing I/O flow will incur a contention with
different types of communications on the NoC which
could lead to a jitter.

Let us illustrate the delays of these steps with the example
in Figure 5. Two VLs VL1 and VL2 are respectively generated
by tasks t1DDR and t2DDR. At the beginning of VL1 first BAG
period, t1DDR sends VL1 data to the nearest port of DDR
memory. This transmission can take up to WCTTtoDDR. Step 2
(transmission of the DMA command to the Ethernet interface)
is done after this worst-case delay. Thus step 1 duration is
bounded and does not generate any jitter. Similarly, step 2
duration is assumed to be constant, since the DMA command
is sent on a separate network. Thus all the jitter comes from
step 3 (transmission of the data from DDR memory to the
Ethernet interface). Considering VL1 first BAG period in
Figure 3, the jitter is the delay d1 of this transmission, which is
between 0 and its worst-case duration. Indeed, for VL1 second
BAG period, the Ethernet interface is busy with VL2 when it
receives VL1 DMA command. The delay due to VL2 has to be
added to the jitter, leading to an overall value of d+dVL2+d2.

As in [7], a specific core of the NoC is dedicated to the
transmission of VL through the Ethernet interface. The goal
is to avoid that the Ethernet interface is busy when it receives a
DMA command (like for VL1 second period in Figure 5). The
node is chosen between the ones that do not execute any tasks.
As an example, node located located in column 3 of line 3 in
Figure 4 can be chosen. On this node, the task tDDR executes
the transmission commands from the DDR to the Ethernet
interface. The transmission of these commands uses another
internal network and does not impact the communications
of other tasks. The transmission of the corresponding data
are then transmitted through the NoC from the DDR to the
Ethernet interface.

In order to reduce the jitter due to the transmission on the
NoC, the task tDDR executes a scheduling table. Thus, only
one VL is sent on the NoC at a given time. Then the only
jitter that appends is due to the transmission of the VL from

the DDR to the Ethernet interface though the NoC (as for VL1
first period in Figure 5).

For the considered case study described in Section III, the
WCTT of the VL transmitted through the NoC is given in
Table II. This delay is computed using the RCNoC method
[11] and is the maximum bounded delay that to transmit a VL
from the DDR to the Ethernet interface. Note that the WCTT
of all the VLs sent by a same application is the equal since
they use the same path on the NoC and have the same frame
size (1500 bytes). They only differ in BAG.

B. A scheduling table

In order to reduce the jitter induced by the transmission
of other VLs from the memory to the Ethernet interface
through the NoC and the transmission of these VLs through
the Ethernet interface, a scheduling table is constructed. The
considered scheduling table is composed of slots of 31.25µs.
The global duration of the table is 128ms. So the number of
slots is 4096. The table is composed of 128 lines of 1ms, each
line contains 32 slots. A set of slots is allocated to each VL
sent by the applications by considering the BAG duration: a
VL will obtain a slot at exactly each BAG. Such a scheduling
table is represented in Figure 6. A first allocation solution has
been defined with two objectives:

1) The allocation of the slots in order to guarantee that
the VLs sent by the applications respect their BAG con-
straints, i.e. which needs to guarantee that an application
can send a data at exactly every BAG period and will
find the next transmission slot at exactly one BAG from
the current transmission.

2) Suppose that a VL of an application can be sent at
column 20 in line 15 in the table. If this VL is ready
to be sent at column 2 in line 1, its transmission will
start 15.5 ms later (15 lines of the table is 15 ms, 16
slots of 31.25µs is 0.5 ms). To reduce this waiting delay,
more slots are reserved for the transmission of the VLs.
This oversampling is fixed to the minimum value of the
BAGs of the VLs except 1ms.

For each application which sends a VLi, the number of
allocated slots ωi for VLi is defined as:

ωi =

⌈
WCTT(VLi) + ft(VLi)

sd

⌉
(1)

where WCTT(VLi) is the WCTT of VLi from the DDR to
the Ethernet interface, ft(VLi) is the transmission delay of the
frame through the Ethernet interface and sd = 31.25µs is the
slot duration. The WCTT(VLi) depends on the contention on
the NoC, while ft(VLi) depends on the size of the frame that is
transmitted by the Ethernet interface. For example, VL1 which
is sent by FADEC7, as defined in Table I. Using ex MapIO
mapping method, the WCTT of this VL from the DDR to
the Ethernet interface is WCTT(VL1)=51µs. At 100 Mbps,
the transmission of this VL through the Ethernet interface
takes ft(VL1)= 1500×8

100.106 =120µs. So the resulting number of slots
allocated to VL1 is ω1 =

⌈
51+120
31.2

⌉
= 6. Table II gives the

number of slots allocated to the VLs for all the applications,
by considering the different mapping methods.



8 applications 9 applications
SHiC MapIO ex MapIO MapIO ex MapIO

Applications WCTT # slots WCTT # slots WCTT # slots WCTT # slots WCTT # slots
FADEC7 107 8 52 6 51 6 52 6 51 6
FADEC11 183 10 117 8 77 7 105 8 68 7
FADEC13 111 8 52 6 51 6 52 6 51 6
HM7 - - - - - - 105 8 68 7
HM9 107 8 17 5 16 5 37 6 33 5
HM10 18 5 52 6 51 6 52 6 51 6
HM11 20 5 23 5 17 5 43 6 34 6
HM12 20 5 23 5 17 5 43 6 34 6
HM16 23 5 157 9 139 9 157 9 139 9

TABLE II: WCTT on the NoC of the transmission of VL flows of each application from the memory to the Ethernet interface,
(in µs)

1
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Fig. 6: Scheduling table of a reduced version of the considered case study using ex MapioIO
.

An example of scheduling table is presented in Figure 6. It
is obtained by using a bin packing method. This example is a
reduced version of the illustrative case study. It is composed
of VL1, VL3, VL5, VL7, VL9, VL11, VL13, VL15 and VL17
(9 VLs are transmitted). As the minimum BAG value is 2ms
(for VL9), the slots are packed in two lines of the table. The
oversampling of slots is then 2ms. This means that applications
with a BAG greater than 2ms will get a transmission slot every
2ms. If they miss their first transmission slot, they will have to
wait a maximum of 2ms before the data will be transmitted.

Suppose that we want to add VL8 in Figure 6. As it remains
a very little amount of free slots (3 slots) when the 9 previous
VLs slots are allocated, VL8 cannot be transmitted by the
I/O core. However, the BAGs of VL7 and VL8 are 4 ms. If
the constraint of the minimum BAG is relaxed, VL7 can be
stored in slots of line 1 and VL8 can be stored in slots of
line 3, as in Figure 7d. The BAG constraint for these VLs
is still guaranteed by repeating the 4 first lines of the table.
A new allocation approach should be defined in order to add
more VLs, and thus to transmit all the VLs of the case study
proposed in Section III, by relaxing the strong constraint of
the over sampling.

V. OUR APPROACH FOR EXTENDING THE NUMBER OF
TRANSMITTED VLS

In this paper, we propose to relax the strong constraint of the
minimum BAG value of all the VLs that have to be transmitted.
The idea is to determine first the minimum number of lines in
which all the slots of the VLs can be stored. The allocation is
then done in 2 steps:

1) finding a first allocation of the slots into this obtained
number of lines. This allocation guarantees the respect
of the BAG but limits the over sampling to the period
associated to this number of lines;

2) allocating more slots to the VLs with a BAG greater than
the period connected to the obtained number of lines if

there is enough free slots after the execution of step 1.
This step allows to increase the possible over sampling.

A. Minimum BAG to allocate all the VLs
For allocating all the VLs within an optimal period, we

can estimate the value of this period, noted N , by taking into
account both BAG and capacity of each VL compared with
the capacity of each line of the scheduling table. This leads
to define a BAG among the different possible BAG values
within the set {21, .., 27} and the following positive objective
function:

N = arg min
i∈{21,..,27}

i× C −

∑
j∈P

i

BAGV Lj

ωj +
∑
k∈L

ωk


(2)

where P = {V Lj |BAGj ≤ i} and L = {V Lk|BAGk > i}
are the sets of VLs which BAG is less (respectively greater)
than i and C is the capacity of one line of the scheduling
table. In this equation, the first term i × C represents the
total capacity from the i first lines in the table and the
second term represents the total capacity occupied by the
VLs and their respective periods if all the VLs are allocated
within these lines. So negative values will indicate that the
configuration cannot ensure the transmission, i.e. there is not
enough capacity to transmit all the VLs. The result should be
positive for estimating a possible minimum BAG to allocate
all the VLs. This value N represents the minimum number of
lines considered for VL allocation.

B. VLs Allocation
With the notations in the Table III, we consider m different

possible VLs and their associated BAG. We compute the
number of times the different VLs should be stored in the
N lines of the scheduling table as follows :

nj =
N

BAGj
,∀j ∈ {1, ..,m}, (3)



Constants
m Number of VLs
C Full capacity of one line in the scheduling table
N Minimum number of lines considered for allocation
BAGj period of the VL j noted V Lj
ωj number of slots for VL j
nj number of times V Lj appears in N lines

with respect to its BAGj
Ci Free slots of each line i after VLs allocation

Boolean Variables
yi equal 1 if line i of the table is used in the solution,

0 otherwise
xij equal 1 if VL j is packed into line i of the table,

0 otherwise
Objective Function

N∑
i=1

yi minimize the number of lines to pack all the VLs

TABLE III: ILP Notations for VL allocation Problem

with N defined by Equation (2). When the number of VLs with
same BAGs increases, the constraint of the integer capacity of
each table line has to be taken into account for allocation.
That’s why the allocation of each VL can be formulated as an
Integer Linear Problem (ILP). This problem can be considered
as a variant of bin packing formulation with an additional
constraint on the periodicity of the VLs. It can be formulated
as follows : by considering m VLs, each having an integer
number of slots ωj (j=1,..,m) and a limited number of lines
N of integer capacity C. The objective is to pack all the VLs
into the minimum number of lines in the table so that the
total number of slots per VL packed in any line of the table
does not exceed its capacity and it satisfies the periodicity of
each VL. This will provide an optimal way to assign slots in
the scheduling table by the VLs. This periodicity constraint
imposes that some VL should appear several times in the
number of lines N in the table given by equation (3).

Formally, let’s introduce two binary decision variables yi for
i ∈ {1, .., N} which indicates the considered line of the table
and xij , for i ∈ {1, .., N} and j ∈ {1, ..,m} which indicates
the place of the VL j in the line i of the table as defined in the
table III. From these notations, as the objective is to pack all
the VLs into the minimum number of lines in the scheduling
table, the objective function will be formulated as:

min

N∑
i=1

yi

defined in Table III. This function has to be minimized so
that the total number of slots per VL, noted

∑m
j=1 ωjxij for

a line i ∈ {1, .., N}, packed in any line i ∈ {1, ..N} of the
table does not exceed its capacity C and this constraint can
be expressed for all the lines i ∈ {1, .., N} as:

m∑
j=1

ωjxij ≤ C yi,∀i = 1, .., N.

Finally, as the aim is to fill the table by considering all the m
VLs and their periodicity, this leads to define these following
periodicity constraints:

xij = xi+BAGjj ,∀j = 1, ..,m, ∀i = 1, .., N,

and that the VLs should be exactly assigned nj times in the
table as :

N∑
i=1

xij = nj , ∀j = 1, ..,m,

where nj is defined by equation (3).
Thus, we can formulate the problem of filling the scheduling

table by applications as the following ILP problem

min

N∑
i=1

yi (4)

s.t

m∑
j=1

ωjxij ≤ C yi,∀i = 1, .., N (5)

N∑
i=1

xij = nj ,∀j = 1, ..,m (6)

xij = xi+BAGjj ,∀j = 1, ..,m, ∀i = 1, .., N(7)
yi ∈ {0, 1} ,∀i = 1, .., N (8)
xij ∈ {0, 1} ,∀i = 1, .., N,∀j = 1, ..,m. (9)

Objective function (4) means that the VLs should be stored in
a minimum of lines of table N . Constraints (5) impose that the
capacity C of each line is not exceeded while constraints (6)
and (7) ensure that all the periodicity properties of the VLs are
satisfied. This ILP problem is solved by using CPLEX [17].

C. VL over sampling

From this first storage of the different VLs, the scheduling
table provides free slots that can be addressed for other VLs.
So we consider now the filling of the table so that it permits
transmitting applications with long BAG several times within
its own BAG. The principle is the same as the previous one
but the capacity is no more constant but variable. Let consider
the capacity, noted Ci, as the free slots for each line i of the
scheduling table defined by :

Ci = C −
∑
j∈S

ωj , (10)

where S = {j|yj = i} gathers all the VLs that are assigned
at the line i. The capacity Ci should be in {0, .., C}.

To do the filling of free slots, we recursively solve the same
previous ILP problem defined by equations (4)-(6)-(7)-(8)-(9)
but the capacity constraint should include variable capacity
for each line. This leads to replace the equation (5) by the
following one :

m∑
j=1

ωjxij ≤ Ci yi,∀i = 1, .., N (11)

where Ci is defined by equation (10). The VLs with long
BAGs (for examples, 32ms, 64ms, 128ms) are first privileged
for oversampling to ensure an earlier transmission. After
allocating these VLs, if there is still some free slots that can
satisfy all the constraints of periodicity, VLs with short BAGs
(for examples, 8ms, 16ms) can be considered for allocation.



(a) SHiC with 8 applications

(b) MapIO with 8 applications

(c) exMapIO with 8 applications

(d) exMapIO with 9 applications

Fig. 7: Resulting scheduling tables for SHiC, MapIO and exMapIO with 8 applications and for exMapIO with 9 applications.

VI. RESULTS ON THE CASE STUDY

In this section, we evaluate the approach to the illustrative
case study.

Figure 7 shows the resulting scheduling tables for SHiC,
MapIO and exMapIO with 8 applications and for exMapIO with
9 applications. The computation time of the ILP system is
between 20 ms and 30 ms for all the configurations. First, the
minimum number of lines is computed using Equation (2) of
Section V-A. All the VLs can be allocated in 4ms, i.e. 4 lines
of the table. This is why we only represent the 4 first lines of
the scheduling tables in Figure 7. The over sampling of slots
is then 4 ms. This means that VLs with a BAG greater than
4ms will get a transmission slot every 4ms. If they miss the
first transmission slot, they will have to wait a maximum of
4ms before the data will be transmitted.

For MapIO with 9 applications, Equation (2) indicates that it
needs 8 lines to allocate all the VLs. As said before, this means
that VLs with a BAG greater than 8ms will get a transmission
slot every 8ms. A first allocation is then constructed and is
given in Figure 8a. For this first allocation, the proposed over

sampling provides free slots that can be allocated for VLs
with BAG greater than 8ms. A second step is then executed in
order to full fill the remaining free slots. The resulting table
is depicted in Figure 8b. VLs with BAG greater than 8ms,
such as VLs from HM12, are then allocated another time in
the table. Thus, their waiting delay is reduced. As an example,
in Figure 8a, if VL16 is ready to be sent after slot 26 of line
2 (it misses its first slot), it will wait a maximum duration
of 8ms before its transmission through the Ethernet interface.
This VL will wait a maximum of around 4ms in Figure 8b.

Adding more VLs will limit more the over sampling.
The particular case where N of Equation (2) is equal to
the maximum BAG value of the VLs do not guarantee the
allocation of the VLs. If the VLs allocation of Section V-B
gives a solution, all the VLs will respect their BAG constraint
but the over sampling is limited to the remaining capacity size
in the table.

VII. CONCLUSION

In this paper, we proposed to replace the mono-core pro-
cessors in avionics architecture by a NoC-based many-cores



(a) MapIO with 9 applications, first step (b) MapIO with 9 applications, second step

Fig. 8: Resulting scheduling table for MapIO with 9 applications.

architecture. Thus, End Systems are replaced by many-cores.
The main contribution of the paper is that it proposes a

new VL transmission strategy which considers one dedicated
node in the many-core architecture to shape the traffic and
schedules the outgoing I/O flows. This dedicated node executes
a scheduling table. The applications are allocated into the table
using an ILP formulation. The two objectives of the strategy is
to guarantee the BAG regulation and to over sample the slots to
VLs in order to reduce the waiting delays of the transmission
of the VLs. The idea is to determine the minimum number
of lines needed in which the transmission slots of all the VLs
can be stored. To maximize the over sample, the remaining
free slots are allocated to VLs with a BAG greater than this
obtained minimum value. The proposed solution thus limits
the over sampling and allows to transmit more VLs than the
solution proposed in [7].

The worst case transmission delay of a VL from one
application from a many-core to another application executed
on another many-core should be mastered in order to certify
the avionic system. AFDX network uses Network Calculus to
compute the maximum worst case delay [18]. For a NoC used
in processors like Tilera, the method is Recursive Calculus
[10]. The problem that could be addressed now is how
to compute the worst case end-to-end delay of the global
communication.
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